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PREFACE

Little is known at present to historians of mathe-
matics regarding the achicvements of the early Hindu
mathematicians and our indebtedness to them. Though
it is now generally admitted that the decimal place-
value system of numeral notation. was invented and
first used by the Hindus, it is not yet fully realized
to what extent we are indebted to them for our
elementary mathematics. This is due to the lack of a
reliable and authentic history of Hindu mathematics.
Our object in writing the present book has been to
make up’ for this deficiency by giving a comptehensive
account of the growth and development of the
science of mathematics in India from the -earliest
known times down to the seventeenth century of the
Christian era.

The subject is treated by topics. Under each topic
are collected together and set forth in chronological
order translations of relevant Sanskrit texts as found
in the Hindu works. The texts have been elucidated,
wherever necessary, by adding explanatory notes and
comments, and also by illustrative examples culled from
original sources. We have tried to avoid repetition
as far as has been consistent with our aim. However,
on several occasions it has been considered desirable
to repeat the same rule in the words of different authors
in order to emphasize the continuity or rather the
Fradual evolution of mathematical thought and termino-
ogy in India. Comparative study of this kind has
helped us to throw light on certain obscure Sanskrit
passages and technica% terms whose full significance
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had not been understood before. In translating the
texts we have tried to be as literal and faithful as
possible without sacrificing the spirit of the original.
Sometimes it has not been possible to find exact
parallels to Sanskrit words and technical terms in
English. In all such cases we have tried to maintain
the spirit of the original in the English version.

The above plan of the book has been adopted in
pursuance of our intention to place before those who
have no access to the Sanskrit sources all evidence,
unfavourable as well as favourable, so that they can
judge for themselves the claims of Hindu mathematics,
without depending solely on our statements. In order
to facilitate comparison with the development of
mathematics in other countries the various topics have
been arranged generally in accordance with the se-
quence in Professor D. E. Smith’s History of Mathematics,
Vol. II. This has sometimes necessitated divergence
from the arrangement of topics as found in the Hindu
works on mathematics.

In search of material for the book we had to
examine the literature of the Hindus, non-mathematical
as well as mathematical, whether in Sanskrit or in
Prikrit (Pili and Ardha Migadhi). Very few of the
Hindu treatises on mathematics have been printed so
far, and even these are not generally known. The
manuscript works that exist in the various Sanskrit
libraries in India and Europe are still less known. We
have not spared labour in collecting as many of these
as we could. Sanskrit mathematical works mentioned
in the bibliography given at the end of this volume
have been specially consulted by us. We are thankful
to the authorities of the libraries at Madras, Bangalore,
Trivandrum, Trippunithura and Benares, and those of
the India Office (London) and the Asiatic Society of
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Bengal (Calcutta) for supplying us transcripts of the
manuscripts required or sending us manuscripts for
consultation. We are indebted also to Dr. R.P.
Paranjpye, Vice-Chancellor of the Lucknow University,
for help in securing for our use several manuscripts
or their transcripts from the state libraries in India
and the India Office, London.

It would not have been possible to carry our study
as far as has been done without the spade work of
previous writers. Foremost among these must be men-
tioned the late Pandit Sudhakar Dvivedi of Benares,
whose editions of the Lildvati, Bribmasphuta-siddhinta,
Trisatikd, Mahisiddhinta, Siddbiénta-tattva-viveka, etc.,
have been of immense help. Colebrooke’s translations of
the arithmetic and algebra of Brahmagupta and Bhis-
kara II, Kern’s edition of the Aryabbatiya and Ranga-
carya’s edition (with English translation) of the Ganzta-
sdra-samgraba of Mahivira have also been of much use.
The tecent work of G. R. Kaye, however, has been
found to be extremely unreliable. His translation of
the Gapitapida of the Aryabbatiya and his edition of the
Bakhshili Manuscript are full of mistakes and are
misleading.

It has been decided to publish the book in three
parts. The first part deals with the history of the
numeral notation and of arithmetic. The second is
devoted to algebra, a science in which the ancient Hindus
made remarkable progress. The third part contains
the history of geometry, trigonometry, calculus and
various other topics such as magic squares, theory of
series and permutations and combinations. Each part is
complete in itself, so that one interested in any particular
branch of mathematics need not consult all of them.

Part I which is now being published contains two
chapters. Chapter I gives an account of the various
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CuaPTER 1

NUMERAL NOTATION

1. A GLIMPSE OF ANCIENT INDIA

The student of ancient Indian History is struck
by the marvellous attainments of the Hindus, both
in the Arts and the Sciences, at a very early perlod
The discoveries at Mohenjo—daro reveal thatas early as
3,000 B.C. the inhabitants of the land of the Sindhu—
the Hindus—built brick houses, planned cities, used
metals such as gold, silver, copper and bronze, and lived
a highly organised life. In fact, they were far in advance
of any other people of that perlod The earliest works
available, the 17edas (¢. 3,000 B.C. or probably much
carlier), although consisting mainly of hymns of praise
and poems of worship, show a high state of civilisation.
The Brébmapa literature (¢. 2,000 B.C.) which follows
the Vedas, is partly ritualistic and partly philosophical.
In these works are to be found well-developed systems
of metaphysical, social and religious philosophy, as well
2s the germs of most of the sciences and arts which have
helped to make up the modern civilisation. It is here
that we find the beginnings of the science of mathematics
(arithmetic, geometry, algebra,- etc.) and astronomy.
This Brdbmana period was followed by mote than two
thousand years of continuous progress and brilliant
achievements. Although during this period there were
several foreign invasions as well as internal wars and
many great kingdoms rose and fell, yet the continuity of
intellectual progress was maintained. The constitution
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of Hindu society was mainly responsible for this.
The foreign invaders, instead of being 2 hindrance,
contributed to progress and the strengthening 6f Hindu
society by bringing in new blood. They settled in the
land, adopted the religion and customs of the conquered
and were -~completely absorbed into Hindu society.
There were a class of people—the Brihmanas—who
took the vow of poverty, and devoted themselves, from
one generation to another, to the cultivation of the
sciences and arts, religion and philosophy. The
Brihmanas, thanks to their selflessness and intellectual
attainments, were highly respected by the kings and the
people alike. They were the law-givers and advisers
of the kings. In fact, this body of selfless thinkers
and learned men were the real rulers of the land.

The great Epic, the Rémdyana, was composed by
Vilmiki, the father of Sanskrit poetry, about 1,000 B.C.,
Pinini, the grammarian, perfected Sanskrit grammar
about yoo B.C. and Susruta wrote on the sciences of
medicine and surgery about 6oo B.C.* A century later,
Mahévira and Buddha taught their unique systems of
religious and moral philosophy, and the doctrine of
Nirvipa. With the spread of these religions evolved
the Jaina and Buddhist literatures. Some of the earlier
Purinas and Dbharma-5istras were written about this
time. The period go0 B.C. to 400 A.D., however, seems
to have been a period of great activity and progress.
During this period flourished the great Jaina meta-
physician Umasviti, Patafijali, the grammarian and philo-
sopher, Kautilya, the celebrated politician, Nagarjuna,
the chemist, Caraka, the physician, and the immortal
poets Asvaghosa Bhisa and Kailiddsa. The great

! There is considerable divergence of opinion regarding the
dates of the pre-historic works and personalities mentioned in this
section. We have given those dates that appear most plausible.
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astronomical Siddbdntas, the Sirya, the Pitdmaba, the
Vafistha, the Pardfara and others were swritten during
this period and the decimal place-valuc notation was °
perfected.

. 2. HINDUS AND MATHEMATICS

Appreciation of Mathematics. It is said that
in ancient India no science did ever attain an independent
existence and was cultivated for its own sake. What-
ever of any science is found in Vedic India is supposed
to have originated and grown as the handmaid of one
or the other of the six “members of the Veda,” and
consequently with the primary object of helping the
Vedic rituals. It is also supposcd, sometimes, that
any further culture of the science was somewhat dis-
couraged by the Vedic Hindus in suspicion that it might
prove a hindrance to their great quest of the knowledge
of the Supreme by diverting the mind to other external
channels. That is not, indeed, a correct view on the
whole. It is perhaps true that in the earlier Vedic Age,
sciences grew as help to religion. But itis generally
found that the interest of people in a particular
branch of knowledge, in all climes and times, has al-
ways been aroused and guided by specific reasons.
Religion being the prime avocation of the earlier Hindus,
it is not unnatural that the culture of other branches
of knowledge grew as help to it and was kept subsi-
diary. But there is enough evidence to show that
in course of time all the sciences outgrew their original
purposes and were cultivated for their own sake. A
new orientation had indeed set in in the latter part of
the Vedic Age.

There is a story in the Chdndogya Upanisad* whose

1 C/Ja‘rzdog)/a Upanisad, vii. 1, 2, 4.
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value in supportt of our view cannot be over-estimated.
It is said that once upon a time Nirada approached
the sage Sanatkumira and begged of him the Brabwa-
vidyd or the supreme knowledge. Sanatkumiara asked
Niarada to state what sciences and arts he had already
studied so that he (Sanatkumira) might judge what
still remained to be learnt by him. Thereupon Nirada
cnumerated the various sciences and arts studied by him.
This list included astronomy (naksatra-vidyi) and arith-
metic (rd§-vidyd). Thus the culture of the science of
mathematics ot of 2ny other branch of secular know-
ledge, was not considered to be a hindrance to spiritual
knowledge. In fact, Apard-vidyi (“secular knowledge™)
was then considered to be a helpful adjunct to Pard-vidyi
(“spiritual knowledge’).!

Importance to the culture of Gapite (mathematics)
is also given by the Jainas. Their religious literature
is generally classified into four branches, called anuyoga
(“exposition of principles”). One of them is guwitdns-
yoga (“‘the exposition of the principles of mathematics™).
The knowledge of Sarmkhyina (literally, “the science of
numbers,” meaning arithmetic and astronomy) is stated
to be one of the principal accomplishments of the Jaina

riest.? In Buddhist literature too, arithmetic (gapand,

samkhydna) is regarded as the first and the noblest of
the arts.®* All these will give a fair idea of the importance
and value set upon the culture of gepifz in ancient
India.

The following appreciation of mathematics, al-
though belonging to a much later date, will be found
to be interesting, especially, as it comes from the pen

* Mundakopanisad, i. 1, s3-5.

2 Bhagavati-sitra, Sutra 9o, Uttarddbyayana-sitra, xxv. 7, 8, 38,

8 Vinaya Pitaka, ed. Oldenberg, Vol. IV, p. 7; Majjhima
Nikdya, Vol. 1, p. 8s5; Cullaniddesa, p. 199.



HINDUS AND MATHEMATICS 5

of Mahivira (850 A.D.), one of the best mathematicians
of his time:

“In all transactions which relate to worldly, Vedic
or other similar religious affairs calculation is of use.
In the science of love, in the science of wealth, in music
and in drama, in the art of cooking, in medicine, in
architecture, in prosody, in poetics and poetry, in logic
and grammar and such other things, and in relation to
all that constitutes the peculiar value of the arts, the
science of calculation (ganitz) is held in high esteem.
In relation to the movements of the sun and other
heavenly bodies, in connection with eclipses and
conjunctions of planets, and in connection with the
triprasna (direction, position and time) and the course
of the moon—indeed in all these it is utilised. The
number, the diameter and the perimeter of islands,
oceans and mountains; the extensive dimensions of the
rows of habitations and halls belonging to the inhabi-
tants of the world, of the interspace between the worlds,
of the world of light, of the world of the gods and of
the dwellers in hell, and other miscellaneous measure-
ments of all sorts—all these are made out by the help
of ganita. The configuration of living beings therein,
the length of their lives, their eight attributes, and other
similar things; their progress and other such things,
their staying together, etc—all these are dependent
upon gawta (for their due comprehension). What is
the good of saying much? Whatever there is in all the
three worlds, which are possessed of moving and non-
moving beings, cannot exist as apart from gewita
(measurement and calculation).

“ With the help of the accomplished holy sages,
who are worthy to be worshipped by the lords of the
world, and of their disciples and disciples’ disciples,
who constitute the well-known series of preceptors,



6 NUMERAL NOTATION

I glean from the great ocean of the knowledge of
numbers a little of its essence, in the manner in which
gems are picked from the sea, gold is from the stony
rock and pear]l from the oyster shell; and give out
according to the power of my intelligence, the Sdra-sazi-
graba, a small work on gapita, which is (however) not
small in value.”

Mathematics in Hindu  Education. The
elementary stage in Hindu education lasted from the
age of five till the age of twelve. This period slightly
differed in the case of sons of kings and noblemen.
The main subjects of study were /ip or lekhd (alphabets,
readmg and writing), 74pa (drawing and geometry) and
gapand (arithmetic). It is said in the Arthasdstra of
Kautilya (400 B.C.) that having undergone the ceremony
of tonsure, the student shall learn the alphabets (/p/) and
arithmetic (samkhydina).? We find in the Hathigumpha
Inscription® that king Kharavela (163 B.C.) of Kaling
spent nine years (from the age of sixteen to the age of
25) in learning /ekhd, répa and gapand. Prince Gautama
began his education when he was eight years of age
“firstly (with) writing and then "arithmetic as the most
1mportant of the 72 sciences and arts.”* Mention of
lekhd, riipa and ganand is also found in the Jaina canonical
works.®

1GSS, i 9-19.

2 Arthafistra, ed. by R. Shamasastri, 1. 5, 2; Eng. trans,,
p. 10.

8 Hathigumpha and three other inscriptions, ed. by Bhagavanlal
Indraji, p. 22.

¢ Antagada-dasio and Anuttarvaviiya-dasdoe, Eng. trans. by L. D.
Barnctt 1907, p. 30; cf. Kalpasitra of Bhadrabahu Shtra 211.

5EB.g., Samaviyinga-sitra, Sttra 7.
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3. SCOPE AND DEVELOPMENT OF HINDU
MATHEMATICS

Gapita literally means “the science’ of calculation”
and is the Hindu name for mathematics. The term is a
very ancient one and occurs copiously in Vedic literature.
The Vedirnga [yotisa (¢. 1,200 B.C.) gives it the highest
place of honour among the sciences which form the
Vedinga: “As the crests on the heads of peacocks, as
the gems on the hoods of snakes, so is gamita at
the top of the sciences known as the Veddriga.””* In
ancient Buddhist literature we find mention of three
classes of gamita: (1) mudrd (“finger arithmetic”), (2)
ganand  (“mental arithmetic™) and (3) samkbyina
(“higher arithmetic in general”). One of the earliest
enumerations of these three classes occurs in the Digha
Nikdya,? and it is also found in the inagya Pz_fa/éa3
Divydvadina* and Milindapasibe.® The word sarmklyina
has been used for gapita in several old works.® At this
remote period gapita included astronomy, but geometry
(£setra-ganita) belonged to a different group of sciences
known as Kalpasitra.

It is believed that some time before the beginning
of 'the Christian era, there was a renaissance of Hindu
Ganita.™ ‘The effect of this revival on the scope of

1 “Yathi $ikhd mayuripimh niginirm manayo yatha
Tadvadvedangasastrinam ganitarh mirdhani sthitam.”

I, p. 5L Veddinga [yotisa, 4

$IV, p. 7. I

* Diyydvaddna, ed. by E. B. Cowell and R. A. Neil, Cambridge,
1886, pp. 3, 26 and 88.

5 Milindapaiiho, Eng. trans. by Rhys Davids, Oxford, 1890,
. 9I.
P ¢ E.g., Kalpasitra of Bhadrabihu, ed. by H. Jacobi, Leipzig,
1897; Bhagavati-sitra, Bombay, 1918, p. 112; Arthasdstra, i. 5. 2.

" Bibhutibhusan Datta, “The scope and development of
Hindu Gaaita,” Indien Historical Quarterly, V, 1929, pp. 479-512.
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genita was great. Astronomy (fyotisa) became a separate
subject and geometry (Rsefra-gapita) came to be included
within its scope. The subjects treated in the Hindu
Ganita of the early renaissance period consisted of the
following:* Parikarma  (“fundamental operations”),
Vyavabhdra (“determinations”), Rajja (“rope,” meaning
geometry), R4 (“‘rule of three’), Kaldsavarpa (“opera-
tions with fractions’), Ydvat tdvat (“as many as,”
meaning simple equattons), Varge (*‘Square,” meaning
quadratic.  equations), Ghana (“Cube”, meaning cubic
equations), Varga-varga (biquadratic equations) and
Vikalpa (‘“‘permutations and combinations™).

Thus gepita came to mean mathematics in general,
while ‘finger arithmetic’ as well as ‘mental arithmetic’
were excluded from the scope of its meaning For the
calculations involved in gapita, the use of some writing
material was essential. The calculations were performed
on a board (pdtf) with a piece of chalk or on sand (dhili)
spread on the ground or on the pd#Z. Thus the terms
pdti-ganita (“‘science of calculation on the board™) or
thhli-karma (“‘dust-work™), came to be used for higher
mathematics. Later on the section of genita dealing
with algebra was given the name Bfja-gapita. The first
to effect this separation was Brahmagupta (628), but he
did not use the term Bfja-gapita. The chapter dealing
with algebra in his Brébma-sphuta-siddhinta is called
Kuttaka. Sridharicirya (750) regarded Pdti~ganita and
Bija-gapita as separate and wrote separate treatises on
each. This distinction between Péitigapita and Bijaganita
has been preserved by later writers.

Having given a brief survey of the position and
scope of mathematics in Ancient India, we turn to the

! “Parikammarh vavahiro rajju rdsi kalisavanne ya
Javantdvati vaggo ghano tataha vaggavaggo vikappo ta n”
Sthindngasitra, Sttra 747.
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purpose in hand—that of giving a connected account
of the development and growth of the different branches
of mathematics. The numeration system of the Hindus
will engage our attention first.

4. NUMERAL TERMINOLOGY

Scale of Notation. We cag definitely say that
from the very earliest known times, ten has formed
the basis of numeration in India.? In fact, there is
absolutely no trace of the extensive use of any other
base of numeration in the whole of Sanskrit literature.
It is also characteristic of India that there should be
found at a very early date long series of number names
for very high numerals. While the Greeks had no
terminology for denominations above the myriad (10%),
and the Romans above the wi//e (10*), the ancient Hindus
dealt freely with no less than eighteen denominations.
In modern times also, the numeral language of no
other nation is as scientific and perfect as that of the
Hindus.

In the Yajurveda Sanihitd (1/djasaneyi)? the following
list of numeral denominations is given: FEékaz (1), dasa
(10), sata (100), sabasra (1000), ayuta (10,000), niyuta
(100,000), prayuta (1,000,000), arbuda (10,000,000),
nyarbuda  (100,000,000),  samudra  (1,000,000,000),
madhya (10,000,000,000), anta  {100,000,000,000),
pardrdba (1,000,000,000,000). The same list occurs at
two places in the Taittiriya Sambitd® ‘The Maitrdyani*

! Various iostances are to be found in the Rgreds; noted
by Macdonell and Keith, Vedic Index, Vol. 1, p. 343.

* Yajurveda Sambitd, xvii. z. -

3iv. 40. 11. 4; and vii. 2. 20. 1.

#ii. 8. 14; the list has ayura, prayuta, then again aywra, then
nyarbuda, samudra, madbya, anta, pardrdba.
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and Kdthaka* Sambitds contain the same list with slight
alterations. The Pa#cavimia Brdbmapa has the Yajur-
veda list upto myarbuda inclusive, and then follow
nikharva, vidava, aksiti, etc. The Sdnkbydyana Sranta
Sdtra continues the series after myarbnda with nikbarva,
Samudra, Salila, antya, ananta (= 1o billions). Each of
these denominations is 10 times the preceding, so that
they were aptly called dasaganottara samjid* (“decuple
terms’’).

Coming to later times, 7.¢., about the sth century
B.C,, we find successful attempts made to continue the
series of number names based on the centesimal scale.®
We quote below from the Lalitavistara,* a well-known
Buddhist work of the first century B.C., the dialogue
between Arjuna, the mathematician, and Prince Gautama
(Bodhisattva):

“The mathematician Arjuna asked the Bodhisattva,
‘O young man, do you know the counting which goes
beyond the 407/ on the centesimal scale?

Bodhisattva: I know.

Arjuna: How does the counting proceed beyond
the Ao#/ on the centesimal scale?

Bodhisattva: Hundred 4&otis are called ayma,
hundred agystas niynta, hundred niyutas karikara, hundred
karikaras vivara, hundred vivaras ksobhya, hundred Aso-
bhyas vivdba, hundred vivdhas utsariga, hundred #stsasrigas
babula, Wandted babulas ndgabala, hundred ndgabalas ritr-

' xvii. 10; the list is the same with the exception that miysta
and prayuta change places. In xxxix. 6, after marbuds a new
term rddava intervenes.

®Cf., Bhaskara 1I, L, p. 2.

® Satottara  gapand or Satottdra sarwjfid (names on the cen-
tesimal scale).

* [alitavistara, ed. by Rajendra Lal Mitra, Calcutta, 1877,
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lambha, hundred titilambhbas yyavasthina-prajrapti, hundred
vyavasthina-prajiaptis hetnbila, tandred betubilas karabu,
hundred karabus hetvindriya, hundred betvindriyas samipta-
lambba, hundred samdpta-lambbas gapandgati, hundred
ganandgatis niravadya, hundred niravadyas mudré-bala, hun-
dred mudrd-balas sarva-bala, hundred sarva-balas visamijiia-
gati, hundred wvisanjiid-gatis sarvajfid, hundred sarvajfids
vibbutarigama, hundred vibbutarigamads tallaksapa.*”
Another interesting series of number names
increasing by multiples of 10 millions is found in
Kicciyana’s Pali Grammar.? “For example: dasa
(10) multiplied by dase (10) becomes sata (100),
sata (1oo0) multiplied by ten becomes sahassa (1,000),
sabassa multiplied by ten becomes dasz sabassa (10,000),
dasa sabassa multiplied by ten becomes safe sabassa®
(100,000), sata sabassa multiplied by ten becomes dasa
sata sahassa (1,000,000), dasa sata sabassa multiplied by
ten becomes 4o#/ (10,000,000). Hundred-hundred-
thousand £otis give pakoti* In this manner the further
terms are formed. What are their names? ..........
hundred hundred-thousands is £e0#, hundred-hundred-

VThus tallaksapa=10%,

This and the following show that the Hindus anticipated
Archimedes by several centuries in the matter of evolving a series
of number names which ““are sufficient to exceed not only the
aumber of a sand-heap as large as the whole earth, but one as
large as the universe.”

Cf. ‘De barenae numero’ in the 1544 edition of the Opera of
Archimedes; quoted by Smith and Karpiaski, Hindu _Arabic
Numerals, Boston, 1911, p. 16.

2 “Grammaire Palie de Kicciyana,” Journ. _Asiatique, Sixieme
Serie, XVII, 1871, p. 411. The explanations to siitras 51 and
sz are quoted here.

3 Also called lekkba (laksa).

4 Also called 4ofi-£0t7, i.e., (10,000,0c0)?’=10%*. The follow-
ing numbers are in the denomination Apti-koti. Compare the
Anuyogadvira-sitra, Stitta 3142,
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thousand &otis is pakoti, hundred-hundred-thousand
pakotis is kotippakot/, hundred-hundred-thousand koys-
ppakotis is nalmta, hundred-hundred-thousand nabutas is
ninnabnta, hundred-hundred-thousand wimnabutas is ak-
khobhinz, similarly we have bindu, abbuda, nirabbuda,
ababa, ababa, atata, sogandbika, uppala, kumnda, pundarika
paduma, kathina, mabikathina, asankbyeya.””*

In the Anuyogadvdra-siitra® (¢c. 100 B.C.), a Jaina
canonical work written before the commencement of
the Christian era; the total number of human beings
in the world is given thus: “a number which when
expressed in terms of the denominations, &ofz-£oti, etc.,
occupies twenty-nine places (sZhdna), or it 1s beyond the
24th place and within the 32nd place, or it is a number
obtained by multiplying sixth square (of two) by (its)
fifth square, (7.c., 2°%), or it is a number which can be
divided (by two) ninety-six times.”” Another big number
that occurs in the Jaina works is the number representing
the period of time known as Sirgaprahelikd. According
to the commentator Hema Candra (b. 1089)%, this
number is so large as to occupy 194 notational places
(arifka-sthanehi). 1t is also stated to be (8,400,000)*.

Notational Places. Later on, when the idea of
place-value was developed, the denominations (number
names) were used to denote the places which unity would
occupy in order to represent them (denominations) in
writing a number on the decimal scale. For instance,
according to Aryabhata I (499) the denominations are
the names of ‘places’. He says: “LEkz (unit) dasa
(ten), Sata (hundred), sahasra (thousand), aywta (ten
thousand), my#a (hundred thousand), praymta (million),

Y Thus asaikbyeya is (10)**°=(10,000,000)2°,

® Slitra 142.

3 The figures within brackets after the names of authors or
works denote dates after Christ.
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koti (ten million), arbudz (hundred million), and #rnda
. (thousand million) are respectively from place to place
each ten times the preceding.” The first use of the
word ‘place’ for the denomination is met with in the
Jaina work quoted above.

In most of the mathematical works, the denomina-
tions are called “names of places,” and eighteen of
these are generally enumerated. Sridhara (750) gives
the following names:® ¢ka, dafa, Sata, sabasra, ayuta,
laksa, praywta, koti, arbuda, abja, kharva, nikbharva, mahd-
sargja, San&k#, saritd-pati, antya, madbya, pardrdba, and adds
that the decuple names proceed even beyond this.
Mahivira (850) gives twenty-four notational places:®
eka, dasa, Sata, sabasra, daSa-sabasra, laksa, dasa-laksa,
koti, daSa-koti, Sata-koti, arbuda, nyarbuda, kharva,
mahikharva, padma, mabd-padma, ksopi, mabd-Rso,
Sarkha, mabd-Sarikha, ksiti, mabi-ksiti, fksobha, mabi-
ksobha.

Bhiskara II’s (1150) list agrees with that of Sridhara
except for mabdsaroja and saritdpati which are replaced
by their synonyms mabdpadma and jaladhi respectively.
H? remarks that the narhes of places have been assigned
for practical use by ancient writers.*

Nirdyana (1356) gives a similar list in which «bja,
mabdsaroja and saritdpati are replaced by their synonyms
saroja, mahdbja and pdrdvira respectively.

Numerals in Spoken Language. The Sanshait
names for the numbers from one to nine are: eka, &,
tri, catur, paiica sat, sapta, asta, nava. These with the

v A4, i, 2,
2 Tris, R. 2-3; the term used is dafagund p samyjiidp, i.e., “decuple
names.” 4

¥ GSS, i. 63-68; “The first place is what is known as eks; the
second is dasa’ etc.
*L, p. 2.
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numerical denominations already mentioned suffice to
express any required number. In an additive system
it is immaterial how the elements of different denomina-
tions, of which a number is composed, are spoken.
Thus one-ten or ten-one would mean the same. But
it has become the usual custom from times immemorial
to adhere to a definite mode of arrangement, instead
of speaking in a haphazard manner.

In the Sanskrit language the arrangement is that
when a number expression is composed of the first two
denominations only, the smaller element is spoken
first, but when it is composed also of higher denomina-
tions, the bigger elements precede the smaller ones,
the order of the first two denominations remaining as
before. Thus, if a number expression contains the
first four denominations, the normal mode of expression
would be to say the thousands first, then hundreds,
then units and then tens. It will be observed that
there is a sudden change of order in the process of
formation of the number expression when we go beyond
hundred. The change of order, however, is common
to most of the important languages of the world.
Nothing definite appears to be known as to the cause
of this sudden change.

The numbers 19, 29, 39, 49, etc., offer us instances
of the use of the s#btractive principle in the spoken
language. In Vedic times we find the use®* of the
terms ekdnna-vimrSati  (one-less-twenty) and  ekdnna-
catvarimSat (one-less-forty) for nineteen and thirty-nine
respectively. Inlater times (Sltra period) the ednna was
changed to ekona, and occasionally even the prefix ez

1Only in very few languages is the order continuously
descending. In English the smaller elements are spoken first
in the case of numbers upto twenty only.

2 Taittiriya Samhitd, vil. 2. 11.
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was deleted and we have #Zng-vimsati, dna-trimsat, etc.—
forms which are used upto the present day. The al-
ternative expressions nara-dasa (nine-ten), nava-vimiSati
(nine-twenty), etc., were also sometimes used.’

Practically the whole of Sanskrit literature is in
verse, so that for the sake of metrical convenience,
various devices were resorted to in the formation of
number expressions, the most common being the
use of the additive’* method. The following are a
few examples of common occurrence taken from
mathematical works : '

Subtractive: (1) the number 139 is expressed as
40-f-100—1;*
(2) 297 is expressed as 300—3.*
Multiplicative: (1) the number cighteen is expressed
as 2% 9;°

(2) twenty-seven is expressed as
39 and 12 as 2 X6;°

(3) 28,483 is expressed as 834400+
(4000X 7).

' 19 = nava-dasa (VVdjasaneyi Samhitd, xiv. 23; Taittiriya Sambitd,
Xiv. 23. 30).

29 = nava-vimsati (Vdjasaneyi Sambitd, xiv. 31).

99 = nava-navati (Rgrveda, 1. 84. 13).

3339 = fripi Satdni trisabasrdni trimsa ca nava ca, ie., “three
hundreds and three thousands and thirty and nine.” (Rgreda,
iii. 9. g; also x. §2. 6.) ‘

3 GSS, L. 4 cattvarimsascaifona Satédhika (“forty increased by
one-less-hundred™).

*L, p. 4, Ex. 1: Trikinasya fata-trayasya (“‘three less three
hundred™).

5 A, i, 31 dvi-navaka.

& Tris, Ex. 431 tri-navaka (“three nines”), dvi-sat (“two sixes’?).

TGSS, 1. 28:  tryasitimisrdini  catusSatini  catussabasraghna
nagdnvitini (‘‘eighty-thtee combined with- four hundred and
four thousand multiplied by seven’). !

2
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The expression of the number 12345654321 in the
form “beginning with 1 upto 6 and then diminishing in
order” is rather interesting.’

What are known as alphabetic and word numerals
were generally employed for the expression of large
numbers. A detailed account of these numerals will
be given later on. -

s. THE DEVELOPMENT OF NUMERICAL
SYMBOLISM

Writing in Ancient India. It is generally held
that numerical symbols were invented after writing had
been in use for some time, and that in the early stages
the numbers were written out in full in words. This
seems to be true for the bigger units, but the signs for
the smaller units are as old as writing itself.

Until quite recently historians were divided as to
the date when writing was in use in India. There were
some who stated that writing was known even in the
Vedic age, but the majority following Weber, Taylor,
Biihler and others were of opinion that writing was
introduced into India from the West about the eighth
century B.C. ‘These writers built up theories deriving
the ancient Indian script, as found in the inscriptions
of Adoka, from the more ancient writing discovered in
Egypt and Mesopotamia. The Semitic origin was first
suggested by Sir W. Jones, in the year 1806, and later
on supported by Kopp (1821), Lespius (1834), and many
others. The supporters of this theory, however, do
not completely agree amongst themselves. For, whilst
W. Deccke and I. Taylor derive the Indian script from
a South-Semitic script, Weber and Bihler derive

1 GSS, i.27: ekddisadantini kramena binini.
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it from the Phoenician or a North-Semitic script.?
Biihler rejects the derivation from a South-Semitic
script, stating that the theory requires too many assump-
tions, and makes too many changes in the letter forms
to be quite convincing. He, however, supports Weber’s
derivation from a North-Semitic script and has given
details of the theory.* Ojha® has examined Biihler’s
theory in detail and rejects it stating that it is fanciful
and that the facts are against it. He states that only
one out of the twenty-two letters of the Phoenician
(North-Semitic) script resembles a phonetically similar
Braihmi letter. He supports his argument in a most
convincing manner by a table of the two alphabets,
with phonetically similar letters arranged in a line. He
further shows that following Biihler’s method of deri-
vation almost any script could be proved to be the
parent of another.*

Other scholars, who held that writing was known
in India as early as the Vedic age, based their conclusion
upon literary evidence. The UVafistha Dbharmasitra,
which originally belonged to a school of the Rgreda
offers clear evidence of the use of writing in the Vedic
period. Va$istha (xvi. 10, 14-15) mentions written
docuthents as legal evidence, and the first of these sttras

!For minor differences in the theories set up by different
writers and also for several other theories, see Biihler, Palacography,
p. 9; the notes give the references.

2 Biihler, /c., pp. 9f.

8 PLM, pp. 18-31.

¢ Recently several other eminent historians have expressed their
disagreement with Biihler’s derivation. See Bhandarkar, “Origin
of the Indian Alphabet,” Sir Asutosh Mukersi Jubilee Volumes,
Vol. III, 1922, p. 493; H. C. Ray, “The Indian Alphabet,” IA4,
II1, 1924, p. 233; also Mobenjo-darec and the Indus Valley Civilisation,
1931, p. 424, where the following remark occurs: “I am con-
vinced that all attempts to derive the Braihmi alphabet from Semitic
alphabets were. complete failures.”

2
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is a quotation from an older work or from traditional
lore. Another quotation from the Rgpeds itself (x. 62.
7), which refers to the writing of the number eight is:
Sabasram e dadato astakarpyap, meaning “‘gave me a
thousand cows on whose cars the number eight was
written.”” The above interpretation, although doubted by
some scholars, seems to be correct, as it is supported by
Panini.*  Moreover, the practice of ‘making marks on
the ears of cows to denote their relation to their owners,
scems to have been prevalent in ancient India.?

At another place in the Rgreda (x. 34), we find
mention of a gambler lamentlng his lot and saying that
“having staked on one,® he lost his faithful wife..
Again, in the Atharvaveda (vii. 50, (52), 5) we find
the mention of the word “written amount”.* Pinini’s
grammar (¢. 700 B.C.) contains the terms _yavanin:
(“Semitic writing”) and the compounds /Zpikdra and
libifdra (iil. 2. 21) (writer), which show that writing
was known in his time. In addition to these passages,
the Vedic works contain some technical terms, such as
aksara (a letter of the alphabet), #dnda (chapter), patala,
grantha (book), etc., which have been quoted as evidence
of writing. These specific references to written docu-
ments when considered with the advanced state of Vedic
civilisation, especially the high development of trade
and complicated monetary transactions, the use of prose
in the Brdbmapas, the collection, the methodical arrange-
ment, the numeration, the analysis of the Vedic texts

* Karpo varpa lakgsandt (vi. 2. 112) and also (vi. 3. 115) support
the interpretation.

# Atharvareda (vi. 141) mentions the method of making
mithuna marks on the ears. In (xii. 4. 6) the practice is denounced.
The Maitrdyani Sanihitd has a chapter dealing with this topic. The
method of making such marks is dealt with in v. 2. 9.

® Here ‘one’ refers to the number stamped on the dice.

* Apaisam tvd samlikbitamajaisamuta savrudbay:.
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and the phonetic and lexicographic researches found in
the Vedirgas, form sufficient grounds for assigning a
very early date to the use of writing in India.* Although
these arguments possess considerable weight, they were
not generally recognised, as will always happen if an
argumentum ex impossibili is used. R. Shamasastry (1906)
has published 2 derivation based upon ancient Indian
hieroglyphic pictures which he believes to be preserved
in the zdntric figures. His learned article has not at-
tracted the attention it deserves.

Recent discoveries have however, sounded the
death knell of all theories deriving the Indian script.
from foreign sources. Pottery belonging to the Megali-
thic (¢. 1,500 B.C.) and Neolithic (6,000 B.C.—3,000 B.C.)
ages, preserved in the Madras Museum, has been found
to be inscribed with writing. And according to
Bhandarkar? five of these marks are identical with the
Brahmi characters of the time of ASoka. The excava-
tions at Mohenjo-daro and Harappa have also brought
to light written documents, seals and inscriptions,
dating from before 3,000 B.C. Thus it would be now
absurd to trace the Brihmi to any Semitic alphabet of
the eighth or ninth century B.C.

Earliest Numerals. The numerical figures con-
tained in the seals and inscriptions of Mohenjo-daro,
hive not been completely deciphered as yet. The
vertical stroke and combinations of vertical strokes
arranged side by side, or one group below
another, have been found. The numbers one to
thirteen seem to have been written by means of
vertical strokes, probably, as in the figures given below:*

' Cf. Biihler, 2z, p. 3. 2/

® Marshall, Jc., pp. 450-52. See also “Mohenjo-daro—Indus
Epigraphy” by G. R. Hunter (JRAS, April, 1932, pp. 470, 478f.)
who is more pronounced about the Aiumerical values of some of
the signs.



20 NUMERAL NOTATION

P i m Wy mi
4 ¥ T 1 I i

] fny
n "
[

It is not yet quite certain whethier there were special
signs for greater numbers such as 20, 30, the hundreds
and higher numbers. There are numerous other signs
which are believed to represent such numbers, but
there seems to be no means of finding out the true
values of these signs at present.

Between the finds of Mohenjo-daro and the inscrip-
tions of As$oka, which contain numerals, there is a gap
of 2,700 years or more. No written documents contain-
ing numerals and belonging to this intervening period
have been so far discovered. The literary evidence,
however, points to the use of numerical symbols at a
very eatly date. The reference to the writing of the
number eight in the Rgreds and the use of numerical
denominations as big as 10'? in the Yajurveda Saribitd
and in several other Vedic works, quoted before, offer
sufficient grounds for concluding that, even at that
remote period, the Hindus must have possessed a well
developed system of numerical symbols. The con-
clusion is supported by the fact that the Greek and the
Roman numerical terminologies did not go beyond 10,
even after-writing and a satisfactory numerical symbohsm
had been in use for several centuries.

The writings on the inscriptions of Afoka show
that in his time the use of numerical symbols in India
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was quite common.® The variations in the forms of
the numerical signs suggest that the symbols had been
in use for a long time.

Most of the inscriptions of Asoka and the following
period are written in a script which has been called
Brahmi, whilst some are in a different script known as
Kharosthi. The forms of the numerical symbols in
the two scripts are different. We consider them
separately.

6. KHAROSTHI NUMERALS

Early Occurrence. The Kharosthi lipi is a script
written from right to left. The majority of the Kharo-
sthi inscriptions have been found in the ancient province
of Gindbdra, the modern eastern Afghanistan and the
northern Punjab. It was a popular script meant for
clerks and men of business. The period during which
it seems to have been used in India extends from the
fourth century B.C. to the third century A.D. In the
Kharosthi inscriptions of Asoka only four numerals
have been found. These are the primitive vertical
marks for one, two, four, and five, thus:

1 2 !

/A Vi VA

More developed forms of these numerals are found in
the inscriptions of the Sakas, of the Parthians and

1 Megasthenes speaks of mile-stones indicating the distances
and the halting places on the roads. The distances must have
been written in numerical figures (Bihler, Ze, p. 6; also Indika
of Megasthenes, pp. 125-26)." The complicated system of keeping
accounts mentioned in the Arthasisira of Kautilya confirms the
conclusion.
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of the Kusénas, of the 1st century B.C. and the ‘st and
2nd centuries A.D., as well as in other probably later
documents. The following are some of the numerals
of this period:

I 2 3 4 5 G 7 8

/ 1 Vi X IX nx  Hix X X

10 20 40 50 6o 70 8o
? 3 37 733 333 2323 3333
100 200 300 122 274

T 50 sm uznt x)2735u

Forms and their Origin. It cannot be satis-
factorily explained why the number four, which was
previously represented by four vertical lines came to be
represented by a cross later on. The representation of
the numbers five to eight follows the additive principle,
with four as the base. This method of writing the
numbers 4 to 8 is not met with in the early records
of the Semites. We do not know how the number
nine was written. It is very probable that it was written

as § X X , ‘e, 4+4+1 (reading from right to left,

the order being the same as that of the script).
The number 1o has an entirely new sign. The

question why it was not written as , / x )( , of why
the base X (4) was abandoned cannot be satisfac-

torily answered.
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It is accepted by all that the Kharosthi is 2 foreign
script brought into India from the west. The exact
period at which it was imported is unknown. It might
have been introduced at the time of the conquest of the
Punjab by Darius (¢. 500 B.C.) or earlier.* The numerals
given above undoubtedly belong to this script as they
proceed from right to left.

The old symbols of the inscriptions of ASoka,
however, seem to have undergone modification in
India, especially the numbers from 4 to 19. The
symbols for four and ten seem to have been coined
in India, in order to introduce simplification and also
to bring the Kharosthi numeral system in line with
the Brihmi notation already in extensive use. The

symbol X seems to have been derived by turning the

Brahmi symbol + which represents 4 in the inscrip-

tions of A$oka. The inclined cross to represent 4 is
found in the Nabatean numerals in use in the earlier cen-
turies of the Christian Era.> The Nabatean numerals
tesemble the Kharosthi also in the use of the scale of
twenty and in the method of formation of the hundreds.
It is possible that the Semites might have borrowed the
Kharosthi symbol for 4, although it is not unlikely,
as Biihler thinks, that the symbol might have been
invented independently by both nations.

*The theory of the foreign origin of the script has to be
revised in the light of the discoveries at Mohenjo-daro and Harappa,
especially in view of the fact that the Mohenjo-daro alphabet ran
from right to left.

? |. Buting, Nabataische Inschriften aus Arabien, Berlin, 1885,

pp. 96-97.
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The numeral ? (10) closely resembles the letter

a of the Brihmi alphabet. The symbol for twenty

f; appears to be a cursive combination of two tens.

It resembles one of the early Phoenician forms found in
the papyrus Blacas' (sth century B.C.). The mode of
expressing the numbers 30, 40, etc., by the help of the
symbols for 10 and 20, is the same as amongst the early
Phoenicians and Aramaeans.

The symbol for 100 resembles the letter #z or #ra
of the Brahmi script, to the right of which stands a
vertical stroke.

The symbols for 200, 300, etc., are formed by
writing the symbols for 2, 3, etc., respectively to the
right of the symbol for 10co. This evidently is the use
of the multiplicative principle, as is found amongst
the early Phoenicians.?

The formation of other numbers may be illustrated
by the number 274 which 1s written with the help of the
symbols for 2, 100, 20, 10 and 4 arranged as

x7??3fn

in the right to left order. The 2 on the right of 100
multiplies 1oo, whilst the numbers written to the left
are added, thus giving 274.

The ancient Kharosthi numerals are given in
Table 1.

* Bihler, Palaecography, p. 77; Ojha, lc., p. 128; see Table II(5).
2 See Table II().
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7. BRAHMI NUMERALS

Early Occurrence and Forms. The Brihmi ins-
criptions are found distributed all over India. The
Brahmi script was, thus, the national script of the
ancient Hindus. It is undoubtedly an invention of the
Brihmanas. The early grammatical and phonetic re-
searches seem to have resulted in the perfection of this
script about 1,000 B.C. or earlier. The Brihmi numerals
are likewise a purelv Indian invention. Attempts have
been made by several writers of note to evolve a theory
of a foreign origin of the numerals, but we are con-
vinced that all those attempts were utter failures.> These
theories will be dealt with at their proper places. Due
to the lack of early documents, we are not in a position
to say what exactly were the original forms of the
Brahmi symbols. Our knowledge of these symbols
goes back to the time of King Adoka (¢. 300 B.C.)
whose vast dominions included the whole of India and
extended in the north upto Central Asia. The forms
of these symbols are:

4 6 50 200

The next important inscription containing numerals
is found in a cave on the top of the Nénighat hill in
Central India, about seventy-five miles from Poona.
The cave was made as a resting place for travellers by
order of a King named Vediéri, a descendant of King
Sitavihana. The inscription contains a list of gifts
made on the occasion of the performance of several
yajfias or religious sacrifices. It was first deciphered

* Cf. Langdon’s opinion in Mobenjo-dare and the Indas Valley
Civilisalion, ch. xxiii.
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by Pandit Bhagavanlal Indraji who has given the
interpretation of the numerical symbols.* These occur
at about thirty places, and their forms are as below:

1 2 4 6 7 9 10
- = F ¥ kg ? 4 o .ex o
20 8o 100 200 300 400 700
o @ (<l > ¥ My m
1,000 4,000 6,000 10,000 20,000
T T Re = To

)
A number of inscriptions containing numerals and
dating from the first or the second century A.D. are
found in a cave in the district of Nasik in the Bombay
presidency. These contain a fuller list of numerals.
The forms? are as follows:

1 2 3 4 5 6 7 8
- = = *,4 hs P 7 %7
9 10 20 40 70 100 200 500
? X.of e X b { 7 7 7+
1,000 2,000 3,000 4,600 8,000 70,000
7 7 7 Vid 92 9+

“‘On Ancient Nagarli Numeration; from an inscription at
Nénaghat,” Journ. of the Bombay Branch of the Royal Asiatic S ociety,
1876, Vol. XII, p.” 404.

2 E. Senart, “The inscriptions in the caves at Nasik,” EI, Vol.
VIII, pp. 59-96; “The inscriptions in the cave at Karle,” EI, Vol.
VII, pp. 47-74.
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Even after the invention of the zero and the place-
value system, the samd numerical symbols from 1 to 9,
continued to be employed with the zero to denote
numbers. Thus the gradual development of these forms
can be easily traced. This gradual change from the
old system without place-value to the new system
with the zero and the place-valye is to be met with in
India alone. All other nations of the wozrld have given
up their indigenous numerical symbols which. they had
used without place-value and have adopted the zero
and a new set of symbols, which were never in use ih
those countries previously. This fact alone is a strong
proof of the Hindu origin of the zero and the place-
value system.

The numbers 1, 2 and 3 of the Brihmi notation
were denoted by one, two and three horizontal® lines
placed one below the other. These forms clearly dis-
tinguish the Brihmi notation from the Kharosthi and
the Semitic systems.

It cannot be said why the strokes were hori-
zontal in Brihmi and vertical in Kharosthi and
Semitic writings, just as it cannot be said why the
writing proceeded from left to right in Brihmi and
from right to left in Kharosthl and Semitic writings.
It appears to us that the Brihmi and the Kharosthi
(Semitic) numerals have always existed side by side and
it cannot be definitely said which of these is the earlier.
The difterence in writing the symbols 1 to 3, seems to
be due to the inherent difference between the two
systems of writing. The principles upon which numeri-
cal signs are formed in the two systems are quite
different.

Difference from other Notations. In the Brahmi

11t has been incorfectly stated by Smith and Karpinski that
the Nanaghat forms were vertical. See Hiudr Arabic Numerals, p. 28.
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there are separate signs for each of the numbers 1, 4 to 9
and 10, 20, 30, 40, 50, 6o, 70, 80, 90, 100, 200, 300,.. ...
1000, 2000, etc., while in the oldest Kharosthi and in
the earliest Semitic writings, the Hieroglyphic and the
Phoenician, the only symbols are those for 1, 10, 20
and 100.

The Hieratic and the Demotic numerals, however,
resemble the Brihmi in having nineteen symbols for
the numbers from 1 to 100, but the principle of forma-
tion of the numbers 200, 300, 400, 2,000, 3,000 and 4,000
are different, as will appear from Table II(s). The
method of formation of intermediate and higher numbers
is also different in the two systems. While the Brahmi
places the bigger numbers to the left, the arrangement
1s the reverse of this in the Kharosthi and Semitic
wiritings. Thus the number 274, is written in Brihmi
with the help of the symbols for 200, 70 and 4 as
(200) (70) (4), while in the Kharosthl and the Semitic
numerals it is written as (4) (70) (200).*

Theories about their Origin. Quite a large
number of theories have been advanced to explain the
origin of the Brahmi numerals. Points of resemblance
have been imagined between these numerals and those
of other nations. Recourse has been taken by writers
to the turning, twisting, adding on or cutting off of
parts of the numerals of other ‘nations to fit their pet
theories. It is needless to say that each of these theories
had its own supporters who were quite convinced of
the correctness of their explanations. We give below
the outlines of some of these theories:

1. Cunningham?® believed that writing had been
known in India from the earliest known times, and

I Compare the. same number written in Kharosthi, p. 24.
2 Inscriptions of Asoka, Corpus Inscriptionam Indicaram, Vol. 1,

p- 52.
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that the earliest alphabet was pictographic. He suggest-
ed that the Brihmi script was derived from the early
pictographic writing. ‘The theory is evidently capable
of extension to the numerical signs. Later epigraphists,
however, discarded the hypothesis as it appeared too
fanciful to them. Cunningham’s bold hypothesis re-
garding the antiquity of writing in India has been
more than justified by the recent discovery of the use
of a quasi-pictographic script on certain seals and in
inscriptions belonging to the fourth millenium B.C.
found amongst the excavations at Mohenjo-daro and
Harappa. His theory has been revived by Langdon who
is of opinion that the Brihmi alphabet could be derived
from the pictographs of Mohenjo-daro.* The theory is
incomplete as the writings of Mohenjo-daro have not
been completely deciphered as yet. It can be called a
guess only. .As regards the evolution of the Brihmi
numerals, it may be stated that it is at present extremely
difficult to differentiate the numerical symbols from the
Mohenjo-daro script. If the surmise that the figures,
given on p. 19, are numerical symbols be correct, it
will not be possible to develop a theory deriving the
Brihmi numerals from them.

2.  Bayley® asserted that the principles of the
Brahmi system have been derived from the hieroglyphic
notation of the Egyptians, and that the majority of the
Indian symbols have been borrowed from Phoenician,
Bactrian, and Akkadean figures or letters. As has been
already remarked® the principles of the Brihmi and
the hieroglyphic systems are entirely different and

! Mobenjo-daro erc., Chap. xii. This view is strongly supported
by Huntef, /L¢., p. 490.

2 Journal of the Royal .Asiatic Soc., XV, part I, reprint,
London, 1882, pp. 12 and 17. The theory was supported by
Taylor, The Alphaber, London, 1883, Vol. 1I, pp. 2065-66.

4 See pages 27-8.
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unconnected. The reader will find the hieroglyphic and
the Brahmi systems shown together in Tables 1I(z), (#),
(¢),and convince himself of the incorrectness of Bayley’s
assertion. Moreover, the assumption that the Hindus
borrowed from four or five different, partly very ancient
and partly more modern, sources, is extremely difficult to
believe. Regarding the resemblance between the Bactrian
and Akkadean numbers and the Brahmi forms postu-
lated by Bayley, Biihler* remarks that in four cases (four,
six, sevenandten) the facts are absolutely against Bayley’s
hypothesis. Some writers have also criticized Bayley’s
drawings as being affected by his theory.? Under these
circumstances his derivation has to be rejected.

3. Burnell® pointed out the general agreement of
the principles of the Indian system with those of the
Demotic notation of the Egyptians. He asserted a
resemblance between the Demotic signs for 1 to 9
and the corresponding Indian symbols, and put forward
the theory that the Hindus borrowed these signs and
later on modified them and converted them into
akgsaras (letter forms).

4. Biihler® has put forward a modification of
Burnell’s theory. He states, “It seems to me probable
that the Brdbma numerals are derived from the Egyptian
Hieratic figures, and that the Hindus effected their
transformation into Aksaras, because they were already
accustomed to express numerals by words.”

The above theories like the one examined before
are not well founded. Tables II (@), (8), (), show the
Hieratic and Demotic symbols together with those
of the Brahmi. An examination of the Tables will reveal

' Bithler, On the Origin of the Indian Bribma Alphabet, Strassburg,
1898, pp. 52, 53 foot-note.’

2 Cf. Smith and Karpinski, Hindu Arabic Numerals, pp. 30-1.

3 Biihler, Ze¢., p. 82.
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that out of the nineteen symbols to represent the num-
bers from 1 to 100, only the nine of the Brihmi resem-
bles the corresponding symbol of the Demotic or the
Hieratic.© There is absolutely no resemblance between
any of the others. To base thé derivation on a resem-
blance between the Hieratic 5 and the Brihmi 7, as is
sought to be done, is absutd. Likewise the changing
and twisting of the Demotic and Hieratic forms to suit
the theory is\unacceptable.

That there is somé resemblance between these
systems in the fact that each employs the same number
of signs, 7.e., nineteen, for the representation of numbers
upto hundred cannot be denied. There is, however,
a difference in the method of formation of the hundreds
and the thousands. In the Brihmi the numbers 200
and 300 or 2,000 and 3,000, are formed by adding one
mdtrkd and two mdtrkds to the right of the symbol for
hundred or thousand respectively, thus

~M) = 100, ) = 200, F = 300
q = 1,000, Cj’ = 2,000, cf = 3,000.

The numbers 400 and 4,000 are formed by connecting

the symbol for 100 and 1,000 to the number ¥ (4),
thus

m = 400 and q} = 4,000.

In the Hieratic the corresponding symbols are:

Y = 2
3
= 4,

I

200,

5
I

-2 = 100, v
£ = 1,000, B

2,000,
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w
Sy = 3,000, A= 400, My = 4,000.

It will be observed that in the Hieratic system the sign
for one thousand is not used in the formation of the
other thousands. The similarity in principle, even if it
were complete, would not force us to conclude that one
of these nations copied the other. The use of nineteen
signs afforded the easiest and probably the best
method of denoting numbers. It is not beyond the
limits of probability that what appeared easy to the
Egyptians might have also independently occurred to
the Hindus.

There are on the other hand some considerations
which make us suggest that the Egyptians borrowed
the principles of the Hieratic and the Demotic systems
from outside, and probably from India—a hypothesis
which is not @ priori impossible as it has been shown
that the numeration system of the ancient Hindus based
on nineteen signs might have been perfected about
1,000 B.C. It is known that the ancient Egyptian system
employed only four signs, those for 1, 10, 20 and 100.
Why should there be a sudden change from the old
system to one containing nineteen signs cannot be
adequately explained except on the hypothesis of foreign
influence. Further, the cursive forms for the numbers
2, 3 and 4 are unsuited to the right to left Hieratic or
Demotic script. Although these figures are connected
with the earlier hieroglyphic and Phoenician figures,
yet it is possible that the cursive combinations might
have been formed to obtain the nineteen signs necessary
for the new system, under the influence of a people with
a left to right script. It may be, however, asserted that
the hypothesis of an Indian origin of the Hieratic system
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is a mere suggestion. The two points noted above, by
themselves, would not be enough, unless backed by
other facts, to put forward a theory. It is expected that
further discoveries will throw light on this point.

Relation with Letter Forms. It was suggested
by James Princep,* as early as 1838, that the numerals
were formed after the initial letters of the number
names. But knowing the pronunciation of the number
names, we find this not to be the case. Other investi-

ators have held that the numeral signs were formed

after the letters in the order of the ancient alphabet.
Although we find that letters were used to denote
numbers as early as the 8th century B.C.,* and that
many systems of letter-numerals were invented in later
times® and came into common use, yet we are forced to
reject this hypothesis as resemblance between the old
numerical forms and the letters in the alphabetic order
cannot be shown to exist.

A peculiar numerical notation, using distinct letters
or syllables of the alphabet, is found to have been used
in the pagination of old manuscripts as well as in some
coins and a few inscriptions.” The signs are, however,
not always the same. Very frequently they are slightly
differentiated, probably in order to distinguish the signs
with numerical values from those with letter values.
The fact that these symbols are letters is also acknow-
ledged by the name aksarapalii which the Jainas occa-
sionally give to this system, in order to distinguish it
from the decimal notation, the arikapalli*

! “Examination of inscriptions from Girnar in Gujerat, and
Dhauli in Cuttack,” JASB, 1838.

2 The method seems to have been used by Pinini. See p. 63.

2 Vide infra, pp. 64ff.

4 Bahler, /., p. 78. The details of the aksarapalli are given
later on (pp. 72ff).
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to put forward the hypothesis that the Brahmi numerals
are derived from the letters or syllables of the Bsihmi
script. The Pandit, however, admitted his inability
to find the key-to the system, nor has it been found by
any other scholar upto this time. The problem, in fact,
appears to be insoluble, unless further epigraphic
material is discovered to show the forms of the numeri-
cal symbols anterior to A$oka. The As$okan forms
as well as those of later inscriptions are in a too well
developed state, and are too far away from the time
of invention of those symbols, to give us the desired
information regarding their origin.

But of all the theories that have been advanced
from time to time, that of Pandit Indraji seems to us to
be the most plausible. The Hindus knew the art of
writing in the fourth millennium B.C. They used
numbers as large as 10° about 2,000 B.C., and since then
their religion and their sciences have necessitated the
use of large numbers. Buddha in the sixth century,
B.C. is stated to have given number names as large as
10°° and this number series was continued still further
in later times.® All these facts reveal a condition that
would have been impossible unless arithmetic had at-
tained a considerable degree of progress. It is certain
that the Hindus must have felt the necessity of some
method of writing these numbers from the earliest
known times. It would not be, therefore, against
historical testimony to conclude that the Hindus invented
the Brihmi number system. The conclusion is sup-
ported by the use, in writing numbers, of the wdirkas,
the anandsika and the #padbminiya signs which are
found only in the Sanskrit script and in no other script,
whether ancient or modern. It is further strengthened by
Indian tradition, Hindu, Jaina as well as Buddhist, which

1Cf. pp. 10-12.
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ascribes the invention of the Brahmi script and the num-
eral notation to Brahmi, the Creator, and thereby claims
it as a national invention of the remotest antiquity.?

Period of Invention. The invention of the system
may be assigned to the period 1,000 B.C. to 6co B.C.
As the Asokan numerical figures indicate that the
system was common all over India,? and that it has had
a long history, the lower limit 1,000 B.C. is certainly
not placed too early. On the other hand general con-
siderations, such as the high development of the arts
and the sciences, the mention of numerical signs and of
64 different scripts in ancient Buddhist literature,® and
the use of large numbers at a very ecarly period, all
point to the date of the invention of the system as
being nearer to 1,000 B.C., if not earlier.

Resume. The strength of Pandit Indraji’s hypo-
thesis lies in the fact that out of the nineteen signs,
eleven definitely resemble the letters or the signs of the
Brahmi alphabet. The resemblance 1% too striking to be
entirely accidental. Moreover, it has been found that the
numerical forms closely followed the changing forms
of the letters from century to century. This is especially
true in the case of the tens and shows that the writers
of the ancient inscriptions knew the phonetical values
of these symbols. The divergence from letter forms
in the case of the signs for the units may be due to/the

! Bithler (/e., p. 1, foot-note,) quotes several authorities. Of
these the Ndrada Smrti and the Jaina canonical work, the Samavdi-
_ydriga-sitra, belong to the fourth century B.C.

2 Megasthenes speaks of mile-stones indicating distances and
the halting places on the roads. Indika of Megasthenes, pp. 125-126;
Bihler, /Z.c.

8 Related in the Lalitavistara, both in the Sanskrit text and the
Chinese translation of 308 A.D. The Jaina Samaviyirga-sitra
(¢. 300 B.C)) and Pannavani-siétra {(¢. 168 B.C.) each gives a llSt
of 18 scripts; see Weber, Indische Studien, 16, 280, 399. '
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fact that they were the first to be invented and were
in more common use, so that they acquired special
cursive forms and did not follow the changes in the
forms of the corresponding letters. We may now
summarize the discussion given in this section by saying
that (1) the Brahmi numerical forms were undoubtedly
of Indian origin, (2) the form of the tens were derived
from certain letters or signs of the alphabet, and (3)
the origin of the forms 0% the units is doubtful. It is
probable that they, too, were fashioned after the letters
of the alphabet, but there appears to be no means of
justifying this assertion unless the forms of these numerals
anteriot to Adoka are discovered.

8. THE DECIMAL PLACE-VALUE SYSTEM

Important Features. The third and most im-
portant of the Hindu numeral notations is the
decimal place-value notation. In this system there
are only ten symbols, those called a#ke (literally
meaning “mark™) for the numbers one to nine,
and the zero symbol, ordinarily called Jdnye (liter-
-ally, “empty”). With the application of the principle
of place-value these are quite sufficient for the
writing of all numbers in as simple a way as possible.
The scale is, of course, decimal. This system is now
commonly used throughout the civilised wortld.
Without the zero and the place-value, the Hindu
numerals would have been no better than many others
of the same kind, and would not have been adopted
by all the civilised peoples of the world. “The
ilmportance of the creation of the zero mark,” says
Professor Halsted, “can never be exaggerated. This
giving to airy nothing, not merely a local habitation
and a name, a 'picture, a symbol, but helpful power, is
the characteristic of the Hindu race whence it sprang.
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It is like coining the Nirvdpa into dynamos. No
single mathematical creation has been more potent for
the general on-go of intelligence and power.””*

Forms. A large number of scripts differing from
each other are in use in different parts of India today.
The forfns of the numerical signs in these sctipts are also
different. Although all the Hindu scripts are derived
from a common source—the Brihmi Script—yet the
differences in the forms of the various modern Indian
scripts are so great that it would have been difficult to
establish any relation between them, if their previous
history had not been known. The above remark applies
to the numerical signs also, as will appear from a study
of the numerical signs in the wvarious vernaculars of
India given in Table XV. The great divergence in the
forms of the numerical symbols shows that in India,
people already knew the use of the zero and the place-
value principle before the different scripts came into
being, and that the numeral forms were independently
modified in various parts of India, just as the letters
of the alphabet were modified. And as the changes
in the forms in different localities were independent of
each other, so there has come about a great divergence
in the modern forms. That this divergence already
existed in the eleventh century is testified to by Al-
BirGni who says, “As in different parts of India, the
letters have different shapes the numerical signs, too,
which are called a@rika, differ.”’2

Nagari Forms. The most important as well
as the most widely used of the different symbols are
those belonging to the Ndgari script. The present
forms of these symbols are:

*G. B. Halsted, On the foundation and technique of Arithmetic,
Chicago, 1912, p. 20.
2 Alberuni’s India, 1, p. 7a4.
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2, Q, 3, Ya !&, i) \9, C’ Q" °.

The gradual development of these figures from the
Brihmi numerals is shown in Table XIV.

Epigraphic Instances. The following is a list of
inscriptions and grant plates upto the middle®* of the
tenth century, which contain numerals written in the
decimal place-value notation. The numerals in the
inscriptions and plates after this period, are always
given in decimal figures.

1. 595 AD. Gurjara grant plate from Sankheda,
(EL 1II, p. 19). The date Sarhvat
346 is given in the decimal place-
value notation.
T2, 646 A.D. Belhari Inscription, (JA, 1863).

*3. 674 A.D. Kanheri Inscription, (JA4, 1863,

p- 392)-
4.  8th Century Ragholi plates of Jaivardhana II,
: (EL IX, p. 41). The number 30 is
written in decimal figures.
s. 725 AD. Two Sanskrit Inscriptions in the
British Museum, (I.4, XIII, p. 250).
The dates Samhvat 781 (=723 A.D.)
and Sarhvat 783 (=725 A.D.) are
given in decimal figures.

*6. 736 AD. Dhiniki copper plate grant, (LA,
XII, p. 155). Thedate Vikrama Samh-
vat 794 is given in decimal figures.

7. 753 A.D. Ciacole plates of Devendravarmana,
(EL 111, p. 133). The number 20 is
written in decimal figures.

8. 754 A.D. Ristrakiita grant of Dantidurga,
(IA, X1, p. 108). The date Samvat
675 is given in decimal figures.



I10.

I2.

13.

14.

15.

16.

17.
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791 A.D.

793 A.D.

813 A.D.

815 A.D.

837 AD.

843 A.D.

851 A.D.

853 A.D.

860 A.D.

Inscription of Simanta Devadatta,
(IA, XIV, p. 351). The date Vikra-
ma Sathvat 847 is given in decimal
figures.

Daulatabad plates of Sankargana,
(EIL, IX, p. 197). The date Saka
715 1is given in decimal figures.

Torkhede plates, (EI, I1I, p. 53; also
IA, XXV, p. 345). The date Saka
Sarhvat 735 1s given in decimal
figures.

Buchkali inscription of Nagbhata,
(El IX, p. 198). The date Samvat
872 is given in decimal figures.
Inscription of Biuka (Rajputana
Museum, PLM, p. 127; EI, XVIII,
p- 87). The date Vikrama Sarhvat
894 is given in decimal figures.

The inscriptions from Kanheri, No.
43 b., (IA4, VIII, p. 133). The date
Sarmvat v65 is given in decimal
figures.

The inscriptions from Kanheri, No.
15, (I6id). The date® Sarhvat 775
is given in decimal figures.
Pinduke$vara Plates of Lalitasura-
deva, (I4, XXV, p. 177). The
date Samvat 21 of the King’s reign
is given in decimal figures.
Ghatiyala Inscription of Kakkuka
(EL IX, p. 277). The date Vikra-
ma Sarhvat 918 is given in decimal
figures.

! For correction of date see 14, XX, p. 421.
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18.

19.

20.

21,

22,

23.

24.

25,

26,

862 A.D.

870 A.D.

876 A.D.

877 A.D.

882 A.D.
893 A.D.
899 A.D.

gos A.D.

910 A.D.

NUMERAL NOTATION

Deogarh jaina Inscription of Bhoja-
deva, (EI, 1V, p. 309). The dates
Vikrama Sarhvat 919 and the corres-
ponding Saka Samvat 784 are both
given in decimal figures.

Gwalior inscription of the reign of
Bhojadeva (Archacological Survey of
India, Repott, 1903-4, plate 72). Al-
though the date is not given, the
§lokas are numbered from 1 to 26
in decimal figures.

Gwalior inscription of Allah, of the
reign of Bhojadeva (EI, 1, p. 159).
The date Vikrama Sarhvat 933, as
well as the numbers 270, 187 and
so are given in decimal figures.

The inscriptions from Kanheri, No.
432, (IA, XIIIY p. 133). The date
Samvat 799 is. given in decimal
figures.

Pehava inscription (EI, I, p. 186).
The date Samvat 276 (Sri Harsa Era)
is given in decimal figures.

Grant plate of Balavarmana, (EI,
1X, p. 1). The date Vallabhi Sam-
vat 574 is given in decimal figures.

Grant plate of Avanivarmana, (EI,
IX, p. 1). The date Vikrama Sarf-
vat 956 is given in decimal figures.

The Ahar stone inscription (Journ.
United Provinces Hist. Soc., 1926, pp-
83 ff) contains several dates. written
in decimal figures.

Riastrakita grant of Krishna 11 (EI,
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I, p. 53). The date is given in
decimal figures.
27. 917 A.D. Sanskrit and old Canarese inscrip-
tions, No. 170, (IA4, XVI, p. 174).
The date Samvat 974 is given in
decimal figures. The number j5o00
alsc occurs.

28. 930 A.D. Cambay plates of Govinda IV, (EI,
VII, p. 26). The date Saka Samvat
852 is given in decimal figures.

29. 933 A.D. Sangli plates of Ristrakfita Govin-
darija 1V, (I4, XII, p. 249). The
date Sarmvat 855 is given in decimal
figures.

30. * 951 A.D. Sanskrit and old Canarese inscrip-
tions, No. 135, (I4, XII, p. 257).
The date Samvat 873 is given in
decimal figures.

31. 953 AD. Inscription of Yadovarmana, (EI, I,
p. 122). The date Sarhvat 1011 is
given in decimal figures.

32. 968 A.D. Siyadoni stone inscription (EI, 1,
p. 162). The inscription contains a
large number of numerals expressed
in decimal figures.

33. 972 A.D. Réstrakiita grant of Amoghavarsa,
(14, X1I, p. 263). The date Saka
894 is given in decimal figures.

Palaeographic evidences of the early use of the
decimal place-value system of notation are found in the
Hindu coloni¢s of the Far East.* The most important
ones among these are the three inscriptions of

1G. Coedés, “A propos de lorigine des chiffres arabes,”
Bull. School of Orienstal Studies (London), VI, 1931, pp. 323-8.
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Srivijaya, two found at Palembang in Sumatra, and
the third in the island of Banka. These contain the
dates 605, 606 and 6o8 of the Saka Era (cortesponding
respectively to A.D. 683, 684 and 686) written in
numerical figures. Another instance giving the date 6os
Saka is the inscription of Sambor in Cambodia. In an
inscription at Po Nagar in Champa, occurs the date
735 Saka (= 813 A.D.).

Their Supposed Unreliability. The above list
contains more than thirty undoubted epigraphic ins-
tances of the use of the place-value notation in India.
G.R.Kaye,® who believes in the theory of the non-
Hindu origin of the place-value notation, states that
all the early epigraphic evidences of its use in India
are unreliable. On the basis of the existence of a
few forged grant plates he asserts that in the ele-
venth century “there occurred a specially great oppor-
tunity to regain confiscated endowments and to acquire
fresh ones” and thereby concludes that all early epi-
graphic evidences must be unreliable. Such reasoning
i1s obviously fallacious and needs no refutation.

Most of the copper plates are legal documents
recording gifts made by rich persons or kings to Brih-
manas on religious occasions. The plates contain de-
tails as to the occasion for making the gifts, the names
of the donor and the donee, the description of the mov-
able and immovable properties transferred by the gift,
and the date of the gift which is always written out in full
in words and very often in figures also. The forgeries
may be of two kinds: (1) In the original documents,
parts relating to either the names of the donor or the
donee, or the description of the immovable property
may have been obliterated by being beaten out and new

1“Notes on Indian Mathematics,” J«ASB, (N. S., 1907), -
ITI, pp. 482-87.
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names or descriptions substituted. All such forgeries
are easily detected, because of the wuneven surface
of the part of the plate that is tampered with and
the diﬁ%rence in the writing. (2) An entirely new
document may be forged. Such cases, though rare,
are also easily detected, because there is obvious
divergence as to the date recorded in the docu-
ment, and that inferred on the basis of the
fotms of the characters used in the writing. Such for-
geries are also marked by an obvious inferiority in
execution, and inaccuracies in the statement of genea-
logies and other historical facts.

Epigraphists have so far found little difficulty in
eliminating the spurious grant plates. It might be
mentioned that the genuineness of the grant plates
included in our list has not been questioned by any
epigraphist.*

Kaye, in his article quoted above, has given a list
of eighteen inscriptions and grant plates and eliminates
all but the last two as forgeries. The arguments he has
employed and the assertions of facts that he has made
are in most cases incorrect and misleading, so that his
conclusions cannot be accepted. As an instance of
his method, we quote his criticism about the Gurjara
grant plate, No. 1 in our list. He writes: “Dr. Bihler
quotes this Gurjara inscription of the Chedi year 346
or A.D. 594 as the earliest epigraphic instance of the
use of the decimal notation in India. (i) An examination

' If any of them is forged, the forgery is so good that it can-
not be detected. The writing in such cases, if any, is so well
forged as to be indistinguishable from that used in the period to
which the plate is said to belong. Therefore, the evidence of these
plates as tq the method of writing numbers cannot be rejected,
even if they “be proved to be spurious at some future date—a con-
tingency which is very unlikely to use. It may also be noted that
the list contains several sfone inscriptions which cannot be spurious.
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of the plate (Ep. Ind., 11., p. 20) suggests the pos-
sibility that the figures were added some time after the
plate was engraved. The date is engraved in words
as well as in figures. It is ‘three hundred years exceeded
by forty-six.” The symbols are right at the end of the
inscription from which they are marked off by 2 double
bar in 4 most unusual manner. (ii) The figures are
of the type of the period, but they were also in use much
later, and in no other example are such symbols used
with place-value. (iii) Also there are nine dates
written in the old notation (Ep. Ind., V), e. g., there is
another grant of the Gurjara of Bharoch in which the
date Samvat 391 (i.e., A.D. 640) is given in the old
notation. Again, there is no other Chedi date, at least
before the eleventh century A.D., given in the modern
(place-value) notation. (iv) There cannot be the
remotest doubt as to the unsoundness of this particular
piece of evidence of the early use of the modern system
of notation in India.”

The following remarks will show to the reader that
Kaye’s criticism and his conclusion are unfounded and
invalid:

(/) An examination of the plate, (EI, Ii, p. 19),
will convince every one about its genuineness. The
writing is bold and clear, the numerical figures occur
at the end, as they ought to be, immediately after the
words ‘three hundred years exceeded by forty-six.’
They are separated from the written words by bars,
just as they ought to be. There is absolutely nothing
suspicious about this method of separation, as it is
common custom ia India to do so and occurs frequently.
That it was the practice to write the date at the end of
a document is well known.® In fact, the numeral

1 Many of the plates mentioned in our list contain the date
at the end.
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figures of the date occasionally mark the end of the
document.' The double vertical bar, ||, is a sign of inter-
punctuation.  Although punctuation marks have been
in use in India from the earliest known times, yet their
use did not become either regular or compulsory till
very recent times.? Different writers used the various
marks differently.. In inscriptions, the double vertical
bar has been found at the end of sentences, half verses,
verses, larger prose sections and documents. In the
Junir inscriptions it occurs after numerals and once
after the name of the donor.®* In manuscripts, the
practice of separating numbers by vertical bars is com-
mon. It is found in the Bakhshili Manuscript®* and
in several others. Thus the occurrence of the numerals
at the end and the inter-punctuation mark of the double
vertical bar cannot form valid grounds for suspecting
the document. The suggestion that the figures were
added some time after the plate was engraved is absurd,
as there appears to us no reason why one should take the
trouble to add the figures when the date was already
written in words.

(#) Kaye admits that the figures are of the type
of the period. His remark that they were in use much
later is incorrect. The Tables III-V and XII show that
the use of three horizontal bars to represent 3 is not

* This is so in the Chirgion plates of Huviska (Arch. Survey
Report, 1908-9, plate 56), in the Inscription of Rudradamana (1.4,
VIIL, p. 42) and in others.

? There are some copper plate grants which do not contain
any punctuation marks; see Bahler, /¢., p. go.

% Bihler, /Je., p. 89.

*Eg, |s|,21r; ]| 2558],2v; | 330 |, 17v; instances such
as these: |1 |4|9|16| 16y; and |2 |, il, etc., §v. are
very common. Very often, isolated numbers are not separated.
‘The double vertical bar also occurs before and after the words ud3,
sftram, etc.
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found after the eighth century. The figure for 4 used
in our grant plate is not found after the sixth century,
and .the same is true for the figure for 6. The forms
of the numerical signs alone fix the date of the writing
to the sixth century and not later.

(7#¢y The Ched; Samvat is one of the thirty-four eras,
whose use has’been discovered in inscriptions and grant
plates. The occurrence of nine dates in the Chedi Sarh-
vat, written in the old notation after this plate, does not
prove the unsoundness of this particular piece of evi-
dence, as Kaye would like us to conclude. It simply shows
that in India too, the new system had to fight for
supremacy over the older one just as in other countries.
In Arabia the new system was introduced in the eighth
century, but it did not come into common use until
five or six hundred years later. In Europe we find
that it was exceptional for common people to use the
new system before the sixteenth century—a good
witness to this fact being the popular almanacs. Calen-
dars of 1557-96 have generally Roman numerals, while
Koebel’s Calendar of 1578 gives the Hindu numerals
as subordinate to the Roman.*

We may, therefore, conclude that the Gurjara
grant plate offers us a genuine instance of the use of the
new system (with place-value) in India.

Kaye’s criticisms regarding the genuineness of some
other plates included in our list (marked with asterisks)
have been found to be baseless.

Place of Invention of the New System. It has
been already stated that the same numeral forms for the
numberts 1 to 9, as were in use in India from the earliest
known times, have been used in the new system of nota-
tion with the place-value. Another noteworthy fact

! Smith and Karpinski, /c., p. 133.
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regarding the new system is the arrangement of the
asika (digits). 1t will be observed that the arrangement
in the old system was that the bigger numbers were
written to the left of the smaller ones.* This same
arrangement continues in the new system with place-
value, where the digits to the left, due to their place
or position, have bigger values. The gradual change
from the old system to the new one using the same
numerical signs, is to be found in India alone, and this,
in our opinion, is one of the " strongest arguments in
favour of the Hindu origin of the new system. The
carliest epigraphic instance of the use of the new system
is 594 A.D. No otheg country in the world offers such
an early instance of its use. Epigraphic evidence alone
is, therefore, sufficient to assign a Hindu origin to the
modern system of notation.

Inventor Unknown. It is not known who the
inventor of the new system was, and whether it was
invented by some great scholar, or by a conference of
sages or by gradual development due to the use of
some form of the abacus. Likewise, it is not known
to which place, city, district or seat of learning belongs
the honour of the invention and its first use. Epigra-
phic gvidence cannot help us in this direction. For
the system was used in inscriptions, a very long time
after its invention, in fact, when it had become quite
popular all over Northern India.

Time of Invention. The grant plates were legal
documents. They were written by professional writers.
The existence of such writers is mentioned in the
southern Buddhist canons and in the Epics.? They have

1 Showing thercby that the place assigned to a numeral de-
pended upon its wvalue. This has been incorrectly thought to
be a sort of place-value system by some writers.

2 Blhler, /¢, p. 5. :
4
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been called lekhaka, lipikara and later on divira, Rarana,
kdyastha, etc. According to Kalhana,* the Kings of
Kashmir employed a special officer for drafting legal
documents. He bore the title of pattopidiydya, i.c., the
teacher (charged with the preparation) of title deeds.
The existence of manuals such as the Lekbapaicisika,
thé Lekbaprakdsa, which give rules for drafting letters,
land grants, treaties, and wvarious kinds of bonds and
bills of exchange, show beyond doubt that the writing
of grant plates was a specialised art and that the
style of writing those documents must always have been
centuries behind the times, just as it is even to-day
with respect to legal and state documents. The time
of invention of the new system must, therefore, be
placed several centuries before its first occurrence in a
grant plate in the sixth century A.D. The exact period
of invention may be roughly deduced from the history
of the growth of numerical notations in other countries.

According to Heath,? the Greek alphabetic notation
was invented in the 7th century B.C., but it came into
general use only in the second céntury A.D. Thus
it took about eight hundred years to get popular. In
Arabia the new notation was introduced in the 8th
century A.D., but it came into common use about five
or six hundred years later. The same was the case in
Europe. The Arabs got the complete decimal arith-
metic, including the method of performing the various
operations, at a period when intellectual activity in
Arabia was at its greatest height, but they could not
make the decimal system common before about five or
six hundred years had elapsed.® In legal documents

* Rdyatarangini, V, pp- 397f.

2 Heath, History of Greek Mathematics, 1, Oxford, 1921, p. 34.

3 The arithmetic written by Al-Kharki in the eleventh century
does not use the decimal system, showing that at the time there
were two schools amongst the Arab mathematicians, one favouring
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and in recording historical dates, the Arabs even now
use their old alphabetic notation.

Epigraphic evidences show that the new system
was quite common Tn India in the eighth century and
that the old system ceased to exist in Northern India by
the middle of the tenth century. This would, therefore,
place the invention of our system in the period bet-
ween the first century B.C. and the third century A.D.

The exact date of the invention, however, would be
nearer to the 1st century B.C. or even earlier, because
for a long time after its invention, the system must
have been looked upon as a mere curiosity and used
simply for expressing large numbers. A still longer
time must have elapsed before the method of perform-
ing the operations of addition, subtraction, multiplica-
tion, division and the extraction of roots, could be
perfected. It would be only after the perfection
of the methods of performing the operations that the
system could be used by mathematicians. And then
after this it would take about five hundred years, as in
Arabia, to become popular. There should, therefore,
be a gap of about eight centuries between the time of
invention and its coming into popular use, just as was
the case with the Greek alphabetic notation. There-
fore, on epigraphic evidence alone, the invention of
the place value system must be a551gned to the begin-
ning of the Christian era, very probably the 1st century
B.C. This conclusion is supported by literary and other
evidences which will be given hereafter.

the Hindu numerals, while the other stuck to the old notation,
See the article on “Hisab™ by H. Suter.in the Encyclopaedia of Islam.
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9. PERSISTENCE OF THE OLD SYSTEM

The occurrence of the old system of writing
numbers, with no place-value, is found generally in
inscriptions upto the seventh century A.D., after which
it was gradually given up in favour of the new system
with place-value. Occasional use of the old system,
however, is to be met with in Nepal and in some South
Indian inscriptions upto the beginning of the tenth
century A.D., but after this period the old system seems
to-have been forgotten, and completely gone out of
use. In the seventh century the new system was in
general use, but the old system seems to have been
given preference in inscriptions. There are a number
of grant plates of the eighth century A.D., in which
the dates, although written in the old notation, ate
incorrectly inscribed, showing thereby that people had
already forgotten the old system. In a grant plate
of Siladitya VI,' dated the Gupta year 441 (¢. 760 A.D.),
the sign for 4o, instead of the sign for 4, has been 3ub-
joined to the sign for 100 to denote 400, 7.e., 4,000 has
been incorrectly written for gqoo. There is another
grant plate, dated the Gingeya year 183 (c. 753 A.D.), in
which the figure 183 is wrongly written.? This plate is
of special interest as it exhibits the use of the old and the
new systems in the samie document.® Another very inter-
esting instance of the use of the old and the new systems
in one and the same document is the Ahar stone

*1A, VI, p. 19, (plate).

*EL 11, p. 133, (plate). 1n this the sign of 8 is written
for 8o and that of 30 for 3. The number 20 has been written
by placing a dot after 2.

* For other instances showing admixture of both the old and
the new systems, see Fleet Gupta Inscriptions, Corpus Inscriptionum
Indicarnm, 111, p. 292; also LA, XIV, p. 351, where (800) (4)
(9)-=849.
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inscription.’ The document records gifts made on several
occasions ranging over thirty-seven years, the last entry
corresponding to gos A.D. In this inscription the old
notation is used in the first six lines whilst in the follow-
ing lines it has been discarded and the new place-value
notation appears? It is evident from the forms that the
writer did not know the old system. For instance, 200 is
written by adding the subscript 2 to the letter s# (1co),
instead of using a mdtrkd sign as in the old system. In
the same way the sign for 10 is incorrect in so far asa
small zero has been affixed to the usual sign for ten.
The inscription shows that although the old system had
gone out of use completely, yet people tried to use it in
inscriptions, probably for the same reason that makes
us use the Roman numerals in giving dates, in number-
ing chapters of books, and in marking the hours on the
face of a clock, even upto the present day.

10. WORD NUMERALS

Explanation of the System. A system of
expressing numbers by means of words arranged as in
the place-value notation was developed and perfected
in India in the early centuries of the Christian era.
In this system the numerals are expressed by names
of things, beings or concepts, which, naturally or in
accordance with the teaching of the Sdstras, connote
numbers. Thus the number one may be denoted by
anything that is markedly unique, e.g., the moon, the
earth, etc.; the number two may be denoted by any
pair, e.g., the eves, the hands, the twins, etc,; and
similarly others. The zero is denoted by words meaning
void, sky, complete, etc.

1C. D. Chatterjec, “The Ahar stone inscription,” Journ. United
Provinces Hist. Soc., 1926, pp. 83-119.
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The system is used in works on astronomy, mathe-
matics and metrics, as-well as in the dates of inscrip-
tions and in manuscripts. The ancient Hindu mathema-
ricians and astronomers wrote their works in verse.
Consequently they strongly felt the need for a convenient
method of expressing the large numbers that occur so
often in the astronomical works and in the statement
of problems in mathematics. The word numerals were
invented to fulfil this need and soon became very popular.
Theyv are used even upto the present day, whenever big
numbers have to be cxpressed in Sanskrit verse.

The words denoting the numbers from one to nine
and zero, with the use of the principle of place-value,
give us a very convenient method of expressing numbers
by word chronograms. To take a toncrete case, the
number 1,230 may be expressed in many ways:

1. kba-gupa-kara-idi,

2. Lha-loka-karna-candra,

3. dkdSa-kdla-netra-dhard, etc.

It will be observed that the same number can be
expressed in bundreds of ways by word chronograms.
This property makes the word numerals specially suit-
able tor inclusion in metre. To secure still greater

variety, the numbers beyond ten are also sometimes
denoted by words.

List of Words. The following is a list of words
commonly used in this system to denote numbers:

o is expressed by Sinya, kba, gagana, awbara, ikésa,
abbra, viyat, ryoma, antariksa, nabba, jaladbarapatha,
plirpa, randbra, vispapada, ananta, cte.

10 is expressed by ddi, Susi, mdn, vidbn, candra, kali-
dhara, bimagn, Sitdmsn, ksapikara, bingnsu, sitarasmi,
prileyiniSu,  soma, Sasinka,  wirgdika,  bimakara,
sudbdmsu, rajanikara, Sasadbara, Sveta, abja, bhi,
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bbiimi, ksiti, dhard, urvard, ge, wvasundhard, pribvi,
ksmid, dbarani, vasudba, ild, ku, mabi, ripa, pitdmala,
ndyaka, tannm, etc.

2 is expressed by yama, yamala, asvin, nisatya, dasra,
locana, netra, aksi, drsti, caksu, ambaka, nayana
ifsana, pmém /J(Z/JII /éam karna, kuca, OJi}Jd gulpha,
Jana, jang/ch duc_z)fa, dmﬂda, .)wga/a, yugma, ayand,
kutumba, ravicandran, naya,* etc.

3 1is expressed by rdma, gupa, triguna, loka, trijagat,
bhuvana, Fdla, trikdla, trigata, trinetra, haranetra,
sabodardhp, agni, anala, vabni, pdiraka, wvaisvinara,
dabana, tapana, butéSana, jvalana, Sikbin, kriinu, hotr,
pura, ratna® (Jaina), etc.

4. is expressed by wveda, Sruti, sammdra, sdgara, abdbi,
antbhodha, ambhodbi, jaladhi, ndadbi, jalanidli, salildkara,
visanidhbi, varidhi, payodhi, payoridhi, ambudhbi, &endra,
varpa, dSrama, yuga, tnrya, Rrita, aya, dya, dis, bandbu,
kostha, gati, kasiya, etc.

s is expressed by bdpa, fara, Sastra, sdyaka, isu, blita,
parva, prdna, pavana,® papdava, artha, visaya, malbdbhita,
tatva, bbdva, indriya, ratna, karapiya,* vrata, etc.

6 is expressed by rasa, anga, kdya; rtn, mwdsdrdba, dar-
Sana, rdga, ari, Sdstra, tarka, kdraka, lekbya, drayya,®
khara, kumdravadana, Sanmukba, etc. .

7 is cxpressed by nage, aga, bhibhyt, parvata, Saila,
acala, adri, giri, rsi, mani, jyati, atri, vdra, Svard,

* Mcthod of comprehending things from particular stand-
points—dravydrthika and  parydyirthika.
2 Used by Mahavira only, others take it for five.

s ® See Sivg, i. 27; SiS7, ganitidhydye, x. 2. Used also for 7
(See the quotations by Bhattotpala in his commentary on DBrhas-
sambitd, ch. ii). In Al-Birni’s list it is erroneously put for 9.

% That which ought to be done; according to the Jainas—
abirisd, sunrta, asteya, brabmacarya, and aparigraba.

" Used by Mahdvira.
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dhdtn, aSva, turaga, vdji, haya, chandaf, dhi, Falatra,
tatva,’ dvipa, pannaga,® bhaya,® mdirkd, vyasana, etc.

8 is expressed by vasu, ahi, ndga, gaja, danti, dvirada,
diggaja, hastin, tbha, mdtarga, kufijara, dvipa, puskarin,
sindbura, sarpa, taksa, siddbi, bhiiti, anustubba, mar-
Zala, anifa, karman,* durita, lann® dik,® mada” etc.

9 is expressed by arifa, nanda, nidbi, graba, randbra,
chidra, dvira, g0,* upendra, kesava, tdrksyadbvaj, durgd,
paddrtha,® labdha, labdhi, etc.

10 is expressed by dif, dik, disd, d$d, angul, pasikti,

1A A 54 A
Rakubh, ravapasira, avalira, karman, etc.

11 is expressed by rudra, isvara, mrda, bara, ifa, bhava,
bbarga, Sulin, mahideva, aksaubip?, etc.

12 is expressed by ravi, sdrya, ina, arka, midrtapda,
dyumani, bbinu, dditya, divikara, wdsa, risi, vyaya,
etc. °

13 s expressed by visvedevdh, visva, kdwa, atijagati,
aghosa, etc.

14 is expressed by wmanu, vidyd, indra, Sakra, loka,*® etc.

15 is cxpressed by #ithi, ghasra, dina, aban, paksa,** etc.

16 is expressed by nppa, bhiipa; bhiipati, asti, kald, etc.

17 is expressed by atyasti, etc.

1 Used by Mahivira because the Jainas recognise seven fazias;
used for five by others.

2 Used by Mahivira.

3 Used by Mahévira.

* Used by Maharvira for 8 and by others for 10.

5 Used by Mahivira.

8 This word has been used for 8 as well as for 1o. The use
of dis or dik for 4 also occurs.

? Used by Mahivira only.

8 'This has been used for 1 also.

9 Used by Mahévira only.

10 Also used for 3.

11 Also used for 2.
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18 is expressed by dbrti, etc.

19 is expressed by atidhri:, etc.

20 is expressed by makha, krti, etc.

21 is expressed by wtkrti, prakrti, svarga, etc.
22 is expressed by kr#i, jdti (?), etc.

23 is expressed by wvikrsi.

24 is expressed by gdyatri, jina, arbat, siddha, etc.
25 is expressed by fafva, etc.

27 is expressed by waksatra, wdu, bba, etc.

32 is expressed by danta, rada, etc.

33 is expressed by deva, amara, tridasa, sura, etc.
48 is expressed by jagats, etc.

49 is expressed by #dna, etc.

Word Numerals without Place-value. In the
Veda we do not find the use of names of things to
denote numbers, but we do find instances of numbers
denoting things. Forinstance, in the Rgreda the qumber
‘twelve’ has been used to denote a year? and in the
Atharvaveds the number “seven’ has been used to
denote a group of seven things (the seven seas, etc.).?
There are instances, however, of fractions having been
denoted by word symbols, e.g., £ald = ', kustha = e
Sapha = 1.

The earliest instances of a word being used to
denote a2 whole number are found about 2,000 B.C., In
the Satapatha Bréhmapa* and Taittiriya Brabmanpa.® The

1 Generally used for §; also for 7 by Mahévira.
2 “Devn hitim jugupsirdvidasasya rism narona praminantyefe. . ”. ..
(vii. 103, 1). '
3%Om ye tridapta pariyante....” (i. 1, 1).
* The word krta has been used for 4.
“catusfomena Rriena aydndm....” (xiil. 3. 2. 1).
5“Ye vai catvirah stomdp kreap tat....” (1. 5. 11. 1).
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Chindogya Upanisad also contains several instances. In
the [eddnga [yotisa* (1,200 B.C.) words for numerals
have been used at several places. The Sranta-sétras of
Kdtydyana® and Litydyana* have the words gdyatri for
24 and jagati for 48.

At this early stage, however, the word symbols
were nothing more than curiosities; their use to denote
numbers was rare. Moreover, we find evidences of a
certain indefiniteness in the numerical significance at-
tached to certain words. For instance, in the same
work, the Aitareya Bribmapa, the word wirdt has been
used to denote 1o at one place and 30 at another. The
principle of place-value being unknown, the- word
symbols could not be used to denote large numbers,
which were usually denoted in terms of the numerica]
denominations or by breaking the number into parts.*
The use of the word symbols without place-value is
found in the Pirgala Chandap-sitra composed before
200 B.C. The prmc1ple of place -value seems to have
been applied to the word numerals between 200 B.C.
and 300 A.D. :

Word Numerals with Place-value. The earliest
instance of the use of the word numerals with place-
value in its current form is found in the Agn-Purdpa,®

Yrdpa = 1, aya = 4, guna = ynga = 12, bbasamiha = 27. See
(Y]. 23, AJ 31), (U 13, AJ. 4), (AJ. 19), (Y]. 25) and (Y]. 20)
respectively.

2 Weber’s edition of Kdrydyana Sranta Sitra, p. 1015.

Six. 4. 31.

1E.g.,

, Pasdyutinamayntan sabasrdni ca vimsalih

l\a/)al) sastisca saf caiva yo’smin rajan-mridhe hatdip
that 1s, 10 (IOOOO) -+ 10000-+20 (1000) -+ Go (10,000,000) -+
6 (10,000,000)—AMahdbbdrata, Siriparva, xxvi. 9.

& Agni-Purdpa, Bangabisl ed., Calcutta (1314 B.S.)), chs. 122-
23, 131, 140, 141, 328-335. According to Pargiter, probably the
gicarest Puranic scholar of modern times, “the purdnas cannot
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a work which belongs to the earliest centuries of the
Christian cra. Bhattotpala in his commentary on the
Brhat-sambitd has given a quotation from the original
Pulisa-siddbinta* (¢c. 400) in which the word system is
used. The number expressed in this quotation is
kba (o) kha (o) asta (8) muni (7) rdma (3) asvi (2) netra (2)
asta (8) Sara (s) rdtripih (1) = 1,582,237,800. There
are in this work? several other quotations from the
Pulifa-siddbénta, which contain word . numerals. Later
astronomical and mathematical manuals such as the
Sirya-siddbinta (c. 300), the Pafica-siddhintiki® (505), the
Mahd- and Laghu-Bhbdskariya* (522), the Brdbma-sphuta-
siddbania® (628), the Trisatikid® (c. 750), and the Gapira-
sdra-samgraba® (850), all make use of the word notation.®

Word Numerals in. Inscriptions. The earliest
epigraphic instances of the use of the word numerals are
met with in two Sanskrit inscriptions® found in Cam-
bodia which was a Hindu colony. They are dated Gog

be later than the earliest centuries of the Christian era.” (JRAS,
1912, pp. 254-55). The Agni-Purdna is admitted by all scholars
to be the earliest of the Puripas.

! Brbat-sambiti, ed. by S. Dvivedi, Benares, p. 163.

* Ibid, pages 27, 29, 49, 51, etc. We are, however, not sure
whether those quotations are from the original work or from a
later tedaction of the same.

$i. 8; viii. 1, etc.

* See MBh, ch. 7 and LBj, ch. 1.

5i. s1-55, etc.

5R. 6, Ex. 6, etc.

Tii.'y, 9, etc.

8In the face of the evidence adduced here, G. R. Kaye’s
assertion, (Indian Mathematics, Calcutta, 1915, p. 31) that the word
numerals were introduced into India in the ninth century from
the east, shows his ignorance of Indian mathematical works, or is
a deliberate misrepresentation.

Y R. C. Mazumdar, Ancient Indian colonies in the far east,—
Cawmpa, Vol. I, Lahore, 1927, see inscriptions Nos. 32, 39; also 40,

41, 43 and 44.
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A.D. and 625 A.D. Their next occurrence is found in
a Sanskrit inscription of Java, belonging to the 8th
century.?

In India proper, although they were in use amongst
the astronomers and mathematicians from the 3rd or
4th century A.D. onwards, it did not become the fashion
to use them in inscriptions till a much later date. The
earliest Hindu inscriptions using these numerals are
dated 813 A.D.* and 842 A.D.* In the following
century they are used in the plates issued by the Eastern
Chalukya Amma II, in 943 A.D.* In later times the
epigraphic instances be¢ome more frequent. The nota-
tion is also found in several manuscripts in which dates
are given in verse.®

Origin and Early History. It should be
noted that the arrangement of words, representing the
numbers zero and one to nine, in a word chronogram
is contrary to the arrangement that is followed when
the same number is written with numerical signs. This
fact has misled some scholars to think that the decimal
notation and the word numerals were evolved at two
different places. G. R. Kaye has gone so far as to
suggest that the word numerals were imported into
India from the east. This suggestion is incorrect for
the simple reason that in no language other than
Sanskrit do we find any early use of the word system.
Moreover, in no country other than India do we find
any trace of the use of a word system of numeration

114, XXI, p. 48.

? The Kadab plates, 1.4, XII, p. 11; declared by Fleet to be
suspicious (Kanarese Dynasties, Bombay Gazatteer, 1, ii, 395, note 7);
cf. Buhler, /J.c., p. 86, note 4.

3 The Dholpur Inscription, Zeitschrift der Deutschen Morgenlandis-
chen Gesellschaft, XL, p. 4z.

1A, VII, p. 18.

- °* Bahler, Jc., p. 86, note 7,
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as far back as the fourth century A.D., at which period
it was in common use amongst the astronomers and
mathematicians of India.

During the earlier stages of the development of
this system, we find that instead of the word symbols,
the number names were used, being arranged from left
to right just as the numerical signs. An instance of
this is found in the Bakhshali Manuscript® (¢. 200), where
the number

2653296226447064994....83218
is expressed as

SadvimSasca (26) tripaficdsa (53) ekonatrivisa (29) evacha
Duvdsalsti}(62) sadvinisa(26) catupeatvdriviSa (44) saptati (70)
Catupsasti (64) nalvanavati] (99) oo MISARANIGrAn
TriraSiti (83) ekavivifa (21) asta (8) ... pakam

In the same manuscript, however, the contrary
arrangement is used when the number 54 is expressed
as catup (4) paica (5).° Jinabhadra Gani (575) has used
word symbols with the left to right arrangement to
cxpress numbers.® It seems, therefore, that in the
beginning opinion was divided as to which method of
arrangement should be followed in the word system.

The extensive use of the word numerals by early
mathematicians such as Puli§a, Varihamihira, Lalla and
others appears to have set the fashion to write the word
numerals with a right to left arrangement, which was
generally followed by later writers.

* Folio 58, recto. The dots indicate some missing figures.
The problem apparently required the expression of a big number
in numeérical denominations. We do not find a problem of this
type in any of the later works. Cf. B. Datta, “The Bakhshali
Mathematics.” BCMS, XXI, p. z21.

% Folio 27, recto.

8 Brbat-ksetra-samésa, i. 6ofl.
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No explanation as to why the right to left arrange-
ment was preferred in the word system is to be found
in any of the ancient works. The following explana-
tion suggests itself to us, and we believe that it is not
far from the truth: The different words forming a
number chronogram were to be so selected that the
resulting word expression would fit in with the metre
used. To facilitate the selection the number was first
written down in numerical figures. The selection of the
proper words would then, naturally, begin with the
figure in the units place, and proceed to the left just as in
arithmetical operations. This is in accordance with the
rule “arikdndm vimato gatih,” i.e., ‘the numerals proceed
to the left,” which seems to have been very popular with
the Indian mathematicians. The right to left arrange-
ment is thus due to the desire of the mathematicians to
look upon the process of formation of the word chrono-
gram as a sort of arithmetical operation.

Date of Invention. The use of the word numerals
in the Agni-Purdpa which was composed in the g4th
century A.D. or earlier, shows that the word system of
numerals must have become quite common in India
at that time, the Pardpas being works meant for the
common folk. That it was a well developed system
in the fourth century is also shown by its extensive use
in the S#rya-siddhinta and the Pulisa-siddhinta. Its in-
vention consequently must be placed at least two
centuries earlier. This would give us the period, 100
A.D. to 200 A.D., as the time of its invention. This
conclusion is supported by the epigraphic use of the
word notation in 605 A.D., in Cambodia, which shows
that by the end of the 6th century A.D., the knowledge
of the system had spread over an area roughly of the
size of Europe.

It must be pointed out here that the decimal place-
value notation and the word numerals were not invented
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at the same time. The decimal notation must have been
in existence and in common use amongst the mathema-
ticians long before the idea of applying the place-value
principle to a system of word names could have been
conceived. Thus we find that in the beginning (s. 200),
the place-value principle, 2as is to be expected, was used
with the number names. The word symbols were then
substituted for the number names for the sake of
metrical convenience. The right to left procedure was
finally adopted because of the mathematicians’ desire to
look upon the formation of the word numeral as a
sort of mathematical operation.

The above considerations place the invention of the
decimal place-value notation at a period, at least two
or three centuries before the invention of the word
system. The word notation, therefore, points to the
1st century B.C. as the time of invention of the place-
value notation. This conclusion agrees with that
arrived on epigraphic evidence alone.

11. ALPHABETIC NOTATIONS

The idea of using the letters of the alphabet to
denote numbers can be traced back to Panini (¢. 700
B.C.) who has used the vowels of the Sanskrit alphabet
to denote numbers.? No definite evidence of the exten-
sive use of an alphabetic notation is, however, found

!In Pinini’s grammar there are a number of sitras (rules)
which apply to a certain number of sitras that follow and not
to all. Such sitras are marked by signs according to Pinini.
Patafijali commenting on sttra i. 3. 11, says that according to
Kityiyana (4th century B.C.) a letter (varna), denoting the number
of sttras upto which a particular rule is to apply, is written over
the sGtra. Kaiyyata illustrates this remark by saying that the
letter 7 is written above Pianini’s sitra, v. 1. 30 to show that it
applies only to the next two sitras. Thus according to Pinini
a = 1,i = 2,8= 3,......
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upto the sth century A.D. About this period a number
of alphabetic notations were invented by different writers
with the sole purpose of being used in verse to denote
numbers. The word numerals gave big number
chronograms, so that sometimes a whole verse or even
more would be devoted to the word chronogram only.
This feature of the word system was naturally looked
upon with disfavour by some of the Indian astronomers
~ho considered brevity and conciseness to be the main
attributes of a scientific composition. Thus the alpha-
betic notations were invented to replace the word
system in astronomical treatises. The various alpha-
betic systems® are simple variations of the decimal
place-value notation, using letters of the alphabet in the
place of numetical figures. It must be noted here that
the Hindu alphabetic systems, unlike those employed
by the Greeks or the Arabs, were never used by the
common people, or for the purpose of making calcula-
tions; their knowledge was strictly confined to the
learned and their use to the expression of numbers in
verse.

Alphabetic System of Aryabhata I. Aryabhata
I (499) invented an alphabetic system of notation, which
has been used by him in the DaJqgitiks® for enumerating
the numerical data of his descriptive astronomy. The

1 Some alphabetic systems used for the pagination of manus-
ctipts do not use the place-value principle. These systems were
the invention of scribes who probably wanted to be pedantic and
to show off their learning. Their use was confined to copyists
of manuscripts. '

*The Dafagitiki as the name implies ought to contain ten
stanzas, but actually there are thirteen. Of these the first is an
invocation to the Gods, the second is the paribbisi (‘“‘definition™)
given above and the thirteenth is of the nature of a colophon.
These three stanzas are, therefore, not counted. Cf. W. E. Clark,
“Hindu-Arabic Numerals,” Indian Studies in Hononr of Charles
Rockwell Lanman, (Harvard Univ. Press), 1929, p. 231. °
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rule is given in the Dafagitikd thus:
Vargdksarini varge'varge'vargdksarini kdt rman yah
Kbhadvinavake svard nava varge’varge navintyavarge vi

The following translation gives the meaning of the
rule as intended by the author:

“Thevarga’ letters beginning with £ (are used only)
in the varga® places, the avarga letters in the avargs®
places, (thus) ya equals #mau (#ia plus ma); the nine
vowels (are used to denote) the two nines of zcros
of varga and avarga (places). The same (procedure) may
be (repeated) after the end of the nine vargas places.”

This rule has been discussed by Whish,* Brock-
khaus,® Kern,® Barth,” Rodet,® Kaye," Fleet,’® Datta,*
Ganguly,*? Das,*® Lahiri** and Clark.*

The translation of &bz by “place™ (Clark) or by
“space” (Fleet) is incorrect. We do not find the word
kha used in the sense of ‘notational place’ anywhere in
Sanskrit literature. Its meanings are ‘void’, ‘sky’, etc.,
and it has been used for zero, in the mathematical and

1 Varga here means ‘‘classed,” i.e., the classed letters of the
alphabet. The first twenty-five letters of the alphabet are classed
in groups of five, the remaining ones are unclassed.

2 Varga here means odd.

3 Avarga here means even.

¢ Transaction: of the Literary Society of Madras, 1, 1827, p. 54.

8 Zeitschrifte fiir die kaunde des Morgenlindes, IV, p. 81.

¢ JRAS, 1863, p. 380.

7 Oenvres, 111, p. 182.

8 JA, 1880, II, p. 440.

® JASB, 1907, p. 478; Indian Mathematics, Calcutta, 1915, p. 30;
The Bakhshali Manuscript, Calcutta, 1927, p. 8I. :

10 ) 4ARS, 1911, p. I09.

1 Sé%it]a—Pari;ad-Patri/éd, 1929, p. 22.

12 BCMS, 1926, p. 195.

B IHQE, I, p. 110.

14 History of the World (in Bengali), Vol. IV, p. 178.

18 _dryabhatiya of Aryabhata, Chicago, 1930, p. 2. .

5
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astronomical works. We thus replace “the two nines of
places” in the translation given by Clark by “the two
nines of zeros.” Clark has given the following reason
for not translating &be by zero: ““That is equivalent
to saying that each vowel adds two zeros to the numeti-
cal value of the consonant. This, of course, will work
from the vowel 7 on; but the vowel ¢ does not add
two zeros. It adds no zero or one zero depending on
whether it is used with varga or avarga letters. It seems
to me, therefore, more likely that a board divided into
columns is implied rather than a symbol for zero, as
Rodet thinks.” The vowels do not add zeros. The
explanation will not work for any of the vowels; for
instance, 7, according to this interpretation, would add
two zefos to g but three zeros to y. What really is
implied by £ha is explained by the commentator Sirya-
deva as follows:  “Rbdni Sinyopalaksitini, sankbydvinydsas-
thinini tesdm dvinavakam, kbhadvinavakam, tasmin khadvina-
vake Sinyopalaksitdsthinistidasa (18) ityarthap;” that is,
“kha denotes zero; the places for putting (writing)
the numbers are two nines (dvinavakarm), therefore,
khadyinavake means the eighteen places denoted by
zeros.” It may be mentioned here that the Hindus
denote the notational places by zeros. Bhiaskara I (522),
commenting on Gaprtapisa, 2, which gives the names of
ten notational places, says: -
“nydsasca sthinindm 0000000000.”

Ze., “writing down the places we have oooooocoo00.”
Bhaskara I is more explicit in the interpretation of £k
by zéro, for in his comments on the above rule, he
states:  “Rbadvinavake svard nava varge: Aha means zero
($4nya). In two nines of zeros (kha), so Abadvinavake,
that is, in the eighteen (places) marked by zeros;...... 7

! Commentary on the Dasagitikd by Bhiskaia 1, ““Rbadvinavake
svard nava varge khdni Sdnyini, khindm dvinavakam tasmin kbadvinavake

astddafa Sinyiksitesa. . .. ..
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Thus Aba must be translated by zero, although the
kba (zero) here is equivalent to the ‘notational places.”
What is implied here is certainly the symbol for the
zero and not a board divided into columns.

Clark finds great difficulty in translating navintya-
varge vé. ‘The reading han instead of »4 suggested by
Fleet is not acceptable. The translation given by us
accords with the several commentaries (by Bhiskara I,
Siryadeva, Parame$vara and Nilakantha) consulted by
us. They all agree. .

Explanation. Arayabhata’s rule gives the method
of expressing the alphabetic chronogram in the decimal
place-value notation, and w»ice wersa. The notational
places are indicated as follows:

att 0 at e / 7 P ‘ a
;-f—\ A, A, - —m - —t, A, A,

a v 2 v a v a v a v a Vv a v a v a v
O 0O 00O 0O 0.0 0 O O 0O 0 0 0O 0 0o 0o ©

where v stands for vargs and a for avarga.

It will be observed that the eighfeen places are de-
noted by zeros and they are divided into nine pairs, each
pair consisting of a varga place and an avarga place, i.c.,
odd place and even place.? The varga letters £ to »°.are
used in zargs places, i.e., odd places only, and denote
the numbers 1, 2,........ , 25 In succession. The

! Nilakantha says:  ““&badpinavake, that is, there are eigh-
teen places, the nine wargs places and the nine avargs places
...... »” See Aryabhatiya, ed. by K. Sambasiva Sastri, Trivandrum,
1930, p. 6.

2°The later Indian treatises use the terms visema and sama for
varga and avarga respectively. TVarge is also used for a square
number or the figure.

® These ate called »arga or classified letters, because they are
classified into groups of five each.



68 NUMERAL NOTATION

avarga letters y to b are used in the evargs places, i.e.,
even places only, and denote the numbers 3, 4,...... ,10
successively. The first warge and awarge places
together constitute the first varga-avarga pair, and so on.
Nine such warga-avarga pairs are denoted by the nine
vowels in succession. Thus the first varga-avarga pair,
i.¢., the units and the tens places are denoted by 4; the
second va7ga-ararga pair, i.e., the hundreds and thousands
places by 7; and so on. The vowels thus denote places
—zeros according to the Indian usage of denoting the
places—and have by themselves no numerical value.
When attached to a ‘letter-number’ a vowel simply
denotes the place that the number occupies in the decimal
place-value notation. For instance, when the vowel « is
attached to y, it means that the number 3 which y
denotes is to be put in the first avarga place, ‘.e., the
tens place. Thus yz is equal to 30. On the other
hand when ¢ is attached to one of the classed letters,
it refers it to the first varge place, ‘.., the units
place. ‘Thus 7z is equal to 5 and ma is equal to 25 and
rima* is equal to 30. Similarly y7 denotes that the number
3 is to be put in the thousands place whilst g/ would
mean that the number 3 which g represents is to be
put in the hundreds place (g being a varga lefter). Thus
yi=3,000, whilst gi=300. It 1is possible that
the zeros already written were rubbed out and the
corresponding numerical figures as obtained from a
given letter chronogram were substituted in their places.
This would automatically give zeros in the vacant places.
When this is not done and the numbers are written
below the zeros indicating the places, then zeros have

! When two consonants are together joined to a vowel, the
numbers representing both are referred to the same varge-avarga
pair. They are added together as in this case, #mwa = fia + ma =

5+ 25 = 30.
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to be written in the places that remain vacant.* The
same procedure can be applied to express numbers
occupying more than eighteen places, by letting the
vowels with anusvéra denote the next eighteen places,
or by means of any other suitable device.

One advantage of this notation is that it gives
very brief chronograms. This advantage is, however,
more than counterbalanced by two very serious defects.
The first of these is that most of the letter chronograms
formed according to this system are very difficult to
pronounce. In fact, some of these? are so complicated
that they cannot be pronounced at all. The second
defect is that the system does not allow any great
variety in the letter chronograms, as other systems do.

Katapayadi System. In this system the con-
sonants of the Sanskrit alphabet have been used in the
place of the numbers 1-9 and zero to express num-
bers. The conjoint vowels used in the formation of
number chronograms, have no numerical significance.
It gives brief chronograms, which are generally pleasant
sounding words. Skilled writers have been able to
coin chronograms which have connected meanings. It
is superior to that of Aryabhata I, and also to the word
system. Four variants of this system are kniown to hdve
been used in India. It is probably due to this non-
uniformity of notation that the system did not come
into general use.

! Some examples from the Aryabbatiya (i. 3):

r “ z a
——— —— ——— —
o] o O lo] o] (o] (o] o]
khyughr { gy kb

(
cayagiyiniusuchly {

' 4 3 2 o] o] o O=45 20000
l ¢ch § A y 4 ¥ ¢
s 7 7 5 3 3 3 6=5775336
2 For instance niSisunlkhsr, bhadliknukhr, etc.
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First Variant: The first variant of the Kafapayidi
system is described in the following verse taken from
the Sadratnamdils:

Naddrvacasca Sinyini samkhyid katapayidayah

Misre tipdnta hal samkhyd na ca cintyo halasvarah
“n, # and the vowels denote zeros; (the letters in suc-
cession) beginning with 4, 7, p, and y, denote the
digits; in a conjoint consonant only the last one denotes
a number; and a consonant not joined to a vowel should
be dlsregarded ”»  According to this system, therefore,

1 is denoted by the letters &, £, p, y

2, ” . .éb _t/J pb r.

3 5 ”» 2 g’ .d’ b: /'

4 2 » ”» ng) .db, b/‘)’ y'

5 5 ) » A, n, m, f.

6 2 2 » [’ t’ 7r’

7 Y] ’ 3 [b: tb’ S.

8 2 ? ”» ja d, b

9 ’ ’» E3) ]b) db’

o, " v A, n and vowels

standing by themselves.
The consonants with vowels are used in the places of
of the numerical figures just as in the place-value nota-
tion. Of conjoint consofiants only the last one has
numerical significance. A right to left arrangement is
employed in the formation of chronograms, just as in
the word system, ie., the letter denoting the units
figure is written first, ’then follows the letter denoting
the tens figure and so on. The following examples
taken from inscriptions, grant plates and manuscripts
will illustrate the system:
2 4 4 1
(1)* rd - gha-24 - ya

I

1442,
1 EI VI, p. 121.
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4 4 6

(2)* bha-va - ti = 644,
5 I 3 1

(3)2 Sa- Atyd-lo- ke = 1315,
6 4 3 1

(4 ta - tvd-lo - ke = 1346,

2 3 1 s 6 5 1

(5)* A#ba - go - ntyd - nwe - sa - mi - pe — 1565132

The origin of this system can be traced back to the
fifth century A.D. From a remark® made by Shryadeva
in his commentary on the .4dryabhatiya, it appears that
the system was known to Aryabhata I (499). Its first
occurrence known to us is found in the Laghu-Bhds-
kariya of Bhiskara I (522).° .

Second Variant: Aryabhata II (950) has used a
modification of the above system. In this variant,
the consonants have the same values as above, but the
vowels whether standing by themselves or in conjunc-
tion with consonants have no numerical significance.
Also unlike the first variant, each component of a
conjoint consonant has numerical value according to its

114, 11, p. 360.

2 El, 11, p. 229.

3 EI, 111, p. 38.

* The date of the commentary of Sadgurusisya on Sarvinukra-
mani is given by this chronogram in the Ka/iyuga Era: It corres-
ponds to 1184 A.D.

5 Comments on the paribhisi-sdira of the Dafagitiki. The
author remarks :

“Vargiksardnim samkhyd pratipidane, katapayiditvam nariayosca

Shnydpi  siddbam  tannirdsdrthavi két  grabanam.”
That is, “the letters &4# have been used to distinguish it (the
method of Aryabhata I) from the Katapayidi system of denoting
numbers by the help of the »arga letters, where #» and # are
equal to zero.”

S LBh, i. 18.
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place. The letters are arranged in the left to right
order just as in writing numerical figures.* The differ-
ence between the two variants may be illustrated by the
chronogram dba-ja-he-ku-na-he-t-sa-bhi? According to
Aryabhata II it denotes 488108674, whereas according
to the first variant it would denote 47801884.

Third Variant: A third variant of this system is
found in some Pili manuscripts from Burma.® This is
in all respects the same as the first variant except that
s==5, h=6 and //=3. The modification in the values of
these letters are due to the fact that the Pili alphabet
does not contain the Sanskrit ¢ and .

Fourth Variant: A fourth variant of the system
was in use in South India, and is known as the Kerala
System. This is the same as the first variant with the
difference that the left-to-right arrangement of letters,
just as in writing numerical figures, is employed.

Aksarapalli. Various peculiarities are found in
the forms as well as the arrangement of the numerical
symbols used in the pagination .of old manuscripts.
These symbols are known as the aksarapalli, i.c., the letter
system.* In this system the letters or syllables of the
script in which the manuscript is written are used to
denote the numbers. The following list gives the
phonetic values of the various numerals as found in
old manuscripts:3

! The notation is explained in MJS7, i. 2:
Ripdt katapayapirvi varpi varpakramddbbavantyatikip
Niiau Snyanm; prathamdrthe & chede e triiydrthe.

2 MSi, i. 10.

# L. D. Barnet, JRAS, 1907, pp. 127 fl.

¢ For forms see Tables.

8 See PLM, pp. 107f.
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1 = e, sva, ram.

2 = dvi, sti, na.

3 = tri, §rI, mah.

4 = nka, mka, nkd, nka, roka, ska, rska,

ﬁ~ (pke), %,‘ , a‘ rphra, pu.

s = tr, rtr, rtrd, hr, nf, ror

6 = phra, rphra, rphru, ghna, bhra, rpu, vy,

phla.

7 = gra, gra, rgri, rgbhri, rggi, bhra.

8 = hra, rhra, rhri, dra.

9 = om, rum, ru, ur, Gm, a, roum.

10 = 1, la, nta, da, a, rpta.

20 = tha, thi, rtha, gha, rgha, pva, va.

30 = la, 14, rla, 1l4.
40 = pta, rpta, ptd, rptd, pna.

- 6 GGE D ebm

cu, vu, ghu, thu, rthu, rthd, thd, rgha, rghu.
cli, cu, the, rthii, rghti, rmta.

8o = @9, (A.): O 0' ®’ pu.
o = &3, 838K, 8 R

~ e
o 0
Il

100 = su, sg, lu, a.

200 = sQ, 4, 4, rght.-

300 = std, s{4, fiG4, si, su, sum, si.
400 = slo, sto, sti.
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It will be observed that to the same numeral there
correspond various phonetical values. Véry frequently
the difference is slight and has been intentionally made,
probably to distinguish the signs with numerical values
from those with letter values. In some other cases
there are very considerable variations, which (accord-
ing to Biihler) have been caused by misreadings of older
signs or dialectic differences in pronunciation. ‘The
symbols are written on the margin of each leaf. Due to
lack of space. they are generally arranged one below
the other in the Chinese fashion. This is so in the
Bower manuscript which belongs to the sixth century
AD. In later manuscripts the pages are numbered
both in the aksarapalli as well as in decimal figures.
Sometimes these notations are mixed up as in the
following:?

1a su su

33 = 3, 100 = 0; 102 = O0;
o) 2

su su sa

131 = li; 150= Q 209 = O
1 o rum

The aksarapalli has been used in Jaina manuscript’s
upto the sixteenth century. After this period, the deci-
mal figures are generally used. In Malabar, a system
aesembling the zksarapalli is in use upto the present

ay.?

1Cf. PLM, p. 108.

21 = mna, 2 = nna, 3 = nya, 4 = skra,
5 = jhra, 6 = hi(ha), 7 = gra, 8 = pra,
9 = dre(?), 10 = ma,. 20 = tha,

30 = la, 4o = pta, so = ba, 6o = tra,

70 = ru (tru), 8o = ca, go = na, 100 = fia.

(G- JRAS, 1896, p. 790)
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Other Letter Systems. (.4) A system of nota-
tion in which are employed the sixteen vowels and
thirty-four consonants of the Sanskrit alphabet is
found in certain manuscripts from Southern India
(Malabar and Andhra), Ceylon, Burma and Siam. The
thirty-four consonants in order with the vowel 2z denote
the numbers from one to thirty-four, then the same
consonants with the vowel 4 denote the numbers thirty-
five to sixty-eight and so on.?

(B) * Another notation in which the sixteen vowels
with the consonant £ denote the numbers one to sixteen
and with &) they denote the numbers seventeen to
thirty-two, and so on, is found in certain Pali manus-
cripts from Ceylon.?

(C) In a Pali manuscript in the Vienna Imperial
Library a similar notation is found with twelve vowels
and thirty-four consonants. In this the twelve vowels®
with £ denote the numbers from one to twelve, with
#£b they denote the numbers from thirteen to twenty-
four, and so on.

These letter systems do not appear to have been
in use in Northern India, at least after the third century
A.D. They are probably the invention of scribes who
copied manuscripts.

12. THE ZERO SYMBOL

Earliest Use. The zero symbol was used in
metrics by Pingala (before 200 B.C.) in his Chandap-sitra.
He gives the solution of the problem of finding the total
number of arrangements of two things in # places,
repetitions being allowed. The two things considered are

LBurriell, South Indian Palacography, London, 1878, p. 79.
2 Ibid.
8 The vowels r, 7, /, /, are omitted.
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the two kinds of syllables “long” and “short”, denoted
by Zand g respectively. To find the number of arrange-
ments of long and short syllables in a metre containing
n syllables, Pingala gives the rule in short aphorisms :

“(Place) two when halved;”* “when unity is sub-
tracted then (place) zero;”? “multiply by two when
zero;’”® “square when halved.”*

The meaning of the above aphorisms will be clear
from the calculations given below for the Gayatri metre
which contains 6 syllables.®

A B
Place the number 6
Halve it, result 3 | Separately place | 2
3 cannot be halved, therefore,
subtract 1, result 2 ’ » o
Halve it, result 1 . " 2
1 cannot be halved, therefore,
subtract 1, result o ' ’ o

The process ends.

The calculation begins from the last number in
column B. Taking unity double it at o, this gives 2;
at 2 square this (2), the result is 2% then at zero double
(2?), the result is 2% ultimately, at 2 square this (2°),
the result is 2", which gives the total number of ways

! Pirigala Chandab-siitra, ed. by Sri Sitanath, Calcutta, 1840,
viil. 28.

 Ibid, viii. 29.

1bid, viii. 3o.

¢ 1bid, viii. 31.

*For 7 syllables, the steps are:

Subtract 1 6 place o Double 2.2% = 27
Halve 3 » 2 Square 2°¢
Subtract 1 2 s O Double 2.22 = 2°
Halve 1 ,» 2 Square 22
Subtract 1 o » O Double 1 =2

giving 27 as the result.
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in which two things can be arranged in 6 places.*

It will be observed that two symbols are required in
the above calculation to distinguish between two kinds
of operations, viz., (1) that of halving and (2) that of the
‘absence’ of halving and subtraction of unity. These
might have been denoted by any two marks arbitrarily
chosen.? The question arises: why did Pingala select
the symbols “two” and “zero? The use of the symbol
two can be easily explained as having been suggested
by the process of halving—division by the number
two. The zero symbol was used probably because of
its being associated, at the time, with the notion of
‘absence’ or ‘subtraction.” The use of zero in
either sense is found to have been common ih Hindu
mathematics from early times. The above reference to
Pingala, however, shows that the Hindus possessed a
symbol for zero (f4nya), whatever it might have been,
before 200 B.C.

The Bakhshali Manuscript (¢. 200) contains the use
of zero in calculation. For instance, on folio 56 verso,
we have:

‘“ | 880 | 964
84 | 168
The square of forty different places is |1600]. On sub-

tracting this from the number above (numerator), the

remainder is 846720
14112

factor, it becomes | 60| J?

848320

multiplied become l
14112

On removal of the common

* This method of calculation is not peculiar to the Pirigala
Chandap-sdtra. It is found in various other works on metrics as
well as mathematics. The zero symbol has been similatly
employed in this connection in later wotks also. VVide infra.

* E.g., Prthudakasvimi uses va (from zarge, “square”) and
g# (from gapa, “multiply”), while Mahédvira uses the numerals 1
and o. Vide infra.
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There are a large number of passages of this kind
in the work. It will be noticed that in such passages
the sentences would be incomplete without the figures,
so the figures must have been put there at the time of
the original composition of the text, and cannot be
suspected of being later interpolations. For an explicit
reference to zero and an operation with it, we take
the following instance from the work :

“ lol2]3]| 4] visible 200
I{1

I I I
to zero 1 2’5 ......

In the Padica-siddhintiki (505) zero is mentioned
at several places. The following is an instance:

“In Aries the minutes are seven, in the last sign
six; in Taurus six (repeated) thrice; five (repeated) twice;
four; four; in Gemini they are three, two, one, zero
($4inya) (each repeated) twice.”*

1

Adding? unity

Zero is here conceived as a number of the same
type as three, two or one. It cannot be correctly
interpreted otherwise. Addition and subtraction of
zero are also used in expressing numbers in this work
for the sake of metrical convenience. For instance:

“Thirty-six imcreased by two, three, nine, twelve,
nine, three, zero (funya) are the days.”®

Instances of the above type all occur in those

!'The zeros given here are represented in the manuscript
by dots. The statement in modern symbols is equivalent to the
equation,

x+2x+ 5x+4x=zoo

2 The Sansknt word is Jusan: meaning literally ‘‘adding”, but
what is meant is “putting” unity for the unknown (zero).

3 BMs, folio 22, verso.

+PSi, vi. 12,

5 PSi, xviil. 33; other instances of this nature are in iii. 17;
iv. 7; iv. 8; iv. 11; xviii. 44; xvili, 45; xviil. 48; xviii. 1.
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sections of the Padca-siddhintiki which deal with the
teachings of Puli§a. It seems, therefore, that such ex-
pressions are quotations from the Paulifa-siddbinta. As
it is known that the word numerals were employed by
Puliéa (c. 400), it can be safely concluded that he was
conversant with the concept of the zero ds a numeral.

The writings of Jinabhadra Gani (529-589), a con-
temporary of Varihamihira, offer conclusive evidence of
the use of zero as a distinct numerical symbol.
While mentioning large numbers containing several
zeros, he often enumerates, obviously for the sake of
abridgement, the number of zeros contained. For
instance: 224,400,000,000 is mentioned as “twenty-two
forty-four, eight zeros;”* 3,200,400,000,000 as “thirty-
two two zeros four eight zeros.”? At another place in
his work

407150 40715
24106012~ = 241960 /-2
419 483920 419 48392

is described thus :

“Two hundred thousand forty-one thousand nine
hundred and sixty; removing (apavartana) the zeros, the
numerator is four-zero-seven-one-five, and the deno-
minator four-eight-three-nine-two.”?

It should be noted that the term apavartana means
what is known in modern arithmetic as the reduction of
a fraction to its lowest terms by removing the common
factors from the numerator and the denominator.
Hence the zero of Jinabhadra Gani is certainly not a
mere concept of nothingness but is a specific numerical
symbol used in arithmetical calculation.

1 Brhat-ksetra-samisa, ed. with the commentary of Malayagiri,
Bombay, i. 69.

2Jbid, i. 71. Other such instances are in i. 90, 97, 102,
108, 113, 119, etc.

3 Ibid, i. 83.
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been given up long before. The quotation from
Subandhu cannot, therefore, be taken as a definite
proof of the use of the dot as a symbol for zero
in his time. All that we can infer is that at some period
before Subandhu, the dot was in use. We may go
further and state that very probably, the earliest symbol
for zero was a dot and not a small circle.

The earliest epigraphical record of the use of
zero is found in the Ragholi plates of Jaivardhana II
of the eighth century. The Gwalior inscriptions of the
reign of Bhojadeva® also contain zero. The form’
of the symbol in these inscriptions is the small circle.
This is the form that has been in common use from
quite early times, probably from before the eighth
century. '

Other Uses of the Symbol. In the present
elementary schools in India, the student is taught the
names of the several notational places and is made to
denote them by zeros arranged in a line. These. zeros
are written as

........ cooo0o00000

The teacher points out the first zero on the right and
says ‘units’, then he proceeds to the next zero saying
‘tens’ and so on. The student repeats the names after
the teacher. This practice of denoting the notational
places by zeros can be traced back to the time of
Bhiskara I, who, as already pointed out on page 66,
it his commentary on the Aryabhatiya, Gapita-pida,z,
says :
‘Writing down the places, we have
oooo0oo0o00o0o00.”

In all works on arithmetic (pdfigapita) zero has

! No. 3 in the list of inscriptions given before.
?Nos. 19 and 20 in the list.
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been used to denote the unknown. This use of
zero can be traced back to the third century A.D.
It is used for the unknown in the Bakhshalil arithmetic.
In algebra, however, letters or syllables have been
always used for the unknown. It seems that zero
for the unknown was employed in arithmetic, really to
denote the absence of a quantity, and was not a symbol
in the same sense as the -algebraic x (y4), for it does
not appear in subsequent steps as the algebraic symbols
do. This use of zero is mostly found in problems on
proportion—the Rule of Five, Rule of Seven, etc. The
Arabs also under Hindu influence used zero for the
unknown in similar problems. Similar use of zero
for the unknown quantity is found in Europe in a
Latin manuscript of some lectures by Gottfried Wolack
in the University of Erfirt in 1467-68.* The dot
placed over a2 number has been used in Hindu Ganita
to denote the negative. In this case it denotes the
‘absence’ of the positive sign. Similar use of the dot
is found in Arabia and Europe obviously under Hindu
influence.?

13. THE PLACE-VALUE NOTATION IN HINDU
' LITERATURE

Jaina Canonical Works. The earliest literary
evidence of the use of the word “‘notational place is
furnished by the _Anwyogadvira-sétra,® a work written
before the Christian era. In this work the total number

h Srmth and Karpinski, Le., pp. 53-54

2 The occasional use by Al-Battani (97.9) of the Arabic negative
/4, to indicate the absence of minutes (or seconds), noted by Nallino
(Verbandlungen des 5 congresses der Orientalisten, Berlin, 1882, Vol. II,
p. 271), is similar to the use of the zero dot to denote the negative.

3 The passage has been already quoted in detail (vide supra

p- 12).
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of human beings in the world is given by “a number
which when expressed in terms of the denominations,
koti-koti, etc., occupies twenty-nine places (sthdna).”
Reference to the “places of numeration” is found also
in a contemporary work, the Vyavahira-sitra.?

Puranas. The Purinas which are semi-religious
and semi-historical works, also contain references to
the notational places. These works were written for
the purpose of spreading education on religious and
historical matters amongst the common people. Refer-
ence to the place-value notation in these works shows
the desire of their authors to give prominence to the
system. The Agni-Purdna® says :

“In case of multiples from the units place, the
value of each place (s#hdna) is ten times the value of the
preceding place.”

The UVispn-Puripa® has similarly :
“O dvija, from one place to the next in succession,

the places are multiples of ten. The eighteenth one
of these (places) is called pardrdpa.”

The 1Vdyu-Purdpna* observes :

“These are the eighteen places (sthina) of calcula-
tion; the sages say that in this way the number of places
can be hundreds.”

The above three works are the oldest among the
Purinas and of these the Agn/ and the 174yx# Purinas
in their present form are certainly as old as the fourth
century A.D. The Agui-Parina is referred by some
scholars to the first or second century A.D.

* Ch. i.; ¢f. B. Datta, Scientia, July, 1931, p. 8.

2 The .Agni-Purdpa contains also the use of the word numerals
with place-value (vide supra p. 58).

3 vi. 3.

4 ci. 102f.
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Works on Philbsophy. The following simile has
been used in [7ydsa-Bhisya® on the Yoga-sitra of
Patanjali : . ] _

“Thus the same stroke is termed one in the units
place, ten in the tens place, and hundred in the hundreds
place........ e

The same simile occurs in the Sdréraka-Bhisya of
Sankaricirya :

“Just as, although the stroke is the same, yet by a
change of place it acquires the values, one, ten, hundred,
thousand, etc....”®

The first of the above works cannot be placed
later than the sixth century whilst the second one not
later than the eighth. The quotations prove conclu-
sively that in the sixth century, the place-value notation
was so well known that it could be used as an illustra-
tion for a philosophical argument.

Literary Works. A passage from the Vdsavadatti
of Subandhu comparing the stars with zero dots has
already been mentioned. Several other instances of
the use of zero are found in later literature, but they
need not be mentioned here.*

Yiii. 13.

2 The t31:anslation is as given by J. H. Woods, The Yoga System
of Patafijali, p. 216. 'In a foot-note, it is remarked: “Contrary to
Mr. G. R. Kaye’s opinion, the following passages show that the
place-value system of decimals was known as early as the sixth
century A.D.” The above passage is also noted by Sir P. C. Ray
in his History of Hindn Chemistry, Vol. 11, p. 117.

31IL. iii. 17; ¢f. B. Datta, American Marh. Monthly, XXXIIT
1926, pp. 220-1.

¢ E.g., the use of the fdnya-bindu in Naisadha-carita of Sriharsa
(¢. 12th century). Cf. B. Datta, Ibid, pp. 449-454.
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14. DATE OF INVENTION OF THE PLACE-VALUE
NOTATION

We may now summarise the various evidences
regarding the early use of the place-value notation in
India :

(1) The earliest palaeographic record of the use of
the place-value system belongs to the close of the sixth
century A.D. i

(2) The earliest use of the place-value principle
with the word numerals belongs to the second or the
third century A.D. It occurs in the _Agpi-Purdpa, the
Bakhshali Manuscript and the Pu/isa-siddhinta.

(3) The earliest use of the place-value principle
with the letter numerals is found in the works of Bhis-
kara I about the beginning of the sixth century A.D.

(4) The eatliest use of the place-value system in a
mathematical work occurs in the Bakhshali Manuscript
about 200 A.D. Tt occurs in the Aryabhativa composed
in 499 A.D., and in all later works without exception.

(s) References to the place-value system are found
in literature from about 100 B.C. Three references rang-
ing from the second to the fourth century A.D. are
found’ in the Purinas.

(6) The use of a symbol for zero is found in
Pingala’s Chandab-sitra as eatly as 200 B.C.

The reader will observe that the literary and non-
mathematical works give much earlier instances of the
use of the place-value system than the mathematical
works. This is exactly what one should expect. The
system when invented must have for some time been
used only for writing big numbers. A long time
must have elapsed before the methods of performing
arithmetical operations with them were invented. The
system cannot be expected to occur in a mathematical
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work before it is in a perfect form. Therefore, the
evidences furnished by non-mathematical works should,
in fact, be earlier than those of mathematical works.

Mathematical works are not as permanent as
religious or literary works. The study of a particular
mathematical work is given up as soon as another better
work comes into the field. In fact, a new mathematical
work is composed with a view to removing the defects
of and superseding the older ones. It is quite
probable that works employing the place-value notation
were written before Aryabhata I, but they were given
up and are lost. It will be idle to expect to find copies
of such works after a lapse of sixteen hundred years.

In Europe and in Arabia it is still possible to find
mss. copies of works using the old numerals or a
mixture of the old numerals with the new place-value
numerals, but in India absolutely no trace of any such
work exists. :

In Europe the first definite traces of the place-
value numerals are found in the tenth and eleventh
centuries, but the numerals came into general use in
mathematical text books in the seventeenth century.
In India Aryabhata I (499), Bhiskara I (522), Lalla
(¢. 598), and Brahmagupta (628), all use the place-value
numerals. There is no trace of any other system of
notation in their works. Following the analogy of
Europe, we may conclude, on the evidence furnished
by Hindu mathematical works alone, that the place-
value system might have been known in India about
200 B.C.

As the literary evidence also takes us to that period,
we may be certain that the place-value system was
known in India about 200 B.C. Therefore we Sshall
not be much in error, if we fix 200 B.C. as the probable
date of invention of the place-value system and
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zero in India. It is possible that further evidence may
force us to fix an earlier date.

15. HINDU NUMERALS IN ARABIA?

The regular history of the Arabs begins after the
flight of Mohammad from Mecca to Medina in A.D.
622. The spread of Islam succeeded in bringing to-
gether the scattered tribes of the Arabian Peninsula
and creating a powerful nation. The united Arabs,
within a short space of time, conquered the whole of
Northern Africa and the Spanish Peninsula, and extended
their dominions in the east upto the western border of
India. They easily put aside their former nomadic life,
and adopted a higher civilisation.

The foundations of Arabic literature and science
wete laid between 750-850 A.D. This was done
chiefly with the aid of foreigners and with foreign
material. The bulk of their narrative literature came
to the Arabs in translation from Persian. Books-on
the science of war, the knowledge of weapons, the
veterinary art, falconry, and the various methods of
divination, and some books on medicine were translated
from Sanskrit and Persian. They got the exact sciences
from Greece and India.

Before the time of Mohammad the Arabs did not
possess a satisfactory numeral notation. The numet®
ous computations connected with the financial adminis-
tration of the conquered lands, however, made the use
of -a developed numeral notation indispensable. In
some localities the numerals of the more civilised con-
quered nations were used for a time. Thus in Syria,
the Greek notation was retained, and in Egypt the

* For details consult Cajori’s History of Mathematics, and Smith
and Karpinski’s Hindu Arabic Numerals.
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Coptic. To this early period belongs the Edict of Khalif
Walid (699) which forbade the use of the Greek lan-
guage in public accounts, but made a special reservation-
in favour of Greek letters as numerical signs, on the
ground that the Arabic language possessed no numerals
of its own.* The Arabic letters gradually replaced
the Greek ones in the alphabetic notation and the
abjad notation came to be used. It is probable that
the Arabs had come to know of the Hindu numerals
from the writings of scholars like Sebokht, and aslo of
their old ghobir forms from other sources. But as their
informants could not supply all the necessary informa-
tion (e.g., the methods of performing the ordinary
operations of arithmetic) these numerals had to wait
for another century before they were adopted in some
of their mathematical works.

During the reign of the Khalif Al-MansOr (753-
774 A.D.) there came émbassies from Sindh to Baghdad,
and among them were scholars, who brought along
with them several works on mathematics including the
Bréhma-sphuta-siddhinta and the Kbapda-khidyaka 6f
Brahmagupta. With the -help of those scholars, Al-
faziri, perhaps also Yakub ibn Tirik, translated them
into Arabic. Both works were largely used and exer-
cised great influence on Arab mathematics. It was
on that occasion that the Arabs first became acquainted
with a scientific system of astronomy. It is believed
by all writers on the subject that it was at that time that
the Hindu numerals were first definitely introduced
arnongst the Arabs. It also seems that the Arabs at first
adopted the ghobir forms of the numerals, which they
had already obtained (but without zero) from the

' Theophanes (758- 818 A.D.), “Chronographia;” Seriptores
Historiae Byzantinae, Vol. XXXIX, Bonnane, 1839, p. 575; quoted
by Smith and Karpinski, /., p. 64, note.
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Alexandrians, or from the Syrians who were employed
as translators by the Khalifs at Baghdad Al-Khowirizmi
(825), one of the earliest writers on arithmetic
among the Arabs, has used the ghobir forms.* But not
long afterwards, the Arabs realised that the ghobir
forms were not suited to their right-to-left script. Then
there appears to have been made an attempt to use more
convenient forms. But as people had got accustomed to
the ghobir forms, they did not like to give them up, and
so we find a strugglc'*’ between the two forms, which
continued for about two centuries (1oth and nth) until
at last the more convenient ones came into general use.
The west Arabs on the other hand did not adopt the
modified forms of the €ast Arabs, but continued to use
the ghobidr forms, and were thus able to transmit them to
awakening Europe. This, perhaps, explains in a better
way the divergence in the forms of modern Arabic and
modern European numerals, than any theory yet
propounded.

In a theory that was advanced by Woepcke, this
divergence is explained by assuming that (1) about the
second century after Christ, before zero had been
invented, the Hindu numerals were brought to Alex-
andria, whence they spread to Rome and also to west
Afnca (2) that in the eighth century, after the notation
in India had been already much modified and perfected

! Smith and Karpinski, Je., p. 98.

? One document cited by Woepcke is of special interest since
it shows the use of the ordinary Arabic forms alongside the
Lhobir at an early date (970 A.D.). The title of the work is “Interest-
ing and Beautiful Problems on Numbers” copied by Ahmed ibn
Mohammed ibn Abdaljalil Abd Sa’id, al-Sijzi, (951-1024) from a
work by a priest and physician, Nazif ibn Yumn, al-Qass (died
990). Sprenger also calls attention to this fact (in Zesz. d deutschen-
morgenlindischen Gesselschafr, XLV, p. 367). Ali ibn Ahmed
Al-Nasivi (¢. 1025) tells us that the symbolism of numbers was
unsettled in his day (Smith and Karpinski, /., p. 98).
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by the invention of zero, the Arabs at Baghdad got
it from the Hindus; (3) that the Arabs of the west
borrowed the Columbus-egg, the zero, from those in the
east but retained the old forms of the nine numerals,
if for no other reason, simply to be contrary to their
political enemies of the east; (4) that the old forms were
remembered, by the west Arabs to be of Hindu origin,
and were hence called ghobdr numerals; (5) that, since
the eighth century, the numerals in India underwent
further changes and assumed the greatly modified forms
of modern Devanigari numerals.

Now, as to the fact that these figures might have
been known in Alexandria in the second century A.D.,
there is not much doubt. But the question naturally
arises: Why should the Alexandrians use and retain
a knowledge of these numerals? As far as we kgow,
they did possess numeral notations of their own; why
should they give preference to a foreign notation?
These questions cannot be satisfactorily answered unless
we assume that along with the nine symbols the principle
of place-value and probably also the zero was com-
municated to them. But as they were unprepared for the
reception of this abstract conception, they adopted the
nine numerals only and used them on the apices.
These numerals were then transmitted by them to Rome
and to west Africa.

The second assumption that the Hindu numeral
figures of the eighth century were adopted by the Arabs
is not supported by fact. The figures that are found in
the old Arabic manuscripts resemble either the ghobdir
numerals or the modern Arabic more than the Hindu
numerals of the eighth century. In fact, we have every
reason to believe that the Arabs knew these ghobdr forms,
perhaps without the principle of place-value and
zero, long before they had direct contact with India, and
that they adopted zero only about 750 A.D.
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16. HINDU NUMERALS IN EUROPE

Boethius Question. It cannot be definitely said
when and how the Hindu numerals reached Europe.
Their earliest occurrence is found in a manuscript of
the Geometry of Boethius (¢. 500), said to belong
to the tenth century. There are several other manus-
cripts of this work and they all contain the numerals.
Some of these contain the zero whilst the others do
not. If these manuscripts (or the portions of them that
contain the numerals) be regarded as genuine, it will
have to be acknowledged that the Hindu numerals had
reached Southern Europe about the close of the fifth
century. There are some who consider the passages
dealing with the Hindu numerals in the Geometry of
Boethius to be spurious. Their arguments can be
summarised as below :

(1) The passages in question have no connection.
with the main theme of the work, which is geometry.
The Hindu numerals have not been mentioned in the
Arithmetic of Boethius. They have not been used by
him anywhere else. Neither Boethius’ contemporary
Capella (r. 475), nor any of the numerous mediaeval
writers who knéw the works of Boethius makes any
reference to the numerals.

(2) The Hindu numeral notation was perfected in
India much later than the fifth century, so that the
numerals, even if they had been taken to Europe along
the trade routes, had no cluim to any superiority over the
numerals of the west, and so could not have attracted
the attention of Boethius.

Of the above arguments, the second is against facts,
for it is now established that the Hindu numeral nota-
tion with zero was perfected and was in use in
India during the earliest centuries of the Christian era,
The numerals could have, therefore, easily reached
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t

Europe along the trade routes in the fifth century or even
earlier. The first argument is purely speculative and
throws doubt on the authenticity of the occurrence of
the numerals in Boethius’ Geometry. It does not prove
anything. It seems to us unfair to question the
genuineness of the occurrence of the numerals, when
they are found in all manuscripts of the work that are
in existence now. Their occurrence in thé Geometry
can be easily explained on the ground that Boethius’
knowledge of those numerals was very meagre. He had
obtained the forms from some source—from the Neo-
Pythagoreans or direct from some merchant or wander-
ing scholar—but did not know their use. He might
have known their use in writing big numbers by the
help of the principle of place-value and zero, but he
certainly did not know how the elementary operations of
arithmetic were to be performed with those numerals.
Hence he could make no use of them in his arithmetic or
any other work. The writings of Sebokht (¢. 650) show
that the fame of the numerals had reached the west
long before they were definitely introduced there. The
question of the introduction of the Hindu numerals
through the agency of Boethius may, therefore, be
regarded as an open one, until further investigations
decide it one way or the other. :

Definite Evidence. The first writer to describe the
Jhobdr numerals in any scientific way in Christian Europe
was Gerbert, a French monk. He was a distinguished
scholar, held high ecclesiastical positions in Italy, and
was elected to the Papal chair (999). He had also
been to Spain for three years. It Is not definitely
known where he found these numerals. Some say that
he obtained them from the Moors in Spain, while
others assert that he got them from some other source,
probably through the merchants. We find that Gerbert
did not appreciate these numerals (and rightly, for there



94 NUMERAL NOTATION

was neither zero nor the place-value), and that in
his works, known as thé Regula de abaco computi and the
Libellus, he has used the Roman forms. We thus see
that upto the time of Gerbert (died 1003) the
principle of place-value was not known in Europe.

As early as 711 A.D., the power of the Goths was
shattered at the battle of Jarez de le Frontera, and
immediately afterwards the Moors became mastets of
Spain, and remained so for five hundred years. The
knowledge of the modern system of notation which was
definitely introduced at Baghdad about the middle of the
eighth century must have travelled to Spain and from
there made its way into Europe. The schools estab-
lished by the Moors at Cordova, Granada, and Toledo
were famous seats of learning throughout the middle
ages, and attracted students from all parts of Europe.
Thus although Europe may not be directly indebted to.
the Moors for its numerical symbols, it certainly is for
that important principle which made the ordinary
ghobir forms superior to the Roman numerals.

Several instances of the modern system of nota-
tton are to be found in Europe in the twelfth century,
but no definite attempt seems to have been made
for popularizing it before the thirteenth century.
Perhaps the most influential in spreading these
numerals in Europe was Leonardo Fibonacci of Pisa.
Leonardo’s father was a commercial agent at Bugia, the
modern Bougie, on the coast of Barbary. It had one
of the best harbours, and at the close of the twelfth
century was the centre of African commerce. Here
Leonardo went to school to a Moorish master. On
attaining manhood he started on a tour of the Mediter-
‘ranean and visited Egypt, Syria, Greece, Italy and
Provence, meeting with scholars and merchants and
_imbibing 2 knowledge of the various systems of numbers
in use in the centres of trade. All these systems, he
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however says, he counted as errors compared with that
of thé Hindus.? Returning to Pisa he wrote his Liber
Abaci in 1202, rewriting it in 1228.2 In this the Hindu
numerals are explained and used in the usual compu-
tations of business. At first Leonardo’s book met with
a cold reception from the public, because it was toc
advanced for the merchants and too novel for the
universities, However, as time went on people began
to realise its importance, and then we find it occupying
the highest place among the mathematical classics, of the
period.

Among other writers whose treatises have helped
. the spread of the numerals may be mentioned Alexander
de Villa Die (¢. 1240) and John of Halifax (¢. 1250).

A most determined fight against the spread of these:
numerals was put up by the abacists who did not use
zero but employed an abacus and the apices. But
the writings of men like Leonardo succeeded in silenc-
ing them, although it took two or three centuries to
do so. By the middle of the fifteenth century we find
that these numerals were generally adopted by all the
nations of western Europe, but they came into common
use only in the seventeenth century.

17. MISCELLANEOUS REFERENCES “TO THE
HINDU NUMERALS
1

Syrian Reference. The following reference to a
passage® in a work of Severus Sebokht (662) shows that
the fame of the Hindu numerals had reached the banks of

1 “Sed hoc totum et algorismum atque arcus pictagore quasi
erroren computavi respectu modi indorum.”

2 Smith and Karpinski, /. ¢., p. 131.

3 Attention was first drawn to this passage by F. Nau. JA4,
I, 1910, pp. 225-227; alsa see ]. Ginsburg, Bu/l. American Math.
Soc., XXIII, 1917, p. 368.
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Abfi Sabl Ibn Tamim (950)

Ibn Tamim, a native of Kairwin, a village in Tunis
in the north of Africa, wrote in his commentary on the
Sefer Yesirdh: “The Indians have invented the nine
signs for rnarkmi the units. I have spoken sufficiently
of them in a book that I have composed on the Hindu
calculation, known under the name of Hisdb al-ghobdr.””*

AJ-Nadim (987)

In the Fibrist, the author Al-Nadim includes the
Hindu numerals in a list of some two hundred alphabets
of India (FHind.) These numerals are called bindisah.?

Al-Biréini (1030)

Al-Birlini resided in India for nearly thirteen years
(ro17-1030) and devoted himself to the study of
the arts and sciences of the Hindus. He had also a
remarkable knowledge of the Greek sciences and liter-
ature, so he was more qualified than any contemporary
or even anterior Arab writet to speak with authority
about the origin of the numerals. He wrote two
books, viz., Kitdb al-arqarm (“Book of Ciphers’) and
Taz/ézra f al-bhisib w al—madd bi al-arqam al-Sind wal-
Hind (““A treatise on arithmetic ang the system of
counting with the ciphers of Sindh and India”). In
his Tarikh al-Hind (“‘Chronicles of India’), he says:
“As in different parts of India the letters have
different shapes, the numerical signs too, which are
called asika, differ. The numerical signs which we use
are derived from the finest forms of the Hindu signs.””®
At another place he remarks: “The Hindus use the

1 Reinaud, /Je., p. 399.

2 Kiigh al—szrt.rt ed. G. Fliigel, II, pp. 18-19.

8 Alberuni’s Indm English translation by E. C. Sachau, London
2nd ed., 1910, Vol. I, p. 74.
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numeral signs in arithmetic in the same way as we do.
I have composed a treatise showing how far possibly,
the Hindus are ahead of us in this subject.”* In his
Athidr-ul-Bikiya® (“Vestiges of the Past,” written in
1000 A.D.) Al-Birini calls the modern numerals as
al-argam al-hind, ie., “the Indian Ciphers” and he has
incidentally referred to their distinction from two other
systems of expressing numbers, v/g., the sexagesimal
system and the alphabetic system (Hardf af-jumal).

Abenragel (1048)

It has been stated by Ali bin Abil-Regal Abul-
Hasan, called Abenragel, in the preface to his treatise
on astronomy _that the invention of reckoning with
nine ciphers is due to the Hindu philosophers.®

Saraf-Eddin (1172)

Mahmitid bin Qajid al-Amiini Saraf-Eddin of Mecca
wrote a treatise, entitled Fi al-bandasa w'al argam al-
bindi (“On geometry and the Indian ciphers”).*

Alkalasidi (died 1486) ' .

In his commentary of the Ta/khis of Ibn Albanna,
Abul Hasan Ali Alkalasidi states: ‘“These ‘nine signs,
called the signs of  the ghobdr (dust), are those
that are employed very frequently in our Spanish pro-
vinces and in the countries of Maghrib and of Africa.
Their origin is said to have been attributed by tradition
to a2 man of the Indian nation. This man is said to have
taken some fine dust, spread it upon a table and taught

t Ibid, 1, p. 177.

% The Chronology of Ancient Nations, ed” by Sachau, London,
1879, pp. 62 and r132. .

% ]. F. Montucla, Historie des Mathématiguss, vol. I, p. 376. .«

¢ H. Suter, Die Mathematiker und Astronomer der Ararbe wund
thre Werke, Leipzig, 1900, p. 126,
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the people multiplication, division and other opera-
tions.”?

Behd Eddin (¢. 1600)

Referring to the numerals Behi Eddin observes:
“The Hindu savants have, in fact, invented the nine
known characters.”?

In the quotations from Arab scholars given above,
the term Hnd has been used for India, and Hindi for
Indian. Hind is the term generally used in Arabic and
Persian literature for India. In early writings distinc-
tion was sometimes made between Sind and Hind.
Thus Al-Mastdi and Al-BirGini used Sind to denote the
countries to the west of the river Indus. This distinc-
tion is clearly in evidence in Ibn Hawkal’s map, re-
produced in Elliot and Dawson’s History of India. 'There
were others who did not make this distinction. Thus
Istakri (912) uses Hind to denote the whole of India.?
Again in the Shdbndmd of Firdausi,* Sind has been used
for a river as well as for a country, and Hind for the
whole of India. In later times this distinction dis-
appeared completely. According to the lexicographers
Ibn Seedeh (died 1066) and Firouzibddi (1328-1413),
Hind is “the name of a well known nation” and ac-
cording to El-Jowharee (1008) it denotes “the name of
a country.” Instances of the use of Hind to denote
India in the literature of the Arabs can be multiplied at
pleasure. .

Carra de Vaux® has suggested that the. word Hind

1JA, 1, 1863, pp. sof.
2 Kholasit al-hisib, translated into French by A. Marre, Nowy.
Ann. Math., V, 1864, p. 266.
3 Elliot and Dawson’s Hisiory of India, 11, p. 412.
* English translation by A.G. Warner and E. Warner, London,
1906.
? 5 Carra de Vaux, Scfentia, XX1, 1917, p. 273.
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does not probably mean Indla but is really derived from
énd (or eﬂd) signifying “measure,” “‘arithmetic” or
“geometry.” He concludes that the expression “the
signs of hind” means ‘“‘the arithmetical signs” and not
“the signs of India.”” As regards the use of the adjec-
tive A4indi by certain scholars in connection with the
numerals, he conjectures that it has probably been
employed through confusion for hindasi.

Carra de Vaux’s derivation of the word Aind from
énd or hénd cannot be accepted. It has no support
from Arabic lexicography. Moreover, the word hind
is a very ancient one. It occurs in the .Awvesza* both in
the earlier Yasna and in the later (Sassanian) Vendidad.
The word also occurs in the cuneiform inscriptions of
Darius Hystaspes. The Pehlavi writings before the
Arab conquest of Iran also show the word 4ind. In all
those cases it means India.

The wotd Aindi is an adjective formed from hind
and means “Indian”. The fact that in a few isolated
cases, it has been confused with the word Asndasi, can-
not make us conclude that this has happened in all
cases.

The terms Hindasa, etc. The words Aindasa,
bindisa, bandasa, bindasi, bandasi, etc., have been stated
by competent authorities to be adjectives formed
from hind, meaning “Indian”. Kaye? and Carra
de Vaux® oppose this interpretation. Relying
on the lexicon of Firouzdbidi they assert that these
terms are derived from the Persian andigab, meaning
“measure.” There is no doubt that the word bindas
denotes ‘‘geometrical” in the Arabic language. But

* Yasna, x. 141, Y4, x. 104 (Mibir Yast).

? Kaye, JASB, III, 1907, p. 489, also JASB, VII, 1911,
pp. 810of.

3 Carra de Vaugx, /.
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when this term is used in connection with an explana-
tion of the rule of “double false position” or the method
of “proof by nines” or in connection with the “numeral
notation,” we have to admit that it had some other
significance also. As the arithmetical rules designated
by the term Aindasi are found in Hindu arithmetic prior
to their occurrence in Arabia, it follows that hindasi also
means Indian. The term Aindasi, hindasa or handasa has,
therefore, two meanings, one ¢‘“geometrical’”” and the
other “Indian”. The controversy regarding the meaning
of this term which was set at rest by Woepcke,* has
arisen again because Kaye and Carra de Vaux have refus-
ed to recognise both meanings of this term.? It may be
pointed out here that as one of the meanings of hindasi is
synonymous with Abindi, there is no wonder that the
two words were sometimes confused with each other,
especially by scribes who did not understand the text.

European References. Isidoras of Seville. The
nine characters (of the ghobir type), without zeto, are
given as an addition to the first chapter of the third
book of the Origines by Isidorus of Seville in which
the Roman numerals are under discussion. Another
Spanish copy of the same work (of 992 A.D.)
contains the numerals in the cortesponding section.
The writer ascribes an Indian origin to them in the
following words: “Item de figuris arithmetice. Scire
debemus in Indos subtilissimum ingenium habere et
ceteris gentes eis in arithmetica et geometria et ceteris
liberalibus disciplinis concedere. Et hoc manifestum

1Woepcke, jA, 1, 1863, pp. 27f. See also Suter’s article
on bandasa in the Eneyclopaedia of Islam and Rosew’s Algebra of
Mobammad Ben Musa, London, 1831, pp. 196f.

*It will not be difficult to point out in any literature words
having more than one meaning. Occasionally these meanings have
no congection. Whenever such a word is used, the appropriate
meaning has to be deduced from the context.
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est in nobem figuris, quibus designant unum-quemque
gradum cuinslibet gradus. Quarum hec sunt forma.’*

Rabbi ben Ezra (1092-1167)

Rabbi Abraham ibn Meir ibn Ezra in his work, Sefer
ha-mispar (“the Book of Number”), gives the Hindu
forms of the numerals. He knew of the Hindu origin
of the numerals for he states: “that is why the wise peo-
ple of India have designated all their numbers through
nine and have built forms for the nine ciphers.”?

Leonardo of Pisa

Leonardo of Pisa in his work, Liber Abaci (1202),
frequently refers to the nine Indian figures. At one
place he says: “Ubi ex mirabili magisterio in arte per
novem figuras indorum introductus™ etc. In another
place, as a heading to a separate division, he writes “De
cognitione novem figurarum yndorum’ etc., “Novem
figure indorum he sunt 9 8 7 6 5 4 3 2 1.7

Alexander de Villa Dei

Alexander de Villa Dei (¢. 1240) wrote a commen-
tary on a set of verses called Carmen de Algorismo. In
this commentary he writes: “This boke is called the
boke of algorim or augrym after lewder use. And this
boke tretys of the Craft of Nombryng, the quych crafte
is called also algorym. Ther was a kyng of Inde the
quich heyth Algor & he made this craft...... Algor-
isms, in the quych we use teen figurys of Inde.”*

! Quoted. by Smith and Karpinski, /e, p. 138.

2 Sefer ha-Mispar, Das Buch der gabl, ein bebraisch-arithmetisches
Work des R. Abrabam ibn Esra, Moritz Silberberg, Frankfurt a
M., 1895, p. 2.

; 8 Liber .Abaci, Rome, 1859; quoted by Smith and Karpinski,
.6 P. 0.
¢ Smith and Karpinski, /., p. 11.
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Maximus Planudes (¢c. 1330)

Maximus Planudes states that “the nine syml_)o]s
come from the Indians.”*

! Wischke’s German Translation, Halle, 1878, p. 3.
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TABLE I1—Kbarosthi Numerals
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TABLE XIV—Development of Ndégari Numerals
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TABLE XV—Nagmeral Forms in Modern Hindu Seripts
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CHaArTER 11

ARITHMETIC

1. GENERAL SURVEY

Terminology and Scope. Arithmetic forms the
major part of the Hindu works on pdtigenita. The wotd
pdtiganita is a compound formed from the words pd¥,
meaning “board,” and gapita, meaning “science of cal-
culation;” hence it means the science of calculation
which requires the use of writing material (the boatd).!
It is believed that this term originated in a non-Sanskrit
literature of India, a vernacular of Northern India. The
oldest Sanskrit term for the board is phalaka or patta,
not pdti. The wortd pd#i seems to have entered into
Sanskrit literature about the beginning of the seventh
century A.D.? The carrying out of mathematical calcula-
tions was sometimes called dbéfi-karma (“‘dust-work™),
because the figures were written on dust spread on a
board or on the ground. Some later writers have used
the term wyakta-ganita (“the science of calculation by
the ‘known’”) for pdtigapita to distir'guish it from
agebra which was called apyakta-ganita (“the science of
calculation by the ‘unknown’”). The terms, pdtiganita
and dbdli-karma were translated into Arabic when
Sanskrit works were rendered into that language. The
Arabic equivalents are #/m-bisdb-al-takht (“the science of

! Paper being scarce, a wooden board was generally used

for making calculations even upto the 1g9th century.
*B. Datta, American Math. Monthly, XXXV, p. 526.
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calculation on the board”) and hisdb-al-ghobdr (““calcula-
tion on dust”) respectively.

Bayley, Fleet and several others suspect that the
origin of the term pds/ in Hindu Mathematics lies in
the use of the board as an abacus. This conjecture,
however, is without foundation, as no trace of the use
of any form of the abacus is found in India.

According to Brahmagupta® there are twenty
operations and eight determinations in pdtiganita. He
says:

“He who distinctly and severally knows the twenty
logistics, addition, etc., and the eight determinations
including (measurement by) shadow is a mathemati-
cian,”

The twenty logistics, according to Prthudakasvimi,
are: (1) samékalita (addition), (2) vyavakalita or vyatkalita
(subtraction), (3) gupana (multiplication), (4) bhdgahira
(division), () varga (square), (6) varga-mila (square-root),
(7) ghana (cube), (8) ghana-mitla (cube-root), (9-13)
paica jiti (the five rules of reduction relating to the
five standard forms of fractions), (14) frairdsika (the
rule of three), (15) vyasta-trairdsifa (the inverse rule of
three), (16) pascarisika (the rule of five), (17) sapta-
rdfika (the rule'of seven), (18) mavardfika (the rule of
nine), (19) ekddasardsika (the rule of eleven), and (20)
bhanda-pritibhinda (barter and exchange). The eight
dcterminations are: (1) mifraka (mixture), (2) Sredhi
Progression or seties), (3) &getra (plane figures), (4)
thita (excavation), (§) citi (stock), (6) krdkacika (saw),
(7) rdsi (mound), and (8) chdyd (shadow).

~ Of the operations named above, the first eight have
been considered to be fundamental by Mahivira and
later writers. The operations of duplation (doubling)

L BrSpSi, p. 172
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and mediation (halving), which were considered funda-
mental by the .Egyptians, the Greeks and some Arab
and western scholars, do not occur in the Hindu
mathematical treatises. These operations were essential
for those. who did not know the place-value system of
notation. They are not found in Hindu works, all of
which use the place-value notation.

Sources.. The only works available which deal
exclusively with pdtigapita are: the Bakbshili Manuscript
(¢. 200), the Trifatikd (c. 750), the Gapita-sdra-samgraha
(c..850), the Gagpita-tilaka (1039), the Lildvati (1150), the
Gapita-kanmndi (1556), and the Pdti-sdra (1658). These
works contain the twenty operations and the eight
determinations mentioned above. Examples are also
given to illustrate the use of the rules enunciated.

Besides these there are a number of astronomical
works, known as Siddbinta, each of which contains a
section dealing with mathematics. Aryabhata I (499)
was the first to include a section on mathematics in his
Siddhinta, the Aryabhatiya. Brahmagupta (628) followed
Aryabhata in this respect, and after him it became
the general fashion to include a section on mathematics
in a Siddhinta work.* The eatlier Siddhinta works do
not possess this feature. The S#rye-siddhinta (c. 300)
does not contain a section on mathematics. The same
is true of the Vdsistha, the Pitdmaba and the Romaka
Siddhédntas. Bhiskara I and Lalla,? although zealous
followers of Aryabhata I, did not emulate him in in-
cluding a section on mathematics in their astronomical
works.

! Amongst such works may be mentioned the Mabi-siddbinta
(950), the Siddhinta-fekhara (1036), the Siddhinta-tattva-viveka (1658),
etc.

2Tt is stated by Bhaskara II that Lalla wrote a separate treatise
on pdtiganita.
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Exposition and Teaching. In India conciseness of
composition, especially in scientific matters, was highly
prized. The more compact and brief the composition,
the greater was its value in the eyes of the learned.
It is for this reason that the Indian treatises contain
only a brief statement of the known formulz and results,
sometimes so concisely expressed as to be hardly
understandable. This compactness is more pronounced
in the older works; for instance, the exposition in the
Aryabhatiya is more compact than in the later works.

This hankering after brevity, in early times, was
due chiefly to the dearth of writing material, the
fashion of the time and the method of instruction fol-
lowed. The young student who wanted to learn
pétiganita was first made to commit to memory all the
rules. Then he was made to apply the rules to the
solution of problems (also committing the problems to
memoty). The calculations were made on a pdf/ on
which dust was spread, the numbers being written on
the dust with the tip of the fore-finger or by a wooden
style,. the figures not required being rubbed out as the
calculation proceeded. Sometimes a piece of chalk or
soap-stone was used to write on the p4#.. Along with
each step in the process of calculation the s##ra (rule)
was repeated by the student, the teacher supervising
and helping the student where he made mistakes. After
the student had acquired sufficient proficiency in solving
the problems contained in the text he was studying, the
teacher set him other problems—a store of graded
examples (probably constructed by himself or borrowed
from other sources) being the stock-in-trade of every
professional teacher. At this stage the student began
to understand and appreciate the rationale of the easier
rules. After this stage was reached the teacher gave
proofs of the more difhcult formule to the pupil.
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It will be observed that the method of teaching
pursued was extremely defective in so far as it was in
the first two stages purely mechanical. A student
who did not complete all the three stages knew practi-
cally nothing more than the mere mechanical applica-
tion of a set of formule committed to memory; and
as he did not know the rationale of the formulz he
was using, he was bound to commit mistakes in.their
application. It may be mentioned that not many
teachers themselves could guide a pupil through all the
stages of the teaching, and the earnest student, if he
had a genuine desire to learn, had to go to some seat
of learning or to some celeberated scholar to complete
his training.

Mathematics is and has always been the most
difficult subject to study, and as a knowledge of higher
mathematics could not be turned to material gain there
were very few who seriously undertook its study. In
India, however, the religious practices of the Hindus
required a certain amount of knowledge of astronomy
and mathematics. Moreover, there have always been,
from very early times, a class of people kmown as
ganaka whose profession was fortune-telling. These
people were astrologers, and in order to impress their
clients with their learning, they used to have some
knowledge of mathematics and astronomy. Thus it
would appear that instruction in mathematics, upto a
certain minimum standard, was available almost every-
where in India. As always happens, some of the pupils
got interested in mathematics for its own sake, an
took pains to fnake a thorough study of the subject and
to add to it by writing commentaries or independent
treatises.

Decay of Mathematics. All this was true when the
times were normal. In abnormal times when there were
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foreign invasions, internal warfares or bad government
and consequent insecurity, the study of mathematics
and, in fact, of all sciences and arts languished.
Al-Birtni who visited north-western India after it had
been in a very unsettled state due to recurrent Afghan
invasions for the sake of plunder and logt complains
that he could not find a paendit who would explain to
him the principles of Indian mathematics. Although
Al-BirGn?’s case was peculiar, for no respectable pandiz
would agree to help a foreigner, especially one belonging
to the same class as the invaders and the despoilers of
temples, yet we are quite sure that in the Punjab there
were very few good scholars at that time. We, however,
know of at least one very distinguished mathematlcmn
Stipati, who probably lived in Kashmir at that time.

Itis certain, however, that after the 12th century
very little original work was done in India. Com-
mentaries on older works were written and some new
works brought out, but none of these had sufficient
merit as regards exposition or subject matter, so as to
displace the works of Bhiskara 1I, which have held
undisputed sway for nine centuries (as standard text

books).

The Fundamental Operations. The eight funda-
mental operations of Hindu gapita are: (1) addition, (2)
subtraction, (3) multiplication, (4) division, (5) square,
(6) square-root, (7) cube and (8) cube-root. Most of
these elementary processes have not been mentioned in
the Siddhinta works. Aryabhata I gives the rules for
finding the square- and cube-roots only, whilst Brahma-
gupta gives the cube-root rule only. In the works on
arithmetic (pdtiganita), the methods of addition and
subtraction have not been mentioned at all or men-
tioned very briefly. Names of several methods of
multiplication have been mentioned, but the methods
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themselves have been either very briefly described or
not described at all. The modern method of division
is briefly described in all the works and so are the
methods of squaring, square-root, cubing and cube-
root.

Although very brief descriptions of these funda-
mental operations are available, yet it is not difficult to
reconstruct the actual procedure employed in perform-
ing these operations in ancient India. These methods
have been well-known and taught to children, practi-
cally without any change, for the last fifteen hundred
years or more. They are still performed in the old
fashion on a pdt7 (“board™) by those who have obtained
their primary training in the Sanskrit pathasili and not
in the modern primary school. The details of these.
methods are also available to us in the various com-
mentaries, viz., the commentary of Prthudakasvimi and
the several commentaries on Bhiskara’s Lildvati.

As already mentioned, the calculations were per-
formed on sand spread on the ground (db#li-karma*)
or on a pdti (“board”). Sometimes a piece of chalk
or soap-stone (pdpdu-lekba or Svetavarnf) was used to
write on the pdti.? As the figures written were big,
so several lines of figures could not be contained on
the board. Consequently, the practice of' obliterating
fizures not required for subsequent work was common.
Instances of this would be found in the detailed method
of working (the operations) given hereafter.

That all mathematical operations are variations of
the two fundamental operations of addition and sub-
traction was recognised by the Hindu mathematicians

! Bhaskara 11, SiS7, candragrabanidhikira, 4.

? Bhiskara I1: kbatikdyd rekhd #cchddya..., ie., “‘having drawn
lines with a chalk...,”” quoted by S. Dvivedi in his History of Mathe-
matics (in Hindi), Benares, 1910, p. 41.

9
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from early times. Bhidskara I (¢. 525) states:?

“All arithmetical operations resolve into two cate-
gories though usually considered to be four.? The
two main categories are increase and decrease. Addi-
tion is increase and subtraction is decrease. These two
varieties of operations permeate the whole of mathema-
tics (gapita). So previous teachers have said: ‘Multipli-
cation and evolution are particular kinds of addition;
and division and involution of subtraction. Indeed
every mathematical operation will be recognised to
consist of increase and decrease.” Hence the whole of
this science should be known as consisting truly of
these two only.”

2. ADDITION

Terminology. Aryabhata II (950) defines addition
thus:

“The making into one of several numbers is
addition.”®

The Hindu name for addition is se#kalita (made
together). Other equivalent terms commonly used .are
sambalana (making together), miSrapa (mixing), sam-
melana (mingling together), pra,ésepana (throwing to-
gether), samyojana (joining together), ekikarapa (making
into one), yukti, yoga (addition) and abhydsa,* etc. The
word samkalita has been used by some writers in the
general sense of the sum of a series.’

The Operation. In all mathematical and astrono-
mical works, a knowledge of the process of addition is

! The quotation is from his commentary on the Aryabhatiya.

% j.e., addition, subtraction, multiplication and division.

3 MSi, p. 143.

+ This word has been used in the sense of addition in the
Sulba only. 1t is used for multiplication in later works.

SE.g., Trif, p.2; GSS, p. 17.
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taken for granted. Very brief mention of it is made
in some later works of elementary character. Thus
Bhéskara II says in the Lildvati:

“Add the figures in the same places in the direct
or the inverse order.””®

Direct Process. In the direct process of addition
referred to above, the numbers to be added are written
down, one below the other, just as at present, and a line
is drawn at the bottom below which the sum is written.
At first the sum of the numbers standing in the units
place is written down, thus giving the first figure of the
sum. The numbers in the tens place are then added
together and their sum is added to the figure in the
tens place of the partial sum standing below the line
and the result substituted in its place. Thus the figure
in the tens place of the sum is obtained; and so on.
An alternative method used was to write the biggest
addend at the top, and to write the digits of the sum
by rubbing out corresponding digits of this addend.®

Inverse Process. In the inverse process, the num-
bers standing in the last place (extreme left) are added
together and the result is placed below this last place.
The numbers in the next place are then added and so
on. The numbers of the partial sum are corrected, if
necessary, when the figures in the next vertical line are
added. For instance, if 12 be the sum of the numbers
ia the last place, 12 is put below the bottom line, 2
being directly below the numbers added; then, if the

'L, p. 2; direct (&ruma), i.c., beginning from the units place;
inverse (utkrama), i.e., beginning from the last place on the
left, The commentator Gangadhara says: aikdndm vématogatiriti
vitarkena ekasthinddi yojanap kramap ntkramasiu antyasthinidi yojanam,
ie., “According to the rule ‘the numerals increase (in value) to-
wards the left’, the addition of units first is the direct method,
the addition of figures in the last place first is the inverse method.”

® Dvivedi, History of Mathematics, Benares, 1910, p. Go.
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sum of the numbers in the next place is 13 (say), 3 is
placed below the figures added and 1 is carried to the
left. Thus the figure 2 of the partial sum 12 is rubbed
out and substituted by 3.

The Arabs used to separate the places by vertical
lines, but this was not done by the Hindus.?

3. SUBTRACTION

Terminology. Aryabhata II (950) gives the fol-
lowing definition of subtraction:

“The taking out (of some number) from the
sarvadbana (total) is subtraction; what remains is called
Sesa (remainder).”?

The terms wyatkalita (made apart), vyatkalana
(making apart), Sodbana (clearing), pdtana (causing to fall),
viyoga (separation), etc., have been used for subtraction.
The terms fesa (residue) and anfara (difference) have
been used for the remainder. The minuend has been.
called sarvadhana or viygjya and the subtrahend viygjaka.

The Operation. Bhiskara II gives the method of
subtraction thus:

“Subtract the numbers according to their places in
the direct or inverse order.”*

! The Manorasijana explains the process of addition thus:
Example. Add 2, 5, 32, 193, 18, 10 and 100,

Sum of units 2,5,2,3,8,0,0 20
Sum of tens 3,9,1,1,0 14
Sum of hundreds 1,0,0,1 2z

Sum of sums 360

The horizontal process has been adopted by the commentatot
so that both the ‘direct’ and ‘inverse’ processes may be exhibited
by a single illustration. lt was never used in practice.

2 Cf. Taylot, Liléwati, Bombay, 1816, Introduction, p. 14.

3 MSi, p. 143.

‘L, p. 2.
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Direct Process. Siryadéisa' explains the process

of subtraction with reference to the example.
1000 — 360
thus:

“Hence making the subtraction as directed, six
cannot be subtracted from the zero standing in the
tens place, so taking ten and subtracting six from it,
the remainder (four) is placed above (six), and this ten
is to be subtracted from the next place. For, as the
places of unit, etc., are multiples of ten, so the figure
of the subtrahend that cannot be subtracted from the
corresponding figure of the minuend is subtracted from
ten, the remainder is taken and this ten is deducted
from the next place. In this way this ten 1s taken to
the last place until it is exhausted with the last figure.
In other words, numbers upto nine occupy one place,
the dlfferentiatlon of places begins from ten, so it is
known ‘how many tens there are in a given number’
and, therefore, the number that cannot be subtracted
from its own place is subtracted from the next ten,
and the remainder taken.”

The above refers to the direct process, in which
subtraction begins from the units place.

Inverse Process. The inverse process is similar,
the oaly difference being that it begins from the last
place of the minuend, and the previously obtained
partial differences are corrected, if required. The
process is suitable for working on a pdti (board) where
figures can be easily rubbed out and corrected. This
process seems to have been in general use in India, and
was considered to be simpler than the direct process.?

" In his commentary on the Lildvati.

? According to Gangadhara, the inverse process of working
is easier in thc case -of subtractwn and the direct in the case of
addition. \
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4. MULTIPLICATION

Terminology. The common Hindu name for
multiplication is gupana. This term appears to be the
oldest as it occurs in Vedic literature. The terms hanana,
vadha, ksaya, ctc. which mean “killing” or “‘destroying”
have been also used for multiplication. These terms
came into use after the invention of the new method of
multiplication with the decimal place-value numerals;
for in the new method the figures of the multiplicand
were successively rubbed out (destroyed) and in their
places were wriiten the figures of the product.*
Synonyms of Aanana (killing) have been used by Arya-
bhata 1* (499), Brahmagupta (628), “Stidhara (. 750)
and later writers. These terms appear also in the
Bakhshali Manuscript.®

The term abhydsa has been used both for addition
and multiplication in the S#/ba works (8oo B.C.). This
shows that at that early period, the process of multiplica-
tion was made to depend on that of repeated addition.
The use of the word parasparakrtam (making together)
for multiplication in the Bakhshali Manuscript* is evi-
dently a relic of olden times. This ancient terminology
‘proves that the definition of multiplication was “a pro-
cess of addition resting on repetition of the multiplicand
as many times as is the number of the multiplicator.”
This definition occurs in the commentary of the .Arya-
bbatiya by Bhiskara I. The commentators of the Li/dvati
give the same explanation of the method of multipli-
cation.®

! See the kapdra-sandhi method of multiplication, pp. 138
A4, ii. 19, 26, etc.

3 BMs, G5 verso.

* BMs, 3 verso.

3 Colebrooke, Hindu Algebra, p. 133.
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The multiplicator was termed g#zye and the multi-
plier gunaka or gupakdra. The product was called
gupana-phala (result of multiplication) or pratystpanna
(lit. “reproduced,” hence in arithmetic “reproduced by
multiplication’). The above terms occur in all known
Hindu works.

Methods of Multiplication. Aryabhata I does
not mention the common methods of multiplication,
probably because they were too elementary and too well-
known to be included in a Siddhianta work. Brahma-
gupta, however, in a supplement to the section on
mathematics in his Siddhinta, gives the names of some
methods with very brief descriptions of the processes:

““The multiplicand repeated, as in gomdtrikd, as
often as there are digits* in the multiplier, is severally
multiplied by them and (the results) added (according
to places); this gives the product. Or the multiplicand
is repeated as many times as there are component parts®
in the multiplier.””?

“The multiplicand is multiplied by the sum or the
difference of the multiplier and an assumed quantity
and, from the result the product of the assumed quantity
and the multiplicand is subtracted or added.”*

Thus Brahmagupta mentions four methods: (1)
somhtrikd, (2) kbanda, (3) bheda and (4) ista. The
common and well-known method of kapdta-sandhi has
been omitted by him.

t kbanda, translated as “integrant portions” by Colebrooke.

2 bheda, i.e., portions which added together make the whole,
or aliquot parts which multiplied together make the entire
quantity.

* BrSpSi, p. 209; Colebrooke, le., p. 319.

¢ BrSpSi, p. 209. Colebrooke (Jc., p. 320) thinks that this is
a method to obtain the true product when the multiplier has been
taken to be too great or too small by mistake. This view is
incorrect.
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Sridhara mentions four methods of multiplication:
(1) kapdta-sandhi, (2) tastha, (3) ripa-vibbiga and (4)
sthana-vibhdga. Mahavira mentions the same four.
Aryabhata IT mentions only the common method of
kapdta-sandhi. Bhiskara 1I, besides the above four,
mentions Brahmagupta’s method of Zsfa-gupana. The
five methods given by Bhiskara II were mentioned
earlier by Sripati in the Siddldnta-Sekhara. Ganesa® (1545)
mentions the gelosia method of multiplication under
the name of kapdta-sandbi and adds that the intelligent
can devise many more methods of multiplication. The
method is also given in the Gapita-manjari. We have
designated it as kapdta-sandhi (b).

Seven® distinct modes of multiplication employed
by the Hindus are given below. Some of these are
as old as 200 A.D. These methods were transmitted
- to Arabia in the eighth century and were thence com-
municated to Europe, whete they occur in the writings
of medizval mathematicians.

Door-junction Method. The Sanskrit term for the
method is #apdta-sandhi.. Stidhara® describes it thus:

“Placing the multiplicand below the multiplier as in
kapdta-sandhs,* multiply successively, in the direct or
inverse order, moving the multiplier each time. This
method is called kapdta-sandhi.”

Aryabhata 1I° (950) gives the following without
name:

! Commentary on the Lilivat;i, MSS No. I. B. 6. in the
Asiatic Soc. of Bengal, Calcutta, pp. 17, 18. In this work only
two methods are given, (1) #apdta-sandhi and (2) kapita-sandhi ().

2 Or ten if we count also the sub-divisions under each head.

3 Tris, pp. 3f.

* kapita means ‘“‘door” and samdhi means ‘‘junction’; hence
kapdta-sandhi means ‘“‘the junction of doors.” :

5 MS7, p. 143; the inverse method only has been given.
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“Place the first figure of the multiplier over the
last figure of the multiplicand, and then multiply suc-
cessively all the figures of the rnult1pher by each figure
of the multiplicand.”

Sripati’ (1039) gives the name &apdta-sandhi and
states:

“Placing the multiplicind below the multiplier as
in the junction of two doors multiply successively (the
figures of the multiplicand) by movmg it (the multiplier)

in the direct or inverse order.”

Mahévira refers to a method known as kepdta-
sandhi, but does not give the details of the process.*
Bhiaskara II gives the method but not the name, while
Nariyana gl 356) gives the method in almost the same
words as Sridhara, and calls it kapdta-sandhi.

The main features of the method are (7) the relative
positions of the multiplicand and the multiplier and
(#7) the rubbing out of figures of the multiplicand and
the: substitution in their places of the figures of the
product. . The method owes its name &apdta-sandhi to
the first feature, and the later Hindu terms meaning
“killing” or “destroying” for multiplication owe their
origin to the second feature. The occurrence of the
terms Aanana, vadba, etc., in the works of Aryabhata I
and Brahmagupta, and in the Bakhshili Manuscript
show beyond doubt that this method was known in
India about 200 A.D.

. The following illustrations® explain the two pro-
cesses of multiplication according to the rapdta-sandhi
plan:

1 5ife, xiii. 2; GT, 15.
2 GSS, p.oo.
3 'The illustrations are based on the accounts given in the

commentaries on the Li/évati, especially the Manorasjana which
gives more details.
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Direct Process: This method of working does not
appear to have been popular. It has not been mentioned
by writers after the 11th century, Stipati (1039) being
the last writer to mention it.

Esxcample. 'To multiply 135 by 12,
The numbers are written down on the pdt/ thus:

12
I35

The first digit of the multiplicand (5) is taken and
multiplied with the digits of the multiplier. Thus
5 X 2=10; © is written below 2, and 1 is to be carried
over.! ‘Then §X 1=5; addmg (carried over), we
get 6. 5 which is no longer required is rubbed out and
6 written in its place. Thus we have

12

1360 .
The multlpher is then‘moved one place towards the left,
and we have

12

1360
Now, 12 is multiplied by 3. The details are: 3X2=6;
this 6 added to the figure 6 below 2 gives 12. 6 is
rubbed out and 2 substituted in its place. 1 is carried
ovet. Then 3 X 1=3; 3 plus 1 (carried over)=4. 3 is
rubbed out and 4 substituted. After the multiplier 12 has
been moved another place towards the left, the figures
on the pdti stand thus:

12

1420

Then, 1X 2=2; 24-4=6; 4 is rubbed out and 6
substituted. 1X 1=1, which is placed to the left of 6.

! For this purpose it was probably noted in a separate portion
of the pdti by the beginner.
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As the operation has ended, 12 is rubbed out and the
pati has

1620
Thus the numbers 12 and 135 have been £://ed’ and a
new number 1620 is born (pratyatpanna).*

The reader will note that the position of the
multiplier and its motion serve two important purposes,
vi%., (£) the last figure of the multiplier indicates the
digit of the multiplicand by which multiplication is
to be performed and, (#) the product is to be added
to the number standing underneath the digit of the
multiplier multiplied.

Sometimes the product of a digit of the multipli-
cand and the multiplier extends beyond the last place
of the multiplier. In such cases, the last figure of the
partial product is noted separately The reader should
note this fact in the case, 135X 99, by performing the
operation according to the above process.

The beginner was liable to commit mistakes in such
cases, (7) of not correctly taking into account the
scparately noted number, or (/7) of rubbing out the
digit of the multiplicand beyond the last digit of the
multlpher For these reasons, this process was not
in general use and the inverse process was preferred.

Inverse Method: There appear to have been two
varieties of the inverse method.
(¢) In the first the numbers are written thus:
12
135
Multiplication begins with the last digit of the multipli-
cand. Thus 1X2=2; 1 is rubbed out and 2 substi-

1This explains the use of the term hananz (killing) and its
synonymis for multiplication:
*Hence the product was termed pratystpanna.
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tuted; then 1Xx1=1, this is written to the left;' the
multiplier 12 is moved to the next figure. The work
on the pdti stands thus:

12

1235
Then, 3X 2=6; 3 is rubbed out and 6 substituted; then
3X 1=3 and 3}2=j3; 2 is rubbed out and 5 substituted
in its place. The multiplier having been moved, the
work on the pd¢i stands thus:

12

1565
Now, sx 2=10; 5 is rubbed out and o substituted in
its place; then sxX1=35; §s4+1=6; 646=12; 6 1is
rubbed out and 2 substituted, and 1 is carried over;
then 14-§=6, 5 is rubbed out and 6 substituted in
its place. The pdti has now,

1620 .
as the product (pratyutpanna). The figures to be carried
over are noted down on a separate portion of the
pdti and rubbed out after addition.

(b) In the second the partial multiplications (i.e.,
the multiplications by the digits of the multiplicand)
are carried out in the direct manner. These partial
multiplications, however, seem to have been carried out
in the inverse way, this being the general fashion. The
following example will illustrate the method of working:

Example. Multiply 324 by 753
The multiplier and the multiplicand are arranged
thus:

753
324

1 Or the alternative plan: 1X1=1 and then 1X2=2, thus
giving 12 in the place of 1 in the multiplicand, etc.
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Multiplication begins with the last place of the
multiplier. 3 X 7 gives 21; 1'is placed below the 7 of the
multiplier and 2 to its left, thus:

753

21 324
Then 3Xs5 gives 15; § is placed below the 5 of the
multiplier and 1 carried to the left; the 1 obtained in
the previous step is rubbed out and (141)=2 is
substituted, giving

753

225324
Then 3X 3 gives 9; the 3 of the multiplicand is rubbed
out and 9 substituted. The work on the p4/ now
stands thus:

753

225924
The multxpher is now moved one place to the right
giving

753

225924
Then multiplying 7 by 2 we get 14. This 14 being
set below the 7 gives

753
N 239924
Multiplying 5 by 2 and setting the result below it, we
obtain
753
240924
Finally multiplying 3 by 2 and tubbing out 2, which is
required no longer, and substituting 6 in its place,
we get
753
240964
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The multiplier is then moved one step further giving
753
2409064
Multiplying by 4 the digits of the multiplier 753, and
setting the results as before we obtain

@) 753 o ,
243764 multiplying 7x 4 and setting the result;
() 753

243964 multiplying §X 4 and setting the result;
. (ddi) 753 o _
243972 multiplying 3 X 4 and setting the result.
It may be again remarked that the position and
motion of the multiplier play a very important part
in the above process. The digits of the multiplier are
also successively rubbed out in order to avoid confusion,
thus 7 is rubbed out at stage (7), 5 at (/) and 3 at (7).
The following variation of the above process is
also found:*

“Multiplicand 135, multiplier 12; the multiplier
placed at the last place of the multiplicand gives
12
135
. According to the rule ‘the numerals progress to the
left’ the last figure of the multiplicand (the figure 1)
is multiplied by 12z. Then after moving (12) we get
12
1235
Again, the figure 3 next to the last of the multi-
plicand being multiplied by the multiplier 12 gives
12
1265
3

* Lildvatyndiharapa by Krpirima Daivajiia, Asiatic Society
of Bengal, Calcutta, Ms. No. III. F. 110. A.
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Then after moving (12) we get
12
1265

3

Again, multiplying the first figure 5 of the multi-
plicand with the multiplier 12, we get

12
1260
36

Then rubbing out the mualtiplier, the numbers

1260
36

being added according to places give 1620.”

Transmission to the West. The kapdta-sandhi
method of multiplication was transmitted to the Arabs
who learnt the decimal arithmetic from the Hindus. It
occurs in the works of Al-KKhowarizmi (825), Al-Nasavit
(c. 1025) Al-Hassar* (. 1175), Al-Kalasidl* (. 1475)
and many others. The following illustration is taken
from the work of Al-Nasavi who calls this method
al-amal al-bindi and tdrik al-bindi (“the method of the
Hindus™):

Example. To multiply 324X 753

43

309

2977 .

213962 .'. Product = 243972.
324

753
753
753

'F. Woepeke, I (6), p. 407.

2 H. Suter, Bib). Math., 11 (3), p. 16.
3 1bid, p. 17.
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In the above the arrangement of the multiplicand
and multiplier is just the same as in the Hindu method.
The multiplier is moved in thé same way. As the
work is performed on paper, the figures are crossed
out instead of being rubbed out.

It may be mentioned that in Europe, the method
is found reproduced in the work of Maximus Planudes.

Gelosia Method. The method known as the
‘gelosia’,' has been described in the Ganita-mafijari
(16th century) as the kapdta-sandhi method. It appears
also in Gane$a’s commentary on the Lidvati. As the
description of the Aapdta-sandhi given by the older
mathematicians is incomplete and sketchy, it is diff-
cult to say whether Ganesa is right in identifying the
gelosia method with the &apdta-sandhi of older writers.
In our opinion Gane$a’s identification is incorrect.?

We are at present unable to say definitely whether
this method is a Hindu invention or was borrowed
from the Arabs who are said to have used it in the
13th century.® It occurs in some Arab works of the
14th century, and also in Europe about the same
time. Ganesa was undoubtedly one of the best mathe-
maticians of his time and the fact that he identified
this method with the &apdta-sandhi which is the oldest
known method shows that the gelosia method must
have been in use in India from a long time before
him.

The only available description of the method runs
as follows:

“(Construct) as many compartments as there are
places in the multiplicand and below these as many

! We shall designate it as kapdta-sandbi (b) method..
2 Cf. the quotation from Sripati givep before, p. 137.
% Smith, History, I1, p. 115.
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as there are places in the multiplier; the oblique lines
in the first, in the one below, and in the other (com-
partments) are produced. Multiply each place of the
multiplicand, by the places of the multiplier (which are)
one below the other and set the results in the com-
partments. The sum taken obliquely on both sides of
the oblique lines in the compartments gives the product.
This is the kapdta-sandhi.””

The following illustration is taken from Gane$a’s
commentary on the Lidvats:

To Multiply 135 by 12
I 3 5
(7~ 3 5
; / L
/// :
2 6 | o
6 2 o

Cross Multiplication Method. This method has
been mentioned by Sridhara, Mahévira, Stipati and some
later writers as the zzstha method. These writers, how-
ever, do not explain the method. Sridhara simply
states: “The next (method) in which (the multi-
plier) is stationary is the fastba.”* The method is
algebraic and has been compared to #ryak-gupana or
vajrdbbydsa (cross multiplication) used in algebra.® It has
been explained by Gane$a (c. 1545) thus:

I

! Translated from the Gagita-madjari of Ganeda, son of
Dhundhirija.

2 Trif, p. 3. .

% Colebrooke, /¢, p. 171, fn. 3.

10
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““That method of multiplication in which the
numbers stand in the same place,* 1s called Zastha-
gunana. It is as follows: after setting the multiplier
under the multiplicand multiply unit by unit and note
the result underneath. Then as in vgirdbhydsa multiply
unit by ten and ten by unit, add together and set
down the result in thé line. Next multiply unit by
hundred, hundred by unit and ten by ten, add together
and set down the result as before; and so on with the
- rest of the digits. This being done, the line of results
is the- product.”?

This method was known to the Hindu scholars
of the 8th century, or earlier. The method seems to
have travelled to Arabia and thence was transmitted to
Europe, where it occurs in Pacioli’s Suma® and is stated
to be “more fantastic and ingenious than the others.”
Gane$a has also remarked that “this (method) is very
fantastic and cannot be learnt by the dull without the
traditional oral instructions.”

Multiplication by Separation of Places. This
method of multiplication known as sthdna-kbapda, is
based on the separation of the digits of the multiplicand
or of the multiplier. It has been mentioned in all the
works from 628 A.D. onwards. Bhiéskara II describes
the method as follows:

“Multiply separately by the places of figures and
add together.”*

With reference to the example 135X 12, Bhiskara II
explains the method thus:

1In contra-distinction to the method in which the multiplier
moves from one place to another.

* Gane$a’s commentary on the Lildvati, i, 4-6.

8 Smith (/e., II, p. 112) quotes from this work.

*L, p. 3.
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“Taking the digits separately, »7z., 1 and 2, the
multiplicand being multiplied by them severally, and
the products added together according to places, the
result i1s 1620.”

Various arrangements appear to have been em-
ployed for writing down the working. Some of these
are given below:

@) 135

12
12
36
60

1620

(#)? 12 12 12
I 3 5
1260
36
1620
(id)? 135 135
1 2
270

_ I35

1620

Zigzag Method. The method is called gomdtriks.*
It has been described by Brahmagupta. It is in all

1In a manuscript used by Taylor, see his Li/éwasi, pp. 8-9.

2 This arrangement is found in the commentary of Gangi-
dhara on the L#/gvati, in the library of the Asiatic Society of
Bengal, Calcutta.

® Found in Gangidhara, /e

* The word gomditrikd, means “‘similar to the course of cow’s
urine,” hence “zigzag.” Colebrooke’s reading gos#trikd is in-
correct. The method of multiplication of astronomical quantities
is called gomdtriki even upto the present day by the pandits.
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_essentials the same as the sthina-khanda method. ‘The
following illustration is based on the commentary of
Prthudakasvami.

Example. 'To multiply 1223 by 235
The numbers are written thus:

2 1223
3 1223
5 1223

The first line of figures is then multiplied by 2, the
process beginning at the units place, thus: 2X 3=6; 3 is
rubbed out and 6 substituted in its place, and so on.
After all the horizontal lines have been multiplied by
the corresponding numbers on the left in the vertical
line, the numbers on the pd#/ stand thus:

2446

36609
6115

287405
after being added together as in the present method.

The sthina-£handa and the gomiitrikd methods resem-
ble the modern plan of multiplication most closely. The
sthina-khapda method was employed when working on
paper.

Parts Multiplication Method. This method is
mentioned in all the Hindu works from 628 A.D.
onwards. Two methods come under this head:

(?) The multiplier is broken up into two or more
parts whose sum is equal to it. The multiplicand is
then multiplied severally by these and the results added.’

(77) The multiplier is broken up into two or more
*aliquot parts. The multiplicand is then multiplied by

* Thus 12X 135=(4+8) X 135=(4X 135)+(8X 135).
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one of these, the resulting product by the second and
so on till all the parts are exhausted. The ultimate
product is the result.*

These methods are found among the Arabs and the
Italians, having been obtained from the Hindus. They
were known as the “Scapezzo” and “Repiego” methods
respectively among the Italians.? .

Algebraic Method. This method was known as 7s5za-
gupana. Brahmagupta’s description of the method has
been already quoted. Bhiskara II explains it thus:

“Multiply by the multiplicator diminished or in-
creased by an assumed aumber, adding or subtracting
(respectively) the product of the multiplicand and the
assumed number.’”?

This is of two kinds according as we (/) add or
(7) subtract an assumed number. The assumed number
is so chosen as to give two numbers with which
multiplication will be easier than with the original
multiplier. The two ways are illustrated below:

@) 135 X 12=135 X (12}8)—135X 8
=2700—1080=1620

(72) ,135><12=135><(12—z)—i—135><2
=1350+270=1620

This method was in use among the Arabs* and in
Europe®, obviously under Hindu influence.

*Thus 12X 135 = 3 X 135X 4.
meith, History, 11, p. 117.

5L, p. 3.
* E.g., Bebi Eddin (c. 1600). See G. Enestrém, Bibl. Math.,

VII (3), p. 95 _
®E.g., Widman (1489), Riese (1522), etc. See Smith, /s,

p. 120.
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5. DIVISION

Terminology. Division seems to have been regard-
ed as the inverse of multiplication. The common Hindu
names for the operation are bhdgabdra, bbdjana, barana,
chedara, etc. All these terms literally mean “to break
into parts,”” ie., “to divide,” excepting harama which
denotes “to take away.” This term shows the relation
of division to subtraction. The dividend is termed
bhdyya, hdrya, etc., the divisor bhdjaka, bhdgahara ot simply
hara, and the quotient /lebdhi ““what is obtained” or
labdha.

The Operation. Division was considered to be a
difficult and tedious operation by European scholars
even as late as the 15th and 16th centuries;® but in
India the operation was not considered to be difficult,
as the most satisfactory method of performing it had
been evolved at a very early period. In fact, no Hindu
mathematician seems to have attached any great im-
portance to this operation. Aryabhata I does not men-
tion the method of division in his work. But as he has
given the modern methods for extracting square- and
cube-roots, which depend on division,? we conclude
that the methdd of division was well-known in his
time and was not described in the Aryabhatiya as it
was considered to be too elementary. Most Siddhinta
writers have followed Aryabhata in excluding the
process of division from their works, e.g.,, Brahma-
gupta (628), Sripati (1039), and some others.

A method of division by removing common factors
seems to have been employed in India before the inven-
tion of the modern plan. This removal of common

! Smith, e, p. 132.
2 He has ased the technical term /Jabdba for the quotient.
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factors is mentioned in early Jaina works.* It has
been mentioned by Mahivira who knew the modern
method, probably because it was considered to be
suitable in certain particular cases:

“Putting down the dividend and below it the
divisor, and then, having performed division by the
method of removing common factors, give out the
resulting (quotient).”?

The modern method of division is not found in
the Bakhshili Manuscript, although the name of the
operation is found at several places. The absence of
the method may be due to the mutilated form of the
text, although it is quite possible that the method was
not known at that early period (200 A.D.).

The Method of Long Division. The modern
method of division is explained in the works on
pdtigapita, the «eatliest of which, Stidhara’s Trifatikd,
gives the method as follows:*

“Having removed the common factor, if any, from
the divisor and the dividend, divide by the divisor
(the digits of the dividend) one after another in the
inverse* order.”

Mahavira says:®

“The dividend should be divided by the divisor
(which is) placed below it, in the inverse order, after
having performed on them the operation of removing
common factors.”

 Tatvirthidbigama-sdtra, Bhdsya of Umisvati (c. 160, ed. by
H. R. Kapadia, Bombay, 1926, Part I, ii. 52, p. 225.

2 GSS, p- 11. The method would not give the quotient un-~
less the dividend be completely divisible by the divisor.

8 Trif, p. 4.

* Pratiloma.

* GSS, p. 11; ¢f. Rangacarya’s translation.
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Aryabhata II gives mote details of the process:!

“Perform division having placed the divisor below
the dividend; subtract from (the last digits of the divi-
dend) the proper multiple of the divisior; this (the
multiple) is the partial quotient, then moving the divisor
divide what remains, and so on.”

Bhiskara 11,2 Niriyana® and others give the same
method.

The following example will serve to illustrate the
Hindu method of performing the operation on a piss:

Example. Divide 1620 by 12.
The divisor 12 is placed below the dividend thus :

1620
12

The process begins from the extreme left of the
dividend, in this case the figure 16. This 16 is divided
by 12. The quotient 1 is placed in a separate line,
and 16 is rubbed out and the remainder 4 is substituted
in its place. The subtraction is made by rubbing out
figures successively as each figure of the product to be
subtracted is obtained. Thus, the partial quotient 1,
being written, the procedure is

1620 1
12 line of quotients

1X1=1, so 1 of the dividend is rubbed out (as
1—1==0); then 1X2=2, so 4 is substituted in the
place of 6 (as 6—2=4). The figures on the pis/ are:

-

420 I
12 line of quotients

I MSi, p. 144.

2 Bhiskara gives the process briefly as follows: “That number,
by which the divisor being multiplied, balances the last digit of
the dividend gives the (partial) quotient, and so on.” (L, p. 3)

* GK, i. 16.
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The divisor 12 is now moved one place to the
right giving
420 1
12 line of quotients

42 is then divided by 12. The resulting quotient 3
is set in the “line of quotients,” 42 is rubbed out and
the remainder 6 substituted in its place. The figures
now stand thus:

6o 13

12 line of quotients

Moving the divisor one place to the right, we have
6o

12

On division being performed, as before the resulting
quotient 5 is set in the “line of quotients” and Go is
rubbed out leaving no remainder. The line of quo-
tients* has

135
which is the required resuls.

The above process, when the figures are not
obliterated and the successive steps are written down
one below the other, becomes the modern method
of long division.

The method seems to have been invented in India
about the 4th century A.D., if not earlier. It was trans-
mitted to the Arabs, where it occurs in Arabic works
from the gth century onwards.? From Arabia the
method travelled to Europe where it came to be known
as the galley (galea, bate/lo) method.* In this variation

1 The “line of quotients” was usually written above the divi-
dend.
2 Al-Khowirizmi (r. 825), Al-Nasavi (r. 1025); cf. Smith, /e,

pp. 138-130. i
3 Also called the ‘scratch method’.
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of the method, the figures obtained at successive stages
are written and crossed out, for the work is carried out
on paper (where the figures cannot be rubbed out).
The method was very popular in Europe from the
15th to the 18th century.? The above example worked
on the galley plan would be represented thus:

4
I 1620 1

122
1

II 1
46
1620 13
1222
11
111 11
46
1620 135

1722
1

Compatring the successive crossing out of the figures
in I, IT and III, with the rubbing out of figures in the
corresponding steps according to the Hindu plan, it
becomes quite clear that the galley method is exactly
the same as the Hindu method. The crossing out of
figures appears to be more cumbrous than the elegant
Hindu plan of rubbing out.

The Hindu plan of moving the divisor as the
digits of the quotient were evolved, although not
essential, was also copied and occurs in the works of
such well-known Arab writers as Al-Khowirizmi (825),
Al-Nasavi (¢. 1025) and others. The medizval Latin
writers called this feature the antirioratio.

1 For details see Smith, Js., pp. 136-139.
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6. SQUARE

Terminology. The Sanskrit term for square is
varga or krti. 'The word wvarga literally means “rows”
or “troops” (of similar things). Butin mathematics it
ordinarily denotes the square power and also the square
figure or its area. Thus Aryabhata I says:*

“A square figure of four equal sides* and the
(number representing its) area are called wvarga. The
product of two equal quantities is also vargs.”

How the word »arga came to be used in that sense
has been cleatly indicated by Thibaut. He says: “The
origin of the term is clearly to be sought for in the
graphical representation of a square, which was divided
in as many wargas or troops of small squares, as the
side contained units of some measure. So the square
drawn with a side of five padas length could be divided
into five small vargas each containing five small squares,
the side of which was one pade long.”® This expla-
nation of the origin of the term w»arge is confirmed by
certain passages in the Sw/ba works.*

The term A7/ literally means “doing,” “making”
or “action.” It carries with it the idea of specific
performance, probably the graphical representation.

Both the terms zargs and kr# have been used in
the mathematical treatises, but preference is given to
the term zargs. Later writers, while defining these terms
in arithmetic, restrict its meaning. Thus Sridhara says:®

2”2 <<

1.4, i3

2 The commentator Parames$vara remarks: ““That four sided
figure whose sides are equal and both of whose diagonals are
also equal is called samacaturasra (“square’).”

3 Thibaut, Sw/ba-sitras, p- 48.

s ApSi, iii. 7; KS7, iii. 9; cf. B. Datta, _American Math.
Monthly, XXXIII, 1931, p. 375.

5 Trif, p. 5.
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“The product of two equal numbers is vargas.”

Prthudakasvimi’, Mahivira? and others give
similar definitions.

The Operation. The occurrence of squaring as an
elementary operation is characteristic of Hindu arith-
metic. The method, however, is not simpler than direct
multiplication. It was given prominence by the Hindu
writers probably because the operation of square-root
is the exact inverse of that of squaring. Although the
method first occurs in the Brdbma-sphuta-siddbinta, there
is no doubt that it was known to Aryabhata I as he
has given the square-root method.

Brahmagupta gives the method® very concisely
thus:

“Combining the product, twice the digit in
the less* (lowest) place into the several others (digits),
with its (i.e., of the digit in the lowest place) square
(repeatedly) gives the square.”

Sridhara (750) is more explicit:®

“Having squared the last digit multiply the rest
of the digits by twice the last; then move the rest of
the digits. Continue the process of moving (the remain-

1 ¢f. Colebrooke, /e, p. 279.

2GSS, p. 12,

8 The method is not mentioned in the chapter on Arithmetic,
but seems to have been mentioned as an afterthought in the
form of an appendix, (BrSpSi, p. 212).

* Rédferinap: has been translated by Colebrooke as “the less
portion.” This translation is incorrect. He says that “the text
is obscure” (p. 322, fn. 9), for according to his translation the
rule becomes practically meaningless. The term rdserdnam must
be translated by “the digit in the lowest place.” Dvivedi agrees
with the above interpretation (p. 212). The method taught here
is “the direct method of squaring.”

5 Tris, p. 5. 'The translation given by Kaye and Ramanu-
jacharia is incorrect. (Bib/. Mazh., XIII, 1912-13).
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ing digits after each operation) to obtain the square.”
Mahavira® (850) gives more details:

“Having squared the last (digit), multiply the rest
of the digits by twice the last, (which is) moved for-
ward (by one place). Then moving the remaining
digits continue the same operation (process). This
gives the square.”

Bhiskara I1? writes:

“Place the square of the last (digit) over itself; and
then the products of twice the last (digit) and the
others (.., the rest) over themselves respectively. Next,
moving the number obtained by leaving the last digit
(higure), repeat the procedure.”

., He has remarked that the above -process may be
begun also with the units place.?

The following is the method of working on the
pdti, the process beginning from the last place, accord-
ing to Sridhara, Mahavira, Bhiskara II and others:

To square 125.
The number is written down,
125
The last digit is 1. Its square is placed over itself.

I
125§

Then twice the last digit 2 X 1=2; placing it below the
rest of the figures (below 2 or below 5 according as
the direct or inverse method of multiplication is used)

1GSS, p. 12,
2L, p. 4.
3L, p- 5.
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and rubbing out the last digit 1, the work on the
pdrf appears as
1
25
2
Performing multiplication by 2 (below) and placing the
results over the respective figures, we get
150
25
One round of operation is completed. Next moving
the remaining digits, 7.e., 25, we have
150
25
Now, the process is repeated, /.., the square of the
last digit (2) is placed over itself giving
154
25
Then, placing twice the last digit (7.e., 2 X 2=4) below
the rest of the digits and then rubbing out 2, we
have
154
)
4
Performing multiplication, 4X s=20, and placing it
over the corresponding figure 5, (7.¢., o over 5§ and 2
carried to the left), the work on the pdz/ appears as

1560
)

Thus a second round of operations is completed.
Then moving 5 we have
1560
)
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Squaring 5 we get 25, and placing it over 5 (i.e., §
over 5 and 2 carried to the left) we have

15625

b

As there are no ‘remaining figures’ the work ends.
5 being rubbed out, the pd#/ has

15625,
the required square.

According to Brahmagupta and also Bhiskara II,
the work may begin from the lowest place (i.e., the
units place). The following method is indicated by
Brahmagupta:

* To square .125.
The number is written down
125
The square of the digit in the least place, 7., §7=25
is set over it thus:

[ 25

125
Then, 2X y=10 is placed below the other digits, and
five is rubbed out, thus:

25

I2

1o
Multiplying by 1o the rest of the digits, /.., 12, and
setting the product over them (the digits), we have

1225

I2

IQ
Then rubbing out 10 which is not required and
moving the rest of the digits, 7., 12, we have

1225

12



160 ARITHMETIC

Thus one round of operations is completed.

Again, as before, setting the square of 2 above it
and 2 X 2=4 below 1, we have
1625
1
4
Multiplying the remaining digit 1 by 4, and setting
the product above it, we have
5625
1
Then, moving the remaining digit 1, we obtain

5625
1
Thus the second round of operations is completed.
Next setting the squate of 1 above it the process
is completed, for there are no remaining figures, and
the result stands thus:

15625
Minor Methods of Squaring. The identity
) m=(n—a)(n+a)+a

has been mentioned by all Hindu mathematicians as
affording a suitable method of squaring in some cases.
For instance,

152=10X 204-25=225.

Brahmagupta says:

“The product of the sum and the difference of the
number (to be squared) and an assumed number plus
the square of the assumed number give the square.”””
Sridhara (750) gives it thus:

“The square is equal to the product of the sum
and the difference of the given number and an assumed

! BrSpSi, p. 212,
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»”

quantity plus the square of the assumed quantity.
Mahivira, Bhiskara II, Niriyana and others also give
this identity.

The formula

(i) (a+b)* = a*+b>+ 2ab,
or its general form

(a4-b+e4 ... =a*-b*4-c*+ ... t2ab+..
has been given as a method "of squaring. Thus
Mahivira? says: .

“The sum of the squares.of the two or more
portions® of the number together with their products
each with the others multiplied by two gives the
square.”

Bhiskara II* gives:

“Twice the product of the two parts plus the
square of those parts gives the square.”

The formula

(##) m*=1-+3-+54 .... to n terms
has been mentioned by Sridhara and Mahévira.

Sridhara® says:

“(The square of a number) is the sum of as many
terms in the series of which one is the first term and
two the common difference.”

 Trif, p. §.

2 GSS, p. a3,

3 The word sthina has been used in the original. This word
has been generally used in the sense of ‘notational place)
Following the commentator, we have rendered it by “portion.” As
a given number, say, 125, can be broken into parts as jo+4-40435
or as 1002045, and as the rule applies to both, it is immaterial
whether the word ‘s#hind’ is translated by ‘place’ or ‘portion.’
This rule appears to have been given as an explanation of the
Hindu method of squaring used with the place-value numerals.

*L,p. 4. 8 Trif, p. .

11
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thrice the succeeding;' then (at the next place) the
product of the square of the succeeding and last
multiplied by three; and then (at the next place)
the cube of the succeeding.”

Mahivira states:?

“The cube of the last, the product of thrice its
square and the remaining, the square of the remaining
multiplied by thrice the last; placing of these, each
one place before the other, constitutes here the process.”

Bhiskara 1I 1s more explicit:®

“Set down the cube of the last; then the square
of the last multiplied by three times the succeeding;
then the square of the succeeding multiplied by three
times the last and then the cube of the succeeding;
these placed so that there is difference of a place between
one result and the next,* and added give the cube. The
given number is distributed into portions accotding to
places, one of which is taken for the last and the next
as the first and in like manner repeatedly (if there be
occasion). Or the same process may be begun from
the first place of figures for finding the cube.”

The method may be illustrated by the following
example: ‘

1 Pdrva, ddi, lit. “‘preceding”. We have rendered them by
“succeeding’ to be in conformity with the general convention so
as to avoid confusien.

2GSS, p. 15 (47)-

It will be observed that the “‘addition of the cube of the
remaining” does not occur in the rule. This has to be under-
stood from the previous stanza which says that the cubes of
all the parts are to be added. See the translation of the previous
stanza given on pp. 166f.

3L,p,s-

4 Sthindntaratvena has been translated by Colebrooke by
“according to places.” ‘This translation is incorrect and does not
give the true significance of the term.
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Example. To cube 1234.
The given number has four places, i.e., four por-
tions. First we take the last digit 1 and the succeed-
ing digit 2, e, 12, and apply the method of cubing

thus :
(i) Cube of the last (1%)

(i), Thrice the square of the
last (3.1%) multiplied by
the succeeding (2) gives
(2.3.1%)

(iii) Thrice the square of the
succeeding  multiplied
by the last gives (3.22.1)

(iv) Cube of the ~succceding

(%)

Thus 122 is the sum

6

I2
L

8

1728

(placing at

place)

165

the next

(placing at the next

place)

(placing at the next

place)

After this we take the next figure 3, i.e., the
number 123, and in this consider 12 as the last and
3 as the succeeding. Then the method proceeds thus:

(i) The cube of the Ilast
(12%) as already obtained

(ii) Thrice the square of
the last multiplied by
the succeeding, ‘e,

3.12%.3
(iii) Thrice the square of
the succeeding multi-

plied by the last, ie.,
3.3%12

(iv) Cube of the succeed-
ing, .., 3°

Thus 123 is the sum

1728

1296

324

27

1860867

(placing at the next
place).

k44

3
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Now the remaining figure 4 is taken, so that the
number is 1234, of which 123 is the last and 4 the
succeeding. The method proceeds thus:

(i) Cube of the last, i7.e.,
(123)® as already ob-

tained = 1860867
(ii) Thrice the square of
the last into the suc- -
ceeding, 7.c., 3.(123)%.4 = 181548  (placing at the next
place)
(iii) Thrice the square of the
succeeding into the last,
ie., 3.4%.123 = 5904 " >
(iv) Cube of the lasti.e., 4° = 64 5 »

Thus (1234)® is the sum 1879080904

The direct process—that in which the operation
begins with the units place—can be similarly performed.

Minor Methods of Cubing. The formula
) (a+b)* = a*+3a*b-+3ab>*+ b
and the corresponding result ‘
(@a+b+c+....)°* = a+3a%(b+c+. .. )+ 3a(b+tc+ . .)?
+ (bt+e+....)°
are implied in the Hindu method of cubing given
above. Mahavira' gives the following explanation:
“The squares of the last place? and the next®
are taken, and each (square) is multiplied by the

other and by three. The sum of these products and
the cubes of both (/. all) the places is the cube; the

1 GSS, p. 15.

2 Sthéna, meaning the number represented by the figure
standing in that place.

3 Anya, lit. “other,” meaning the number represented by the
figures standing in the other places.
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procedure is repeated (if necessary).’
Stipati and Bhiskara II? state the formula in the

form
(a+0)® = a*+ 3ab (a+0)+-5°
“Thrice the given number multiplied by its two
parts, added to the sum of the cubes of those parts,
gives the cube.”

Nariyana® says

“Thrice the (given) number multiplied by both
parts, added to the cubes of the parts, 1s the cube of
the sum.”

The formula

(7)) = n(n+a)(n—a)+a*(n—a)+a°
has been mentioned by Mihéivira* in these words:

“The continued product of the given number, the
sum and the difference of the given number and an
arbitrary quantity, when added to the smaller of these
multiplied by the square of the arbitrary number, and
the cube of the arbltrary number, give the cube (of
the given number).”

Expressions for #* involving series have been given
by Sridhara, “Mahivira, Stipati and Niriyana. The
formula

n .
€273 == { 3r (r—1)+41 }

I

1 Thus (234)% is considered as
(200 30+ 4)%=(200)3+ 3.200%(30+ 4) + 3.200(30 + 4)*
(ot 4

Then the procedure is repeated for obtaining (30+4)". Cf.
English translation, p. 17, note.

*GT, 27; L, p. 5.

3 GK, 1. 23,

+ GSS, p. 15.
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is given by Stidhara in these words:

“The cube (of a given number) is equal to the
series whose terms are formed by applying the rule,
‘the last term multiplied by thrice the preceding
term plus one,” to the terms of the series whose first
term is zero, the common difference is one and the
last term is the given number.”?

Mahivira gives the above in the form

»
P =3=r(r—1)+n
2
He? says:

“In the series, wherein one is the first term as
well as the common difference and the number of terms
is equal to the given number (#), multiply the preceding
term by the immediately following one. The sum of
the products so obtained, when multiplied by three and
added to the last term (f.e., #) becomes the cube (of #).”
Niriyana® states:

“From the series whose first term and common
difference are each one, (the last term’ being the given
number) the sum of the series formed by the last term
multiplied by three and the preceding added to one,
gives the cube (of the last term).”

Mahivira has also mentioned the results,
() x* = x+3x+5x+ .... to x terms,
@) x* = xH(x—1){1+3+....+(@x—1)},

L Trif, p. 6. The translation given by Kaye and Ramanu-
jacharia (Bibl.Math., III, 1912-13) is incorrect. They admit
their inability to follow the meaning (see p. 209, note). S. Dvivedi
has misinterpreted the rule, and gives an incorrect explanition
in 2 note on p. 6. The reading saike is incozrect.

2 GSS, ii. 45.

8 GK, i. 22.
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in these words:*

“The cube (of a given number) is equal to the
sum of the series whose first term is the given number,
the common difference is twice that number, and the
number of terms is (equal to) that number.

“Or the square of the given number when added
to the product of that number minus one (and) the
sum of the series in which the first term is one, the
common difference two and the number of terms (is
equal to) that number, gives the cube.”

8. SQUARE-ROOT

Terminology. The Hindu terms for the “root” are
mfila and pada. The usual meaning of the word wdla
in Sanskrit literature is “root” of a plant or tree; but
figuratively the foot or lowest part or bottom of
anything. Its other meanings are “basis,” “founda-
tion,” “‘cause,” “origin,” etc. The word pada means
“the lower part of the leg” (figuratively the lower. part
or basis of anything), “foot,” “part,” “portion,” “side,”
“place,” “cause,” “a square on a chess-board,” etc.
The meanings common to both terms are “foot,” “the
[owest part or basis of anything,” “cause” or “origin.”
It is, therefore, quite clear that the Hindus meant by the
term varga-mila (“‘square-root’”) “the cause or origin
of the square” or “the side of the square (figure).”
This is corroborated by the following statement of
Brahmagupta:*®

“The pada (root) of a krti (square) is that of which
it is the square.”

Of the above terms for the “‘root,” milz is the
oldest. It occurs in the Anuyogadvira-sitra (¢. 100 B.C.),

1 GSS, ii. 44.
2 BrSpSi, xviii. 35.
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and in all the mathematical works. The term pada
seems to have come into use later on, 7.e., from the
seventh century A.D. It occurs first in the work of
Brahmagupta (628).

. The term wmdla was borrowed by the Arabs who
translated it by jadbr, meaning “basis of square.” The
Latin term radix also is a translation of the term m#la.

The word £arani is found to have been used in the
Sulba works and Prikrta literature as a term for
the square-root. In geometry it means a “side.” In
later times the term is, however, reserved for a surd,

, 2.¢., 4 square-root which cannot be evaluated, but which
may be represented by a line.

The Operation. The description of the method
of finding the square-root is given in the _Aryabbatiya
very concisely thus:

“Always divide? the even place by twice the
square-root (upto the preceding odd place); after
having subtracted from the odd place the square®
(of the quotient), the quotient put down at the next
place (in the line of the root) gives the root.””*

The method may be illustrated thus:
Example. Find the squate-root of 54756.

1 For further details see Datta, _American Math. Monthly,
XXXIV, pp. 420-423, also XXXVII, pp. 371-376.

?In dividing, the quotient should be taken as great as will
allow of the subtraction of its square from the next odd place.
This is the force of the Sanskrit text as pointed out by the com-
mentators Bhiskara I, Nilakantha and others.

#'The ‘“square” is mentioned and not the “square of the
quotient,” as in the beginning the greatest possible square is to
be subtracted, there being no quotient.

* A4, ii. 4. Translations of the rule have been given before
by Rodet (J.4, 1880, II), Kaye (JASB, 1907 and 1908, III and
IV resp.), Singh (BCMS, 1927, XVIII), Clatk (Aryabbatiys) and
others. Of these Kaye’s translation is entirely incorrect.
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The odd and even places are marked by vertical
and horizontal lines. The different steps are then as
indicated below:

54756
Subract square 4 root=2
Divide by twice the
root 4) 14 (3 Placing quotient at the
12 next place, the root
=23
Subtract square of 27
quotient 9
Divide by twice the 46) 185 (4 Placing quotient at the
root 184 next place, the root
=234
Subtract square of 16
quotient 16

The process ends. The root is 234.

It has been stated by G. R. Kaye? that Aryabhata’s
method is algebraic in character, and that it resembles
the method given by Theon of Alexandria. Both his
statements are incorrect.?

The following quotations from Siddhasena Gani
(¢. 550) in his commentary on the Tatvdrthédbigama-
shtra® will prove conclusively that the Hindu method of
extracting the square-root was not algebraic. In con-
nection with the determination of the circumference of
a circle of 100,000 yojanas, he says:

“The diameter is one hundred thousand yojanas;
that multiplied by one hundred thousand ygjanas be-
comes squared; this is again multiplied by 10 and then

* JASB, Il and IV, in the papers entitled “Notes on Indian
Mathematics, I and I1.”

2 See Singh, /., for details: also Clatk, Aryabhatiya, pp. 23f.

3iii. 11,
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the square-root (of the product) extracted. The root
will be the circumference of the circle. Now to find
the number of ygjanas (by extracting the square-root) we
obtain in succession the figures 3,1,6,2,2 and 7 of the
root, the number appearing below (that is, as the last
divisor) is 632454. This being halved becomes the
number three hundred thousand sixteen thousands two
hundred and twenty seven. ‘The number in excess as
the remainder is this 484471;....7

“Then on multiplication by 4 will be obtained
7560000000000. The square-root of this will be the
chord. In finding that (root) will be obtained in suc-
cession the figures 2,7,4,9,5 and 4;....”

It .is evident that Aryabhata’s plan of finding the
square-root has been followed in the above cases as
the digits of the root are evolved successively one by
one. ‘

, Later writers give more details of the process.
Thus Sridhara says: .

“Having subtracted the square from the odd place,
divide the next (even) place by twice the root which
has been separately placed (in a line), and after having
subtracted the square of the quotient, write it down
in the line; double what has been obtained above (by
placing the quotient in the line) and taking this down,
divide by it the next even place. Halve the doubled
quantity (to get the root).””

Mahivira,? Aryabhata I1® and Sripati* give the rule
in the same way as Sridhara. Bhiskara II, however,
makes a slight variation, for he says:

3 Tri¢, p. 5. For an illustration of the method of working
on a pdti, see A. N. Singh, BCMS, XVIII, p. 129.

2GSS, p.o13.

3 MSi, p. 145.

s $i8e, xiii. §; GT, 23.
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“Subtract from the last odd place the greatest
square number. Set down double the root in a line,
and after dividing by it the next even place subtract
the square of the quotient from the* next odd place
and set down double the quotient in the line. Thus
repeat the operation throughout all the figures. Half
of the number in the line is the root.””*

The method of working on the pd#/ may be illus-
trated as below:

Example. Find the square-root of 54756

The given number is written down on the pdtf
and the odd and even places are marked by vertical
and horizontal lines thus:

Il

54756
Beginning with the last odd place 5, the greatest square
number 4 is-subtracted. Thus 4 subtracted from 5 gives
1. The number 5 is rubbed out and the remainder 1
substituted in its place. Thus after the first operation
is performed, what stands on the pd#/ is

17

14756
Double the root 2, Ze., 4, is permanently placed in a
separate portion of the pd#i which has been termed
pankti (“line”). Dividing the number upto the next
even mark by this number in the line, /., dividing 14
by 4 we obtain the quotient 3 and remainder 2. The
number 14 is rubbed out and the remainder 2 written

*L,p. 4. The line in Bhiskara [I’s method contains the
doubled root, whilst in that of Aryabhata T, it contains ‘the
root. See Singh, /.
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in its place; thus on the pd#/ we have now
!
4 27 56 . (3 quotient
line of root *

The square of the quotient 3?=g is subtracted from
the figures upto the next odd mark. This gives (27 —9)
=18. 27 is rubbed out and 18 substituted in its place.
Double the quotient 3 is now set in the line giving 46.
The figures on the pd## stand thus:

!
46 1856 The quotient 3 having
line of root been rubbed out.

Dividing the numbers upto the next even mark by the
number in the line, 7.¢., dividing 185 by 46, the quotient
is 4 and remainder 1. 185 is rubbed out and the remain-
der 1 substituted in its place. The figures on the pd#f
are now

|
46 16 (4 quotient

- line of root
Subtracting square of the quotient the remainder is nil,
so that 16 is rubbed out. The quotient 4 is doubled
and set in the line. The pd#i has now

468 . . .
Tine of root The quotient 4 having been rubbed out.

. .. 468 i
Half the number in the line, 7., 52— == 234 is the root.

Along with the Hindu numerals, the method of
extracting the square-root given above, seems to have
been communicated to the Arabs about the middle of
the eighth century, for it occurs in precisely the same
form in Arabic works on mathematics.* In Europe

"1E.g, Al-Nasavi (roz5); see Suter, Bibl. Math.,, VII,
p. 114 and Woepcke, J4 (6), t. 1, 1863.
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it occurs in similar form in the writings of Peurbach
(1423-1461), Chuquet (1484), La Roche (1520), Gemma
Frisius (1540), Cataneo (1546) and others.

9. CUBE-ROOT

Terminology. The Hindu terms for the cube-
root are ghana-nifila, ghana-pada. These terms have
already been discussed before.

The Operation. The first description of the
operation of the cube-root is found in the _Aryabbatiya.
It is rather too concise:

“Divide the second aghana place by thrice the
square of the cube-root; subtract from the first aghana
place the square of the quotient multiplied by thrice
the preceding (cube-root); and (subtract) the cube (of
the quotient) from the ghana place; (the. quotient put
down at the next place (in the line of the root) gives
the root).”?

As has been explained by all the commentators,
the units place is ghana, the tens place is first aghana,
the hundreds place is second aghana, the thousands place
is ghana, the ten-thousands place is first gghana and so
on. After marking the places as ghana, first aghana and
second aqghana, the process begins with the subtraction
of the greatest cube number from the figures upto
the last ghana place. Though this has not been ex-

1 See Smith, History, I1, pp. 144-148.

2 A4, ii. 5. Translations of this rule have been given by
Rodet, Kaye, Singh, Clark, Sengupta and others. Kaye’s transla-
tion is entirely inaccurate. Other translations, though free, give
the correct result. Clark’s use of the words “the (preceding)
ghana” is somewhat misleading. The portion at the end, within
brackets, is common to this-and the preceding rule for the ex-
traction of the square-root.
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plicitly mentioned in the rule, the' commentators say
that it is implied in the expression “‘ghanasya mila vargena”
etc. (“by th¢ square of the cube-root” etc.) The
method may be illustrated as below:

Example. Find the cube-root of 1953125.

The places are divided into groups of three by
marking them as below:

b==1-=)

1953125 .
Subtract cube p S (¢) Root=r
Divide by thrice square
of root, i.e. 3.12 3) 9 (2 (2)* Placing quotient
Subtract square of quo-. 6 after the root
tient multiplied by _ 1 gives the
thrice the previous 35 root 12
root, i. e., 2% 3. 1. 12 )
Subtract cube of quotient, 233
ie., 28 8 0]

Divide by thrice square
of the root, i.e., 3. 122

432) 2251°(5 .

(@) Placing quotient

Subtract square  of 2160 after the root
uotient multiplied by 12 gives the
thrice the previous o12 root 125
root, i.e., 53, 3. 12 goo .. (b)
Subtract cube of quo- 125
tient, j.e., 52 125 .. ()

Thus the cube-root = 125

It will be evident from the above illustration that
the present- method of extracting the cube-root is a
contraction of Aryabhata’s method.

The method given above occurs in all the Hindu

mathematical works.

For instance, Brahmagupta says:

IThe quotient in division is to be taken as great as will allow
the two subsequent operations (#) and (¢) to be carried out.
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v “The divisor for the second aghana place is thrice
the square of the cube-root; the square of the quotient
multiplied by three and the preceding (root) must be
subtracted from the next (aghana place to the right),
and the cube (of the quotient) from the ghana place;
(the procedure repeated gives) the root.”?

Sridhara gives more details of the process as
actually performed on the pdti, thus:

“(Divide the digits beginning with the units place
into periods of) one ghana place and two aghana places.
From the (last) ghana digit subtract the (greatest pos-
sible) cube; then taking down the remainder and the-
third pada (i.e., the second aghana digit) divide it by
thrice the square of the cube-root which has been
permanently placed in a separate place; place the quo-
tient in the line; subtract the square of this (quotient)
multiplied by thrice the last root from the next (aghana)
digit. Then as before subtract the cube (of the quo-
tient) from its own place (/.e., the ghana digit). Then
take down again the third pada (i.e., second qghana digit),
and the rest of the process is as before. (This will
give) the root.”?

Aryabhata 1I follows Sridhara and gives details as
follows: ¥

“Gbhana (i.e:., the place from which cube is sub-
tracted), bbdjya (i.e., the ‘“‘dividend” place) and Sodhya
(¢.., the “minuend” place) are the denominations (of
the places). Subtract the (greatest) cube from its own
place (i.e., from the numbers upto the last ghana digit);
bring down the bhdjya digit and divide it* by thrice
the square of the cube-root which has been permanently

* BrSpSi, p. 175; ¢f. Colebrooke, /.c., p. 28c.
2 Trif, pp. 6f.
® Literally, its own place.

12
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placed. Place the quotient in the line (of the root).
The square of this (quotient) multiplied by thrice the
previous root is subtracted from its own place (7.e., the
Sodhya place) and its cube from the ghana place. If the
above operations be possible then this (7.c., the number
in the line) is the root so far. Then bringing down
the bbdjya digit continue the process as before (till it
ends).”*

The component digits of the number whose cube-
root is to be found are divided into groups of three
(one ghana and two aghanas) each. The digits upto the
last ghana place (proceeding from left to right) give
the first figure of the root (counting from the left).
The following period of three digits (to the right) gives
the second figure of the root and so on. While work-
ing on the pd#i, the digits of the number whose root
is to be found are first marked and the method pro-
ceeds as follows:

Example. Find the cube-root of 1953125.
The number is written thus:
-1~
1953125
From the last ghana digit (marked by a vertical
stroke), the greatest cube is subtracted. Here 1*® being
subtracted from 1 gives zero. So 1 is rubbed out.
The cube-root of 1* is placed in a separate line. The
figures on the pd#7 stand thus:
-] :
953125 line of root

Then to obtain the second figure of the root, the
second qghana (i.e., 9) is taken below and divided by

Y MSi, p. 145. The interpretation given by Dvivedi of line
2 of the rule as printed in his edition (p. 145) is incorrect.
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thrice the square of the root (¢.e., the 'number in the
line). Thus we have
-]

953125
3.12 = 3) 9 (2  quotient
_6
3

The quotient is taken to be 2, because if it were taken
to be 3, the rest of the procedure cannot be carried
out. This quotient (2) is set in the line. The first
aghana is then brought down and we have, on sub-
tracting the square of the quotient multiplied by thrice
the previous root, the following:

--|--] 12

953125 line of root
3,12 = Tg—(z quotient
6
33
2% 3.1 = 12
23

On bringing down the ghana digit 3, and then
subtracting the cube of the quotient we get 225 as
below, and the process on the period formed by the

digits 953 is completed and the figure 2 of the root is
obtained:
-]

953125
3)9 (2 12
6 line of root
35
12
233
28 = 8

225
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The figures 953 are then rubbed out and the
remainder 225 is substituted. After this the process is
‘as before, 7.e., thus

225125,
122 .3 =  432) 2251 (5 12
2160 line of root
912
52.12 .3 = 900
125
53 = 125 125§
) o) line of root

The process ends as all the figures in the number
are exhausted. The root is 125, the number in the line
of root. As there is no remainder, the root is exact.

The necessity for rubbing out figures arses, as the
pati is not big enough to contain the whole of the
working. The three digits constituting a period are
considered together. The figures upto the next second
aghana have to be brought down and the operation of
division performed separately, because the quotient is
obtained by trial. As has been already explained, this
division is performed by rubbing out the digits of the
dividend (and not as in the wotking given above).
If the operations were carried out on the figures of the
original number, and if the quotient taken were found
to be too big, then it would not be possible to restore
the original figures and begin the work again, as
will have to be done in case of failure.

10. CHECKS ON OPERATIONS

The earliest available description of a method of
checking the results of arithmetical operations, the
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direct as well as the inverse, is found in the Mahdisid-
dhénta* (c. 950). It says:

“Add together the own digits of the numbers
forming the multiplicand, multiplier, and product upto
one place;? such should be done with the dividend,
divisor, quotient and remainder, etc. Then if the
number (of one digit) obtained from the product of
those numbers (that have been already obtained) from
the multiplicand and the multiplier be equal to that
obtained from the product, the multiplication is true.
If the number, which results from the product of those
obtained from the quotient and the divisor, added to
that from the remainder, be equal to that obtained from
the dividend, the division is true. Add together the

. digits of a number, its (nearest) square-root (in integers)
and of the remainder. If the number, obtained from the
square of that (number) which is obtained from the
square-root plus the number obtained from the remain-
der, be equal to that which results from the given num- -
ber, the root-extraction is true. If the number, resulting
from the cube of the number obtained by adding the
digits of the cube-root plus the number obtained from
the remainder, be equal to the number resulting from the
given number, then the operation is correct. Such are
the easy tests for correctness of multiplication etc.”

- The rationale of the above rules will be clear from
the following: Let

n =dd d,d,

7 S
be a number of » digits written in the decimal place-
value notation. Let S, denote the sum of its digits,

1 MSi, p.o4s2.

2 That is, the digits of the number should be added together;
the digits of the sum thus obtained should be again added and
the process should be continued until there remains a numbex
of one digit only.
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S, the sum of the digits of §,, and so on.

Then
n =d-t1od+4........ +10™7d,,,
S, =d+d+d+........ +4,
so that
n—S, = 9(d,+11d;+4........ )
Therefore,
n =J5, (mod. o),
Similarly

S, =S, (mod. 9),
S, =J, (mod. 9),

..................

S =S, (mod. 9),
where S, isa number of one digit only, say »/, which
is certainly less than or equal to 9.
Adding the congruences, we obtain
n=n" (mod. g).
Thus the number obtained by adding the digits of a

number repeatedly is equal to the remainder obtained
by dividing that number by nine.

Now, if there be a number N which is equal to the
continued product of p other numbers #,, 7#,, 75, ...., 7,
plus or minus another number K, then we write

N =n.n,m,....n, £+ R
Now, let

..................

------------------
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Multiplying the congruences, we obtain
By . ny=n 1y ... 7, (mod. g).

Further let
R=7  (mod. 9)

Therefore . )

Ay . 0, R=n"\ 0ty ... 4, & 7' (mod. 9).
Hence

N=w ., ..... 7,4 7 (mod. g).
In particular, if

Bo=f, = veueuen. = n, = n, say
then will

#,=n, = ... ....... =n,=17.
Therefore,

N = »»4R

and N = #*+r’ (mod. g).

From the above follow easily the tules of the
Mabhéisiddbinta.

The following rule for testing multiplication is
given by Nirdyana' (1356):

“The remainders obtained on division of each of the
multiplicand and the multiplier by an optional number
are multiplied together and then divided by the optional
number. If the remainder so obtained be equal to the
remainder obtained on dividing the product (of the
multiplicand and the multiplier) by the optional number,
then, it is correct.”

It must be noted here that a complete set of rules
for checking by nines is first found in India. Methods
for testing multiplication and division were probably

* Quoted by S. Dvivedi, History of Mathematics (in Hindi),
Benares, 1910, p. 79.
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known to the Hindus much earlier. But as these tests
wete not considered to be among the fundamental opera-
tions, they were not mentioned in the works on pdti-
ganita* Niriyana seems to be the first Hindu mathe-
matician to give rules for testing operations by the
casting out of any desired number.

In the works of eatly Arab writers the methods
of testing multiplication, and division without remainder,
by the check of nines are given, while a complete set
of rules for testing all operations is found first in the
works of Avicenna? (¢. 1020) who calls his method the
“Hindu” method. Maximus Planudes® also ascribes an
Indian origin to the check of nines.

There is thus no doubt as to the Hindu origin
of the check of nines. Before Aryabhata II, it was
probably used to test multiplication and division only.
It was perhaps in this imperfect form when it.-was com-
municated to the Arabs. Thereafter, the method was
probably perfected independently both in Arabia and
India. This would account for the difference in the
formulation of the rules by the Arabs and by Aryabhata
II, the author of the Mubisiddhinta* 1t is, however,
certain that the Hindus did not borrow the method
from the Arabs, because Aryabhata II wrote before Avi-
cenna. Behi Eddin® (c. 1600) gives the check of nines
in exactly the same form as Aryabhata II.

! Besides the above works, the check of nines is also quoted
by Sumatiharsa (1618) from an anterior writer Bijadatta, in his
commentary on the Karapa-kutfthala of Bhiskara 11, ed. by Miadhava
$astri, Bombay, 1901, i. 7.

2F. Woepcke, JA(6), I, 1863, pp. soo et sq.

3 Vide Delambre, Histoire de I’ Astronomie  Ancienne, t. 1,
Paris, 1817, pp. 518 f.

* Noted by B, Datta, JASB, XXIII, 1927, p. 265.

8 Kholisat al-hisdb, French translation by A. Marre, Nouvelles
Annales d. Math., t. v, 1846, p. 263. .
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11. FRACTIONS

Early Use. In India, the knowledge of fractions can
be traced back to very early times. In the oldest known
work, the Rgweda, the fractions one-half (erdba) and
three-fourths (#7/-pdda') occur. In a passage of the
Maitréyani Sambiti* are mentioned the fractions one-
sixteenth (&a/d), one-twelfth (kustha), one-eighth (Saphz)
and one-fourth (pdds). In the earliest known mathe-
matical works, the S#/ba-sitra, fractions have not only
been mentioned, but have been used in the statement
and solution of problems.?

The ancient Egyptians and Babylonians are known
‘0 have used fractions with unit numerators, but there
is little evidence of the use by these people of what are
called composite fractions. The occurrence of the
fraction three-fourths in the Rgweda is probably the
oldest record of a composite fraction known to us.
The Sanskrit compound #ri-pdda literally means “three-
feet.” Used as a number it denotes that the measure
of the part considered bears the same ratio to the whole
as three feet of a quadruped bear to the total number
of its feet. The term pdda, however, is a word numeral
for one-fourth, and the compound #-pdda is formed
exactly on the same principle as the English term three-
fourths.* In the S#/ba, unit fractions are denoted by the
use of a cardinal number with the term bbdga or anisa;-
thus pasca-dasa-bhdga (“fifteen-parts™) is equivalent to
one-fifteenth,® sapfa-bhiga (“‘seven-parts’) is equivalent
to one-seventh,® and so on. The use of ordinal numbers

'RV, x. 90. 4.

ziii. 7. 7.

® B. Datta, Sulba, pp. 212 fL.
* tri=three and pida=fourth.
¢ ApSi, x. 33 K.S{ v. 8.

5 K87, vi. 4.
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with the term bbdga or am sz is also quite common, e.g.,
paricama-bhiga (“fifth part’) is equivalent to one-fifth.!
Sometimes the word bbdga is omitted, probably for the
sake of metrical convenience.? Composite fractions like
3/8.and 2/7 are called #r/i-astama (“three-eighths’) and
dvi-saptama (“two-sevenths’) respectively. In the Bakh-
shall Manuscript the fraction 3/8 is called #yasta (“three-
eighths’) and 3% is called #rayastrayasta (“three-three-
eighths”).* Instances of the formation of fraction
names on the above principle are too numerous in later
works to be mentioned here. The present method of
expressing fractions is thus derived from Hindu sources
and can be traced back to 3,000 B.C.

Weights and Measures. The division of the units
of length, weight, money, etc., into smaller units for the
sake of avoiding the use of fractional quantities has
been common amongst all civilised peoples. It is an
index of commercial activity and the development of
commercial arithmetic. The Hindus have used systems
of weights and measures from the earliest times. The
Satapatha Brabmana* (¢c. 2,000 B.C.) gives a very mintute
subdivision of time. According to it there are 3o
mubfirta in a day, 15 £sipra in a mublrta, 15 ftarki in a
kgipra, 15 iddni in an ttarbi and 15 prdpa in an idani.
Thus one pripa is approximately equivalent to one-
seventeenth of a second. It is improbable that the
ancient Hindus bad any appliance for measuring
such small intervals of time. The subdivision is entire-
ly theoretical, and probably made for philosophical
reasons. It, nevertheless, shows that the Hindus must

L ApS), ix. 7, x. 2; KS/, v. 6.

2 When the fractions have unit numerators, only the deno-
minators are mentioned. This practice is quite common in later
works also, e.g., sasta (sixth)=1 in I, p. 7 etc.

8 BMs, 10 verso.

4 xii, 3. 2. L.
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have been in possession of a satisfactory arithmetic of
fractions even in those early times. The Arthasfdstra
of Kautilya' contains a section dealing with weights
and measures which were in use in India in the fourth
century B.C. In the Lalitavistara® Buddha is stated
to have given the following system of linear measures:

7 paramdpu raja = 1 repu
7 repu = 1 ‘truti
7 frati = 1 vdtdyana raja
7 vdtdyana raja = 1 SaSaraja
7 SaSa raja = 1 edaka raja
7 edaka raja = 1 goraja
7 & raja = 1 Jiksd raja
7 liksd raja = 1 Ssarsapa
7 Sarsapa = 1 _yava (breadth of barley)
7 yava = 1 ahguli parva (breadth of
finger)
12 arguli parva = 1 wvitasti
. 2 vitasti = 1 hasta (cubit)
4 basta = 1 dbaru
1600 dbanu = 1 krosa
4 Fkrosa = 1 jyojana

According to the above table, the smallest Hindu
measure of length, a paraménu® = 1-3X 77*° inches.

All the works on pdtiganita begin with definitions
of the weights and measures employed in them. The
earlier ones contain a special rule for the reduction of
a chain of measures into a proper fraction.* It may
be mentioned that the systems of weights and measures

' The Arthasdsira of Kautilya, ed. by R. Shamsastri, Bangalore,
1919.
* Lalitavistara, ed. R. Mitra, Calcutta, 1877, p. 168.

8 Paramdnu is the smallest particle of matter. Thus according
to the Hindus, the diameter of a molecule is 1°3X 77%.

* The process is called valli-sararpana and occurs in the Trifatikd

(p- 12) and the Gagita-tilakz (p. 39) and not in later works.
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given in different works are different from each other.
They are the ones current at the time and in the locality
in which the book was composed. .

Terminology. The Sanskrit term for a fraction

v is bhinna. It means “broken.” The European terms
[fractio, fraction, roupt, rotte, or rocto etc., are translations

of the term bhinna, having been derived from the Latin

fractus (frangere) or ruptys meaning “broken.” The
Hindu term bhinna, however, had a more general

meaning in so far as it included numbers of the form,

b
(G5 (ot (5ors) o (axh),

These forms were termed jd#i, 7.e., “classes,” and the
Hindu treatises contain special rules for their reduction
to proper fractions. Sridhara and Mahivira each enu-
merate six j4¢/s, while Brahmagupta gives only five and
Bhaskara II following Skandasena reduces the number
to four. The need for the division of fractions into
classes arose out of the lack of proper symbolism to
indicate mathematical operations. The only opera-
tional symbol used by the Hindus was a dot* for the
negative sign.

The other terms employed for the fraction are
bhiga and anifa, meaning “part” or “portion.” The term
kali which originally, in Vedic times, denoted one-
sixteenth came to be later on employed for a fraction.
Its earliest use as a term for fraction occurs in the
Sulba works.

Writing of Fractions. From very early times
(¢. 200 A.D.) the Hindus wrote fractions just as we do
now, but without the dividing line. When several
fractions occurred in the same problem, they were in
general separated from each other by vertical and

1 Generally placed over the number to be subtracted.
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horizontal lines. Illustrations of the Hindu method of
writing groups of fractions will be found in the
examples that will be given hereafter.

Reduction to Lowest Terms. Before performing
operations with fractions, it was considered necessary
to reduce them to lowest terms. The process of reduc-
tion was called apavartana, but was not included among
the operations. It is not given in the Hindu works,
but seems to have been taught by oral instruction. That
the method has been in use in India from the earliest
centuries of the Christian era, cannot be doubted; for
it is mentioned in a non-mathematical work, the
Tattvirthidbigama-sitra-bhisya® by Umisviti (c. 150)
as a simile to illustrate a philosophical discussion:

“Or, as when the expert mathematician, for the
purpose . of simplifying operations, removes common
factors from the numerator and denominator of a
fraction, there is 'no change in the value of the fraction,

2

SO ......

Reduction to Common Denominator. The
operation of reduction to a common denominator? is
required when fractions are to be added or subtract-
ed. The process is given a prominent place and is
generally mentioned along with addition and subtrac-
tion. Brhmagupta® gives the reduction along with the
processes of addition and subtraction thus:

“By the multiplication of the numerator and deno-
minator of each of the (fractional) quantities by the
other denominators, the quantities are reduced to a
common denominator. In addition, the numerators are
united. In subtraction their difference is taken.”

il g2,

* Kald-savarnana ot savarpana, or samachbheda-vidbi.

3 BrSpSi, p. 172, ’
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Stridhara? says:

“To reduce to a common denominator, multiply
the numerator and denominator of each (fraction) by
the other denominators.”

All other works also contain this rule.

Fractions in Combination. It has already been
remarked that due to the lack of proper symbolism,
the Hindu mathematicians divide combinations of frac-
tions into four classes. They are:

(1)? Bhiga, i.c., the form (% + _2 ife_ +...0).

usually written as

a\c | e a|c| ‘¢
bld|f1° (b4l f

where the dots denote subtraction.

(2)* Prabbiga, i.c., the form (g» of ;1 of -% R ),

written as

atlcle

bld|f

(3)* Bbdginubandha, i.e., the form
. b
B (I) (ﬂ -+ ;)

. I3
or (if) %-{—;of ]q?——!—; of (qu—i—gof %)-}—

v Trif, p. 10. The translation given by Kaye is incorrect.

L 2 BrSpSi, p. 175; Tris, p. 10; G35, p. 33 (55, 56); MS7, p. 146;
s P 6. 1

3 Tris, p. 10; GSS, p. 39 (99); MS?, p. 146; L, p- 6.

* Tris, p. 10; GSS, p. 41 (113); MSi, p. 148; L, p. 7. These
forms are termed rdpa-bbdginubandba (“*association of an integer and
a fraction”) and bbdga-bbiginubandha (““association of fractions of -
fractions™) respectively. ,
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written as

SR

@ |- or (i)

R e v

(4)* Bhigdpaviba, i.e., the form
. b
) (d - ;)

4

or (i) %—gof'g—fof (g-—;bf?)—....

written as

) %1 or (if)
c

N gl S

Besides the above four forms, Sridhara, Mahavira,
and some others give two more.

(5)* Bhdga-bhiga, i.c., the form
b
(=D @)

There does not appear to have been any notation
for division, such compounds being written as,

! BrSpSi, p. 176; GSS, p. 43 (126); MSi, p. 148; L, p. 7.
These forms are termed répa-bhigipaviba and bhiga-bbhigipaviba
respectively.

¢ Trif, p. 11; GSS, p. 39 (99)-
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a
b or
¢

w 2t

just as for bhdginubandha. That division is to be pet-
formed was known from the problem;' eg., 13
was written as jsad-bhiga-bhiga,® i.e., “one-sixth bhdga-
bhiga” or ‘“one divided by one-sixth.””*

(6)* Bhdga-miir, i.e., combinations of forms enume-
rated above. Mahdvira remarks that there can be
twenty-six variations of this type.®* The following
example is given by Sridhara.®

“What is the result when half, one-fourth of one-
fourth, one divided by one-third, half plus half of
itself, and one-third diminished by half of 1tsclf are
added together?”

In modern nopation this is
4+ of P)F(1-+3)+(3+4% of §)+(§—4 of 3).

In the old Hindu notation it was written as

I 1 I
2

W
N H|N -
N o -

1t is only in the Bakhshdli Manuscript that the term bbd is
sometimes placed before or after the quantity affected.

z gf Trif, p. 11.

5 GSS, p. a1 (112) gives 22 as tripida bbakiam dvikam, i.c.,
“ewo divided by three-fourths. »*

* Trif, p. 12; GSS, p. 43 (138).

5 As there are five primary classes enumerated by Mahavira,
so the total number of combinations is

8Co+-°Co+-°C+°C5=26.
8 Trif, p. 12.
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I 1
4|4

The defect of the notation is obvious: can be

1
read also as 44, and | 1 | can be read also as 13}; so

3

that the exact meaning of the notation can be under-
stood only by a reference to the question.

The rules for the reduction of the first two classes
are those of addition or subtraction, and multiplication.
The rule for the reduction of the third and fourth
classes (from 77) are given together by Brahmagupta:

“The (upper) denominator is multiplied by the
w2nominator and the upper numerator by the same
\denominator) increased or diminished by its own
numerator.”*

The rule for bhdginubandha is given by Sridhara?® as
fodows:

(?) “In bhiginubandha, add the numerator to the
product of the whole number and the denominator.”

(77) “Multiply the denominator by the lower deno-
minator and (then) the numerator by the same lower
denominator increased by its own numerator.”

Other writers give similar rules for reduction in the
case of bhdginubandha.

The following example® will explain the process of
working:

L BrSpSi, p. 176. 'The reduction of the form a =+ —"’: has been
given separately (p. 173).
2 Tris, p. 10. Rule (§) is for the reduction of a-+-= and rule (#)
i1 for the reduction of the form
Lo g (e o S
8 Tris, p. 11.
13



194 ARITHMETIC

Reduce to a proper fraction:
34+4 of 34+4 of (33+4 of 38)+4-+4 of +} of
A+13 of §).

This was written as

3

I I
2 2
I I
4|3
I I
6|4

Adding denominators to numerators of the lower
fractions, and applying rule (i) to left-hand top com-
partment to reduce it to a proper fraction, we get

7 I
2 2
5|4
4|3
7105
6|4

Now performing multiplication as directed, z.e., mul-
tiplying the denominator of the first fraction by all the
lower denominators and the numerator by the sum of
the numerators and denominators of the lower frac-
tions, we get

I b=, and xaxi=it
i.é’., 245 20
48 | 24

Then making denominators similar (savarpana), we

have

245 40
48 48
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performing the addition we have 28&% or 54§ as the
result.

The rule for bhdgdpaviba is given in all the works
on pdtiganita. It is the same as that for bhdginubandpa,
except that “addition” or “increase” is replaced by
“subtraction” or ‘““decrease” in the enunciation of the

rule for bbdgipaviha.

Lowest Common Multiple. Mahivira® was the
first amongst the Indian mathematicians to speak of
the lowest common multiple in order to shorten the
process. He defines niruddha (L. C. M.) as follows:

“The product of the common factors of the
denominators and their resulting quotients is called
niruddha.”

The process of reducing fractions to equal deno-
minators is thus described by him:?

“The (new) numerators and denominators, obtained
as products of multiplication of (each original) numera-
tor and denominator by the (quotient of the) wiruddha
(f.e., L. C. M.) divided by the denominator give frac-
tions with the same denominator.”

Bhiskara I1* does not mention #iruddba but observes
that the process can be shortened. He says:

“The numerator and denominator may be multi-
plied by the intelligent calculator by the other deno-
minator abridged by the common factor.”

The Eight Operations. Operations with frac-
tions were known in India from very early times, the
method of performing them being the same as now.

1 GSS, p. 33 (56).
2GSS, p- 33 (56)-
iL,p. 6.
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Although Aryabhata does not mention the elementary
operations, there is evidence to show that he knew the
method of division by fraction by inverting it. All the
operations are found in the Bakhshali Manuscript (¢. 200).

Addition and Subtraction. These operations
were performed after the fractions were reduced to a
common denominator. Thus Sridhara says:*

“Reduce the fractions to a common denominator
and then add the numerators. The denominator of a
whole number is unity.”

Brahmagupta and Mahivira give the method under
Bbigajdti. Mahivira differs from other writets in giving
the methods of the summation of arithmetic and geo-
metric series under the title of addition (semkalita).?
Later writers follow Sridhara.

Multiplication. Brahmagupta says:®

“The product of the numerators divided by the
product of the denominators is the (result of) multipli-
cation of two or more fractions.”

While all other writers give the rule in the same
way as Brahmagupta, Mahévira refers to cross reduction
in order to shorten the work:*

“In the multiplication of fractions, the numerators
are to be multiplied by the numerators and the deno-
minators by denominators, after carrying out the process
of cross reduction,® if that be possible.”

Y Trif, p. 7.
2 Cf. GSS, pp- 28 (22) ff.
3 BrSpSi, p. 173.
* GSS, p. 25 (2).
S Vajrapavartana-vidbi, ie., “‘cancellation crosswise,” thus
c2R_ A6
ix &= \\ =3%=1.
3¢ Ng
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Division. Although the elementary operations are
not mentioned in the Aryabhatiya, the method of division
by fraction is indicated under the Rule of Three. The .

Rule of Three states the result as Vs ;z 1 When these

quantities are fractional, we get an expression of the

Vg .
form b'—m-‘-i, for the evaluation of which Aryabhata I

' »n
states:

“The multipliers and the divisor are multiplied by
the denominators of each other.”

As will be explained later on (p. 204) the quantities
are written as

a m
b n
¢
d
Transferring the denominators we have
a n
" b
c d

ane

1) - . 3 - -
Perform —
tforming multiplication, the result is — 5

The above interpretation of a rather obscure line®
in the .Aryabhatiya is based on the commentaries of
Stryadeva and Bhiskara I. Thus Saryadeva says:

*Whete f= phala, i.e., “fruit,” i= icchd, i.c., “demand or
requisition” p’==pramiypa, i.c., “argument.”

2 A4, p. 43. Previous writers seem to have been misled by
the commentary of Parameévara which is very vague; ¢f; Clark

{p. 40) and P. C. Sengupta (p. 25).",
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“Here by the word gumakdra is meant the multiplier
and multiplicand, /.., the phala and sechd quantities that
are multiplied together. By bbdgabira 1s meant the
pramdna quantity. The denominators of the phala and
techd are taken to the pramdpa. The denominator of the
pramina is taken with the phala and iechi. ‘Then multi-
plying these, 7.e., (the numerators of) the plala and icchi
and this denominator, and dividing by (the product of)
the numbers standing with the pramdina, the result is the
quotient of the fractions.”

Brahmagupta® gives the method of division as fol-
lows:

“The denominator and numerator of the divisor
having been interchanged, the denominator of the
dividend is multiplied by the (new) denominator and
its numerator by the (new) numerator. Thus division
of proper fractions is performed.”

Sridhara® adds the following to the method of
multiplication:

“Having interchanged the numerator and deno-
minator of the divisor, the operation is the same as
before.”?

Mahavira* explains the method thus:

“After having made the numerator of the divisor®
its denominator (and wvice versa) the operation is the
same as in multiplication.”

“Or,* when (the fractions ccnstituting) the divisor

r BrSpSi, p. 173.

2 Trif, p. 8.

37.e., the same as that of multiplication.

+ GSS, p. 26 (8).

5 Mahivira uses the term pramdpa-rdsi for divisor, showing
thereby its connection with the ‘rule of three’

¢ This is similar to the way in which Aryabhata I expresses
the method.
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and dividend are multiplied by the denominators of
each other and these products are without denomina-
tors, (the operation) is as in the division of whole!
numbers.”

Square and Square-root. Brahmagupta? says:

“The square of the numerator of a proper fraction
divided by the square of the denominator gives the
square.”

“The square-root of the numerator of a proper
traction divided by the square-root of the denominator
gives the square-root.”

Other works contain the same rules.

Cube and Cube-root. Sridhara® gives the rule
as follows:

“The cube of the numerator divided by the cube
of the denominator gives the cube, and the cube-root
of the numerator divided by the cube-root of the
denominator gives the cube-root.”

Other works give the same rules.

Unit Fractions. Mahivira has given a number of
rules for expressing any fraction as the sum of a
number of unit fractions.* These rules do not occur
in any other work, probably because they were not
considered important or useful.

(r) To express 1 as the sum of a number (n) of
unit fractions. :

The rule for this is:®
“When the sum of the different quantities having

1'The term for whole number is sakala.

2 BrSpSi, p. 174.

8 Trif, p- 9.

* There is no technical term for unit fraction. The term
used is rdpdmsaka-risi, i.e., “quantity with one as numerator.”

* GSS, p. 36 (75).
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one for their numerator is 1, the (required) denomina-
tors are such as, beginning with 1, are in -order multi-
plied by 3, the first and the last being multiplied again
by 2 and 3.”
Algebraically the rule is
=4 il L
2 3 3 3

5n-—~2

I
2‘311—2 *

(2) To express 1 as the*sum of an odd number of
unit fractions.

The rule for this is stated thus:*

“When the sum of the quantities (fractions) having
one for each of their numerators is one, the denomina-
tors are such as, beginning with two, go on rising in
value by one, each being further multiplied by that
which is (immediately) next to it and then halved.”

Algebraically this is
1= 4L 44 ! L3

2.3.3  3.4.% (2m—1).2n.%  2n.}

(3) To express a unit fraction as the sum of a number
of other fractions, the numerators being given.

The rule for this is:

“The denominator of the first (of the supposed or
given numerators) is the denominator of the sum, that
of the next is this combined with its numerator and
\ . .
so on; and then multiply (each denominator) by that
which is next to it, the last being multiplied by its
own numerator. (This gives the required denomina-
tors).”

1GSS, p. 36(77).
*Each may be one. GJSS, p. 36(78).



FRACTIONS 201

Algebraically this gives :

a, a,
n(nta,) - (n+a,)(nt+a,+a,) e
2,

t et at e datatat Fay

I
”

ar
+ a,(n+a,+a,+....+a,_)
/
By taking ¢,=¢,=...=ae,=1, we get unit fractions.
When these are not unity, the fractions may not be in
their lowest terms.

(4) To express any fraction as the sum of unit fractions.

The rule is:*

“The denominator (of the given fraction) when
combined with an optionally chosen number and then
divided by the numerator so as to leave no remainder,
becomes the denominator of the first numerator (which
is one); the optionally chosen quantity when divided
by this and by the denominator of the sum is the
remainder. To this remainder the same process is
applied.”

Let the number 7 be so chosen that g+ is an

integer = r; then the rule gives

p_ 1 + i

q r rg
of which the first is a unit fraction and a similar process
can be employed to the remainder to get other unit
fractions. In this case the result depends upon the
optionally chosen quantities.

1 GSS, p. 37(80).
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(s) To express a unit fraction as the sum of two other
unit fractions.

The following two rules are given:!

(7) “The denominator of the given sum multiplied
by a properly chosen number is the (first) denominator,
and this divided by the previously chosen number minus
one gives the other; or (/) the two denominarors are
the factors? of the denominator of the sum, each multi-
plied by their sum.” '

Expressed algebraically the rules are:

I I )
@) = pr —+ I
p-1
. 1 1 1
@ 3= wwxn Ty

(6) To express any fraction as the sum of two other
Sfractions whose numerators are given.

The rule for this is:*

“Either numerator multiplied by a chosen number,
then combined with the other numerator, then divided
by the numerator of the sum so as to leave no remainder,
and then divided by the chosen number and multi-
plied by the denominator of the sum gives rise. to one
denominator. The denominator corresponding to the
other (numerator), however, is this (denominator)
multiplied by the chosen quantity.”

1 GSS, p. 37(85).

2 hdra-bdra-labdka, lit. “the divisor and quotient by that
divisor.”

3°The integer p is so chosen that # is divisible by (p—1).

1 GSS, p- 38(87).
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Algebraically the rule is

T+
ap+b n ' apt+b _n
I A X

A particular® case of this would be

b 1

m
n

m a b
n= an-+b + an--b
Xn
m w

provided that (en+44) is divisible by .

(7)  To express a given fraction as the sum of an even
anmber of fractions whose numerators are previously assigned.

The rule for this is:?

“After splitting up the sum into as many parts,
having one for each of their numerators, as there are
pairs (among the given numerators), these parts are taken
as the sum of the pairs, and (then) the denominators
are found according to the rule for finding two frac-
tions equal to a given unit fraction.”

12. THE RULE OF THREE

Terminology. The Hindu name for the Rule of Three
terms is frairdsika (“three terms,” hence “the rule of
three terms™).  The term #rairdsika can be traced back
to the beginning of the Christian era as it occurs in the

! Evidently, the chosen number p must be a divisor of #,
ap+b
m

The solution given does not hold for any values of 4 and
b, but only for such values as allow of an integer p to be so
chosen as to satisfy the required conditions.

2 GSS, p. 38(89).

and such that is an integer.
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Bakhshili Manuscript,® in the Aryabbativa and in all
other works on mathematics. About the origin of the
name Bhiskara 1 (¢. 525) remarks:* “Here three
quantities are needed (in the statement and calculation)
so the method is called #rairdsika (“the rule of three
terms”).”

A problem on the rule of three has the form:

If p yields f, what will / yield?

In the above, the three terms are p, f and 7 The
Hindus called the term p, pramdpa (“argument’), the
term f, phala (“fruit”) and the term 7, icchd (“requisi-
tion””). These names are found in all the mathematical
treatises. Sometimes they are referred to simply as
the first, second and third respectively. Aryabhata I
differs from other writers in giving the names wmdna,
vinimiaya and iechd respectively to the three terms. It
has been pointed out by most of the writers that the
first and third terms are similar, 7.e., of the same deno-
mination.

The Method. Aryabhata I (499) gives the follow-
ing rule for solving problems on the Rule of Three:

“In the Rule of Three, the phala (“fruit”), being
multiplied by the zché (“requisition”) is divided by the
pramipa (“argument”). The quotient is the fruit
corresponding to the /echi. The denominators of one
being multiplied with the other give the multiplier
(¢.e., numerator) and the divisor (i.e., denominator).”*

*The term rdfi is used in the enumeration of topics of
mathematics in the Sthdndriga-sdtra (¢. 300 B.C.) (S4tra 747). There
it probably refets to the Rules of Three, Five, Seven, etc.

2In his commentary on the Aryabbatiya.

3 The above corresponds to 4ryé 26 and the first half of dryd
27 of the Ganitapida of the Aryabhatiya; compare the working of
Example 1, where the interchange of denominators takes place.

See also pp. 195f.
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Brahmagupta gives the rule thus:

“In the Rule of Three pramdna (“argument”),
phata (“fruit”) and sechd (“requisition”) are the (given)
terms; the first and the last terms must be similar. The
zcchd multiplied by the pha/a and divided by the pramidpa
gives the fruit (of the demand).”*

Sridhara states:

“Of the three quantities, the pramdpa (“argument”)
and zechd (“requisition’) which are of the same deno-
mination are the first and the last; the phala (“fruit”)
which is of a different denomination stands in the
middle; the product of this and the last is to be divided
by the first.”’?

Mahavira writes:

“In the Rule of Three, the iechd (“requisition”) and
the pramdpa (“argument’) being similar, the result is
the product of the phala and icchi divided by the
Dramdna.’®

Aryabhata II introduces a slight variation in the
terminology. He says:

“The first term is called mdna, the middle term
vinimaya ang the last one Zchd. The first and the last
are of the same denomination. The last multiplied by
the middle and divided by the first gives the result.”*

Bhiskara II, Nirdyana and others give the rule in
the same form as Brahmagupta or Stidhara.

The Hindu method of working the rule may be
illustrated by the following examples taken from the
Trisfatika:

1 BrSpSi, p. 178.
2 Trif, p. 15.
8GSS, p. 58(2).
* MSi, p. 149.
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Example 1.* “If one pala and one £arsa of sandal
wood are obtained for ten and a half pana, for how
much will be obtained nine pa/z and one karsa?”

Hete 1 pale and 1 karsa=1} pala, and 9 pala and
1 karsa=9} pala are the similag quantities. The “fruit”
104 pana corresponding to the first quantity (1} pala)
is given, so that

pramdna (argument) = 1}
Dphala (frait) = 10}
Zcchd (requisition) = o}
The above quantities are placed in order as
1|10]9
1| 1|1
4] 2|4
Converting these into proper fractions we have
5 | 21| 37
4| 2| 4

Multiplying the second and the last and dividing by
the first, we have

21 | §
24| _ HX¥
37 o 3
4
21 | 5
Or transferring denominators | 4 | 2 = 21437 pala
37 | 4 5-2.4

= 4 purdpa, 13 pana, 2 kikini and 16 vardtaka.
In actual working the intermediate step
S 3L
4+

1 Trif, p. 15.
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was not written. The denominators of the multipliers
were transferred to the side of the divisor and that
of the divisor to the multipliers, thus giving at once

21.4.37
5.2.4

Example I1.* “Out of twenty necklaces each of
which contains eight pearls, how many necklaces, each
containing six pearls, can be made?”

Firstly, we have

|1 ]8]z0

The result (performing the operation of the Rule of
Three) is 160 pearls.

Secondly, petrform the operation of the Rule of
Three on the following:

If 6 pearls are contained in one necklace, how
many necklaces will contain 160 pearls?

Placing the numbers, we have
IEEES

Result: necklaces 26, part of necklace

2
3 |

Inverse Rule of Three. The Hindu name for the
Inverse Rule of Three is wyasta-trairdsika (lit. “inverse
rule of three terms”). After describing the method of
the Rule of Three the Hindu writers remark that the
operation should be reversed when the proportion is
inverse. Thus Sridhara observes:

“The method is to multiply the middle term by
the first and to divide by the last, in case the proportion
is different.”?

L Trif, p. 17.
2 Trif, p. 18,
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Mahévira says:

“In the case of this (proportion) being inverse, the
operation is reversed.”?

Bhiskara IT writes:

“In the inverse (proportion), the operation is re-
versed.”’®
He further observes:

“Where with increase of the 7whd (requisition)
the phala decreases or with its decrease the phala in-
creases, there the experts in calculation know the method
to be the Inverse Rule of Three.””®

“Where the value of living beings is regulated by
their age; and in the case of gold, where the weight
and touch are compared; or when heaps are subdivided,*
let the Inverse Rule of Three be used.”®

Example: Example 11 given under the Rule of
Three above has been solved also by the application
of*the Inverse Rule as follows:

29
) 26
“Statement | 8 m Result: necklaces 2
3

Here if the ze«chd, i.e., the number of pearls in a
necklace, increases, the phala, i.e., the number of neck-
laces, decreases, so that the Inverse Rule of Three is
applied. '

Appreciation of the Rule of Three. The Rule of
Three was highly appreciated by the Hindus because

1 GSS, p. 58(2). .
*L :

3L, p.17.

¢ “When heaps ol grain, which have been meted with a small
measure, are again meted with a larger one, the number decreases
«v..” (Com. of Siryadisa).

SL,p. 18.
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of its simplicity and its universal application to ordinary
-problems. The method as evolved by the Hindus gives
a ready rule which can be applied even by the “ignorant
person” to solve problems involving proportion, with-
out fear of committing errors. Varihamihira (505)
writes:

* “If the sun petforms one complete revolution in a
year, how much does he accomplish in 2 given number
of days? Does not even an ignorant person calculate.
the sun in such problems by simply scribbling with a
piece of chalk?’* :

Bhiskara II has eulogised the method highly at
several places in his work. His remarks are:

“The Rule of Three is indeed, (the essence of)
arithmetic.”?

“As Lord Sri Nirdyana, who relieves the sufferings
of birth and death, who is the sole primary cause of the
creation of the universe, pervades this universe through’
His own manifestations as wortlds, paradises, mountains,
rivers, gods, men, demons, etc., so does the Rule of
Three pervade the whole of the science of calculation.
.. .. Whatéver is computed whether in algebra or in,
this (arithmetic) by means of multiplication and division
may be comprehended by the sagacious learned as the
Rule of Three. What has been composed by the sages
through the multifarious methods and operations such
as miscellaneous rules, etc., teaching its easy variations,
is simply with the object of increasing the comprehen-
sion of the duller intellects like ourselves.”®

On another occasion Bhiskara II observes:

1 PSi, iv. 37.

*L, p. 15. The same remark occurs in SiS%, Golidbydya,
Prasnidbydya, verse 3.

SL.p.o6.

14
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“Leaving squaring, square-root, cubing and cube- -
root, whatever is calculated is cettainly wvariation
of the Rule of Three, nothing else. For increasing
the comprehension of duller intellects like ours, what
has been written in various ways by the learned sages
having loving hearts like that of the bird cakora, has
become arithmetic.””?

Proportion in the West. The history of the
Hindu rules of proportion shows how much the West
was indebted to India for its mathematics. The Rule-
of Three occurs in the treatises of the Arabs and
medizval Latin writers, where the Hindu name ‘Rule
of Three’ has been adopted. Although the Hindu
names of the terms were discarded, the method of
placing the terms in a line, and arranging them so
that the first and last were snmlar was adopted. Thus
Digges (1572) remarked,? “Worke by the Rule ensueing
...... Multiplie the last number by the seconde, and
diuide the Product by the first number,” ... “In the
placing of the three numbers this must be observed,
that the first and third be of one Denomination.”
The tule, as has been already stated, was perfected in
India in the early centuries of the Christian era. It was
transmitted to the Arabs probahbly in the eighth century
and thence travelled to Europe, where it was held in
very high esteem® and called the “Golden Rule.”

Compound Proportion. The Hindu names for
compound proportion are the Rule of Five, the Rule of

1 5787, Golddhydya, Prafnidbydya, verse 4.

2 Quoted by Smith, /¢ p. 488.

8'The Arabs, too, held the method in very high esteem as
is evidenced by Al-Bir(in?’s writing a separate treatise, Fi rafikat
al-hind (“On the rasikaz of the Hindus”) dealing with the Hindu
Rules of Three or more terms. Compare also India (I. 313) where
an example of wyasta-irairifika, (“the Inverse Rule of Three”) is
given.
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Seven, the Rule of Nine, etc., according ‘to the number
of terms involved in the problems. These are some-
times grouped under the general appellation of the
“Rule of Odd Terms.” The above technical terms
as well as the rules were well-known in the time of
Aryabhata 1(499), although he mentions the Rule of
Three only. That the distinction between the Rule of
Three and Compound Proportion is more artificial
than real was stressed by Bhaskara I (¢. 525) in his com-
mentaty on the Aryabhatiya. He says:

“Here Acirya Aryabhata has described the Rule of
Three only. How the well-known Rules of Five, etc. are
"to be obtained? I say thus: The Acirya has described
only the fundamentals of amupdta (ptroportion). All
others such as the Rule of Five, etc., follow from that
fundamental rule of proportion. How? The Rule of
Five, etc., consist of combinations of the Rule of Three
.... In the Rule of Five there are two Rules of Three,
in the Rule of Seven, three Rules of Three, and so on.
This I shall point out in the examples.”

Remarks similar to the above concerning the
Rules of Five, Seven, etc., have been made by the com-
mentators of the Lilévati, especially by Gane$a and
Siryadisa.?

In problems on Compound Proportion, two sets of
terms are given. The first set which is complete is
called pramina paksa (argument side) and the second
set in which one term is lacking is called the jwhd
paksa (requisition side). ' ]

The Method. The rule relating to the solution
of problems in compound proportion has been given
by Brahmagupta as follows: )

“In the case of odd terms beginning withl three

* Noted by Colebrooke, /.., p. 35, note.
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terms® upto eléven, ‘the result is obtained by transposing
the fruits of .both sides, from one side to the other,
and then dividing the product of the larger set of terms
by the product of the smaller set. Tn all the fractions
the transposition of denominators, in like manner, takes
place on both sides.”’?

Sridhara says: »

“Transpose the two fruits from one side to the
other, then having transposed the denominators (also
in like manner) and multiplied the numbers (so obtained
on each side), divide the side with'the larger number of
terms by the othet (side).”

Mahévira* and Aryabhata II* have given the rule in
the same way as Stidhara. Bhéskara II has given it
thus: : '

“In the rules of five, seven, nine or mote terms,
after having taken the phala (fruit) and chid® from its

1 It should be observed that, as stated above, the Rule of
Three is a particular case of the above Rule of Odd terms.
Brahmagupta is the only Hindu writer to have included the Rule
of Three also in the above rule. Some Arab writers have fol-
lowed him in this respect by not writing the terms of the Rule
of Three in a line, but arranging them in compartments, as for
the other rules of odd terms.

2 BrSpSi, p. 178,

8 Trif, p. 19.

1 GSS, p. 62 (32).

8 MSi, p. 150, rules 26 and 27 (repeated with a slight varia-
tion).
)“ The commentators differ as regards the interpretation of
this word. Some take it to mean “divisor,” s.e, ‘“denominatos,”
while otherts say that it means “the fruit of the other side.” The
rule is, however, correct with either interpretation. The first
interpretation, however, brings Bhiskara’s version in line with
those of his predecessors.” It may be mentioned here that Arya-
bhata II repeats the rule twice. At first he does not direct the
transposition of denominator, and at the second time he does so.
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own side to the other, the -product of the larger set of
terms divided by the product -of the smaller set, gives
the result’ (or produce sought).”*

IItustration. We shall illustrate the Hindu method
of ‘working by solving the following example taken
from the Lildyati:

“If the interest of a hundred in one month be five,
what' will be the interest of 16 in 12 months? Also
find the time knowing the interest and principal; and tell’
the principal knowing the time and interest.”

To find interest.

The first set of terms (pramdpa paksa) is:
100 nigka, 1 month, s #iska (phala)
The second set (icché paksa) is:
16 niska, 12 months, x niska
The terms are now wiitten in compartments? as below:

100 | 16]°*
1] 12
o

*L, p. 18.

2The tetms of the same denomination are written in com-
pastments in the same horizontal line.

3The figures are written in compartments in order to faci-
litate the writing of fractions and also to denote the side which
contains more terms after transposition of fruits. Sometimes,
the compartment corresponding to an absent term is left vacant
as we find in 4 copy of Muniévara’s Pdtisdra (in the Government
Sanskrit Library at Benares). When the terms are written in
compartments, the symbol o to denote the unknown or absence
of a term is unnecessary. In some commentaries on the Lildvatf
(Asiatic Society of Bengal manuscripts) we find the numbers
written without compartments, but in such cases the symbol o
is used to denote the absence of a term. After transposition, the
side on which o occurs contains a smaller number of terms than
the other.
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In the above 5 (written lowest) is the “fruit” of the
first side, and there is no “fruit” on'the second side.
Interchanging the fruits we get

100 | 16
| 12
© ]

The larger set of terms is on the second “side.” The
product of the numbers is 9g6o. The product of the
numbers on the side of the smaller set of terms is 100.
Therefore, the required result is $§3=2%8 written as
[*8] or g niska, fraction |}
To find Time:

Here the sides are

100 7iska, 1 month, § niska

and 16 niska, x months, 4& niska
The terms are written as

100 | 16
I o

s | 48

)

Transposing the fruits, .., transposing the numbers in
the bottom compartment, we get

100 | 16
1 o

48 | 5
5

Transposing the denominators we have

100 | 16
I
38

A 1O
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Here, the larger set of terms is on the first side and
their product is 4800. The product of the numbers
on the side of the smaller set is 400. Therefore, the
result is
4800, 4800
400 = 400

To know the principal:

The first side is
100 niska, 1 month, § niska

= 12 months.

The second side is
x niska, 12 months, 48 niska

This is written as

100 (o)
I 12

5 | 48

5

After transposition of fruits (s.e., the terms in the
bottom cells) we have

100 O
I I2
48 s

)

Transposing denominators we get

100 | o©
I iz

48
)

The product of the numbers in the larger set divided
by the product of the numbers in the smaller set, gives
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‘4800 = 16 niska.
.300.

Rule of Three as a Particular Case. According
to Brahmagupta, the above method ‘may be applied to
the Rule of Three. Taking the first example solved
under the Rule of Three, above, and placing the terms
we have

21| o?
2
5|37
4] 4
Transposing the fruits, we have
21 | o.
4
3715
44

Transposing denominators, we get

21 | O

2
3715
4|4

Therefore, the result is % as before.

If we consider the term corresponding to the un-
known as the fruit, the.terms should be set as below:

* Here, we consider & pala of sandal wood as the “fruit”
of &l paga (money). The previous method forces us to consider
2Ll papa as .the ““fruit” or the middle term, because the “first”
and “third” are directed to be alike. It will be observed that

any of the terms may be considered to be the fruit in the alter-
pative method given here. -
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5 | 37
4| 4
21
o
37.4.21

Hence, as before,! the result is Sz

The above method of working the Rule of Three
is found among the Arabs,? although it does not seem
to have been used in India after Brahmagupta. This
points to the indebtedness of the Arabs to Brahma-
gupta especially, for their knowledge of Hindu arith-
metic.

Weritten as above the method of working the Rule
of Three appears to be the same as the method of
proportion. In the -same way the rule of other odd
terms, when propertly translated into modern symbolism,
is nothmg but the method of proportion. It has been
stated by Smith® that the Hindu methods of solution
“fail to recogmze the relation between the Rule of Three
and proportion.”” This statement appears to have been
made without sufficient justification, for the solutions
have been evidently obtained by the use of the ideas
of proportionality and variation. The aim of the
Hindu works is to give a method which can be readily
used by common people. For this very reason, the
cases in which the wvariation is inverse have been
enumerated. Considered as 2 method which stimulated
the student to think for himself, the method is certainly

1 The product of the numbers on the side of the larger set
is divided by the product of the numbers on the side of the
smaller set. o in this case is not a number. Tt is the symbol
for the unknown or absence.

2 Thus Rabbi ben Ezra wrote *7 ©3 for 47: 7==63: x. See
Smith, Ze., p. 489f.

3/e., p. 488.
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defective, but for practical purposes, it is, in our
opinion, the best that could be devised.

13. COMMERCIAL PROBLEMS

Interest in Ancient India. The custom of
taking interest is a very old one. In India it can be
deﬁnitely traced back to the time of Pinini (¢. 700 B.C.)
who in his Grammar lays down rules Vahdatmg the use
of the suffix £z to number names in case of an interest,
a rent, a profit, a tax or a bribe given.”® The interest
became due every month and the rate of interest was
generally given per hundred,? although this was not
always the casé. The rate of interest varied in different
localities and amongst different classes of people, but
an interest of fifteen per cent per year seems to have
been considered just. Thus in Kautilya’s Arthasdstra,
a work of the fourth century B.C,, it is laid down: “an
interest of a pana and a quarter per month per cent is
just. Five papa per month per cent is commercial
interest. ‘Ten pana per. month per cent prevails in
forests. Twenty papa per month per cent prevails
among sea traders.”® The Gotama S#tra states: “‘an
interest of five mdsd per twenty (kdrsdpana) is just.”’*

Interest in Hindu Ganita. The ordinary pro-
blems relating to the finding out of interest, principal
or time etc., the other quantities being given, occur in
the section deahng with the Rule of Five. The Hindu

! Pinini’s Grammar, v. i. 22, 47, 49.

21t has been’ pomted out by B. Datta that the idea of per
cent first originated in India. See his article in the American
Mathematical Monthly, XXXIV, p. s53o0.

3 _Arthafistra, edited and translated into English by R. Sham-
sastry, Mysore, III i, p. 214.

¢ Gotama Sulra xii. 26, Since 20 mdsd equal a kdrsipapa,
the rate is 15 per cent annually.
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works generally contain a section called misraka-vyava-
hdra (“calculations relating to mixed quantities™) in
which occur miscellaneous problems on interest. The
contents of this section vary in different works, according
to their size and scope. ‘Thus the Arysbbatiya contains
only one rule relating to a problem on interest, whilst
the Gapita-sdra-samigraba has a large number of such
rules and problems.

Problem involving a Quadratic Equation. Arya-
bhata 1 (499) gives a rule for the solution of the
following problem:

The principal sum p(=100) is lent for one month
(interest unknown=x). This unknown interest is then
lent out for #(=six) months. After this period the
original interest (x) plus the interest on this interest
amounts to A(=sixteen). The rate-interest (x) on the
principal (p) is required.

The above problem requires the solution of the
quadratic equation

txi4px—Ap = o,
_ TPl2kv(piz) - Apt,
- 1

which gives x

The negative value of the radical does not give 2
solution of the problem; so the result is '

VAptF(plz)—plz.
X = P

This is stated by Aryabhata I as follows:

“Multiply the sum of the interest on the principal
and the interest on this interest (\4) by the time (#) and-
by the principal (p). Add to this result the square of
half the principal {(p/2)?}. Take the square-root of
this. Subtract half the principal (p/2) and divide the
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remainder by the time (). The result will be the
(unknown) interest (x) on the principal.”*

Brahmagupta (628) gives a more general rule. His
problem is:

The principal (p) is lent out for #, months and the
unknown interest on this (=x) is lent out for #, months
at the same rate and becomes 4. To find x.

This gives the quadratic

’

g D _APh
Z Z
whose solution is

— \/Apt, bt q_P_tl
x——j:_ _tz_+(7) zz‘z‘

The negative value of the .radical does not give a
solution of the problem, so it is discarded.

Brahmagupta states the .formula thus:

“Multiply the principal (p) by its time (#,) and divide
by the other time (#,) (placing the result) at two places:
Multiply the first of these by the mixture (A4). Add
to this the square of half the other. Take the square-
root of this (sum). From the result subtract half the
other, This will be the interest (x) on the principal.”?

Other Problems. Mahdvira (850) gives two
other types of problems on ‘“mixture” requiring the
solution of simultaneous equations. As an example of
the first type may be mentioned the following:®

“It has been ascertained that the interest for 13
months (#=rate-time) on 6o (¢r=rate-capital) is 2§ (i=

* A, p. 41. The Sanskrit terms are: mAla=principal, phala
=interest.
2 BrSpSi, p. 183, This rule is also given by Mahéavira, G5,

p- 71 (44)-
2 GSS, p. 69(32).
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rate-interest). The interest [(on the unknown capital P)
for.an unknown period (T) is 24 (=I), and 6o (==
=P+-T) is the time combined with the capital lent out.
What is the time (T) and what is the capital (P)?”

The problem gives:
iPT

Hence P=13 (m j:\/m’ id ><4I),
and T =4 (m q:.‘/z}ﬂ—iz.’—xd)

The above result is stated by Mahivira thus:

“From the square of the mixture (=) subtract the
rate-capital (¢) divided by the rate-interest (7) multiplied
by the rate-time (#) and four times the given interest
(4D). "Then the operation of . sasikramana® is performed
in relation to the square-root of this and the mixture
(.m) 2% 2

The second type of problems may be illustrated by
the following example:

“The interest on 30 (P) is 5 (I) for an unknown

! Given the numbers # and b, the process of sarikramapa is the
+5 —b
—
2 GSS, p. 68(29). It should be noted that both the signs

of the radical are used.

and

finding out of half their sum and difference 7.e. 2
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petiod (T), and at an unknown rate of interest (i) per
100 (¢) per 13 month (#). The mixture (mw=i4T)
is 124. Find 7 and T.®

The solution is given by

(”I:t\/ [fI4)

and consequently
: VA 9
i =3 (T ' m - ).

Mahavira states the solution thus:

“The rate-capital (¢). multiplied by its time (#) and
the interest (I) and the square of two (=4) is divided
by the other capital (P). Then perform the operation
of sarkramapa in relation to the square-root of the
remainder (obtained as the result of subtracting the
quotient so obtained) from the square of the mixture
(7) and the mixture.””®

Miscellaneous Problems on Interest. Besides the
problems given above various other interesting prob-
lems are found in the Hindu works on pdtiganita.
Thus Brahmagupta gives the solution of the following
problem:

Example. In what time will a given sum s, the
interest on which for # months is r, become £ times
itself?

The rule for the solution of the above is:®
“The given sum* multiplied by its time and divided
! GSS: P- 69(54)'
2GS, p. 69(33).

3 BrSpSi, p. 181,
¢The Sanskrit term used is pramdna (argument).
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by the interest,® being multiplied by the factor? less
one, is the time (requited).”

The Gapita-sdra-samgraba (850) contains a large
number of problems relating to interest. Of these may
.be mentioned the following:

(1) “In this (problem), the (given) capitals are (¢, =)
40, (¢,=) 30, (;=) 20 and (¢,=) 50; and the months
ate (£.=) 5, (=) 4, (=) 3 and (#,=) 6 (respectively).
The sum of the interests is (=) 34. (Assuming'the
rate of interest to be the same in each case, find the
amounts of interest in each case).”®

Here, if the rate of iriterest per month for 1 be r,
then

X X, X2
.t P Y T
where X, X, Xgyeeoess are "the interests earned on the
capitals ¢,, ¢,, ¢y 0t in 2,2,4 ...... months res
pectively.
Therefore,
Xy o Xy . XXt
at ¢,t, oty e et et et
. »
W ST 2 T R
or X, = 7 ety etc.

51?1+‘2t2+€ats+ e’
This formula is given by Mahavira for the solution
* The Sanskrit term used is phala (fruit).

2 The Sanskrit term used is gupa (multiple).
3 GSS, p. 70(38).
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of the above problem.*

(2) “(Sums represented by) 10, 6, 3 and 15 are the
(various given) amounts of interest, and 5> 45 3 and 6
are the (corresponding) months (for which the interests
have accrued); the sum of the (corresponding) capital
amounts is seen to be 140. (Assuming the rate of
interest to be the same in each case, find out these
capital amounts).”*

(3) “Here (in this problem) the (given) capital
amounts are 40, 30, 20 and so; and 10, 6, 3 and 15 are
the (corresponding) amounts of interest; 18 is the
quantity representing the mixed sum of the respective
periods of time. (Find out these periods separately,
assuming the rate of interest to be the same in each
case).””

(4) “The interest on 8o for 3 months is unknown;
7% is the mixed sum of that (unknown quantity taken
as the) capital lent out and of the interest thercon
for 1.year. What is the capital here and what the
interest?”*

(s) ‘““The mixed sums (capital4interest) are 5o, 58
and 66, and the months (during which interests have
accrued) are 5, 7 and 9 (respectively). Firnd out what

1 GSS, p- 70(37). The formula clearly shows that Mahavira
konew the algebraic identity

8 -f | o Sheket..
& 4 F T bat A

2 GSS, p. 70(40). The solution is given by Rule 39 on the
same page.

® GSS, p. 70(43). The solution is given by Rule 42 on the
Same page.

¢ G55, p. 71(46). This is similar to Aryabhata’s problem
given before (p. 217).
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the interest is (in each case, the capital being the same)?”’!

(6) “The mixed sums of the capital and periods of
interest are 21, 23, and 25; here (in this problem) the
amounts of interest are 6, 10 and 14. What is the
common capital?”’?

(7) “Borrowing at the rate of 6 per cent and then
lending out at the rate of 9 per cent, one obtains in
the way of differential gain 81 at the end of 3 months.
What is the capital (utilised here)?”’*

(8) ““The monthly interest on 6o is exactly 5. The
capital lent out is 35; the (amount of the) instalment
(to be paid) is 15 in (every) 3 months. What is the
time of discharge of that debt?”’*

“The mixed sum (of the capital amounts lent
out) at the rates of 2, 6 and 4 per cent per mensem is
4400. Here the capital amounts are such as have equal
amounts of interest accruing after 2 months. What
(are the capital amounts lent, and what is the equal
interest)?’’®

(10) ““A certain person gives once in 12 days an
instalment of 2%, the rate of interest being 3 per cent
(per mensem). What is the capital amount of the debt
discharged in 10 months?”*

(11) “The total capital represented by 85zo is in-
vested (in parts) at the (respective) rates of 3, § and 8
per cent (per month). Ther, in this investment, in §

1GSS, p. 71 (48). The solution requires the use of the
identity
a a— ¢
s =

£
d b—d’

2GSS, p. 72(52).
3 GSS, p. 72(55)
“GSS, p. 73(59)-
5 GSS, p. 73(61).
¢ GSS, p. 73(65)-

15
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months the capital amounts lent out are, on being
diminished by the respective amounts of interest,
(found to be) equal in value. (What are the respective
amounts invested thus?)”*

(12) “The total capital represented by 13740 is
invested (in parts) at the (respective) rates of 2, 5 and 9
per cent (per month), then, in this investment, in 4
months the capital amounts lent out are, on being
combined with the (respective) amounts of interest,
(found to be) equal in value. (What are the respective
amounts thus invested?)”’?

(13) ‘A certain man borrows a certain (unknown)
sum of money at an interest of 5 per cent per month, He
pays the debt in instalments, due every £ of a month.
The instalments begin with 7 and increase in arithmeti-
cal progression, with 7 as the common-difference. 6o is
the maximum amount of instalment. He gives in the
discharge of his debt the sum of a series in arithmetical
progression consisting of €2 terms. After the payment
of each instalment, interest is charged only on that
part of the principal which remains to be paid. What
is the total payment corresponding to the sum of the
series, what is the interest (which he paid), what is the
time of the discharge of the debt, (and what is the
principal sum borrowed)?”’?

Barter and Exchange. The Hindu name for barter
is bbinda-prati-bhinda (““‘commodity for commodity’).
All the Hindu works on pdtiganita contain problems
relating to the exchange of commodities. It is pointed
out in these works that problems on barter are cases
of compound proportlon and can be solved by the

1 GSS, p. 74(67).

2 G.S'.S' p. 74(67).

8 GSS, pp. 74f, (72-733). The text of the problem is verv
obscure. The translation given here is after Rangacarya,
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. Rule of Five, etc. A typical problem on barter is the
following:

“If three hundred mangoes be had in this market
for one dramma, and thirty ripe pomegranates for a papa,
say quickly, friend, how many (pomegranates) should
be had in exchange for ten mangoes?”*

Other Types of Commercial Problems. Of
various other types of commercial problems found in the
Hindu works may be mentioned (1) problems on part-
nership and proportionate division, and (z) problems
relating to the calculation of the fineness of gold.?
Most of these problems are essentially of an algebraic
character, but they are included in pdtigapita (arithmetic).
The formule giving the solution of each type of
examples precede the examples. These formule
are too numerous to be mentioned. The following
examples, however, will illustrate the nature and the
scope of such problems:

(1) A horse was purchased by (nine) dealers in
partnership, whose contributions were one, etc., upto
nine; and was sold by them for five less than five
hundred. Tell me what was each man’s share of the sale-
proceed.

(2) Four colleges, containing an equal number of
pupils, were invited to partake of a sacrificial feast.
A fifth, a half, a third and a quarter (of the total number
of puplls in the college) came from the respective
colleges to the feast; and added to one, two, three and
four, they were found to amount to elghty seven; of,
with those deducted, they were sixty-seven. Find the
actual number of the pupils that came from each
college.

1L, p. 20
s P-
2 Such problems are found in the Lildvati, the Gapita-sira-
sarvigraha, the Trifatikd, etc.
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(3) Three (unequal) jars of liquid butter, of water .
and of honey, contained thirty-two, sixty and twenty-four
pala respectively: the whole was mixed together and the
jars filled again. Tell me the quantity of butter, of
water and of honey in each jar.!

(4) According to an agreement three merchants
carried out the operations of buying and selling. The
capital of the first consisted of six pwrdpa, that of the
second of eight paurdpa, but that of the third was
unknown. The profit obtained by these men was 96
purédpa. 1In fact the profit obtained by him (the third
person) on his unknown capital happened to be 40
purdna. What was the amount thrown by him into
the transaction and what was the profit of each of the
other two merchants??

(s) There were four merchants. Each of them
obtained from the others half of what he had with him
(at the time of the respective transfers of money). Then
they all became possessed of equal amounts of money.
What was the measure of money each had to start with?®

(6) A great man possessing powers of magical
charm and medicine saw a cock fight going on, and
spoke separately in confidential language to both the
owners of the cocks. He said to one, “If your bird
wins, then you give the stake-money to me. If, however,
your bird loses then I shall give you two-thirds of that
stake-money.” He went to the owner of the other cock
and promised to give three-fourths (of his stake-money
on similar conditions). In each case the gain to him
could be only 12 (gold-pieces). Tell me, O ornament

! This and the two previous examples are given by Prthudaka-
svimi to illustrate Rule 16 of the ganitidhyiya of the Bribma-sphuta-
siddbdnta.

2 GSS, p. 94(223-~5).

* GSS, p. 99(2673)-
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on the head of mathematicians, the money each of the
cock-owners had staked.?

(7) The mixed price of 9 citrons and 7 fragrant
wood-apples is 107; again the mixed price of 7 citrons
and 9 fragrant wood-apples is 101. O arithmetician,
tell me quickly the price of a citron and of a wood-
apple, having distinctly separated those prices.?

{8) Pigeons are sold at the rate of 5 for 3 (pana),
sdrasa birds at the rate of 7 for 5 (papa), swans at the
rate of g for 7 (papa) and peacocks at the rate of 3 for 9
(pana). A certain man was told to bring at these rates 100
birds for 100 (pasa) for the amusement of the king’s son,
and was sent to do so. What (amount) does he give
for each (of the various kinds of birds that he buys)?*

(9) There are 1 part (of gold) of 1 varna, 1 part of
2 varpa, 1 patt of 3 varpa, 2 partts of 4 varpa, 4 parts of s
varpa, 7 parts of 14 varpa, and 8 parts of 15 varpa. Throw-
ing these into the fire, make them all into one (mass), and
then (say) what the varnu of the mixed gold is. This
mixed gold is distributed among the owners of the fore-
going parts. What does each of them get?*

(10) Three pieces of gold, of 3 each in weight, and
of 2, 3 and 4 varpa (respectively), are added to (an
unknown weight of) gold of 13 warpa. The resulting
varpa comes to be 10. Tell me, O friend, the measure
(of the unknown weight) of gold.®

' GSS, pp. 99-100(2704-23).

2 GSS, p. 84(1408-23).

3GSS, p. 85(152-3).

* GSS, p. 88 (170-14).

5 GSS, p. 89(281). Similar examples occur in the Trifasikd
(p. 26) and the Lilgvati (p. z25).



" 230 ARITHMETIC

14. MISCELLANEOUS PROBLEMS

Regula Falsi. The rule of false position is found
in all the Hindu works.* Bhiskara II gives prominence
to the method and calls it 7sfa-karma (“rule of
supposition”). He describes the method thus:

“Any number, assumed at pleasure, is treated as
specified in the particular question, being multiplied
and divided, increased or diminished by fractions (of
itself); then the given quantity, being multiplied by the
assumed number and divided by that (which has been
found) yields the number sought. This is called the
process of supposition.”?

Sridhara takes the assumed number to be one.?
Mahivira gives a large variety of problems to which
he applies the rule.* Gane$a in his commentary on the
Lilgyati remarks, “In this method, multiplication, divi-
sion, and fractions only are employed.” The following
examples will illustrate the nature of the problems
solved by the rule of supposition:

(1) Out of a heap of pure lotus flowers, a third, a
fifth, a sixth were offered respectively to the gods Siva,
Visnu and Siirya and a quarter was presented to Bhavini.
The remaining six were given to the venerable preceptor.
Tell quickly the number of lotuses.®

(2) The third part of a necklace of peatls, broken in

! The method originated in India and went to Europe through
Arabia. ‘There is a medizval MS., published by Libri in his
Histoire, 1, 304 and possibly due to Rabbi ben Ezra in which the
method is attributed to the Hindus. For further details and
references, see Smith, History, 11, p. 437, foot-note 1.

*L, p. 10,

3 See the rule on stambboddesa, Tris, p. 13.

% These problems occur in chapters iii and iv of the Ganita-
sdra-sanigraha.

5L, p.11. Cf. GSS, p. 48 (7).
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an amorous struggle, fell to the ground; its fifth part
rested on the couch; the sixth part was saved by the
wench; and the tenth part was taken by her lover:
six pearls remained strung. Say, of how many peatls
was the necklace composedr*

(3) One-twelfth part of a pillar, as multiplied by 44
part thereof, was to be found under water; 35 of the
remainder, as multiplied by % thereof, was found
buried in the mire below; and 20 basza of the pillar were
found in the air (above the water). O friend, give out
the length of the pillar.?

(4) A number of parrots descended on a paddy
feld, beautiful with crops bent down through the weight
of ripe corn. Being scared away by men, all of them
soddenly flew off. One-half ot them went to the
east, one-sixth went to the south-east; the difference
between those that went to the east and those that
went to the south-east, diminished by half of itself
and again diminished by half of this (resulting
difference), went to the south. The difference between
those that went to the south and those that went
to the south-east diminished by two-fifths of itself
went to the south-west; the difference between
those that went to the south and those that went to,
the south-west, went to the west; the difference between
those that went to the south-west and those that went
to the west, together with three-sevenths of itself went
to the north-west; the difference between those that
went to the north-west and those that went to the west
together with seven-eighths of itself, went to the north;
the sum of those that went to the north-west and those
that went to the north, diminished by two-thirds of itself
went to the north-east; and 280 parrots were found to

1 Trif, p. 14, ¢f. GSS, p. 49 (17-22) for a similar example.
2 GSS, p. 55(60). Cf. Trif, p. 13.
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remain in the sky above. How many were the parrots
in all?*

The Method of Inversion. The method of
inversion called wilomagati (“working backwards™) is
found to have been commonly used in India from very
early times. Thus Aryabhata I says:

“In the method of inversion multipliers become
divisots and divisors become multipliers, addition be-
comes subtraction and subtraction becomes addition.””2

Brahmagupta’s description is more complete. He
says:

“Beginning from the end, make the multiplier
divisior, the divisor multiplier; (make) addition subtrac-
tion and subtraction addition; (make) square square-
root, and square-root square; "this gives the required
quantity.”’®

The following examples will illustrate the nature
of problems solved by the above method:

(1) What is that quantity which when divided by
7, (then) multiplied by 3, (then) squared, (then) increased
by 5, (then) divided by £, (then) halved, and then

reduced to its square-root happens to be the number
594

(2) The residue of degrees of the sun less three,
being divided by seven, and the square-root of the
quotient extracted, and the root less eight multiplied by
nine, and to the product one being added, the amount is

1 GSS, pp. 48f (12-16).

2 A, Gapitapida, 28.

® BrSpSi, p. 301. The method occurs also in GSS, p. 102
(286) MS5i, p. 149; L, p. 9; etc.

* GSS, p. 102 (287) Examples of this type are very common
in Hindu anthmctlc They were also very common in Europe.
Smith in his History, II, quotes two such problems from an
American arithmetic of ghc 16th century.
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a hundred. When does this take place on a Wednesday?*

Problems on Mixture. The Hindu works on
pdtiganita contain a chapter relating to problems on
mixture (mifraka-yyavahira). Miscellaneous problems on
interest, problems on allegation, and various other
types of problems, in which quantities are to be
separated from their mixture, form the subject matter
of miSraka-vyavahira. A chapter ‘on mixture” (D¢
mescolo) is found in eatly Italian works on arithmetic,
evidently under Hindu influence.?

Some of the problems of this chapter are deter-
minate and some are indeterminate. A few relating to
interest and allegation have already been given.* The
following are some others:

(1) In the interior of a forest, 3 heaps of pomegra-
nates were divided (equally) among 7 travellers, leaving
1 fruit as remainder; 7 (of such heaps) were divided
among 9, leaving a remainder of 3 (fruits), again § (of
such heaps) were divided among 8, leaving 2 fruits as
remainder. O mathematician, what is the numerical
value of a heapr*

(2) On a certain man bringing mango fruits home,
his elder son took one fruit first and then half of what
remained. The younger son did similarly with what
was left. He further took half of what was left there-
after; and the other took the other half. Find the
number of fruits brought by the father?®

! Colebrooke, cha, p. 333 (18).

? Smith, History, 11, p. 588, note 4.

% See commercial problems, pp. 216ff; also problems on pro-
portionate division (praksepa-karana): Trif, p. 26; GSS, p.
75(79%) MSi, pp. 154-155.

GSS, p. 82 (1283). Such problems are given under the
rule of vallikd-kuttikdra by Mahavxra

5 GSS, p. 82 (1315)
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(3) A certain lay follower of Jainism went to a Jina
temple with four gate-ways, and having taken (with him)
fragrant flowers offered them in worship with devotion
(at each gate). The flowers in his hand were doubled,
trebled, quadrupled and quintupled (respectively in
order) as he arrived at the gates (one after another).
The number of flowers offered by him was sixty' at
each gate. How many flowers were originally taken
by him?

(4) The first man has 16 azure-blue gems, the
second has 10 emeralds, and the third has 8 diamonds.
Each among them gives to each of the others 2 gems
of the kind owned by himself; and then all three men
come to be possessed of equal wealth. What are the
prices of ‘those azure-blue gems, emeralds and dia-
mondsr?

(s) In what time will four fountains, being let
loose together, fill a cistern, which they would severally
fill in a day, in half a day, in a quarter and in a fifth
part of a day?®

Problems involving Solution of Quadratic
Equations. The solution of the quadratic equation
has been known in India from the time of Aryabhata I
(499). Problems on interest requiring the solution of
the quadratic equation have already been mentioned.
Mahavira and Bhiskara I1 give many other problems.
Mahivira divides these problems into two classes:
(9) those that involve square-roots (##/z) and (i) those

1 GSS, p. 79 (1128-1134). The printed text has pasca (“five”).
According to it the answer is 43 /12 which appears absurd. There
are some other problems in the printed edition which give such
absurd results. All those are, we presume, due to the defects of
the mss. consulted by the editor. So here we have made the
cmendation ‘sixty.’

*GSS, p. 87 (165-166).

8 BrSpSi, p. 177 (com.); L, p. 23.
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that involve the square (varga) of the unknown. The
first type gives a single positive answer, while the second
type has two answers corresponding to the two roots
of the quadratic. Bhéskara II deals with the first type
of problems only in his pdtiganita, the Lildvati. The
second type of problems, involving the square of the
unknown has been treated by him in his Bijaganita
(algebra). The following examples will illustrate the
nature and scope of such problems:

Problems involving the square-root:

(1) One-fourth of a herd of camels was seen in the
forest; twice the square-root of that had gone to
mountain slopes; and three times five camels were found
10 remain on the bank of a river. What was the numerl-
cal measure of that herd of camels??

(2) Five and one-fourth times the square-root (of 4
herd) of elephants are sporting on a mountain slope;
five-ninths of the remainder sport on the top of the
mountain; five times the square-root of the remainder
sport in a forest of lotuses; and there are six elephants
then (left) on the bank of a river. How many are the
clephantsr?

(3) In a garden beautified by groves of vatious
kinds of trees, in a place free fromall living animals, many

1 GSS, p. 51(34). The problem belongs to the type of the
mila-jiti, and leads to an equation of the form x—(bx—+c\/x+-a)=o.
‘The method of solution is given in GSS, p. 50 (33).

2 GSS, p- 52 (46). The problem is of the JSesa-mila variety.
It gives the equation
x—Px—§ (—FVx) —5 Vx—Ex —i—3 N x) = 6.
Mahévira reduces it by putting z = x—2I\/x —§ (x— -3\/x)-
to 2—5v/% =6. In the general case a similar equation is again

obtained;, which is again reduced, and so on till the equation
is reduced to the form, x—b\/% = a’ from which x can be easily

obtained.
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ascetics were seated. Of them the number equivalent
to the square-root of the whole collection were practis-
ing yoga at the foot of a tree. One-tenth of the
remainder, the square-root (of what remained after
this), 4 (of what remained after this), then the square-
root (of what remained after this), 4 {of what remained
after this), the square-root (of what remained after this),
1 (of what remained after this), the square-root
(of what remained after this), & (of what remained
after this), the square-root (of what remained after this),
4 (of what remained after this), the square-root (of what
remained after this)—these parts consisted of those who
were learned in the teaching of literature, in religious law,
in logic, and in politics, as also of those who were
versed in controversy, prosody, astronomy, magic,
rhetoric and grammar, as well as of those who pos-
sessed an intelligent knowledge of the twelve varieties
of the ariga-fdstra; and at last 12 ascetics were seen (to
remain without being included among those mentioned
before). O excellent ascetic, of what numerical value
was this collection of asceticsr*

(4) A single bee (out of a swarm of bees) was seen,
in the sky; 1 of the remainder (of the swarm), and }
of the remainder (left thereafter) and again % of the
remainder (left thereafter) and a number of bees equal
to the square-root of the numerical value of the swarm,
were seen in lotuses; and two bees were on a mango
tree. How many were therer?

(s) Four times the square-root of half the number
of a collection of boars went to a forest wherein tigers

1GSS, p. 52 (42-45). The problem is of the same variety
as the above one. The substitution will have to be made 6 times
to reduce the resulting equation.

2GSS, p. 53 (48). This problem is of the dviragra-sesa-mila
variety.
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wete at play; 8 times the square-root of {4 of the remain-
der went to a mountain; and 9 times the square-root
of 4 of the (next) remainder went to the bank of
a river; and boars equivalent in (numerical) measure to
56 were seen to remain in the forest. Give the numerical
measure of all those boars.?

(6) The sum of two (quantities, which are respec-
tively equivalent to the) square-root (of the numerical
value) of a collection of swans and (the square-root of the
same collection) as combiped with 68, amounts to 347
How many swans there are in that collection??

(7) Partha (Arjuna), irritated in fight, shot a quiver
of arrows to slay Karpa. With half his arrows, he
parried those of his antagonist, with four times the
square-root of the quiver-full, he killed .his horses;
with three he demolished the umbrella, standard and
bow; and with one he cut off the head of his foe.
How many were the arrows, which Arjuna let fly?®

(8) The square-root of half the number of a swarm
of bees is gone to a shrub of jasmin; and so are eight-
ninths of the whole swarm; a female is buzzing to one
remaining male that is humming within a lotus, in
which he is confined, having been allured to it by its

1GSS, p. 54'(56). This problem is of the amfz-mila variety,
wheréin fractional parts of square-roots are involved. Thc prob-
lems give equatlons of the form

x— al\/b,y — .az\/bz(x— a, \/?)
—a\/bsl(x—a\\/b,x) — e b(x—an\/b,x) —...=k.

By repeated substitutions Mahivira reduces the equation to the
form x — A\/Bx — ¢ = o.

2GSS, p. 56 (68). This problem is of the mila-misra variety,
wherein the sum of square-roots is involved. It gives an equa-
tion of the form ~/x —|—\/gc_£d = m.

L, p. 16.
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fragrance at night. Say, lovely woman, what is the
number of bees.*

Problems imvolving the square of the unknown:

(9) One-twelfth part of a pillar, as multiplied by -

part thereof, was found under water; 45 of the remainder,
as multiplied by 4% thereof, was found buried in the
mire, and 20 basta of the pillar were found in the air.
O friend, give the measure of the length of the
pillar.?
" (10) A number of elephants (equivalent to) 4 of
the herd minus 2, as multiplied by the same (4% of the
herd minus 2), is found playing in a forest of sallaki
trees. The remaining elephants of the herd equal in
number to the square of 6 are moving on a mountain.
How many are the elephants?®

AN

15. THE MATHEMATICS OF ZERO

It has been shown that the zero was invented in
India about the beginning of the Christian era to help
the writing of numbers in the decimal scale. The
Hindu mind did not rest satisfied till it evolved the
complete arithmetic of zero. The Hindus included
zero among the numbers (sa7ikhyd), and it was used

'L, p. 16.
2 GSS, p- 55 (60). The problem gives the equation
x? 1.3 x? L,
(e — 12.30) T 20.16 (r— xz-;o) =20

1
12.30

Also solved by regula falsi. Mahivira puts (x — x*= g, and

then solves the quadratic

3
Z— T 320
The roots of this are then used to get the values of x.
3 GSS, p. 55 (63).

2= 20.
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in their arithmetic at the time when the original of
the Bakhshili Manuscript was written, about the third
century A.D. The operation of addition and subtrac-
tion of zero are incidentally mentioned in the Pasca-
siddhdntikd of Vardhamihira (505). The complete
decimal arithmetic is found in the commentary of
Bhiskara I (c. 525) on the Aryabbativa. The results of
operations by zero are found stated in the work of
Brahmagupta (628) and in all later mathematical treatises.
The treatment of zero in the arithmetic of ‘the Hindus
is different from that found in their algebra. In order,
therefore, to bring out this difference clearly, we give
separately the results found in pdtiganita (arithmetic)
and in bijagapita (algebra).

Zero in Arithmetic. The Hindus in their arith-
metic define zero as the result of the operation

a—a =0

This definition is found in Brahmagupta’s work' and
is repeated in all later works. It is directly used in the
operation of subtraction. In carrying out arithmetical
operations, the results of the operations of addition,
subtraction and multiplication of zero and by zero
are required. The Hindus did not recognise the opera-
tion of division by zero as valid in arithmetic; but
the division of zero by a number was recognised as
valid.. Naryana in his pdtigapita (arithmetic) has clearly
stated this distinction: '

“Here in pdtigapita, division by zero is not recog-
nised, and therefore, it is not mentioned here. As it
is of use in bijagapita (algebra), so I have mentioned
division by zero in my Bijaganita.’®

L Br8pSi, p. 309. Cf. B. Datta, BCMS, XVIII, pp. 165-176 for
some other details regarding operations with zero.
# GK, remark subjoined to i 3o. -
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cipher. A number divided by zero is Aha-bara (that
number with zeto as denominator). The product of
(a number and) zero is zero, but it must be retained as
a multiple of zero (kba-gauna), if any further operations
impend. Zero having become a multiplier (of a number),
should zero afterwards become a divisor, the number
must be understood to be unchanged. So likewise
any number, to which zero is added, or from which it
is subtracted (is unaltered).”*

In the Bjjagenita, the same results are given with
the addition that if a quantity is subtracted from zero,
its sign is reversed, while in the case of addition the sign
remains the same.

Zero as an Infinitesimal. It will be observed
that Brahmagupta directs that the results of the opera-
tions x -+ o and o = x should be written as % and ~
respectively. It is not possible to tell exactly what he
actually meant by these forms. It seems that he did
not specify the actual value of these forms, because the
value of the variable x is not known. Moreover, the
zero seems to have been considered by him as an
infinitesimal quantity which ultimately reduces to
nought. If this surmise be correct, Brahmagupta is
quite justified in stating the results as he has done.

The idea of zero as an infinitesimal is more in evi-
dence in the works of Bhiaskara II. He says: “The
product of {a number and) zero is zero, but the number
must be retained as 2 multiple of zero (kba-guna), if any
further operations impend.” He further remarks that
this operation is of great use in astronomical calculations.
It will be shown in the section on Calculus, that
Bhiskara II has actually used quantities which ultimately
tend to zero, and has successfully evaluated the differen-
tial coefficients of certain functions. He has, moreover,

1L, p. 8.
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used the infinitesimal increment f’(x)dx of the function
f(x), due to 4 change 8x in x.

The commentator Krsna proves the result oXz = o
= gX o as follows:

“The more the multiplicand is diminished, the
smaller is the product; and, if it be reduced-in the ut-
most degree, the product is so likewise: now the utmost
diminution of a quantity is the same with the reduction
of it to nothing; therefore, if the multiplicand be nought,
the product is cipher. In like manner, as the multiplier
decreases, so does the product; and, if the multiplier be
nought, the product is so too.” '

In the above zero is conceived of as the limit of a
diminishing quantity.

Infinity. The quotient of division by zero of a
finite quantity has been called by Bhiskara II as &ha-
bara, which is synonymous with &ba-cheda (the quantity
with zero as denominator) of Brahmagupta. Regard-
ing the value of the &ha-hara, Bhiskara II remarks:

“In this quantity consisting of that which has
cipher for its divisor, there is no alteration, though many
may be inserted or extracted; as no change takes place
in the infinite and immutable God, at the period of the
destruction or creation of worlds, though numerous
crders of beings are absorbed or put forth.”*

From the above it is evident that Bhaskara II

'knewthat%=ooandoo + A= .

! BBf, pp. 5-6. G. Thibaut (Astronomie, Astrology wund Ma-
thematik,, Strasbourg, 1899, p. 72) thought that this passage was
an interpolation. There appears no justification for considering
this as an interpolation, as the passage occurs in the oldest
known commentary and in all copies of the work so far found.
Cf. Datta, le., p. 174.
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Ganeda remarks that fo‘—is “an indefinite and unli-

mited or infinite quantity: since it cannot be determined
how great it is. It is unaltered by the addition or
subtraction of finite quantities: since in the preliminary
operation of reducing both fractional expressions to a
common denominator, preparatory to taking their sum
or difference, both numerator and denominator of the
finite quantity vanish.”
Krsna remarks:

“As much as the divisor is diminished, so much is
the quotient increased. If the divisor is reduced to the
utmost, the quotient is to the utmost increased. But,
if it can be specified, that the amount of the quotient
is so much, it has not been raised to the utmost: for a
quantity greater than that can be assigned. The quo-
tient, therefore, is indefinitely great, and is rightly
termed infinite.”

Regarding the proof of 50‘- + &= %K;sga makes

the same remarks as Gane$a. He, however, goes a
step further when he says that

a __ b ‘

o o]

This is illustrated by him through the instance of the
shadow of a gnomon, which at sun-rise and sun-set
is infinite; and is equally so whatever height be given
to the gnomon, and whatever number be taken
for the radius. *‘... Thus, if the radius be 120; and
the gnomon be 1, 2, 3 or 4; the expression deduced
from the proportion, as sine of sun’s altitude is to
sine of zenith distance, so is gnomon to shadow,
becomes 142, 240, 360 or 280 . O, if the gnomon be,
as it is usually framed, 12 fingers, and radius be taken
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as 3438, 120, 100 of 9o, the expression will be #1256
L4520, 1200 or 1080 which are all alike infinite.””

Indeterminate Forms. Brahmagupta has made the
Incorrect statement that

oo

= O
Bhéskara II has sought to cotrect this mistake of
Brahmagupta. According to him

. a.
LI”Z 88 =
g —0

8

His language, however, in stating this result is defective,
for he calls the infinitesimal & zero, not being in
possession of a suitable technical term. That, in the
above case, he actually meant by zero a small quantity
tending to the limiting value zero, is abundantly clear
from the use he makes of the result in his Astronomy.
Taylor? and Bapu Deva Sastrf® are also of this opinion.

Bhiskara has given three illustrative examples.
They are:

(sxor 222)

(?) Evaluate S = 63.

From this he derives the result x= 14, which is
correct if we consider o=g, a small quantity tending
to zero. His other examples are:

.. x x
(@) {Gtx—9)"+G+x—9)} 0o =90
giving x = 9; and
 All the above passages are taken from the respective com-
mentaries. They have been noted by Colebrooke, /.

® Liléwati, Bombay, 1816, p. 29.
® His Bija-gayita (in Hindi), Pt. 1, Benares, 1875, p. 179 et 5q.
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(@) {(x+ DXo}42{(x+)X0)}+o0 = 15,

giving x=2.
Bhiskara II’s result
2 Xo=aqa
(o]

is, however, not quite correct, as the form is truly
indeterminate and may not always have the value a.
His attempt, however, at such an early date to assign

a meaning to the form %, and his partial solution of the

problem are very creditable, seeing that in Europe
mathematicians made similar mistakes upto the middle
of the nineteenth century A. D.?

1 The answers of this and the previous example are incorrect
because o? has been taken to be equal to o.

? Martin Ohm (1828) says: “‘If 2 is not zero, but & is zero,’
then the quotient /b has no meaning” for the quotient “multi-
plied by zero gives only zero and not g, as long as ¢ is not zero.”
Lebrbuch der niedern Analysis, Vol. 1, Berlin, 1828, pp. 110, 112.
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Jaladhi, 13

Jarez de le Frontera, 94
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Kustha, 185

Kuttaka, 8

L
Labdha, 150
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Leonardo Fibonacci of Pisa, 94
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195, 196, 198, 199, 205,
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230, 233, 235, 237, 238,
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Maitriyani Samhitd, 9, 18, 185
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Mina, 204, 205 :

Manoraiijana, 132, 137

Marre, A., 100, 184

Marshall, 19
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Misi, 218

Mathematics, appreciation of, 3;
decay of, 127; Hindus and, 3;
in Hindu education, 6; of
zero, 238; scope and develop-
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Maximus Planudes, 104, 144, 184

Mazumdar, R.C.,59

Measures, see weights

Megasthenes, 21, 37

Mihir Yast, 101
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square of the unkown, 238;
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square-root, 235; problems
on mixture, 233; regula falsi,
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sion, 232

Misraka, 124; vyavahira, 219, 233
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Mitra, Rajendra Lal, 10, 97, 187

Mohammad, 88

Mohammad Ben Musa, 102

Mohenjo-daro, 19; and Harappa,
19, 23, 29; and the Indus
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Montucla, J.F., 99 .

Mudri, 7

Mudribala, 11

Muhtrta, 186

Mukerjee, Sir Asutosh, 17

Mala, 169, 170, 220, 234; athéa,
237; dviragra Sesa, 236;
ghana, 124, 175; jati, 235;
misra, 237; Sesa, 235; varga,
124, 169

Multiplication, 134; algeb-
raic methods, 149; Brahma-
gupta’s method, 136; by

separation of places, 146;
cross-multiplication method,
145; direct process,138; door-
junction method, 135; gelosia
method, 144; inverse method,
139; methodsof, 135: parts—
method, 148; terminology,
134; transmission to the
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147
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Muni$vara, 213
Myriad, 9

N
Nigabala, 10
Négarl script, 39
Nigirjuna, 2
Nahuta, 12
Naisadha-carita, 85
Nallino, 83

Nirada, 4

Nardyana, 13, 137, 152, i61,
162, 167, 168, '183, 184,
205, 240 "

Nau, F., 95

Nava 13,—dasa r;,—-wmsatx 15

Nava- radika, 124 '

Neil, R.A., see Cowell

Nikharva, IO, 13

Nilakantha, 67, 170

Ninnahuta, 12

Nirabbuda, 12

Niravadya, 11

Niruddha, 195

Niska, 213, 214, 215, 216

Niyuta, 9, 10, 12

Notation, abjad, decimal
place-value, 3; difference
from other, 27; epigraphic
instances of decimal place-
value, 40; Greek alphabetic,
50; places of, 12; scale of, g

Numeral, ghobir, 89, 90, 91, 93,
94; Hieratic and Demotic, 28;
Hindu, 38; Kharosthi and
Semitic, 28

Numeral notation, 1; Brihmi,
z5; earliest, 19; in spoken
language, .13; Kharosthi,
21; terminology, 9

Numerical, Ajokan—figures, 37;
development of :symbolism,
16

89;
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Nyarbuda, 9,10, 13
o

Ojha, 17, 24
Oldenburg, 4
Operations, checks on, 180

P

Pacioli, 146

Pada, 155, 169, 170, 177

Padma, 13; mahi, 13

Paduma, 12

Pana, 206, 216, 218, 227, 229

Pafica, 13

Pafica-risika, 124

Paiica-siddhintiki,
239

Panini, 2, 18, 33, 63, 218

Pankti, 173

Pannavani-sitra, 37

Papyrus Blacas, 24

Parames$vara, 67, 155, 197

Parirdha, 9, 13

Parasparakrtam, 134

Pargiter, 58

Parikarma, 8

Patala, 18

Pitana, 132

Pataiijali, 2, 63, 85

Padd, 8, 124, 126, 129, 138,
139, 140, 141, 148, 152,
157, 158, 159, 173, 174, 177,
178, 180

Pitiganita, 8, 82, 123, 126, 128,
151, 184, 187, 195, 222, 226,
227, 233, 233, 239, 240

Patisdra, 125, 213

Parta, 123

Pattopidhyiya, 5o

Peurbach, 175

Phala, 198, 204, 205, 2006, 208,
212, 216, 220, 223, 228

Phalaka, 123

59, 78, 79,
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Phoenician forms (of numerals),
24

Phoenician script, 17

Pingala, 75, 76, 77

Place-value, date of invention
of the notation, 86; in Hindu
literature, 83 ; in Jain cano-
nical works, 83; in literary
works, 85; in works on
philosophy, 85; invention of
system, §1; fiew notation,
53; principle, 39; the decimal
notation, 4o0; the decimal
system, 43

Plate, Cambay—of Govinda, 43;
Chargaon—fof Huviska, 47;
Ciacole, 40; Daulatabad—of
Sarkargaga, 41; Dhiniki
Copper, 40; Grant of Avani-
varmana, 42; Grant of
Balavarmana, 42; Gurjara
Grant, 40, 45, 48; Kadab,
6o; Panduke$vara—of Lalita-
suradeva, 41; Ragholi, 4o,
82; Sangli—of Rdistrakita
Govindarija, 43; Torkhedi, 41

Prabhiga, 190

Prakespa karana, 233

Prikrta, 170

Praksepana, 130

Praména, 198, 204, 205, 223;
radi, 198; paksa, 211, 213

Pratiloma, 151

Pratyutpanna, 135, 139, 140

Prayuta, 9, 12, 13

Princep, James, 33

Prthudakasvami, 77,
148, 156, 163, 228

Pulisa, 61, 79

Pundarika, 12

Purina, 2, 84, %6, 2006, 228;
Agni, 58, 59, 62, 84, 86;
Vayu, 84; Visnu, 84

124, 129,
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Plrva, 164
R
Rabbi ben Ezra, 96, 103, 217,
230
Radix, 170
Réjatarangini, so
Rajju, 8

Ramanujacaria, 156, 168
Rimiyana, 2

Rangacarya, 151, 226

RA4Si, 8, 124; rupdmsaka, 199
Ray, H.C,, 17

Ray, Sir P.C., 85

Regula falsi, 230, 238
Reindud, 97, 98

Rgveda, 9, 15, 17, 18, 20,
57> 185'

Rhys Davids, 7

Riese, 149

Rodet, 65, 66, 170, 175

Rosen, 102

Rule of Three, 203 ; apprecia-
tion of, 208; as a particular
case, 216; compound propor-
tion, 210 ; illustration, 213 ;
inverse, 207; proportion in
the west, 210; terminology,
203; the method, 204, 211

Ripa, 6

Ripa-vibhiga, 136

S

Sachau, E.C., 98, 99
Sadgurudisya, 71
Sadratnamali, 7o
Sahasra, 9, 12, 13
Sakala, 199

Salila, 10

Samacaturadra, 155§
Samipta-lambha, 11
Samaviyinga-sitra, 6, 37
Samkalana, 130
Sarhkalita, 124, 130, 196
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Samkhyina, 4, 6, 7

Sammelana, 130

Samudra, 9, 10

Samyojana, 130

Sanatkumira, 4

Sadkaricirya, 85

Sankha, 13

Sinkhyayana é4rauta sGtra, 10

Sankramana, 221, 222

Sanku, 13

Sapha, 185

Sapta, 13

Sapta-ridika, 124

Saritapati, 13

Sarvabala, 11

Sarvadhana, 132

Sarvajfa, 11

Sarvinukramani, 71

Sastri, Madhava, 184

Sastri, Sambasiva, 67

Sara, 9, 12, 13; koti, 13

Satavihana, 25

Satottara ganani, 10 ; sarhjfii, 10

Savarnana, 194

Script, Indian, 16; Nigari, 39;
North Semitic, 17; Phoeni-
cian, 17; South Semitic, 16,

17

Sebokht, 89, 93, 95, 96

Sefer ha-Mispar, 103

Sefer Yesirdh, 98

Senart, E., 26

Sengupta, 175, 197

Sesa, 132

Shamasastri, R., 6, 19, 187, 218

Siddhinta, 3, 125, 128,
135, 150; Brihma-sphuta, 8,
59, 89, 156, 228, 241; Mahi,
125, 181, 183, 184, 240;
Parisar, 3; Pitdmaha, 3, 125;
JPulisa, 59, 62, 79, 86
Romaka, 125; Sekhara, 125,
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136; Sdrya, 3, 59, G2, 7125;
Tattva-viveka, 125; Vasistha,
3, 125 )

Siddhasena Gani, 80, 171

Sﬂﬁditya Vi, 52

Silberberg, Moritz, 103

Sindhind, 97

Singh, A.N., 170,
173, 175

Sfrsapraheliki, 12

Sitanath, Sti, 76

Skandasena, 188

Smith, 144, 146, 149, 150, 153,
154, 175, 210, 217, 230, 232,
233; and Karpinski, 11, 27,
30, 48, 8o, 83, 88; 89, 9o,
955 103 -

odhana, 132

Sodhya, 177, 178

Sogandhika, 12

Square, 155; minor methods of
squaring, 160; terminology,
155; the operation, 156

Square-rogt, 169; terminology,
169; the operation, 170

rauta-sitra, 58

Sredhi, 124

171, 172,

Sridhdra, ‘8, 13, 134, 136,
145, 155, 156, 157, 160,
161, 162, 163, 167, 168,
172, 1775 188, 190, 191,
192, 193, 196, 198, 199,
20§, 207, 212, .230, 240

Sridharicirya, see Sridhara

Stiharsa, 85 ;

tipati, 128, ‘136, 137, 138,

- 144, 145, 150, 167, 172

Stambhoddesa, 230 .

Sthina, 12, 161, 166;—~khanda,
146, 148

Sthaninga-sttra, 8, 204

Subandhu, 81, 82, 85

Subtraction, 132; direct process,
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tion, 132

Sulba 130, 134, 155, 170, 185,
188

Sumatiharsa, 184

Stnya, 38, 54, 77;—bindu, 81, 85

Stryadisa, 133, 197, 208, 211

Saryadeva, 67, 71

Su$ruta, 2

Suter, H., 51, 99, 102, 143, 174

Satra, 4

vetavarni, 129

T

Taccheda, 241 .
Thaittiriya Sarhhits, 9, 14, 1j;
Brihmana, see Brihmana

Talkhis, g9
Tallaksana, 11
Tantric, 19

Tarik al-hindi, 143

- ‘Tastha, 136, 145; gunana, see

gunana
Tattvirthidhigama-siitra, 8o,
151, 171
Taylor, 16, 29, 132, 147, 245
Theon of Alexandria, 171
Theophanes, 89
Theory, Indraji’s, 3¢
Thibaut, 155
Titilambha, 11
Trairdéika, 124, 203,
vyasta, 124, 207, 210
Tri, 13; pada, 185
Triprasna, s
Trisatika, 59, 125, 1571, 187, 204,
227, 229

204,

I Tropfke, 8o

U

Umasviti, 2, 80, 151, 189
Una-viméati, 15; trirhdat, 15
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Upanisad, Chandogya, 3, 58;-

Mundaka, 44
Uppala, 12 -
Utkrama, 131
Utsariga, 10
Uttara, 163
Uttaridhyayana-siitra, 4

v

Vidava, 10

Vadha, 134

Vijasaneyl sarhitd, 9,15

Vajribhyisa, 145, 146

Vajripavartana-vidhi, 196

Vallika-kuttikdra, 233

Valmiki, 2

Vardhamihira, 61, 79, 209, 239

Varitaka, 206

Varga, 8, 65, 66, 67, Gg, 124,
155, 156, 235; mila, see
mula; —varga, 8

Varna, 63, 229

Visavadatti, 81, 85

Vasistha, 17

Vedénga, 7, 19;—jyotisa, 7, 58

Vediséri, 25

Vibhatangama, 11

Vidya, apari, 4; Brahma, 4;
naksatra, 4; pard, 4; rasi, 4

Vikalpa, 8

Vinaya Pitaka, 4, 7

“Jinimaya, 204, 205

Visamjfid-gati, 11

Vivaha, 10

Vivara, 10

Viyoga, 132

Viyojaka, 132

Viyojya, 132

Vrnda, 13

Vyisabhasya, 87

Vyavahira, 8;—sflitra, 84

Vyavakalita, 124

Vyavasthdna-prajfiapti, 11
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Vyutkalana, 132
Vyutkalita, 124, 132

w

Wahshiya, 97

Warner, A.G., and Warner, E.,
100

Wischke, 104

Weber, 16, 17, 37, 58

Weights and Measures, 186

Whish, 65

Widman, 149

Woepcke, F., 90, 102, 143, 174,
184

Wolack, Gottfried, 83

Woods, J.H., 85

Word-numeral, §3; date of
invention, 62; explanation
of the system, 53; in inscrip-
tions, 59; list of, 54; origin
and early histoty, 6o; without
place-value, 57; with place-
value, 58;

Wright, W., 96

Writing in ancient India, 16

Y

Yajurveda, 9, 10, 20
Yiakub ibn Térik, 89
YAavat tivat, 8
Yoga, 130, 236;—sltra, 85
Yojana, 171, 172
Yukti, 130

. yA
Zero, as an infinitesimal, 242,
243;- earliest use, 75; form of
the symbol, 81; in algebra,
241; in  arithmetic, 239;
indeterminate forms, 245;
other uses of the symbol, 82;
the mathematics of, 238; the
symbol, 75
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PREFACE

The present work forms Part II of our History of
Hindu Mathematics and is devoted to the history of
Algebra in India. It is intended to be a source book,
and the subject is treated topicwise. Under each topic’
are collected together and set forth in chronological
order translations of relevant Sanskrit texts as found in
the Hindu mathematical works. This plan necessitates
a certain amount of repetition. But it shows to the
teader at a glance the improvements made from century
to century

To gather matetials for the book we have examined -
all the published mathematical treatises of the Hindus
as well as most of the important manuscripts available in
Indian libraries, a list of the most important of which
has already been included in Part I. We have great
pleasure in once more expressing our thanks to the autho-
rities of the libraries at Madras, Bangalote, Trivandrum,
Tripunithura, Baroda, Jammu, and Benares, and those
of the India Office (London) and the Asiatic Society
of Bengal for supplying transctipts of manuscripts or
sending them to us for consultation. We ate indebted
also to Dr. R. P. Paranjpye, Vice-Chancellor of the
Lucknow University, for help in securing for our use
several manuscripts or their transcripts from the State
libraries in India and the India Office.

In translating Sanskrit texts we have tried to be as
literal and faithful as possible without sacrificing the
spitit of the original, in order to preserve which we have
at a few places used literal translations of Sanskrit tech-



nical terms instead of modern terminology. For in-
stance, we have used the term ‘pulveriser’ for the equa-
tion ax+4-by=1, and the term ‘Square-nature’ for the
equation Nx24c=y2

The use of symbols—Iletters of the alphabet to de-
note unknowns—and equations are the foundations
of the science of algebra. The Hindus were the first
to make systematic use of the letters of the alphabet to
denote unknowns. They were also the first to classify
-and make a detailed study of equations. ‘Thus they may
be said to have given birth to the modern science of
algebra.

A portion of the subject matter of this book has been
available to scholars through papers by various authors
and through Colebrooke’s .Algebra with Arithmetic and
Mensuration from the Sanscrit of Brabmegupta and Bhas-
cara, but about half of it is being presented here for the
first time. For want of space it has not been possible
to give a detailed comparison of the Hindu achievements
in Algebra with those of other nations. For this the
reader is referred to the general works on the history of
mathematics by Cantor, Smith, and Tropfke, to Dixon’s
History of the Theory of Naumbers and to Neugebauer’s
Mathematische Keilschrift-Texte. A study of this book
along with the above standard works will reveal to the
reader the remarkable progress in algebra made by the
Hindus at an early date. It will also show that we are
indebted to the Hindus for the technique and the
fundamental results of algebra just as we owe to them the
place-value notation and the elements of our arithmetic.

We have pleasure in expressing our thanks to Mr.
T. N. Singh and Mr. Ahmad Ali for help in cotrecting
proofs and to Mr. R. D. Misra for preparing the index
to this volume.

LuckNow BIBHUTIBHUSAN DATTA
March, 1938 AvADHESH NARAYAN SINGH
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CHarTER II1
ALGEBRA
1. GENERAL FEATURES

Name for Algebra. The Hindu name for the
science of algebra is bijagapita. Bija means “element”

“analysis” and gemita “the science of calculation.”
Thus bijaganita literally means “the science of calcula-
tion with elements” or “the science of analytical
calculation.” The epithet dates at least as far back
as the time of Prthidakasvimi (860) who wused it.
Brahmagupta (628) calls algebra Axftaka-gapita, ot
51mply kuttakat ‘The term Aujfaks, meaning “pulve-
riser”, refers to a branch of the science of algebra
deahng particularly with the subject of indeterminate
equations of the first degree. It 1s interesting to find
that this subject was considered so important by the
Hindus that the whole science of algebra was named
after it in the beginning of the seventh century. Algebra
is also called avyakta-ganita or “the science of calculation
with unknowns” (ayyakta=unknown) in contradistinc-
tion to the name wyekta-ganita or “the science of calcu-
Jation with knowns” (zyakta=known) for arithmetic
ncluding geometry and mensuration,

Algebra Defined. Bhiskara II (1150) has defined
algebra thus:

“Analysis (bija) is certainly the innate intellect
assisted by the various symbols (narsa), which, for the

1See Bibhutibhusan Datta, “The scope and development
of the Hindu Ganita,” THQ, V, 1929, pp. 479-512; particularly
pp. 489f.
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instruction of duller intellects, has been expounded
by the ancient sages who enlighten mathematicians as
the sun irradiates the lotus; that has now taken the name
algebra (bijaganita).”’t

That algebraic analysis' requires keen intelligence
and sagacity has been observed by him on more than
one occasion.

“Neither does analysis consist in symbols, nor are
there different kinds of analyses; sagacity alone is ana-
lysis, for wide is imagination.”?

“Analysis is certainly clear intelligence.””® *

“Or intelligence alone is analysis.”4

In answer to the question, “if (unknown quantities)
are to be discovered by intelligence alone what then
is the need of analysis ?’” he says:

“Because intelligence is certainly the real analysis;
symbols are its helps. The innate intelligence which has
been expressed for the duller intellects by the ancient
sages, who enlighten mathematicians as the sun irradi-
ates the lotus, with the help of various symbols, has
now obtained the name of algebra.”’

Thus, according to Bhaskara 11, algebra may be de-
fined as the science which treats of numbers expressed by
means of symbols, and in which there is scope and pri-
mary need for intelligent artifices and ingenious devices.

Distinction from Arithmetic. What distinguishes
algebra from arithmetic, according to the Hindus, will be
found to some extent in their special names. Both deal
with symbols. But in arithmetic the values of the sym-
bols are vyakta, that is, known and definitely determinate,

1 BBi, p. 99. 2 BBi, p. 49; Si8i, Gola, xiii. §.
8L, p. 15; Si8i, Gola, xiii. 3. 4 BBi,p. 49.
5 BBi, p. 100.
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while in algebra they are avyakta, that is, unknown,
indefinite. The relation between these two branches
of ganita is considered by Bhiskara II to be this:

“The science of calculation with unknowns is the
source of the science of calculation with knowns.”*

He has put it more explicitly and clearly thus:

“Algebra is similar to arithmetic in respect of rules
(of fundamental operations) but appears as if it were
indeterminate, It is not indeterminate to the intelligent;
it is certainly not sixfold,? but manifold.””3

The true distinction between arithmetic and-algebra,
besides that of symbols employed, lies, in the opinion
i.f Bhéskara II, in the demonstration of the rules.
He remarks:

“Mathematicians have declared algebra to be com-
putation attended with demonstration: else there would
be no distinction between arithmetic and algebra.”*

The truth of this dictum is evident in the treatment
of the gupa-karma in the Lildvati and the madhyaméiharana
in the Bjjagapita. Both are practically treatments of
problems involving the quadratic equation. But
whereas in the former are found simply the applica-
tions of the well-known formule for the solution of
such equations, in the latter is described also the rationale
of those formule, Similarly we sometimes find included
in treatises on arithmetic problems whose solutions
require formule demonstrated \m books on algebra.
The method of demonstration 'has been stated to be
“always of two kinds: one geometrical (&sezragata) and

1 BB, p. 1.

*The Eeference is to the six fundamental operations recognised
in algebra as well as to the six subjects of treatment which are
essential to analysis.

*L,p. 13, 4 BBi, p. 127.
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the other symbolical (rdsigatz).”* We do not know who
was the first in India to use geometrical methods for
demonstrating algebraical rules. Bhiskara II (1150)
ascribes it to “ancient teachers.”?

Importance of Algebra. The early Hindus regard-
ed algebra as a science of great importance and utility.
In the opening verses of his treatise3 on algebra Brahma-
gupta (628) observes:

“Since questions can scarcely be known (j.e.,
solved) without algebra, therefore, I shall speak of
algebra with examples.

“By knowing the pulveriser, zero, negative and
positive quantities, unknowns, elimination of the middle
term, equations with one unknown, factum and the
Square-nature, one becomes the learned professor
(dedrya) amongst the learned.””*

Similarly Bhéaskara II writes:

“What the learned calculators (sd»z£hyih) describe as
the originator of intelligence, being directed by a wise
being (satpurusa) and which alone is the primal cause (bij2)
of all knowns (vyakia), 1 venerate that Invisible God as
well as that Science of Calculation with Unknowns...
Since questions can scarcely be solved without the reason-
ing of algebra—not at all by those of dull perceptions—
I'shall speak, therefore, of the operations of analysis.””

! BBf, p. 125. 2 BBi, p. 127.

8 Forming chapter xviii of his Brébma-sphuta-siddhinta.

4 BrSpSi, xviit. 1-2.

5In the first part of this passage every principal term has been
used with a double significance. The term sdmkbydp (literally,
“expert calculators™) signifies the “Sirhkhya philosophers” in
one sense, “mathematicians” in the other; vaspurusa “the self-
existent being of the Samkhya philosophy” or “a wise mathema-
tician; vyakta “manifested universe” or “the science of calculation
with knowns.”
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Nirdyana (1350) remarks :

“T adore that Brahma, also that science of calcula-
tion with the unknown, which is the one invisible root-
cause of the visible and multiple-qualitied universe,
also of multitudes of rules of the science of calculanon

with the known.”t

“As out of Him i1s derived this entire universe,
visible and endless, so out of algebra follows the whole
of arithmetic with its endless varieties (of rules). There-
fore, I always make obeisance to Siva and also to
(avyakta-) ganita (algebra).””?

He adds :

“People ask questions whose solutions are not
to be found by arithmetic; but their solutions can
generally be found by algebta. Since less intelligent
men do not succeed in solving questions by the rules of
arithmetic, I shall speak of the lucid and easily intelli-
gible rules of algebra.””?

Scope of Algebra. The science of algebra is broad-
ly divided by the Hindus into two principal parts. Of
these- the most important one deals with analysis (b7ia).
The other part treats of the subjects which are essential
for analysis. They are: the laws of signs, the arith- °
metic of zero (and infinity), operations with unknowns, -
surds, the pulveriser (or the indeterminate equation of
the first degree), and the Square-nature (ot the so-called
Pellian equation). To these some writers add con-
currence and dissimilar operations, while others include
them in arithmetic.? At the end of the first section
of his treatise on algebra Bhiskara II is found to have

1NBi, I, R. 1. :NBi, II, R. 1.

3 NBi, 1, R. 5-6.

1 All writers, except Brahmagupta and Sripati, are of the latter
. opinion.
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observed as follows :

“(The section of) this science of calculation which is
essential for analysis has been briefly set forth. Next
I shall propound analysis, which is the source of pleasure
to the mathematician.””

Analysis is stated by all to be of four kinds, for
equations are classified into four varieties (vide irifra).
Thus each class of equations has its own method of
analysis. :

* Origin of Hindu Algebra. The origin of Hindu
algebra can be definitely traced back to the period of
the Salba (8oo-s00 B.C.) and the Bréhmapa (r. 2000
B.C.). But it was then mostly geometrical.? The
geometrical method of the transformation of a square
into a rectangle having a given side, which is described
in the important S#lba is obviously equivalent to the
solution of a linear equation in one unknown, »#%.,

_ ax = 2

The quadratic equation has its counterpart in the cons-
truction of a figure (an altar) similar to a given one but
differing in area from it by a specified amount. The usual
method of solving that problem was to increase the
unit of measure of the linear dimensions of the figure.
One of the most important altars of the obligatory Vedic
sacrifices was called the Mabdvedi (the Great Altar).
It has been described to be of the form of an isosceles
trapezium whose face is 24 units long, base 30 and
altitude 36. If x be the enlarged unit of measure taken
in increasing the size of the altar by 7 units of area, we
must have

o BT 300) _ g (24390

1 BB, p. 43.
2 Bibhutibhusan Datta, The Science of the Sulba, Calcutta, 1932,
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or 972x% = 972 + m.

Therefore = \/ —_—
o T o 972

If m be put equal to 972 (n—1), so that the area of
the enlarged altar 1s » times its original area, we get
x =\/n,
some particulat cases of which are described in the

Sulba! 'The particular cases, when » = 14 or 144, are
found as eatly as the .S, atzzpafba Brahmapa® (¢. 2000 B.C.).

The most ancient and primitive form of the “Fire-
altar for the sacrifices to achieve special objects” was
the Syenacit (or “the altar of the form of the falcon).

A B
E
F L E E E’ r F
| : E
‘i .= 5
: t [}
G : 7 =G’
M H : H M
1
D Py} S C
Q R
Fig. 1.

Its body (ABCD) consists of four squares of one square
puruasa each; each of its wings (EFGH, E'F'G’'H’) is a
rectangle of one parusa by one parusa and a prddesa
(=1/10 of a parysa). ‘This Fire-altar was enlarged in

1§Br X. 2 3. 7ff
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two ways: first, in which all the constituent parts were
affected in the same proportion ; second, in which the
breadth of the portions LFGM and L’F’G’M’ of the
wings were left unaffected. If x be the enlarged unit
for enlargement in the first case we shall have to solve
the quadratic equation

2x X 2x + z{xx (x-+;—c)}—|— x X (x—l— %):75+m,

where 72 denotes the increment of the Fire-altar in.size.
Therefore x2=1-+ _21251_
In particqlar, when 7 = 94, we shall have
x% = 1348 = 14 (approximately),

which occurs in the Safapatha Bréhmana.

In the second case of enlargement the equation for
x will be

2x X 2x + 2{x X(x+ §}+ x X(x ++5) = 7% + =,
or 7X2+ dx =78+ m,
which is a2 complete quadratic equation.

The problem of altar construction gave rise also
to certain indeterminate equations of the second degree
such as,

@) x4yt =2,
(2) x2 4 4 = g%
and simultaneous indeterminate equations of the type
ax + by + 3z + dw = p,
Cox+yt+ztw=gq

Further particulars about these equations will be
given later on.
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2. TECHNICAL TERMS

Coefficient. In Hindu algebra there is no syste-
matic use of any speécial term for the coefficient.
Oxrdinarily, the power of the unknown is mentioned
when the reference is to the coefficient of that power.
In explanation of similar use by Brahmagupta his
commeéntator Prthidakasvimi writes “the number
(asika) which is the coefficient of the square of the
unknown is called the ‘square’ and the number which
forms the coefficient of the (simple) unknown is called
‘the unknown quantity.””* However, occasional use
of a technical term is also met with. Brahmagupta once
valls the coefficient sam&hyé? (number) and on several
other occasions gwpaka, Or gupakdra (multiplier).®
Prthiidakasvimi (860) calls it a7kst - (number) or
prakrti (multiplier). These terms reappear in the works
of Sripati (1039)® and Bhaskara II (1150).6 The former
also used 7#pa tor the same purpose.”?

Unknown Quantity. The unknown quantity
was called in the S#bdndrga-sditra® (before 300 B.C.)
ydvat-tdvat (as many as or so much as, meaning
an arbitrary quantity). In the so-called Bakhshali
treatise, it was called yadrechd, vifichd or kdmika (any
desired quantity).? This term was originally connected
with the Rule of False Position.l® Aryabhata 1 (499)

1 BrSpSi, xviii. 44 (Com). 2 BrSpSs, xviii, 63.

3 BrSpSi, xviii. 64, 69-71. 4 BrSpSi, xviil. 44 (Com).
5 Sife, xiv. 33-5. ¢ BB, pp. 33-4-
7 Sife, xiv. 19.

8 Sdtra 747; ¢f. Bibhutibhusan Datta, “The Jaina School
of Mathematics,” BCMS, XXI, 1929, pp. 11§-145; particularly
Pp. 122-3. ~ i

% BMs, Folios 22, verso; 23, recto & verso.
10 Bibhutibhusan Datta, ‘“The Bakshshili Mathematics,” BCMS,
XXI, pp. 1-60; particularly pp. 26-8, 66.
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calls the unknown quantity g#/iki (shot). This term
strongly leads one to suspect that the shot was probably
then used to represent the unknown. From the begin-
ning of the seventh century the Hindu algebraists are
found to have more commonly employed the term
avyakta (unknown).!

Power. The oldest Hindu terms for the power of a
quantity, known or unknown, are found in the Uftari-
dhyayana-sétra {¢. 300 B.C. or eatlier).?2 In it the second
power is called wzerga (square), the third power ghana
(cube), the fourth power warga-varga (square-squate),
the sixth power ghana-varga (cube-square), and the
twelfth power ghana-varga-varga (cube-square-square),
using the multiplicative instead of the additive principle.
In this work we do not find any method for indicat-
ing odd powers higher than the third. In later times,
the fifth power is called varga-ghana-ghdta (product of
cube and square, ghdta=product), the seventh power
varga-varga-ghrana-ghita (product of square-square and
cube) and so on. Brahmagupta’s system of expressing
powers higher than the fourth is scientifically better.
He calls the fifth power pafca-gata (literally, raised to
the fifth), the sixth power sad-gaza (raised to the sixth);
similarly the term for any power is coined by adding
the suffix gafz to thé name of the number indicating that
power® Bhiskara II has sometimes followed it consis-
tently for the powers one and upwards? .In the
Annyggadvdra-siira®, a work written before the com-
mencement of the Christian Era, we find certain interest-
ing terms for higher powers, integral as well as fractional,
particularly successive squares (varge) and squate-roots
(varga-miila). According to it the term prathama-varga

1 BrSpSi, xviii. 2, 41; SiSe, xiv. 1-2; BBj, pp. 7.
2 Chapter xxx, 10, I1. 8 BrSpSi, xviii. 41, 42.
4 BB/, p. 56. 5 Sdtra 142,
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(first square) of a quantity, say @, means a2; dvitfyavarga
(second square) = («?)2 = a%; #rtiya-varga (third square)
= ((4%)%)® = 48 and so on. In general,
sth varga of @ = ¢2%2%2% - to n tems _ ;2"

Similatly, prathama-varga-midla (first square-root) means
Va; dvitiya-varga-m#la (second square-root) =v/ (V)
== 4/4; and, in general,

nth varga-méla of a = /2",
Again we find the term #rtfya-varga-mbla-ghana (cube
of the third square-root) for (4/2%)3 = 48/8,

The term wzarga for “square” has an interesting
origin in a purely concrete concept. The Sanskrit word
varga literally means “rows,” or “troops’ (of similar
things). Its application as a mathematical term
originated in the graphical representation of a square,
which was divided into as many varge or troops of small
squares, as the side contained units of some measure.l

Equation. The equation is called by Brahma-
gupta (628) sama-karapa® or sami-karapa® (making
equal) or more simply sama* (equation). Prthada-
kasvami (860) employs also the term sdmya® (equality
or equation); and Sripati (1039) sadysi-karapa® (making
similar). Nairdyana (1350) uses the terms sami-karana,
sdmya and samatva (equality).? An equation has always
two paksa (side). This term occurs in the works of

1 G. Thibaut, Su/ba-siitras, p. 48. Compare also Bibhutibhusan
Datta, “On the origin of the Hindu terms for root,” Amer. Math.
Mon., XXXVIII, 1931, pp. 371-6.

2 BrSpSi, xviii. 63.

3 Br8pSi, xviii, subheading for the section on equations.

4 BrSpSi, xviil. 43.

b BrSpSi, xii. 66 (Com).

8 $i8%, xiv. 1.

? NBi, I, R. 2-3.
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Stidhara (¢. 750), Padmanibhal and others.?

Absolute Term. In the Bakhshdli treatise? the
absolute term is called drfya (visible). In later Hindu
algebras it has been replaced by a closely allied term
rdpa* (appearance), though it continued to be employed
in treatises on arithmetic.? ‘Thus the true significance
. of the Hindu name for the absolute term in an algebraic
equation is obvious. It represents the visible or known
portion of the equation while its other part is prac-
tically invisible or unknown.

3. SYMBOLS

- Symbols of Operation. There are no special
symbols for the fundamental operations in the Bakh-
shali. work. Any particular operation intended is
ordimarily indicated by placing the tachygraphic abbre-
viation, the initial syllable of a Sanskrit word of that
import, after, occasionally before, the quantity affected.
Thus the operation of addition is indicated by y# (an
abbreviation from yatz, meaning added), subtraction
by 4+ which is very probably from £s« (abbreviated from
ksaya, diminished), multiplication by g# (from gana
or gupita, multiplied) and division by bhd (from bhiga or
bbijita, divided). Of these again, the most systemati-
cally employed abbreviation is that for the operation of
subtraction and next comes that of division. In the
case of the other two operations the indicatory words

1'The algebras of Sridhara and Padmanibha are not available
now. But the term occurs in quotations from them by Bhis-
kara II (BBi, pp. 61, 67).

2 BrSpSi, xviii. 43 (Com); SiSe, xiv. 14, 20; BB, pp. 43-4.

3 BMs, Folio 23, verso; Folio 70, recto and verso (c).

4 BrSpSi, xviii.  43-4; SiSe. xiv, 14, 19; etc.

5 Trif, pp. 11, 12.
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are often written in full, or altogether omitted. In
the latter case, the particular operations intended to
be carried out are understood from the context.
We take the following instances from the Bakhshali
Manuscript :

y OF X 5 IT 5 Ix 5
iy # means — -+ -=, and 4’ means — -+ 2,
@ 11”7 1+1’ r M 1+1
means 3X3X3X3X3X3

(i)* 3333333 1084
I 11I1T1TI . X 3 X 10,

1

3

25 7 4 .9
1 xé’”z+“xé”2+“

(iii)3 0”13
112124

means

.ﬂc(1+%)+{zx(1+ %)—%}_’—{SX(I + %)_Z;}

+{ax+ -2,

v |t x1 1bbi|36
1411 1 means 3 ,36 I e
z. 5‘4+6 1 (I-_"Z)(I-*—F)(I_?)(I-*—'G)
(V)8 | 40 bhd || 160 | 13 L6o r
1 I I ||means — X 133.
2 40

In later Hindu mathematics the symbol for subtrac-
tion is a dot, occasionally a small circle, which is placed
above the quantity, so that 7 or § means —7; other
operations are represented by simple juxtaposition.

1 Folio s9,.recto. 2 Folio 47, recto.

¢ Folio 25, verso. The beginning and end of this illustration
are mutilated but the testoration is certain. :

¢ Folio 13, verso. 5 Folio 42, recto.
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‘Bhaskara 1I (1150) says, “Those (known and unknown
numbers) which are negative should be written with a
dot (bindu) over them.”® A similar remark occurs in the
algebra of Nériyana (1350).%2 Their silence about
symbols of other fundamental operations proves their
non-existence.

Origin of Minus Sign. The origin of * or © as
the minus sign seems to be connected with the Hindu
symbol for the zero, o. It is found tc have been used
as the sign of emptiness or omission in the early Bakh-
shali treatise as well as in the later treatises on arithmetic
(véde infra)® It is placed over the number affected in
order to distinfuish it from its use in a purely numerical
significance when it is placed beside the number. The
origin of the Bakhshili minus sign { - ) has been the
subject of much conjecture. Thibaut suggested its
possible connection with the supposed Diophantine
negative sign & (reversed ¥, tachygraphic abbreviation
for Aeiyis meaning wantinhg). Kaye believes it. The
Greek sign for minus, however, is not &, but 4. It is
cven doubtful if Diophantus did actually use it; or
whether it is as old as the Bakhshili cross.4 Hoernled
presumed the Bakhshall minus.sign to be the abbrevia-
tion £z of the Sanskrit word &anita, or nu (ot #4) of nytina,
both of which mean diminished and both of which
abbreviations in the Braihmi characters would be denoted
by a cross. Hoernle was right, thinks Datta,® so far as
he sought for the origin of 4 in a tachygraphic abbre-
viation of some Sanskrit word. But as neither the
word kanita not nyfina is found to have been used in the
Bakhshili work in connection with the subtractive

1 BBi, p. 2. 2 NBi, L,R. 7.

3p. 10. 4 Cf. Smith, History, 11, p. 396.
51A4, XVII, p. 34.

% Datta, Bakh. Marh., (BCMS, XXI), pp. 17-8.
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operation, Datta finally rejects the theory of Hoernle
and believes it to be the abbreviation &5z, from &saya
(decrease) which occurs several times, indeed, more
than any other word indicative of subtraction. The
sign for Asa, whether in the Brihmi characters or in
Bakhshali characters, differs from the simple cross (<4 )
only in having a little flourish at the lower end of the
vertical line. The flourish seems to have been dropped
subsequently for convenient simplification.

Symbnls for Powers and Roots. The symbols
for powers and roots are abbreviations of Sanskrit
words of those imports and are placed after the number
affected. Thus the square is represented by 22 (from
varga), cube by gha (from ghana), the fourth power by
va-va (from varge-varga), the fifth power by ve-gha-ghi
(from varga-ghana-ghdta), the sixth power by gha-va (from
‘ghana-varga), the seventh power by ve-ve-gha-ghd (from
varga-varga-ghana-ghita) and so on. The product of two
or more unknown quantities is indicated by writing bh4
(from bhdvita, product) after the unknowns with or with-
out intetposed dots ; e.g., ydva-kdgha-bhi ot _yivakighabhd
means ( y4)? (k4)3. In the Bakhshili treatise the square-
root of a quantity is indicated by writing after it =4,
which is an abbreviation for w#/a (root). For instance,*

T yn 5 wmi 4
1 1| means /11 -+ 5§ = 4

and 11 74+ mi 2
I 1 1| means V11 — 7= 2,

In other treatises the symbol of the square-root
is &a (from &arapi, root or surd) which is usually placed
before the quantity affected. For example,? £z 9 &z 450

1 Folio 59, recto; compare also folio 67, verso.
2 BBi, p. 15.
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ka 75 ka 54 means V9+Vaso+V75 + Vs

Symbols for Unknowns. In the Bakhshili
tréatise there is no specific symbol for the unknown.
Consequently its place in an equation is left vacant
and to indicate it vividly the sign of emptiness is put
there. For instance,?}

3 | 4| dréya 200
1|1

1

o]

i1 means x4 2x-+ 3x -+ 4x =200,

The use of the zero sign to mark a vacant place
is found in the arithmetical treatises of later times when
the Hindus had a well-developed system of symbols
for the unknowns. Thus we find in the Trifatikd? of
Sridhara (¢. 750) the following statement of an arithme-
tical progression whose first term (4dij) is 20, number
of terms (gacchah) 7, sum (ganitarni) 245 and whose com-
mon difference (attarab) is unknown:

| édib 20 | # o | gacehah 7 | ganitam 245 |

This use of the zero sign in arithmetic was consi-
dered necessary as algebraic symbols could not be
used there. Lack of an efficient symbolism is bound
to give rise to a certain amount of ambiguity in the re-
presentation of an algebraic equation especially when
it contains more than one known. For instance, in®

o s yn wh o w © 7t w# o
11 I 11 1

which means

Vx+s5=sand Vx— 7=1
different unknowns have to be assumed at different
vacant places.

t BMs, Folio 22, verso. 2 Tris, p. 29.
3 BMs, Folio 59, recto.
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To avoid such ambiguity, in one instance which
contains as many as five unknowans, the abbreviations of
ordinal pumbers, such as pra (from prathamd, first),
dvi (from dvitiya, second), #r (from #rtfya, third), ca
(from caturtha, fourth) and pam (from pafcama, fifth),
have been used to represent the unknowns; e.g.,!

9pral 7dvi | 10tr| 8ca 11 pamy |yutam jitarh
‘ pratyaika-
: (kramena)
7 dvi | 10 tr 8 ca|11 pam| 9 pra |16[17]|18[19]20

which means

(= 9) + xo( = 7) = 165 33 = 7) + x3( = 10) = 17;
Xp(= 10) + xy(= 8) = 18; xy(= 8) +x3( = 11) = 19;
xg( = 11) + xy( == 9) = 20.

Aryabhata 1 (499) very probably used coloured shots
to reptesent unknowns. Brahmagupta (628) mentions
varpa as the symbols of unknowns.? As he has not at-
tempted in any way to explain this method of symbolism,
it appears that the method was already very familiar.
Now, the Sanskrit word werpa means “colour” as
well as “letters of the alphabet,” so that, in later times,
the unknowns are generally represented by letters of
the alphabet or by means of various colours such as
kilaka (black), nilaka (blue), etc. Again in the latter
case, for simplification, only initial letters of the names
are generally written. Thus Bhiskara II (1150) observes,
“Here (in algebra) the initial letters of (the names of)
knowns and unknowns should be written for implying
them,” Tt has been stated before that at one time
the unknown quantity was called ydvat-fdrat (as many

1 Folio z"), verso. 2 BrSpSi, xviil. 2, 42, 51, etc,
% BB, p. 2; seé also NB/, I, R. 7.

2
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as, so much as). In later times this name, or its
abbreviation y4, is used for the unknown. According
to the celebrated Sanskrit lexicographer Amarasirhha
(¢. 400 A.D.), ydvat-tivat denotes measure or quantity
(mdna). He had probably in view the use of that term
in Hindu algebra to denote “the measure of an unknown™
(avyakta mina). In the case of more unknowns, it is
usual to denote the first by ydvat-tdvat and the remaining
ones by alphabets or colours. Prthidakasvimi (860)
says:

“In an example in which there are two or more
unknown quantities, colours such as ydvat-tdvat, etc.,
should be assumed for their values.”t

- He has, indeed, used the colours &dlaka (black), nilaka
(blue), pitaka (yellow) and haritaka (green).
' Stripati (1039) writes;
“Ydvat-tidvat (so much as)and colours such as £dlaka
(black), nilaka (blue) etc., should be assumed for the
’2

unknowns.’

Bhiskara II (1150) says: -

“Yadvat-tdvat (so much as), kdlaka (black), #ilaka
(blue), pita (yellow), Johita (red) and other colours
have been taken by the venerable professors as
notations for the measures of the unknowns, for the
purpose of calculating with them.””

“In those examples where occur two, three or
more unknown quantities, colours such as ydvaz-tdvat,
etc., should be assumed for them. As assumed by
the previous teachers, they are: ydvar-tévat (so much
as), kdlaka (black), nilaka (blae), pitaka (yellow),
lobitaka (red), haritaka (green), Svetaka (white), citraka

1 BrSpSi, xviil. 51 (Com). 2 §iSe, xiv. 2.
s BB, p. 7.
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(variegated), kapilaka (tawny), pirigalaka (reddish-brown),
dbéimraka (smoke-coloured), pdtalaka (pink), Savalaka
(spotted), Sydmalaka (blackish), mecaka (dark blue),
etc. Or the letters of alphabets beginning with 4a,
should be taken as the measutes of the unknowns in
order to prevent confusion.”?

The same list with a few additional names of colours
appears in the algebra of Niriyana.2 This writer has
further added,

“Or the letters of alphabets (varpa) suth as
ka, etc., ot the series of flavours such as madbura
(sweet), etc., or the names of dissimilar things with un-
like initial letters, are assumed (to represent the
unknowns).” ‘

Bhiskara II occasionally employs also the tachygra-
phic abbreviation of the names of the unknown
quantities themselves in order to represent them in an
equation. For example,? in the following

5 md I nl 1w Iva
1 md 7 n L4 1 va
1 md I ni o7 M 1va
1 md I nf 1Lmu 2va

md stands for mdnikya (ruby), ni for (/ndra-)nila (sapphire),
mu for muktdphala (peatl) and va for (sad)vajra (diamond).
Hec has observed in this connection thus:

“(The maxim), ‘colours such as ydvar-tivat, etc.,
should be assumed for the unknowns,” gives (only) one
method of implying (them). Here, denoting them

1 BB, pp. 76f.

2 NBi, I, R. 17-8. These verses have been quoted by Mura-
lidhara Jha in his edition of the Bijagapita of Bhiskara II (p. 7,
footnote ).

3 BBi, p. 50; compare also p. 28.
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by names, the equations may be formed by the intelli-
gent (calculator) ?

It should be noted that ydvat-tdvat is not a varpa
(colgur or letter of alphabet). So in its inclusion in
the lists of varpa, as found enumerated in the Hindu
algebras—though apparently anomalous—we find the
persistence of an ancient symbol which was in vogue
long before the introduction of colours to represent
unknowns. To avoid the anomaly Muralidhara Jhal
has suggested the emendation ydvakastivat (ydvaka
and also; ydvaka = red) in the place of ydvat-tivat,
as found in the available manuscripts. He thinks
that being misled by the old practice, the expression
JYdvakastdvat was confused by copyists with ydvar-tévat.
In support of this theory it may be pointed out that
ydvaka is found to have been sometimes used by
Prtht Jakasvami to represent the unknown.? Bhiskara
II has once used simply ydvaz.® Nirdyana used it on
several occasions. The origin of the use of names of
colours to represent unknowns in algebra is very pro-
bably connected with the ancient use of differently
coloured shots for the purpose.

4. LAWS OF SIGNS

Addition. Brahmagupta (628) says:

“The sum of two positive numbers is positive,
of twe negative numbers is negative; of 2 positive
and a negative number is their difference.””*
Mahidvira (850):

“In the addition of a positive and a negative number

1 See the Preface to his edition of Bhiskara’s Bijagapita.

8 BrSpSi, xii. 15 (Com); xii. 18 (Com).
2 BB, p. 5o. 4 BrSpSi, xviii. 3o.
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(the result) is (their) difference. The addition of two
positive or two negative numbers (gives) as much posi-
tive or negative numbers respectively.’”?

Stipati (1039):

“In the addition of two negative or two positive
numbers the result is their sum; the addition of a posi-
tive and a negative number is their difference.”?

“The sum of two positive (numbers) is positive;
of two negative (numbers) is negative; of a positive
and a negative is their difference and the sign of the
difference is that of the greater; of two equal positive
and negative (numbers) is zero.”’?

Bhaskara II (1150):
“In the addition of two negative or two positive

numbers the result is their sum; the sum of a positive
and a negative number is their difference.”
Niérayana (1350):

“In the addition of two positive or two negative
numbers the result is their sum; but of a positive and a
negative number, the result is their difference; subtract-
ing the smaller number from the greater, the remainder
becomes of the same kind as the latter.”®

Subtraction. Brahmagupta writes:

“From the greater should be subtracted the smaller;
(the final result is) positive, if positive from positive,
and negative, if negative from negative. If, however,
the greater is subtracted from the less, that difference
is reversed (in sign), negative becomes positive and -
positive becomes negative. When positive is to be
subtracted from negative or negative from positive,

1655, i 50;1.— 2 $ife, xiv. 3.
3 $ife, iii. 28. i BEi, p. 2.
5NBi, 1, R. 8.



22 ALGEBRA

then they must be added together.’’?
Mahavira:
“A positive number to be subtracted from another

number becomes ncgative and a negative number to be
subtracted becomes positive.”’?

Stipati:
“A positive (number) to be subtracted becomes

negative, a negative becomes positive; (the subsequent
operation is) addition as explained before.””3

Bhiaskara IT:

“A positive (number) whilc being subtracted be-
comes negative and a negative becomes pobitive; then
addition as explained before.””4
Nirdyana:

“Of the subtrahend affirmation becomes negation
and negation affirmation; then addition as described
before.”’s

Multiplication. Brahmagupta says:

“The product of a positive and a negative (number)
is negative; of two. negatives is positive; positive mul-
tiplied by positive is pe-itive.”’8
Mahivira:

“In the multiplication of two negative or two
positive numbers the result is positive; but it is negative
(n the case of (the multiplication of) a positive and a
negative number.”?

Stipati:
“On multiplying two negative or two positive

1 Br§pSi, xviii. 31-2. :GSS, 1LosL.
BSi.S(e., xiv. 3. ¢ BB, p. 3.
3NB;, 1, R. 9. 8 BrSp3s, xviii. 33.

1 GSS, 1. so.
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numbers (the product is) positive; in the multiplication
of positive and negative (the result is) negative.”?

Bhiskara II:

“The product of twd positive or two negative
(numbers) is positive; the product of positive and nega-
tive is negative.”’?

The same rule is stated by Nariyapa.3
Division. Brahmagupta states:

“Positive divided by positive or negative divided
by negative becomes positive. But positive divided
by negative is negative and negatlve divided by posi-
tive remains negatlvc 4

Mahivira:

“In the division of two negative or two positive
numbers the quotient is positive, but it is negative in
the case of (the division of) positive and negative.”$

Sripati:

“On dividing negative by negative or positive by
positive, (the quotient) will be positive, (but it will be)
otherwise in the case of positive and negative.””®

Bhiskara 11 51mp1y observes: “In the case of divi-
sion also, such are the rules (7.¢., as in the case of
multiplication).””? Similarly Naridyana remarks, “What
have been implied in the case of multiplication of
positive and negative numbers will hold also in the
case of division.”8

Evolution and Involution. Brahmagupta says:
- “The square of a positive or a negative number is

1858, xiv. 4. 2 BBi, p. 3.
3NBi,LLR. 9. ‘Br.S'pSz xviii. 34.
5 G3S, 1. j0. 8 SiSe, xiv. 4

BB, p. 3. 8 NB/ 1, R.



24 ALGEBRA

positive. . . . The (sign of the) root is the same as was
that from which the square was derived.”’?

As regards the latter portion of this rule the com-
mentator Prthiidakasvimi (86o) remarks, “The square-
root should be taken either negative or positive, as will
be most suitable for subsequent operations to be carried
on.”

Mahévira:

“The square of a positive or of a negative number
is positive: theit square-roots are positive and negative
respectively. Since a negative number by its own
nature is not a’'square, it has no square-root.”?

Sripati: ’

“The square of a positive and a negative number
is positive. It will become what it was in the case of
the square-root. A negative number by itself is non-
square, sO its square-root is unreal; so the rule (for the
square-root) should be applied in the case of a positive
number.””3

Bhiskara II: ]

“The squate of a positive and a negative number is
positive; the square-root of a positive number is positive
as well as negative. There is no square-root of a nega-
tive number, because it is non-square.’”4
Nirdyana:

“The square of a positive and a negative number is
positive. The square-root of a positive number will
be positive and also negative. It has been proved that

a negative number, being non-square, has no square-
root.”s

1 Br§p8i, xviil. 35. EGSS, L 52,
3 §ife, xiv. ;. ¢ BB, p. 4.
5 NBi, 1, R. 10.
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5. FUNDAMENTAL OPERATIONS

Number of Operations. The number of funda-
mental operations in algebra is recognised by all Hindu
algebraists to be six, #/7., addition, subtraction, multi-
plication, division, squaring and the extraction of the
square-root. So the cubing and the extraction of the
cube-root which are included amongst the fundamental
operations of arithmetic, are excluded from algebra. .
But the formula

(@ + b = a3 4~ 3a% + 34b® + B3,

or (@ + b)® = a® + 3ab(a 4 b) 4 5P,
1s found to have been given, as stated before, in almost
all the Hindu treatises on atithmetic beginning with that
of Brahmagupta (628). By applying it repeatedly, Mahi-
vira indicates how to find the cube of an algebraic ex-
pression containing more than two terms; thus

(@+b+c+d+...)°

=+ 382l Fct+d+ ... )+ 3albFc+d+ ... )2
+@G+ec+d4 .00

=B+ 3200 +c+d+ ... )+ 3alb+c+d+ ... )R

+ R+ +d+... )+ 30c+d+ ... .. )?
+@E+d+....)%
and so on.

Addition and Subtraction. Brahmagupta says:

“Of the unknowns, their squares, cubes, fourth
powers, fifth powers, sixth powers, etc., addition and
subtraction are (performed) of the like; of the unlike
(they mean simply their) statement severally.’
Bhaskara II:

“Addition and subtraction are performed of those

1 BrSpSi, xviii. 41.
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of the same species (j4#/) amongst unknowns; of different
species they mean their separate statement.”’l
Nirayana:

“Of the colours or letters of alphabets (represent-
ing the unknowns) addition should be made of those
which are of the same species; and similarly sub-
traction. In the addition and subtraction of those of
different species the result will be their putting down
severally.”?

Multiplication. Brahmagupta says:

“The product of two like unknowns is a square;
the product of three or more like unknowns is a power
of that designation. The multiplication of unknowns
of unlike species is the same as the mutual product of
symbols; it is called bbdvita (product or factum).”?

Bhaskara II writes:

“A known quantity multiplied by an unknown
becomes unknown; the product of two, three or more
unknowns of like species is its square, cube, etc.; and the
product of those of unlike species is their bhdvita.
Fractions, etc., are (considered) as in the case of knowns;
and the rest (.., remaining operations) will be the same
as explained in arithmetic. The multiplicand is put
down separately in as many places as there are terms in
the multiplier and is then severally multiplied by those
terms; (the products are then) added together according
to the methods indicated before. Here, in the squaring
and multiplication of unknowns, should be followed the
method of multiplication by component parts, as ex-
plained in arithmetic.”4

The same rules are given by Nérayana.® The fol-

L BBi, p. 7. 2 NB;, I, R. 19.
3 BrSp8i, xviii. 42. i BB/, p. 8.
5 NBi, I, R. 21-2.
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lowing illustration amongst others, is given by Bhis-
kara 1I:

“Tell at once, O learned, (the result) of multiply-
ing five ydvat-tdvat minus one known quantity by three
JYdvat-tivat plus two knowns.

“Statement: Multiplicand yd 5 74 i; multlpher BZE
r# 2; on multiplication the product becomes Jé va 15
yd 7 rd 2.1

The detailed working of this illustration is shown
by the commentator Krsna (¢. 1580) thus:

IR ydva1s yi 3

rd 2 yd1o rdz,,

ydvaly yi 7 ré2

Division. Bhiskara 11 states:

“By whatever unknowns and knowns, the divisor
is multiplied (severally) and subtracted from the divi-
dend successively so that no residue is left, they cons-
titute the quotients at the successive stages.’’2

Nariyana describes the method of division in
nearly the same terms.® As an example of division,
Bhiskara II proposes to divide 18x2 4 24xy — 12x%
—1zx+ 8 — 8yg — 8y 4 22244+ 2 by —3x
— 2y 4 g -+ 1. He simply states the quotient without
indicating the different steps in the process. Krsna
supplies the details of the process which are substantially
the same as followed at present.

Squaring. Only one rule for the squaring of an
algebraic expression is found in treatises on algebra.
It is the same as that stated before in the treatises on
arithmetic, 773,

(@ + b2 =a®+ b2 4 2ab;

_)/cf ré i
yis rdi

! BBi, p. 8. 2 BB, p. 9.
3 NBi, 1, R. 23.
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or, in its general form, ,
(a+b4c+d+ ... =R+ 2424+ d% ...+ 23 ab.

Square-root. For finding the square;root of an
algebraic expression Bhiskara II gives the following
rule:

“Find the square-root of the unknown quantities
which are squares; then deduct from the remaining terms
twice the products of those roots two and two; if there
be known terms, proceed with the remainder in the same
way after taking the square-root of the knowns.””?
Niriyana says:

“First find the root of the square terms (of the given
expression); then the product of two and two of them
(roots) multiplied by two should be subtracted from 'the
remaining terms; (the result thus obtained) is said to be
the square-root here (in algebra).”2
Jiiinarija writes:

“Take -the square-root of those (terms) which are
capable of yielding roots; the product of two and two of
these (roots) multiplied by two should be deducted from
the remaining terms of that square (expression); the re-
sult will be the (required) root, so say the experts in
this (science).”

6. EQUATIONS

Forming Equations. Before proceeding to the
actual solution of an equation of any type, certain preli-
minary operations have necessarily to be carried out
in order to' prepare it for solution. Still more preli-
minary work is that of forming the equation (sami-
Rarapa, sami-kdra ot sami-kriyd; from sama, equal and

1 BBi, p. 10. 2 NBi, I, R. 24.
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£r, to do; hence literally, making equal) from the condi-
tions of the proposed problem. Such preliminary
work may require the application of one or more funda-
mental operations of algebra ot arithmetic. The
operations preliminary to the formation of a simple .
equation have been described by Prthtidakasvimi (860)
thus: '

“In this case, in the problem proposed by the ques-
tioner, ydvar-tdvat is put for the value of the unknown
quantity; then performing multiplication, division, etc.,
as required in the problem the two sides shall be care-
fully made equal. The equation being formed in this
way, then the rule (for its solution) follows.””t

Bhaskara II’s descriptions are fuller: He says :

“Let _ydvat-tivat be assumed as the value of the un-
known quantity. Then doing precisely as has been speci-
fically told—by subtracting, adding, multiplying or
dividing®—the two equal sides (of an equation) should
be very carefully built.”3
Narayana says:

“Of these (four classes of equations), the linear
equation in one unknown (will be treated) first. In
a problem (proposed), the value of the quantity which
is unknown is assumed to be ydvat, one, two or any
multiple of it, with or without an absolute term, which
again may be additive or subtractive. Then on the
value thus assumed optionally should be performed, in

! BrSpSi, xviii. 43 (Com).

tIn his gloss Bhiskara II explains: ‘““Every operation, such
as multiplication, division, rule of three, rule of five terms, summa-
tion of series, or treatment of plane figures, etc., according to the

»

statement of the problem should be performed...... See BB;,

p- 44
3 BB/, p. 43.
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accordance with the statement of the problem, the opera-
tions such as addition, subtraction, multiplication, divi-
sion, rule of thrée, double rule of three, summation,
plane figures, excavations, etc. And thus the two sides
must be made equal. If the, equality of the two sides
is not explicitly stated, then one side should be multi-
plied, divided, increased or decreased by one’s own
intelligence -(according to the problem) and thus the
two sides must be made equal.”’!

Plan of Writing Equations. After an equation is
formed, writing it down tor further operations is techni-
cally called nydsa (putting down, statement) of the equa-
tion. In the Bakhshill treatise the two sides of an
equation are put down one after the other in the same
line without any sign of equality being interposed.?
Thus the equations

Vx5 =s, \/'3(_._7:_; '
appear as®

sa o 74 wh o
1 1 1

o 5 yu wid o
1 1 I

The equation
X4 2x+ 3 X 3x 4 12 X 4X = 300

is stated as?
o drsye 300.

I.

3 I
I I

12 4
1 1

3 3
I 1

This plan of writing an equation was subsequently
abandoned by the Hindus for a new one in which the
two sides are written one below the other without any

1 NBi, 11, R. 3 (Gloss).
2 Datta, Bakh. Mash., (BCMS, XXI), p. 28.
3 Folio 59, recto. 4 Folio 23, verso.



EQUATIONS 31

sign of equality. Further in this new plan, the terms of
similar denominations are usually written one below
the other and even the terms of absent denominations
on either side are expressly indicated by putting zeros
as their coefficients. Reference to the new plan is found
as early as theé algebra of Brahmagupta (628).1 Prthtidaka-
svami (860) represented the equation?
1ox — 8 =241
as follows:
ydva o yd 10 rii8
yédva1 yd o rix
which means, writing x for yd
x2o+4+ x10— 8
x2 4+ xo0-41

or ox?+ 1ox — 8 = x4+ ox + 1.

If there be several unknowns, those of the same kind
are written in the same column with zero coefficients,
if necessary. Thus the equation

197x — 1644y — g = 6302
is represented by Prthiidakasvami thus:3
yéd 197 ki 1644 nii rd o
yé o ki o wio r# 6302
which means, putting y fog £ and g, for #4,
197x — 1644y — 3 + o = ox + oy -+ og + 6302.

The following two instances are from the Bija-
ganita of Bhiskara II (1150):4
() yé s kI8 wiy riigo

yi 7 kig #i 6 riiG2
L BrSpSi, xvii. 43 (vide infra, p. 33). Compare also BB;, p. 127.

2 BrSpSi, xviii. 49 (Com). 8 BrSpSi, xviii. 54 (Com).
4 BB:, pp. 78, 101.
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been thus made...””?
Stipati says:

“From one (side) the square of the unknown
and the unknown should be cleared by removing the

known quantities; the known quantities (should be
cleared) from the side opposite to that.””2
Similarly Bhéskara II:

“Then the unknown on one side of it (the equation)
should be subtracted from the unknown on the other
side; so also the square and other powers of the un-
known; the known quantities on the other side should

be subtracted from the known quantities of another
(¢.e., the former) side.”’3

Here we give a few illustrations. With reference
to the equations from the commentary of Prthiidaka-
svami, stated on page 31, the author says:

“Perfect clearance (semasodbanz) being made in
accordance with the rule, (the equation) will be
Jdva1 yd1o
ri 9”
Z.e., x%— 10 = — 9.

The following illustration i5 from the Bijgganita of
Bhiskara II:4

“Thus the two sides ate
Jdva 4 yi 34 rd 7z
yévao yd o r# 9o
On complete clearance (samafodbana), the residues

of the two sides are

1 BrSpSi, xviii. 44 (Com). 2 §iSe, xvi. 17.
3 BBS, p. 44- 4 BB/, p. 63.
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‘ydva 4 yd 34 ré o
yéva o yid o r# 187

i.e., 4x% — 34x = 18.

Classification of Equations. The earliest Hmdu
classification of equations seems to have been according
to their degrees, such as simple (technically called yzvaz-
tdvat), quadratic (vargs), cubic (ghana) and biquadratic
(varga-varga). Reference to it is found in a canonical
work of circa 300 B. C1 But in the absence of further
corroborative evidence, we cannot be sure of it. Brahma-
gupta (628) has classified equations as: (1) equations
in one unknown (eRa-varpa-samikarapa), (2) equations
in several unknowns (aneka-varpa-samikarapa), and (3)
equations involving products of unknowns (bhdvita).
The first class is again divided into two subclasses, »/%.,
(?) linear equations, and (77) quadratic equations (azya/eta—
varga-samikarapa). Here then we have the beginning of
out present method of classifying equations according to
their degrees. The method of classification adopted
by Prthidakasvimi (86o) is slightly different. His four
classes are: (1) linear equations with one unknown, (2)
linear equations with more unknowns, (3) equations with
one, two or more unknowns in their second and higher
powers, and (4) equations involving products of un-
kncwns, As the method of solution of an equation of
the third class is based upon the principle of the elimina-
tion of the middle term, that class is called by the name
madhyamiharapa (from madhyama, “‘middle”, dbarapa
“elimination”, hence meaning “elimination of the mid-
dle term”). For the other classes, the old names given
by Brahmagupta have been retained. This method of
classification has been followed by subsequent writers.

Y Sthindnga-sitra, Sttra 747.  For further particulars see Datta,
Jaina Math., (BCMS, XXI), pp. 119L.
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Bhéskara IT distinguishes two types in the third class,
vig., (/) equations in one unknown in its second and
higher powers and (i) equations having two or more
unknowns in their second and higher powers.” Accord-
_ing t0 Krsna (1580) equations are primarily of two
classes: (1) equations in one unknown and (2) equations
in two or more unknowns. The class (1), again, com-
prises two subclasses: (/) simple equations and (#)
quadratic and higher equations. The class (2) has three
subclasses: (¢) simultaneous linear equations, (77) equa-
tions involving the second and higher powers of un-
knowns, and (7//) equations involving products of un-
knowns. He then observes that these five classes can
be reduced to four by including the second subclasses
of classes (1) and (2) into one class as madhyamiharapa.

7. LINEAR EQUATIONS IN ONE UNKNOWN

Early Solutions. As already stated, the geometrical
solution of a linear equation in one unknown is found in
the Su#lba, the earliest of which is not later than 800 B.C.
There is a reference in the Sthindrga-sitra (¢. 300 B.C.)
to a linear equation by its name ( ydvat-tdvat) which
is suggestive of the method of solution! followed at
that time. We have, however, no further evidence
about it. The earliest Hindu record of doubtless value
of problems involving simple algebraic equations and
of a method for their solution occurs in the Bakhshali
treatise, which was written very probably about the
beginning of the Christian Era. One problem is:2

“The amount given to the first is not known. The
second is given twice as much as the first; the third

i Datta, Jaina Math., (BCMS, XXI), p. 122.
2 BMs, Folio 23, recto.
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thrice as much as the second ; and the fourth four times
as much as the third, The total amount distributed
is 132. What is the amount of the first ?”

If x be the amount given to the first, then according
to the probelm,
x4 2x + 6x + 24x = 132,

Rule of False Position. The solution of this
equation is given as follows :

¢ ‘“Putting any desired quantity in the vacant place’ ;
any desired quantity is |[[ 1 [[; ‘then construct the series’

6 4
1 I

I
I

2|2 3
I[1 1

‘multiplied” || 1| 2|6 [ 24 [; ‘added’ 33. “Divide the
visible quantity’ ’ 132 |; (which) on reduction becomes
33

UJ (This is) the amount given (to the first).”’
1

The solution of another set of problems in the
Bakhshali treatise, leads ultimately to an equation of the

type?
ax + b=p.

The method given for its solution is to put any arbitrary
value g for x, so that

ag+ b=p’, say.
Then the correct value will be

a

1 Ibid. 2 Vide infra, pp. 48f.
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Solution of Linear Equations. Aryabhata I
(499) says :

“The difference of the known “amounts’’ relating to
the two petsons should be divided by the difference of
the coefficients of the unknown.! The quotient will be
the value of the unknown, if their possessions be equal.”’?

This rule contemplates a problem of this kind:
Two persons, who are equally rich, possess respectively
a, b times a certain unknown amount together with ¢, 4
units of money in cash. What is that amount ?

If x be the unknown amount, then by the problem

ax + ¢ = bx 4 d.
Therefote x =i—_—£ .
a—b

Hence the rule.
Brahmagupta says :

“In a (linear) equation in one unknown, the differ-
ence of the known terms taken in the reverse order,
divided by the difference of the coefficients of the un-
known (is the value of the unknown).””3

Sripati writes :
“First remove the unknown from any one of the
sides (of the equation) leaving the known term; the

reverse (should be done) on the other side. The differ-
ence of the absolute terms taken in the reverse order

1 The original is gulikintara which literally means “the differ-
ence of the unknowns.” But what is implied is *““the difference of
the coefficients of the unknown.” As has been observed by Prthi-
dakasvimi, according to the usual practice of Hindu algebra, “the
coefficient of the square of the unknown is called the square (of
the unknown) and the coefficient of the (simple) unknown is called
the unknown.” BrSpS7, xviii. 44 (Com).

2 4, ii. so. 3 BrSpSi, xviil. 43.
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divided by the difference of the coefficients of the
unknown will be the value of the unknown.””1

Bhaskara IT states :

“Subtract the unknown on one side from that on the
other and the absolute term on the second from that on
the first side. The residual absolute number should be
divided by the residual coefficient of the unknown;
thus the value of the unknown becomes known.””2

Niridyana writes :

“From one side clear off the unknown and from the
other the known quantities; then divide the residual
known by the residual coefficient of the unknown.
Thus will certainly become known the value of the
unknown.’’3

For illustration we take a problem proposed by
Brahmagupta :

“Tell the number of elapsed days for the time when
féur times the twelfth part of the residual degrees
increased by one, plus eight will be equal to the residual
degrees plus one, N

It has been solved by Prthiidakasvami as follows :

“Here the residual degrees are (put as) ydvaz-tivat,
yd ; increased by one, y4 1 74 1; twelfth part of it,
yé1 ri1 i1 rd1

12

; four times this, ; plus the abso-

yéd 1 ri 25

lute quantity eight, This is equal to the

residual degrees plus unity. The statement of both sides
tripled is
yd 1 r# 25
Y3 i3
1 8§78, xiv. 15. 2 BB/, p. 44.
3NBi, I, R. 5. 4 Br§pSi, xviii. 46.
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The difference between the coefficients of the unknown
1s 2. By this the difference of the absolute terms,
namely 22, being divided, is produced the residual of the
degrees of the sun, 11. These residual degrees should
be known to be irreducible. The elapsed days can be
deduced then, (proceeding) as before.”

In other words, we have to solve the equation
s+ 1)+ 8=x+41,
which gives x4 25 = 3x + 3,
or 2x = 22.

Therefore X = II.

The following problem and its solution are from the
Bijaganita of Bhiskara 11 :

“One person has three hundred coins and six
horses. Another has ten hotses (each) of similar value
and he has further a debt of hundred coins. But they
are of equal worth. What is the price of a horse ?

“Here the statement for equi-clearance is :
6x -+ 300 = 10x — 100.

Now, by the rule, ‘Subtract the unknown on one side
from that on the other etc.,” unknown on the first side
being subtracted fro the unknown on the other side,
the remainder is 4x. The absolute term on the second
side being subtracted from the absolute term on the
first side, the remainder is 4o0. ‘The residual known
number 4oo being divided by the coefficient of the
residual unknown 4x, the quotient is recognised to be
the value of x, (namely) 100.”1

There are a few instances in the Bakhshili work
where a method similar to that of later writers appears

1 BBi, pp. 44f.
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to have been: followed for the solution of a linear
equation. One such problem is: Two persons start
with different initial velocities (4, 5); travel on suc-
cessive days distances increasing at different rates
{0y, by). But they cover the same distance after the
same period of time. What is the period?

Denoting the period by x, we get

ay + (ay + by) + (a1 + 20;) + ... to x terms
= ay + (a3 + by) + (a5 + 2b5) + ... to x terms,

or {al—}—(x_z—l)bl}xz{(/z—{—(x_z_l)bz},\

Z -—
whence x = 2(ag — ay) + 1,

by — by
,
which is the solution given in the Bakhshili work :
“Twice the difference of the initial terms divided by
the difference of the common differences, is increased by

unity. The result will be the number of days in which
the distance moved will be the same.”1

8. LINEAR EQUATIONS WITH TWO UNKNOWNS

Rule of Concurrence. One topic commonly
discussed by almost all Hindu writers goes by the
special name of sasikramapa (concurrence). According
to Nirdyana (1350), it is also called saikrama and
sanikrdma®  Brahmagupta (628) includes it in algebra
while others consider it as falling within the scope of
arithmetic. As explained by the commentator Gangi-.
dhara (1420), the subject "of discussion here is “the
investigation of two quantities concurrent or grown
together in the form of their sum and difference.”

1 BMs, Folio 4, vetso. 2GK, i 31,
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Or, in othet wotds, sarikramana is the solution of the
simultaneous equations

x+y=a,

x—y=~.
Sq Brahmagupta and Sripati are perfectly right in think-
1ng that concurrence is truly a topic for algebra.

Brahmagupta’s rule for solution is :

“The sum is increased and diminished by the
difference and divided by two ; (the result will be the
two unknown quantities): (this is) concurrence.”?

The same rule is restated by him on a different
occasion in the form of a problem and its solution.

“The sum and difference of the residues of two
(heavenly bodies) are known in degtees and minutes.
What are the residues ? The difference is both added to
and subtracted from the sum, and halved ; (the results
are) the residues.””2

Similar rules are given also by other writers.3

_ Linear Equations. Mahivira gives the following
examples leading to simultaneous linear equations to-
gether with rules for the solution of each.

Esxample. “The price of ¢ citrons and 7 fragrant
wood-apples taken togetheris 107 ; again the price of
7 citrons and ¢ fragrant wood-apples taken together
is 1o1. O mathematician, tell me quickly the price
of a citron and of a fragrant wood-apple quite sepa-
rately.”4

If x, y be the prices of a citron and of a fragrant
1-BrSpSi, xviil. 36. 2 Br§pSi, xviii. 96.

8 GSS, vi. 2 ; MSi, xv. 215 Sife, xiv. 13; L, p. 12; GK, i. 31.
¢ GSS, vi. 140%-1428.
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Wood-appie respectively, then

9x + 7y = 107,
7x + 9y = I101.
Or, in general, ax + by = m,
) bx 4+ ay = n.

Solution. “From the larger amount of price multiplied
by the (corresponding) bigger number of things sub-
tract the smaller amount of price multiplied by the
(corresponding) smaller number of things. (The re-
mainder) divided by the difference of the squares of the
aumbers of things will be the price of each of the bigger
number of things. The price of the other will be
obtained by reversing the multipliers.””

am — bn an — bm
Thus =7 J= "

Example. “A wizard having powers of mystic
incantations and magical medicines seeing a cock-fight
going on, spoke privately to both the owners of the
cocks. To one he said, ‘If your bird wins, then you give
me your stake-money, but if you do not win, I shall give
you two-thirds of that.” Going to the other, he promised
in the same way to give three-fourths. From both of
them his gain would be only 12 gold pieces. Tell me,
O ornament of the first-rate mathematicians, the stake-
money of each of the cock-owners.””2

i.e., x—3y=12, y— &x=12.
Or, in general,

2
X—gy=p y— gx=P

1 GSS, vi. 1394 2 GSS, vi. 270-2.
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Solution: ;
— bc 4 d)
X = A= T bl
. d(a + b)
= (¢ + b)d — (f—}—d)ap'
The following example with its solution is taken
from the Bjjaganita of Bhaskara II:

Example. “One says, ‘Give me a hundred, friend, I
shall then become twice as rich as you.” The other
replies, ‘If you give me ten, I shall be six times as rich
as you.” Tell me what is the amount of their (res-
pective) capitals 27’2

The equations are

X -+ 100 = 2( y — 100), (X
¥+ 10=06(x— 10). (2)

Bhiskara II indicates two methods of solving these
equations. They are substantially as follows :

First Method.® Assume
X = 2% — 100, Y=g+ 100,

so that equation (1) is identically satisfied. Substituting
these values in the other equation, we get

g + 110 = 123 — GG0;
whence g = 70. Therefore, x = 40, y= 170.
Second Method.*  From equation (1), we get
X = 2y — 300,
and from equation (2)
x =3 + 70).

1 GSYS, vi. 2684-94. 2 BBi, p. 41.
3 BBi, p. 46. 4 BB/, pp. 78f.
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Equating these two values of x, we have

2y — 300 = §(y + 70),
ot 12y — 1800 = ¥y + 70;

whence y=170. Substituting this value of y in any of
the two expressions for x, we get x = 4o.

It is noteworthy that the second method of solution
of the problem under consideration is described by-
Bhiskara II in the section of his algebra dealing with
“linear equations with several unknowns,” while the
first method in that dealing with “linear equations in one
unknown.” In this latter connection he has observed
that the solution of a problem containing two unknowns
¢an sometimes be made by ingenious artifices to depend
upon the solution of a simple linear equation.

9. \LINEAR EQUATIONS WITH SEVERAL UNKNOWNS

- A Type of Linear Equations. The -earliest

Hindu treatment of systems of linear equations involving
several unknowns is found in the Bakhshali treatise.

One problem in it runs as follows :

“[Three persons possess a certain amount of riches
each.] The riches ot the first and the second taken
together amount to 13 ; the riches of the second and
the third taken together are 14; and the riches of the
fitst and the third mixed are known to be 15. Tell me
the riches of each.”! ’

If x|, x5, x3 be the wealths of the three merchants
respectively, then

X+ Xxp =13, Xg+ X3 =14, X3+ x; =15. (1)
Another problem is

1 BMs, Folio 29, recto. The portions within [ ] in this and
the following illustration have been restored.
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“[Five persons possess a certain amount of riches
each. The riches of the first] and the second mixed
together amount to 16'; the riches of the second and the
third taken together are known to be 17; the riches
of the third and the fourth taken together are known to
be 18; the riches of the fourth and the fifth mixed
together are 19 ; and the riches of the first and the fifth
together amount to 20. Tell me what is the amount
of each.’?

Ze, X+ Xg= 10, Xy 4 X5 =17, X3+ >4 = 18,
x4+ X 5= 19, X5+ X, = 20. (2)
There are in the work a few other similar pro-

blems.2 Every one of them belongs to a system of
linear equations of the type

jxl+ Xg = dy, XgF Xg==dg, «uv, %, + X3 = a,, (I)
n being odd. -

Solution by False Position. A system of
linear equations of this type is solved in the Bakhshali
treatise substantially as follows :

Assume an arbitrary value p for x; and then
calculate the values of x,, x,, ... corresponding to it.
Finally let the calculated value of x, + x; be equal to b
(say). Then the true value of x; is obtained by the
formula

Xy = p + @, — b).

In the particular case (1) the author® assumes the
arbitrary value 5 for x,; then are successively calculated
the values x’y = 8, x’3 = 6 and x'y + x’; = 11. The
correct values are, therefore,

xy=5+ (15— 11)f2 =17, xp=06, x3=28.

1 BMs, Folios 27 and 29, verso.
2 BMs, Folio 30, recto ; also see Kaye’s Introduction, p. 40.
3 BMs, Folio, 29, recto.
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Rationale. By the process of elimination we get from
equations ()
(ag—a)+(agy—ag)+. .. . +(a, 13—a,_ o)+ 2x; = a,.
Assume 5;=p; so that
(ag—ay)+(ag—as)+. . ... +@,1—a, 9 +2p = b, say.
Subtracting 2(x; — p) =a, — b.
Therefore x; =p+ &(a, — b).

Second Type. A particular case of the type of

equations (I) for which » = 3, may also be looked up-
on as belonging to a different type of systems of linear
equations, v73.,
SX— X =d, 2X — Xg=4dg. .., =X — X, =da,, (II)
where =x stands for x; 4+ x;+ ...+ x,. But it
will not be proper to say that equations of this type
have been treated in the Bakhshali treatise.! They have,
however, been solved by Aryabhata (499) and Mahavira
(850). The former says:

“The (given) sums of certain (unknown) numbers,
leaving out one number in succession, are added to-
gether separately and divided by the number of terms
less one; that (quotient) will be the value of the
whole.””2

i.e., Sx=3% a[(n — 1).
r=1

Mahivira states the solution thus:
“The stated amounts of-the commodities added to-
gether should be divided by the number of men less

1 The example cited by Kaye (BMs, Introd., p. 40, Ex. vi)
which conforms to this type of equations is based upon a mis-
apprehension of the text.

2 4, ii. 29.

4
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one. The quotient will be the total value (of all the com-
modities). FEach of the stated amounts being subtract-
ed from that, (the value) in the hands (of each will be
found).”t

In formulating his rule Mahivira had in view the
following example:

“Four merchants were each asked separately by
the customs officer about the total value of their com-
modities. The first merchant, leaving out his own invest-
ment, stated it to be 22; the second stated it to be 23,
the third 24 and the fourth 27; each of them deducted
his own amount in the investment. O friend, tell me
separately the value of (the share of) the commodity

owned by each.”?

Here x4 X34 x5+ x4 = 22+Zi__‘—§4+27 =32.

Therefore x; =10, Xxp=09, x3=28, x;,=17.
Niriyana says:

“The sum of the depleted amounts divided by the
number of persons less one, is the total amount. On
subtracting from it the stated amounts severally will be
found the different amounts.’”3

The above type of equations is supposed by some
modern historians of mathematics? to be 2 modification
of the type considered by the Greek Thymaridas and
solved by his well known rule Epanthema, namely,3

Xdxxgt oo X, =4,

N +X] = ”1, X + ”\72 = (12,- sy N + Xn_l —_ {111,—1'

1GSS, vi. 159. 2 GSS, vi. 160-2.

3 GK, ii. 28.

4 Cantor, Vorlesungen iiber Geschichte der Mathematik (referred
to hereafter as Cantor, Geschichte), 1, p. 624; Kaye, Ind. Math., p. 13;
JASB, 1908, p. 135

5 Heath, Greek Matb I, p. 94.
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The solution given is

x=("1+“2+----+an-1)_-"_

n—2

But that supposition has been disputed by others.!
Sarada Kanta Ganguly has shown that it is based upon
a misapprehension. It will be noticed that in the Thy-
maridas type of linear equations, the value of the sum
of the unknowns is given whereas in the Aryabhata
type it is not known. In fact, Aryabhata determines
only that value.

Third Type. A more generalised system of linear
equations will be

hsx —opy=ay, bySx —caxp=ap, .. ..,
b,2x — ¢, x, = a,. 11
-1C10)
Therefore Zx =g Tl =1
_ b =@ a,
Hence x,, == P . -5(—b/_[)———{ _ Z, (I)

7
r=1,2,3,..., M

A particular case of this type is furnished by the
following example of Mahévira:

“Three merchants begged money mutually from
onc another. The first on begging 4 from the second
and 5 from the third became twice as rich as the others.
The second on having 4 from the first and 6 from the
third became thrice as rich. The third man on begging
s from the first and 6 from the second became five times
as rich as the others. O mathematician, if you know

Y Rodet, Lepons de Caienl &’ Aryabbata, JA, XIIT (7), 1878;
Sarada Kanta Ganguly, “Notes on Aryabhata,” Joeur. Bikar and
Orissa Research Soc., XII, 1926, pp. 88.
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the citra-kuattaka-misra} tell me quickly what was the
amount in the hand of each.”2

That is, we get the equations
xtat+s=20+3—4—7)
It 4+6=38+x—4—06),
g+ 5+ 6=s5(x+y—s5—06);
ot 2(x 4y + 7)) — 3x = 27,
3(¥ ++ ) — 4 =40
5(x 4+ +7) — 63 = 66;
a particular case of the system (III). Substituting in
(1), we get
x=17,,)=8 g=o
In general, suppose 4,;, 4,0, ... @, 1, Gppi1 - -
to be the amounts begged by the rth merchant

from the others; and x, the amount that he had
initially, ‘Then

x1+ 3’4y = b5(Ex — x— a1 ),

Xg T2 apm = bo(Zx — x3 — Z'ay,),

X, *+ 2ty =b(5x— x,— ='q,m)
whete =’a,,, denotes summation from # =1 to m ==
excluding # = r. Therefore

sx+ (b4 1)="a,, = (6 + 1) (Zx — xy),

Sx+ (by+ 1)3 "dpm = (b2 + 1) (S5 — xp),

sx+ G, + 1=, = &, + 1) (ESx— x,).
Let k=0, + 1), r=1,2,3,..., 7

" 1This is the name given by Mahavira to problems involving

equations of type (III).
3GSS, vi. 2538-53.
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Then dividing the foregoing equations by &1,
by + 1,...., respectively, and adding together, we get

1 1 . I
Ex(b —}—I+1;2—}—I+"'+b —}—1)

+(b —}—I+b +1+ +b +I) (n—5)zx.

Zx—(b —+—I+b2—f—-1+ +b +I)

+(bﬂlu . +1;2ﬁ1+"'+ bm’i ;1)

Whence
x,= {é[;;ff +é;j+z”f2+ s Lb:ﬁfr;._
+%’%1+...+%+—f&—(n_z)ér}*
+(b,+r)(b1i1+b o +1 ).

Mahdvira describes the solution thus: !

“The sum of the amounts begged by each person is
multiplied by the multiple number relating to him as
increased by unity. With these (products), the amounts
at hand ate determined according to the rule Isfaguna-
glna etc.! They are reduced to 2 common denominator,
and then divided by the sum diminished. by unity of the
multiple numbers divided by themselves as increased
by unity. (The quoticnts) should be known to be the
amounts in the hands of the persons.””?

Problems of the above kind have been treated also
by Nirdyana (1357). He says:

1The reference is to rule vi. 241.
2GSS, vi. 2514-2524.
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“Multiply the sum of the monies received by each
person by his multiple number plus unity. Then pro-
ceed as in the method for “the purse of discord.”” Divide
the multiple number related to each by the same as
increased by unity. By the sum diminished by unity
of these quotients, divide the results just obtained.
The quotients will be the several amounts in their pos-
session.””t

One particular case, where by =by=....0,=1
and ¢; = ¢ = ... =, = ¢, was treated by Brahmagupta
(628). He gave the rule:

“The total value (of the unknown quantities)
plus or minus the individual values (of the unknowns)
multiplied by an optional number being severally
(given), the sum (of the given quantities) divided by the
number of unknowns increased or decreased by the mul-
tiplier will be the total value; thence the rest (can be
determined).’’2

SEX Xy =, EX F(Ng=4d,. ..., EX S 0X, =4,
a a
Therefore =x = 1+ 2p mallY
#4c
1 a4y dy+ ... +a
Hence Xy == — ay F 4 2 ;s
1 r(j: 1T nte )’

and so on.

Brahmagupta’s Rule. Brahmagupta (628) states
the following rule for solving linear equations involving
several unknowns:

“Removing the other unknowns from (the side of)
the first unknown and dividing by the coefficient of the
first unknown, the value of the first unknown (is obtain-
ed). In the case of more (values of the first unknown),

1GK, ii. 33f. 2 BrSpSi, xiii. 47.
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two and two (of them) should be considered after re-
ducing them to common denominators. And (so on)
repeatedly. If more unknowns remain (in the final
equation), the method of the pulveriser (should be
employed). (Then proceeding) reversely (the values
of other unknowns can be found).”?

Prthiidakasvami (860) has explained it thus:'

“In an example in which there are two or more
unknown quantities, colours such as ydvat-tdvat, etc.,
should be assumed for their values. Upon them should
be performed all operations conformably to the state-
ment of the example and thus should be carefully framed
'wo or more sides and also equations. Equi-clearance
should be made first between two and two of them and
s0 on to the last: from one side one unknown should be
cleared, other unknowns reduced to 2 common denomi-
nator and also the absolute numbers should be cleared
from the side opposite. The residue of other unknowns
being divided by the residual coefficient of the first un-
known will give the value of the first unknown. If
there be obtained several such values, then with two and
two of them, equations should be formed after reduction
to common denominators. Proceeding in this way
to the end find out the value of one unknown. If
that value be (in terms of) another unknown then the
coefficients of those two will be reciprocally the values
of the two unknowns. If, however, there be present
more unknowns in that wvalue, the method of the
pulveriser should be employed. Atbitrary values may
then be assumed for some of the unknowns.”

It will be noted that the above rule embraces the
indeterminate as well as the determinate equations. In
fact, all the examples given by Brahmagupta in illustra-

1 BrSpSi, xviil. §1.
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tion of the rule are of indeterminate character. We
shall mention some of them subsequently at their propes
places. So far as the determinate simultaneous equations
are concerned, Brahmagupta’s method for solving them
will be easily recognised to be the same as our present
one.

Mahaivira’s Rules. Certain  interest problems
treated by Mahivira lead to simple simultaneous equa-
tions involving several unknowns. In these problems.
certain capital amounts (¢, ¢, ¢3,...) are stated to
have been lent out at the same rate of interest (r) for
different periods of time (¢, %, 4,...). If (7, 7,
Z3,- - . ) be the interests accrued on the several capitals,

- riyey _ 7lal ;= rigtg )
1™ 100 2 100> 3 100 ’
O If 44+4+74+....=1 ¢ and ¢ be known

(for r =11, 2,...), we have
i — * Iyt
ety + Gts + eatg + 0
with similar values for 7,, 7. ...
(i) Onife;+ e+ ¢35+ ...=C,i, and #, be known
(for r =1, 2,...), we have

Ciy /14

6= . ,
VU alhthlht
and so on.
(iif) Or, if we are given the sum of the periods £, + 7,
+...=1T, ¢, and 7, then

fy= = Tilo ,
. fer + dafea+ .l
with similar values for #, #,...
Mahivira has given separate rules for the. solution
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of problems of each of the above three kinds.?!

Bhiskara’s Rule. Bhiskara II has given practically
the same rule as that of Brahmagupta for the solution
of simultaneous linear equations involving several un-
knowns. We take the following illustrations from his
works.

Example 1. “Eight rubies, ten emeralds and a
hundred pearls which are in thy ear-ring were purchased
by me for thee at an equal amount; the sum of theprice
rates of the three sorts of gems is three less than the half
of a hundred. Tell me, O dear auspicious lady, if thou
be skilled in mathematics, the price of each.”?

If x, y, g be the prices of a ruby, emerald and pearl
respectively, then

8x = 10y = 100%,

X 4y +3 = 47

Assuming the equal amount to be », says Bhiskara

I1, we shall get .
x =w(8, y=w[t0, g = w/[100.

Substituting in the remaining equation, we easily

get w = 200. Therefore
X = 2§, y=20, = 2.

Example 2. “Tell the three numbers which become

equal when added with their half, one-fifth and one-

ninth parts, and each of which, when diminished by
those parts of the other two, leaves sixty as remainder.””®

Here we have the equations

x-kxlz2=y+ s =3 +%/9 (1)

Y R, XX X ) 6o (2

X o Tz T3 o. (2)
1GSS, vi. 37, 39, 42. 2 BBi, p. 47.

3 BB, p. sz.
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The geometrical solution of the simple quadratic
equation
4h? — qdh = — ¢
is found in the eatly canonical works of the Jainas (5o0-
soo B. C.) and also in the Tattvirthidhigama-sitra of
Umasvati (¢, 150 B. C.),1 as

h=3{d— VE= 7).

Bakhshili Treatise. The solution of the quadriatic
equation was certainly known to the author of the Bakh-
shili treatise (¢. 200). In this work there are some
problems of the following type: A certain person
travels s yojapa on the first day and & yofapa more on
each successive day. Another who travels at the
uniform rate of S yojapa per day, has a start of # days.
When will the first man overtake the second ?

If x be the number of days after which the first
overtakes the second, then we shall have

.S'(f—l—x):x{s—l— = 1)1;},

or bx? — {2(8 — 5) + b)x = 245,

Therefore
e VO — D+ 0P+ 85 + {2(5~ ) + by
- 26 ’

which agrees exactly with the solution as stated in the
Bakhshali treatise.

“The daily travel [§] diminished by the march of the
first day [s] is doubled; this is increased by the commoun
increment [£#}. That (sum) multiplied by itself is desig-
nated {as the £&sepa quantity}. The product of the daily

1 Datta, “Geometry in the Jaina Cosmography,” Quellen und
Studien Zur Ges. d. Math., Ab. B, Bd. 1 (1931), pp. 245-254.
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travel and the start [#] being multiplied by eight times
the common increment, the £sepz quantity is added.
The square-root of this {1s increased by the Asgpa quan-
tity; the sum divided by twice the common increment
will give the required number of days}.”?

Nearly the whole of the detailed working of the
particular  example in which § =35, #=6, s=3 and
b = 4, is preserved.? It is substantially as follows:

St=130; S—s=5—3=2; 2(§—5+b=28;
{2(S — ) —|—11}2 =64; 852 = 240; 85t =960o; {2(5— )
+ b}2 + 85th = 1024; V1024 = 32; 32+ 8 = 40;
40+~ 8 =135 = x.

For another problem3 S =7, ¢t =35, s =35, b=3;
then x = 7—_%82 .

The formula for determining the number of terms

(n) of an A.P. whose first term (2), common difference
() and sum (s) are known, is stated in the form

\/8171 + (22 — 6)%2 — (22 — 17)
2b

The working of the particular example in which s = 6o.
a =1, b =1 is preserved substantially as follows :4

8bs = 480; 24 =2; 22— b=1; (2a— b =1
8bs + (20 — b)2 = 481; = }(— 1 +V481), etc.

AryabhataI. To find the number of terms of an
A.P., Aryabhata I (499) gives the following rule:

1 BMs, Folio s, recto.

2 BMs, Folio 5, verso; Compare also Kaye’s Introduction,
PP- 37, 45.

2 BMs, Folio 6, recto and verso.

4 BMs, Folio 65 verso. Working of this example has been
continued on folios 56, verso and recto, and 64, recto.
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“The sum of the series multiplied by eight times
the common difference is added by the square of the
difference between twice the first term and the common
difference; the square-root (of the result) is diminished
by twice the first term and (then) divided by the common
difference: half of this quotient plus unity is the number
of terms.”’t

That is to say,

b —
”2%{\/817:%—(24[9 b) za_{_I}.
The solution of a certain interest problem involves the
solution of the quadratic
ix? 4 px — Ap =.o.
Aryabhata gives the value of x in the form?

o VAT G~ pl2
z

Though Aryabhata I has nowhere indicated any method
of solving the quadratic, it appears from the above two
forms that he followed two different methods in order
tc make the unknown side of the equation ax? + bx = ¢,
a perfect square. In one case he multiplied both the
sides of the equation by 42 and in the other simply by .

Brahmagupta’s Rules. Brahmagupta (628) has
given two specific rules for the solution of the quadratic.
His first rule is as follows :

“The quadratic: the absolute quantities multiplied
by four times the coefficient of the square of the un-
known are increased by the square of the coefficient
of the middle (i.e., unknown); the square-root of the
result being diminished by the coefficient of the middle

1 4, ii. 20.
2 A4, ii. 25; vide Part I, pp. z19f.
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and divided by twice the coefficient of the square of the
unknown, is (the value of) the middle.”

___\/4ac+b2—b

2a

i.e., x

The second rule runs as:

“The absolute term multiplied by the coefficient of
the square of the unknown is increased by the square
of half the coefficient of the unknown; the square-root
of the result diminished by half the coefficient of the
unknown and divided by the coefficient of the square
of the unknown is the unknown.”’2

e Vac+ ()2 — (b/2) _

ie.,

The above two method: of Brahmagupta are
identical with those employed before him by Arya-
bhata I (499). The root of the quadratic equation for
the number of terms of an A.P. is given by Brahma-
gupta in the first form:3 .

_ V8bs + (2a — b)® — (2a — b)
n= 7 .

For the solution of the quadratic Brahmagupta uses
also a third formula which is similar to the one now
commonly used. Though it has not been expressly des-
cribed in any rule, we find its application in a few

1 Br8SpSi, xviii. 44. It will be noted that in this rule Brahma-
gupta has employed the term madhys (middle) to imply the
simple unknown as well as its coefficient. The original of the
term is doubtless connected with the mode of writing the quadratic
equation in the form

ax® 4+ bx—+ o =ox? + ox 4 ¢,
so that there are three terms on each side of the equation.
2 BrSpSi, xviil. 45. 3 BrSpSi, xii. 18.
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instances. One of them is an interest problem: A certain
sum (p) is lent out for a period (#)); the interest accrued
(x) is lent out again at this rate of interest for another
period (%) and the total amount is 4. Find x.

The equation for determining x is
Iy o
=2 x2 4 x=A.
y251

Hence, we have
— PN A ph,
x—“\/(ztz) T T,

which is exactly the form in which Brahmagupta states

the result.
There is a certain astronomical problem which in-

volves the quadratic equation®
R2
(72 + @®)x® F 2qapx = 144(- — 2*),

where 4 = agrd (the sine of the amplitude of the sun),
b = palabhi (the equinoctial shadow of a gnomon 12
afiguli long), R = radius, and x = kopasarky (the sine of
the altitude of the sun when his altitude is 45°).
Dividing out by (72 + &%), we have

X2 2mx = n,

where
o 12P _ 1au(R¥2 — p?
72 + 2%’ 72 4+ 4%
Therefore, we have
x= /4 ntm
as stated by Brahmagupta. This result is given also in
+ the S#ryasiddbdnta® (¢. 300) and by Sripati (1039).4

1 BrSpSi, xil. 15. Vide Part I, p. 220.
2 Br8pSy, il 54-55.- 3 $457, iii. 30-1.
4 Sife, iv. 74.
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Stidhara’s Rule. Sridhara (r. 750) expressly
indicates his method of solving the quadratic equation.
His treatise on algebra is now lost. But the relevant
pottion of it is preserved in quotations by Bhiskara I
and others.?2 Sridhara’s method is :

“Multiply both the sides (of an equation) by a
known quantity equal to four times the coefficient of the
square of the unknown; add to both sides a known
quantity equal to the square of the (original) coeflicient
of the unknown: then (extract) the root.”?

That is, to solve  ax?-+ bx=c¢, °

we have 4a%x? - 4abx = 4ac,
or ) (2ax -+ b)? = 4ac + B2
Therefore 2ax + b = \]4;14‘ - b2,
Hence X = V4ac + b2 — b.
2d e

An application of this rule is found in Stidhara’s
Trisatikd, in connection with finding the number of
terms of an A.P4
_ V8bs4- (24— b — 22+ b
o 2b >

ie., »

1 BB;, p. 61.

% Jhanarja (1503) in his Bijaganita and Stryadisa (1541) i+ his
commentary on Bhiskara’s Bijaganita.

3 “Caturdhatavargasamai riipaih paksadvayarh gunayet,

Avyaktavargaripairyuktau paksau tato malam.”
This is the reading of Sridhara’s rule as stated by Jfidnarija and
Stryadisa and accepted also by Sudhakara Dvivedi. But according
to the reading of Krspa (. 1580) and Ramakrsna («. 1648), which
has been accepted by Colebrooke, the second line of the verse
should be
“Plhrvivyaktasya krteh samarGpéni ksipet tayoreva”

or “add to them known quantities equal to the square of the
original coefficient of the unknown.”

8 1ris, R, 41,
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where # is the first term, 4 the common difference and
s the sum of » terms.

Mahidvira, The only wortk of Mahivira (850)
which is available now is the Gapita-séra-samgraha. As
it is admittedly devoted to arithmetic we cannot
expect to find in it a rule for solving the quadratic.
But there are in it several problems whose solutions
presuppose a knowledge of the roots of the quadratic.
One problem is as follows:

“One-fourth of a herd of camels was seen in the
forest; twice the square-root of the herd had gone to the
mountain-slopes; three times five camels were on the bank
of the river, What was the number of those camels ?”1

If x be the number of camels in the hetrd, then
x4+ 2vx+ 15 = x.

Or, in general, the equation to be solved is

%x—}—t\/}—}— d=x,

or (1———2—)x—£\/§=d.

Mahiavira gives the following rule for the solution of
this equation:

“Half the coefficient of the root (of the unknown)
and the absolute term should be divided by unity
minus the fraction (4.c., the coefficient of the unknown).
The square-root of the sum of the square of the coeffi-
cient of the root (of the unknown) and the absolute
term (treated as before) is added to the coefficient
of the root (of the unknown treated as before). The
sum squared is the (unknown) quantity in this m#le
type of problems.””?

1 GSS, iv. 34. 2GS, iv. 33.
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ie., x_{l——a/b—'_\/( 1;)+1_ﬂ/])::,

which shows that Mahavira employed the modern rule
for finding the root of a quadratic. His solution for the
interest problem treated by Brahmagupta is exactly the
same as that of the latter.! We shall presently show
that he knew that the quadratic has two roots,

Aryabhata II. The formula for the number
of terms (7) of an A.P. whose first term (#), common
difference (/) and sum (s) are known is given by

Aryabhata 11 (¢. 950) as follows :2
g — Vabs+ (@ — b[2)2 — a+ b2
- . ,

which shows that for solving the quadratic he followed
the second method of Aryabhata I and Brahmagupta.

Sripati’s Rules. Sripati (1039) indicates two
methods of solving the quadratic. There is a lacuna
in our manuscript in the rule describing the first method,
but it can be easily recognised to be the same as that
of Sridhara.

“Multiply by four times the coeflicient of the square
of the unknown and add the square of the coefficient
of the unknown; (then extract) the square-root.........
civided by twice the coeflicient of the square of the
unknown, is said to be (the value of) the unknown.”

“Or multiplying by the coefficient of the square of
the unknown and adding the square of half the coefhi-
cient of the unknown, (extract) the square-root. Then
(proceeding) as before, it is diminished by half the
coefficient of the unknown and divided by the coefficient

1 GSS, vi. 44. 2 MS7, xv. so.
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of the square of the unknown. This (quotient) is said to
be (the value of) the unknown.”!
i.e., © oax?bx=c,
or a2x2 + abx + (b[2)? = ac 4 (b[2)%
Therefore ax + bf2 =Vac 4 (6]2)%
_ Vac+ (¢[22 —b/2
. = .

Hence

Bhaskara II’s Rules. Bhiskara II (1150) says :

“When the square of the unknown, etc., temain,
then, multiplying the two sides (of the equatxon) by
some suitable quantities, other suitable quantities should
be added to themso that the side containing the unknown
becomes capable of yielding a root (pada-prada). The
equation should then be formed again with the root of
this side and the root of the known side. Thus the
value of the unknown is obtained from that equation.”2

This rule has been further elucidated by the author
in his gloss as follows : .

“When after perfect clearance of the two sides,
there remain on one side the square, etc., of the un-
known and on the other side the absolute term only,
then, both the sides should be multiplied or divided by
some suitable optional quantity; some equal quantities
should further be added to or subtracted from both
the sides so that the unknown side will become capable
of yielding a root. The root of that side must be equal
to the root of the absolute terms on the other sidé.
For, by simultancous equal additions, etc., to the two
equal sides the equality remains. So formlng an equa-
tion again with these roots the value of the unknown is

b”
found.”

1 855, xiv. 17-8, 19. 2 BBi, p. 59.
3 BBi, p. 61.
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It may be noted that in his treatise on arithmetic
Bhiskara 1T has always followed the modern method of”
dividing by the coeflicient of the square of the un-
known.!

Jilnaraja (1503) and Ganesa (1545) describe the
same general methods for solving the quadratic as
Bhiskara II.

Elimination of the Middle Term. The method
of solving the quadratic was known amongst the Hindu
algebraists by the technical designation madbyama-
harapa or ‘“The Elimination of the Middle” (from
madhyama = middle and dbarapa = removal, or destroy-
ing, that is, elimination). The origin of the name
will be easily found in the principle underlying the
tnethod. By it a quadratic equation which, in its
reneral form, contains three terms and so has a middle
term, is reduced to a pure quadratic equation or a simple
equation involving only two- terms and so having no
middle term. Thus the middle term of the original
quadratic is eliminated by the method generally adopted
for its solution. And hence the name. Bhiskara II has
observed, “It is also specially designated by the learned
teachers as the madhyamdibarapa. For by it, the removal
of one of the two? terms of the quadratic, the middle
one, (takes place).”’® The name is, however, employed
also in an extended sense so as to embrace the methods
for solving the cubic and the biquadratic, where also

11, pp. 15fL

2 Referring to the two terms on the unknown side of the com-
plete quadratic. Or the text parga-rdfivekasya may be rendered as
“of one out of the unknown quantity and its square.” According
to the commentators Stryadisa (1541) and Krsna (1580), it implies
“of one between the two square terms,” »/3., the square of the
unknown and the square of the absolute number.

3 BBi, p. 59.
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certain terms are eliminated. It occurs as early as the
works of Brahmagupta (628).1

Two Roots of the Quadratic. The Hindus recog-
nised early that the quadratic has generally two roots.
In this connection Bhiskara II has quoted the following
rule from an ancient writer of the name of Padmanébha
whose treatise on algebra is not available now:

“If (after extracting roots) the square-root of the
absolute side (of the quadratic) be less than the negative
absolute term on the other side, then taking it negative
as well as positive, two values (of the unknown) are
found.”’2

Bhiskara points out with the help of a few specific
illustrations that though these double roots of the
quadratic are theoretically correct, they sometimes lead
to incongruity and hence should not always be accepted.
So he modifies the rule as follows:

“If the square-root of the known side (of the
quadratic) be less than the negative absolute term
occurring in the square-root of the unknown side, then
making it negative as well as positive, two values of
the unknown should be determined. This is (to be
donke) occasionally.”3

Example 1. “The eighth part of a troop of monkeys,
squared, was skipping inside the forest, being delight-
fully attached to it. Twelve were seen on the hill
delighting in screaming and rescreaming. How many
were they 2”4

1 BrSpSi, xviii. 2.
2 «Vyaktapaksasya cenmilamanyapaksarnarQpatah
Alparh dhanarpagam ketva dvividhotpadyate mitih’’—BBj,
p- 67.

3 BBi, p. 59 ; also compare the author’s gloss on the same

. 1).
4 BB, p. 65.
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Solution. “Here the troop of monkeys is x. The
square of the eighth part of this together with 12, is
equal to the troop. So the two sides arel

a3x% 4 ox 4 12 = ox? 4 x + o.
Reducing these to a common denominator and then

deleting the denominator, and also making clearance,
the two sides become

x2 — 64x + o = ox? 4 ox — 768.

Adding the square of 32 to both sides and (extracting)
square-roots, we get

x — 32 = -4 (ox 4 16).
In this instance the absolute term on the known side is
smaller than the negative absolute term on the side of
the unknown; hence it is taken positive as well as
negative; the two values of x are found to be 48, 16.”

Example 2. “The fifth part of a troop of monkeys,
leaving out three, squared, has entered a cave; one is
seen to have climbed on the branch of a tree. Tell how
many are they »”’2

Solution. “In this the value of the troop is x; its
fifth part less three is } x — 3; squared, 25 x2 — $x 4 9;
this added with the visible (number of monkeys),
oy x2 — §x + 10, is equal to the troop. Reducing to
a common denominator, then deleting the denominator
and making clearance, the two sides become

x% — g5x 4 0 = ox? 4 ox — 250.
Multiplying these by 4, adding the square of 5, and

1We have here followed the modern practice of writing the
two sides of an equation in a line with the sign of equality inter-
posed, at the same time, preserving the other salient feature of the
Hindu method of indicating the absent terms, if any, by putting
zeros as their coefficients.

2 BB;, pp. 6;5fl.
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extracting roots, we get

2x — 55 = £ (ox + 45).
In this case also, as in the previous, two values are
obtained: so, 5. But, in this case, the second (value)
should not be accepted as it is inapplicable. People have
no faith in the known beconing negative.”

The implied significance of this last observation is
this: If the troop consists of only 5 monkeys, its
fifth part will be 1 monkey. How can we then leave
out 3 monkeys ? Again, how can the remainder be said
to have entered the cave? It seems to have also a
wider significance.

Example 3. ““The shadow of a ghomon of twelve
fingers being diminished by a third part of the
hypotenuse, becomes equal to fourteen fingers. O
mathematician, tell it quickly.”

Solution. ‘“‘Here the shadow is (taken to be) x.
This being diminished by a third part of the hypotenuse
becomes equal to fourteen fingers. Hence conversely,
fourteen being subtracted from it, the remainder, a
third of the hypotenuse, is x — 14. Thrice this, Wwhich
is the hypotenuse, is 3x — 42. The square of it,
.9x% — 252x 4 1764, is equal to the square of the
hypotenuse, x% + 144. On making equi-clearance, the
two sides become

8x2 — 252x + 0 = ox? 4 ‘ox — 1620.

Multiplying both these sides by 2 and adding the square
of 63, the roots ate

4% — 63 = & (ox + 27).
On forming an equation with these sides again, and
\proceeding) as before, the values of x are 45/2, 9.

1 BBi, pp. G6f.
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(Thus) the value of the shadow is 45/2 or 9. The second
value of the shadow is less than 14, so, on account of
impracticability, it should not be acceptcd Hence it has
been said ‘twofold values occasionally.’ This will be an
exception to what has been stated in the algebra of
Padmanibha, viz...”

Known to Mahavira. It has been stated before
that Mahavira (850) knew that the quadratic has two
roots. We shall now substantiate it by the following
rules and illustrations from his work.

“One-sixteenth of a collection of peacocks multi-
plied by itself, was on the mango tree ; } of the remainder
multiplied by itself together with 14 were on the
tamdla tree. How many were they 1

If x be the number of peacocks in the collection, the
problem leads to the quadratic equation

X ox 15X 15x
16 <16 +16><9X16X9

This is a particular case of the type of equations con-
templated by the author

+ 14 = x.

a
+x2—x+c=o.

b

The following rule has been ‘given for its solution.

“The quotient of its denominator divided by its
numeratort, qless four times the remainder, is multiplied
by that denominator (as divided by the numerator).
The square-root of this should be added to and subtracted
Sfrom that denominator (as divided by the numerator);
half that is the total quantity.”?

Thus N = bla 4 /(b]a — 45)/]/‘1.

’ 2

1GSS, iv. 59. 2GSS, iv. 57.
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1. EQUATIONS OF HIGHER DEGREES
Cubic and Biquadratic. The Hindus did not

achieve much in the solution of the cubic and biquad-
ratic equations. Bhiskara II (1150) attempted the
application of the method of the madhyamibarapa (eli-
mination of the middle) to those equations also so as
to reduce them by means of advantageous transforma-
tions and intreduction of auxiliary quantities to simple
and quadratic equations tespectively. He thus antici-
pated one of the modern methods of solving the biquad-
ratic. “If, however,”” observes Bhiskara II, “due to
the presence of the cube, biquidrate, etc., the work (of
reduction) cannot proceed any further, after the perfor-
mance of such operations, for want of a root of the
unknown side (of an equation), then the value of the
unknown must be obtained by the ingenuity (of the
mathematician).””> He has given two examples, one
of the cubic and the other of the biquadratic, in which
such reduction is possible.

Example 1. “What is that number, O learned man,
which being multiplied by twelve and increased by the
cube of the number, is equal to six times the square of
the number added with thirty-five.

Solution. “Here the number is x. This multiplied
by twelve and increased by the cube of the number be-
comes x2 + 12x. Itis equalto 6x2- 35. On making
clearance, there appears on the first side x® — 6x2
~+ 12x; on the other side 35. . Adding negative eight
to both the sides and extracting cube-roots, we get

x— 2=o0x -} 3.
And from this equation the number is found to be 5.2

Example 2. “What is that number which being

1 BBi, p. 61. 2 BB;, p. 64.
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multiplied by 200 and added to the square of the number,
and then multiplied by 2 and subtracted from the
fourth power of the number will become one myriad less
unity ? Tell that number if thou be conversant with the
operations of analysis.

Solution. ““Here the number is x; multiplied by
200 it becomes 200x ; added to the square of the number,
becomes 2% -+ 200x; this being multiplied by two,
2x? + goox ; by this bemg diminished the fourth power
of the number, namely, this x%, becomes x*— 2x?
— goox. This 'is equal to a rnyriad less unity. Equi-
clearance having been made, the two sides will ,be

x* — 2x% — goox = ox% 4 ox? 4- ox 4 9999.
Here on adding four hundred x plus unity to the first
side, the root can be extracted, but on adding the same
to the other side, there will be no root of it. Thus the
work (of reduction) does not proceed. Hence here
. ingenuity (is called for). Here adding to both the sides
four times the square of x, four hundred x and unity
and then extracting roots, we get

x2 4 ox + 1 = ox2? 4 2x -+ 100.
Again, forming equation with these and proceeding as
before, the value of x is obtained as 11. In similar
instances the value of the unknown must be determined
by the ingenuity of the mathematician.””?

Higher Equations. Mahivira considered certain
simple equations of higher degrees in connection with
the treatment of the geometric series. They are -of the

type

(7)) ax»=ygq,
@ 21 p;

1 BBi, pp. 64f.
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whete « is the first term of a G. P., ¢ its gapadbana, i.e.,
(r41)th term, p its sum and x the unknown common
ratio.

To solve equation (/) Mahivira says, ‘““That which
on multiplication by itself as many times as the number
of terms becomzs equal to the gupadbana divided by the
first term, is the common ratio.””?

i, ~x=Vq/p.
In other words x is the nth root of ¢/p. But how to
find such a root he does not attempt to indicate. His
rule for solving an equation of the type (7/) is as follows :

“That by which the sum divided by the first term
is divisible again and again, subtracting unity every
time, is the common ratio.””2

The method will be better understood from the
solution of the following example :

“(Of a certain series in G. P.) the first term is 3,

number of terms 6 and sum 4o095. What is the common

ratio ?7’8
xﬁ

— 1
Thus 3 = 4095,
or 3(% + x4 &%+ X%+ x + 1) = 4095,

a quintic equation. Here dividing 4095 by 3 we get
1365. Now let us try with the divisor 4; we have
(1365 — I)/4 = 3471; (341 —1)/4 = 85; (85 —1)/4 = 21;
(21 —1)/4=35;( —1)[4=1; (1 —1)/4=0. So the
number 1365 is exhausted on 6 successive divisions by 4,
in the way indicated in the rule. Hence x = 4. What
suggested the method is clearly this :

X% — 1 NtP—T1 X"—1

a Bl .

Al — 1
: ; )s
X — 1 X — I N — I

——1———,\'(
N — 1

1GSS, il 97. 2GSS, ii. ror1.
3 GSS, ii. 102; compare also Rangacarya’s note thereto.
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which is divisible by x. However, the solution is
obtain¢d in every case by trial only.

Mahavira has treated some equations of the fol-
lowing general type -

”1\/5—1; + 42\/52(x — "1\/7’1—-”)
@\ [l — @ VBR) — 2V by — V)
+ ...+ R =x;

or (x — ayV/ byx) — agV byl — a1/ byx)
— as\/ by{(x — @y Vbyx) — a3V by(x — 2,1/ byx)}

— ...=R.

If there be » terms on the left hand side, then on
rationalisation, we shall have an equation of 27th degree
in x. By proper substitutions, the equation will be
ultimately reduced to a quadratic equation of the form

X — AvBX =R,
whose solution is given by Mahivira as

X:{A + VA 4R/B}2 % B.

2

This result has been termed by him, the “essence”
(sdra) of the general equation.! Mahdvira gives two
problems involving equations of the above type.

(1) “(Of a herd of elephants) nine times the square-
root of the two-thirds plus-six times the squafe-root
of the three-fifths of the remainder (entered the deep
forest) ; (the remaining) 24 elephants with their round
temples wet with the stream of exuding ichor, were seen
by mc in a forest. How many were the elephants (in

1GSS, iv. 51, j52.
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the herd) 2”1

If x be the number of elephants in the herd, then by
the statement of the problem

9\/'2—;‘~T+ 6\/%(x—9\/§)+24=x-

Put y=x —9-\/2—:—; then the equation becomes

y— 6V3y[5 = 24.

Therefore y =060 or %,
Hence x—"9 \/%—— = 6o,
When'ce x == 150, 24.

Again x—9 \/% =48
whence x = (61 4= 3\/5_85).

Of the four values of x obtained above, only the value
~ == 150 can satisfy all the conditions of the problem;
others are inapplicable. That will explain why Mahi-
vira has retained in his solution only the positive sign
of the radical.

(2) “Four times the square-root of the half of a col-
lection of boars went into a forest where tigers were at
play; twice the square-root of the tenth part of the
remainder multiplicd by 4 wentto a mountain; g times
the square-root of half the remainder went to the bank
of a river; boars numbering seven times eight were seen
in the forest. Tell their number.”’2

1 GSS, iv. 54-5. ) 2 GSS, iv. 6.
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If x be the total number of boars in the collection,
4Vx[z+ 8V I5(x — 4v/x/2)
+ 9\ Her — 4V]2) ~ 8V I — 4Vx[2))
+ 56 = x.
Put y=2x—4Vx[z; then
J—8V 10— 9V (y — 8V y[10)/z = 56.
Again put g =y — 8V y/10; then
z—9Vz/z= 6.
9 -/ 81 ;{— 4.2.56)2>< 1 = 128,

Therefore g = (

Then y— 8V y[10 = 128; o
8 +1V64 4 10.4.128,\2 .
2 ) X*Ilu— 160.

whence y = (

Again  x— 4V]z = 16o;
; =(4+\/16_i_ 4'2‘160)2><'-]z = 200.

hence

Note that according to the problem the positive
value of the radical has always to be taken.
12. SIMULTANEOUS QUADRATIC EQUATIONS

Common Forms. Various problems involving
-imultaneous quadratic equations of the following forms
have been treated by Hindu writers :

x~J=Qm@ x+1=ﬂmw)

Xy =2b xy=2b
X2 ES 2 2=y .
+£y _ Z}.'..(m) xx—:—)_,y _ ”}...(w)
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For the solution of (7) Aryabhata I (499) states the
following rule :

“The square-root of four times the product (of
two quantities) added with the square of their difference,
being added and diminished by their difference and
halved gives the two multiplicands.”’!

re, x=HVd+4b+d), y=HVd*+ b —d).
Brahmagupta (628) says :
“The square-root of the sum of the square of the
difference of the residues and two squared times the
product of the residues, being added and subtracted

by the difference of the residues, and halved (gives)
the desired residues severally.”’2

Nirayana (1357) writes :
“The square-root of the square of the difference of

two quantities plus four times their product is their
sum.”3

“The square of the difference of the quantities to-
gether with twice their product is equal to the sum of
their squares. The square-root of this result plus twice
the product is the sum.”4

For the solution of (7#) the following rule is given
by Mahivira (850):

“Subtract four times the area (of a rectangle) from
the square of the semi-perimeter; then by sasikramana®
between the square-root of that (remainder) and the
semi-perimeter, the base and the upright are obtained.”®

14, ii. 24. 2 BrSpSi, xviil. 99.

3GK, i. 35. 1 GK, i. 36.

5 Given 2 and b, the process of sasikramapa is the finding of
half their sum and difference, i.e., atb and f—:—b (see pp. 43f).

2
3GSS, vil. 1298,
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fey =Yt VAT @)y = Ya— VI D).
Nardyana says :
“The square-root of the square of the sum minus
four times the.product is the difference.”?
For (7/) Mahavira gives the rule :

“Add to and subtract twice the area (of a rectangle)
from the square of the diagonal and extract the square-
roots. By sasikramana between the greater and lesser
of these (roots), the side and upright (are found).”

ie., x =3 Vet 2b+ Vio— 2b),
y=3(VeF 2b— V= 2b).

For equations () Aryabhata I writes :

“From the square of the sum (of two quantities)

subtract the sum of their squares. Half of the remain-
der is their product.”3

The remaining operations will be similar to those
for the equations (#7); so that

x =4(a +Va — a®), y = 3(a —V2r— a%).

Brahmagupta says :

“Subtract the square of the sum from twice the
s.m of the squares ; the square-root of the remainder

being added to and subtracted from the sum and halved,
(gives) the desired residues.’’

Mahavira,5 Bhaskara 118 and Niriyana? have also
treated these equations.

Nirdyana has given two other forms of simul-

L GK, i. 35.- 2GS, vil. 1274,
8 A, il 23. 4 BrSpSi, xviii. 98.
B GSS, vil. 1258, °L P- 39.

7 GK, i 37.
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tancous quadratic cquations, namely,

X292 =y x2— R =m .
x_~j:[!}... @) 2k } i)

For the solution of (#) he gives the rule :
“The square-root of twice the sum of the squares

decreased by the square of the difference is equal to the
sum.”’l .

Z.e., x+yp=Vz2 — d2

Therefore .

x=3(V2e—d2+d), y=¥ V22— dt—d).

For (#7) Nariyana writes : N

“Suppose the square of the product as the product
(of two quantities) and the difference of the squares as
their difference. From them by seribrama will be
obtained the (square) quantities. Their square-roots
severally will give the quantities (required).”?

We have .

x?— i =m

These are of the form (7). Therefore
x2 = (V% 4b% - m), 3% = (Vm?+ 40® — m).
Whence we get the values of x and y.

Rule of Dissimilar Operations. The process
of solving the following two particular cases of simul-
taneous quadratic equations was distingnished by most
Hindu mathematicians by the special designation visama-
karma® (dissimilar operation) :

1 GK, i 33. 2 GK, 1. 34.

8'The name visama-karma otriginated obviously in contra-
distinction to the name saikramara. ‘This is evident from the term
tisama-sankramana used by Mahavira for visama-karma.
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X2 — yl=um N L NE— = .
X—JIZﬂ}"'(I) .\,_{_]:P}...(n)
These equations are found to have been regarded by
them as of fundamental importance. The solutions
given are:

for () x=4% ZZ"‘F”), ]=1}-(%—7z;
for () x=¥p+7) 2=#r-F)

Thus Brahmagupta says:

“The difference of the squares (of the unknowns)
. iz divided by the difference (of the unknowns) and the
quotient is incrcased and diminished by the difference
and divided by two; (the results will be the two
unknown quantities); (this is) dissimilar operation.”’?

The same rule is restated by him on a different
occasion in the course of solving a problem. '

“If then the difference of their squares, also the
difference of them (are given): the difference of the
squares 1s divided by the difference of them, and this
(latter) is added to and subtracted from the quotient
and then divided by two; (the results are) the residues;
whence the number of elapsed days (can be found).”2

Mahivira states:

“The sarkramana of the divisor and the quotient
of the two quantities is dissimilar (operation); so it is
called by those who have reached the end of the ocean
of mathematics.”3

Similar rules are given also by other writers,*
1 BrSpSi, xviii. 36. 2 BrSpSi, xviii. 97.

3GSS, vi. 2.
4 MSi, xv. 225 .5¢ 1+ GK, i. 32,
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Mahivira’s Rules. Mahavira (850) has treated
certain problems involving the simultaneous quadratic
equations :

#+ x =a, ury = uax,

wt y=20b. usw=ajy.

r X _a—#u

Here e 5 b —
Therefore U= u- |
r— s
.y —
Hence x=([:‘:~) ( ); W*(rZ—.ra)

In the above equations x, y are the interests accrued
on the principal # in the penods r, § respectively and
w is the rate of interest per a.

Mahivira states the result thus :

“The difference of the mixed sums [z, 5] multiplied
by each other’s pericds [r, 5], being divided by the
difference of the periods, the quotient is known as the
principal [#].”!

Again, there are problems involving the equations:

u— x=p, uxw = om,
#H+y=4dq. uyy = an.
Where x, y are the periods for which the principal #

is lent out at the rate of interest » per a and w, # are the
tespective interests.

Here 7 X _ P
P Yy q—u
Therefore y="4_""P
m—
1 GSS, vi. 4 ® GK, i.

.mm-.éarma 0t1gmatcd obvi.
name saikramanra. ‘This is evid_av a.
ana used by Mahdvira for visama-karma.
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Hence x = (],:;%%) m, y= (51—:5);7,

— alm — n)?
(2 — @)(mqg — np)°
Mahiavira gives the rule :
“On the difference of the mixed sums multiplied
by each other’s interests, being divided by the difference

of_ the interests, the quotient, the wise men say, is the
principal.”1

13. INDETERMINATE EQUATIONS OF THE FIRST
DEGREE

General Survey. The earliest Hindu algebraist
to give a treatment of the indeterminate equation of the
first degree is Aryabhata I (born 476). He gave a method
for finding the general solution in positive integers
of the simple indeterminate equation

by —ax =r¢
for integral values of 4, &, ¢ and further indicated how to
extend 1t to get positive integral solutions of simultan-
eous indeterminate equations of the first degree. His
disciple, Bhéskara 1 (522), showed that the samec
method might be applied to solve by — ax = — ¢ and
further that the solution of this equation would follow
from that of by — ax = — 1. Brahmagupta and others
simply adopted the methods of Aryabhata 1 and Bhis-
kara I. About the middle of the tenth century of the
Christian Era, Aryabhata II improved them by point-
ing out how the operations can in certain cases be
abridged . considerably. He also noticed the cases of
failure of the methods for an equation of the form

1 GSS, vi. 51,
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by — ax = 4 ¢. ‘These results reappear in the works of
later writers.!

Its Importance. It has been observed before that
the subject of indeterminate analysis of the first degree
was considered so important by the ancient Hindu
algebraists that the whole science of algebra was once
named after it. That high estimation of the subject
continued undiminished amongst the later Hindu mathe-
maticians. Aryabhata II enumerates it distinctively
along with the sciences of arithmetic, algebra, and
astronomy.2 So did Bhéiskara II and others. - As has
been remarked by Gane$a,? the separate mention of the
subject of indeterminate analysis of the first degree is
designed to emphasize its difficulty and importance.
On account of its special importance, the treatment
of this subject has been included by Bhiskara II in his
treatise of arithmetic also, though it belongs parti-
cularly to algebra.t Tt is also noteworthy that there is
a2 work exclusively devoted to the treatment of this
subject. Such a special treatise is a very rare thing in
the mathematical literature of the ancient Hindus. This
work, entitled Kuztikdira-siromani® is by one Devarija,
a commentator of Aryabhata I.

1For “India’s Contribution to the Theory of Indeterminate
Equiations of the First Degree,” see the comprehensive article of
Professor Sarada Kanta Ganguly in Josrs. Ind. Math. Soc., XIX,
1931, Notes and Questions, pp. 110-120, 129-142; sCe als_o XX,
1932, Notes and Questions. Compare also the Dissertation of
D. M. Mehta on “Theory of simple continued f..ctions (with
special reference to the history of Indian Mathematics).”-

*MSi, 1. 1.

+ ¥ Vide his commentaty on the L#/drati of Bhiskara 1T )

4 Bhiskara’s treatment of the pulveriser in his Bifaganita is
repeated nearly word for word in his Lildvari. )

5 There are four manuscript copies of this work in the Oriental
Library, Mysore.
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Three Varieties of Problems. Problems whose
solutions led the ancient Hindus to the investigation
of the simple indeterminate equation of the first degree
were distinguished broadly inte three varieties. The
problem of one variety is to find a number (IN) which
being divided by two given numbers (@, &) will leave
two given remainders (R;, Ry). Thus we have

N =ax+ R; = by 4+ R,.

Hence by — ax = R; — R,
Putting ¢ =R, ~R,,
we get by — ax = +«¢

the upper or lower sign being taken according as R,
> or < R,. In a problem of the second kind we are
required to find a number (x) such that its product with
a given number (@) being increased or decreased by
another given number (v) and then divided by a third
given number (B) will leave no remainder. In other
words we shall have to solve
ax + v
B

in positive integers. The third variety of problems
similarly leads to equations of the form

by 4+ ax = 4 ¢.

Terminology. The subject of indeterminate
analysis of the first degree is generally called by the
Hindus fattaka, kuttikdra, kattikdira or simply kutta.
The names Aattdkdra and £xtia occur as early as the
Mabd-Bhdskariya of Bhiskara 1 (522). In the commen-
tary of the Aryabhatiya by this writer we find the terms
knttaka and knttikira. Brahmagupta has used &nttaka,?
knttikira3 and Autta* Mahivira, it appears, had a

1 AMBb, 1. 41, 49 2 BrSpSi, xviil. 2, 171, etc.
3 Br8&pSi, xviil. 6, 15y etc. - 4 BrSpSi, xviil. 20, 25, etc.
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preferential liking for the name &attikdral

In 2 problem of the first variety the quantities
(a,0) are called ““divisors” (bhdgahdra, bhdjak, cheda,
etc.) and (R,, Ry) “remainders™ (agra, Jsesa, etc.), while
in a problem of the second wvariety, § is ordinarily
called the “divisor’” and vy the “interpolator™ (ksepa,
ksepaka, ctc.); here ais called the “dividend” (bhdjya),
the unknown quantity to be found (x) the “multiplier”
(gunaka, gupakdra, etc.) and y the quotient (phalz). The
unknown (x) has been sometimes called by Mahivira as
rdsi (number) implying ““an unknown number.”’2

Origin of the name. The Sanskrit words Ax#ta,
kuttaka, kuttdkdra and kuttikdra are all derived from the
root Axt¢ “‘to crush”, “to grind,” “to pulverise” and
hence etymologically they mean the act or process of
“breaking”, “grinding”’, “pulverising” as well as an
instrument for that, that is, “grinder”, “pulveriser”.
Why the subject of the indeterminate analysis of the
first degree came to be designated by the term Auttaka
is a question which will be naturally asked. Ganesa
(1545) says: “Kuttaka is a term for the multiplier, for
multiplication is admittedly called by words import-
ing ‘injuring,” ‘killing.” A certain given number being
multiplied by another (unknown quantity), added or
subtracted by a given interpolator and then divided by a
given divisor leaves no remainder; that multiplier is the
Ayttaka: so it has been said by the ancients. This is a
special technical term.”3® The same explanation as to the
origin of the name Au«ttaka has been offered by Sirya-
dasa (1538), Krsna (¢. 1580) and Ranganitha (1602).4

1 GSS, vi. 793, etc. 2 GSS, vi. 1153ff.

3 Vide his commentary on the Lidvati of Bhiskara II.

4 Vide the commentaries of Shryadisa on L#/drati and Bija-
ganita, of Krsna on Bijagapita, and of Ranganatha on Siddbinta-
Siromani.
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But it is one-sided inasmuch as it has admittedly in
view a problem of the second variety where we have
indeed to find an unknown multiplier. But the rules of
the earlier 2lgebraists such as Aryabhata I and Brahma-
gupta were formulated with a view to the solution of a
problem of the first variety. So the considerations
which led those early writers to adopt the name &xttaka
must have been different. Mahivira has once stated
that, according to the learned, &wttikdra is another name
for “the operation of praksepaka” (lit., throwing, scatter-
ing, implying division into parts).! In fact, his writ-
ing led his translator to interpret Auftikdra as “propor-
tionate division”, “a special kind of division or distribu-
tion.”? Bhaskara I, who had in view a problem of the
sccond variety, once remarked, “the number is obtained
by the operation of pulverising (£#ttana), when it is
desired to get the multiplier (gupakdra)....”% 1t will
be presently shown'that the Hindu method of solving the
equation by — ax = H- ¢ is essentially based on a process
of deriving from it successively other similar equations
in which the values of the coefficients (a, &) become
smaller and smaller.# Thus the process is indeed the
same as that of breaking a whole thing into smaller
pieces. In our opinion, it is this that led the ancient
mathematicians to adopt the name A#tfaka for the opera-
tion.

Preliminary Operations. It has been remarked
by most of the writers that in order that an equation

1 “Praksepaka-karanamidam. . ... kuttikAro budhaissamuddis-
tam”—GSS, vi. 794.
2 Vide GSS (English translation), pp. 117, 300.
3 “K rta-kuttana-labdha-rdsimesim
Gunakiram samudanti...... ”.—MBb), i. 48.
1Tt has been expressly stated by Saryadeva Yajva that the
process must be continued “‘yidvaddharabhijyayoralpati.”
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of the form
by —ax =-d¢ or by+ax=4—¢

may be solvable, the two numbers @ and & must not have
a common divisor; for, otherwise, the equation would
be absurd, unless the number s had the same common
divisor. So before the rules adumbrated hereafter
can be applied, the numbers 4, &, ¢ must be made prime
(drdba = firm, niccheda = havmg no divisor, wirapa-
varta = 1rreduc1ble) to each other.

Thus Bhiskara I observes:

“The dividend and divisor will become prime to
each other on being divided by the residue of their
mutual division. The operation of the pulvcnser
should be considered in relation to them.”

Brahmagupta says:

“Divide the multiplier and the divisor mutually
and find the last residue; those quantities being divided
by the residue will be prime to each other.”?

Aryabhata IT has made the preliminary operations
in successive stages. These will be described later on.3

Sripati states:

“The dividend, divisor and interpolator should
be divided by their common divisor, if any, so that it
may be possible to apply the method to be described.”*

“If the dividend and divisor have a common
divisor, which is not a divisor of the interpolator then
the problem would be absurd.””®
Bhiskara II writes:

““As preparatory to the method of the pulveriser,

1 MBb, i. 41. 2 BrSpSi, xviil, 9.
3 UVide infra, p. 104. 1 $iSe, xiv. 22.
5 575%, xiv. 26
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.the dividend, divisor and interpolator must be
divided by a common divisor, if possible. If the
number by which the dividend and divisor are divisible,
does not divide the interpolator then the problem
is absurd. The last residue of the mutual divi-
sion of two numbers is their common divisor. The
dividend and divisor, being divided by their common
divisor, become prime to each other.”?

Rules similar to these have been given also by
Niriyana,? Jfidnarija and Kamalikara® So in our
subsequent trcatment of the Hindu methods for the
solution in positive integers of the equation &y -+ ax
= + ¢, we shall always take, unless otherwise stated,
a, b prime to each other.

Solution of by — ax = 4 ¢

Aryabhata I's Rule. The rule of Aryabhata I (499)t
is rather obscure inasmuch as all the operations intend-
ed to be carried out have not been described fully and
clearly. So it has been misunderstood by many writers.®
Following the interprectation of the rule by Bhaskara
I (525), a direct disciple of Aryabhata I, Bibhutibhusan
Datta has recently given the following translation:®

1L, p. 76; BBi, pp. 24f. 2 NBi, I, R. 53-4.

38TV, xiii. 1794 1 4, ii. 32-3.

8L. Rodet, “Legons de calcul d’Aryabhatta,” J.4, XIII,
1878, pp. 3o03fl; G. R. Kaye, “Notes on Indian Mathematics.
No. 2—Aryabhata,” JASB, IV, 1908, pp. 111ff; BCAIS, IV, p. 55;
N. K. Mazumdar, “Aryyabhatta’s rule in relation to Indeterminate
Equations of the First Degree,” BCMS, 1II, pp 11-9; P. C. Sen
Gupta, “Aryabhatiyam,” Jour. Dept. Let. Cal. Univ., XVI, 1927;
reprint, p. 27.; S. K. Ganguly, BCMS, XIX, 1928, pp. 170ff;
W. E. Clark, Aryab/)a_tﬁ/a.of Aryabbata, Chicago, 1930, pp. 42fF.

8 Bibhutibhusan Datta, “Elder Aryabhata’s rule for the
solution of indeterminate equations of the first degree,” BCMS,
XXIV, 1932, pp. 35-53.
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“Divide the divisor corresponding to the greater
remainder by the divisor corresponding to the smaller
remainder. The residue (and the divisor corresponding
to the smaller remainder) being mutually divided,
the last residue should be multiplied by such an optional
integer that the product being added (in case the number
of quotients of the mutual division is even) or subtracted
(in case the number of quotients is odd) by the difference
of the remainders (will be exactly divisible by the last
but one remainder. Place the quotients of the mutual
division successively one below the other in a column;
below them the optional multiplier and underneath it
the quotient just obtained). Any number below (/e.,
the penultimate) is multiplied by the one just above it
and then added by that just below it. Divide the last
number (obtained by daing so repeatedly?) by the divisor
corresponding to the smaller remainder; then multiply
the residue by the divisor corresponding to the greater
remainder and add the greater remainder. (The result
will be) the number corresponding to the two divisors.”

He has further shown that it can be rendered also
as follows:

“Divide the divisor corresponding to the greater
remainder by the divisor corresponding to the smaller
remainder. The residue (and the divisor corresponding
to the smaller remainder) being mutually divided
(until the remainder becomes zero), the last quotient
should be multiplied by an optional integer and then
added (in case the number of quotients of the mutual
division is even) or subtracted (in case the number of
quotients is odd) by the difference of the remainders.
(Place the other quotients of the mutual division succes-

1The process implied here is shown in detail in the working
of the example on pages 113f.
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sively one below the other in a column; below them the
result just obtained and underneath it the optional in-
teger). Any number below (7.e., the penultimate)
is multiplied by the one just above it and then added
by that just below it. Divide the last number (obtained
by doing so repeatedly) by the divisor corresponding
to the smaliler remainder; then multiply the residue
by the divisor corresponding to the greater remainder
and add the greater remainder. (The result will be)
the number corresponding to the two divisors.”

Aryabhata’s problemis : To find 2 number (INV)
which being divided by two given numbers (4, #) will
leave two given remainders (R,, R,).! This gives:

N=uax-+ R, =by+ R,.
Denoting as before by ¢ the difference between R, and
R,, we get

@ by=ax+c if R, >R,

or (#) ax=14by+4 ¢, if R, >R,
the equation being so written as to keep ¢ always posi-
tive. Hence the problem now reduces to making either

ax—+ ¢ or by+ ¢
b a

according as R, > R, or K, > R, a positive integer.
So Aryabhata says: “Divide the divisor corresponding
to the greater remainder etc.”

1Tt has already been stated (p. 9o0) that in a problem of the
first variety which gives an equation of the above form (and in
which R; > R,).
a = divisor corresponding to greater remainder,
b = divisor corresponding to lesser remainder,
1 == greater remainder,
R, = lesser remainder.
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Suppose R, > R, ; then the equation to be solved
will be

ax + ¢ = by @
a, b being prime to each other.
Let
b)a (¢
bq
VA
9
r)r (4,
Tods
73
r‘m"‘l) r’m—2 (qm"l
Tm—1dm—y
Twm
T m+1
Then, we get!
a=bg4r,
b=rg, 4 7y

|
ry ==, T 7,
ry == Tyds 1 Te,

rm—z == r-m—1qm—1 + 7 s
rm—]_ = rmqm + rm+1'
Now, substituting the value of # in the given equa-
tion (1), we get
by = (bg 4 r)x -+ c.
Therefore 1 !

Y= g%+

1When @ < 4, we shall have g = o, 7, = 4.
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where by, = rpx + e
In other words, since 2= bg + r, on putting
‘ J=gx+0n (1)
the given equation (1) reduces to
by, =rix 4 e I.1)

Again, since b =rq, -+ 7.,
putting similarly ~=gq, 5, + N,
the equation (1. 1) can be further reduced to
PNy =Yy (I 2)
and so on.
Writing down the successive values and reduced
cquations 1n columns, we have

(1) y=gxtJ by =rnx+e (I 1)
(2) X =g, ¥ + Xy, Xy =723y — 6, (1. 2)
(3) J1 =GNy F I rpds =7y + 6, (1. i)
(4) Ny = g3 ¥y -t Ng, TgXg = 13 Vg — €, . a)
(5) 2= dqax2+ s 74y == rgxy + 6, (I.35)
©) Xy == g V3 - X3 T5Xy == Fe Y3 — (, 1. 6)

(21-—~1) Yy = Fon_2Xn_1 = V| Ton—an ==Fan_1Xn_1+¢, (L 20— 1)
(2n) X1 = Jan-1)n + Xns | T2n-1Xn ="TanVn— 0, (L 2n)
@8+ 1) ¥n = GanXn +Ini1> | Fendni1="roapXa+6 (Lan+1)

Now the mutual division can be continued either
(/) to the finish or (//) so as to get a certain number of
quotients and then stopped. In cither case the number
of quotients found, neglecting the first one (g), as is
usual with Aryabhata, may be even or odd.

Case 7. First suppose that the mutual division
is continued until the zero remainder is obtained. Since
a, b are prime to each other, the last but one remainder
is unity.

Subcase (7. 1). Let the number of quotients be
even. We then have

7,

2n T I, r2n+l =0 an_ - r2n—1'
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mutual division, one below the other, in the form of a
chain. Now find by what number the last remainder
should be multiplied, such that the product being sub-
tracted by the (given) residue (of the revolution) will
be exactly divisible (by the divisor corresponding to
that remainder). Put down that optional number
below the chain and then the (new) quotient underneath.
Then multiply the optional number by that quantity
which stands just above it and add to the product the
(new) quotient (below). Proceed afterwards also in the
same way. Divide the upper number (i¢., the multi-
plier) obtained by this process by the divisor and
the lower one by the dividend; the remainders will
respectively be the desired abargapa and the revolutions.””?

The equation contemplated in this rule is?

' ax — ¢

b

This form of the equation seems to have been chosen
by Bhéskara 1 deliberately so as to supplement the form
of Aryabhata I in which the interpolator is always
made positive by necessary transposition, Further 5 is
taken to be greater than 4, as is evident from the
following rule. So the first quotient of mutual division
of aby b is always zero. This has not been taken
into consideration. Also the number of quotients in
the chain is taken to be even.

= a positive integer.

1 MB#h, i. 42-4.
The above rule has been formulated with a view to its
application in astronomy.
% As already stated on p. 9o, when the equation is stated in
this second form
a = dividend,
b = divisor,
¢ = interpolator,
x = multplier,
¥ = quotient,
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He further observes:

“When the dividend is greater than the divisor,
the operations should be made in the same way (i.e.,
according to the method of the pulveriser) after delet~
ing the greatest multiple of the divisor (from the divi-
dend). Multiply the (new) multiplier thus obtained by
that multiple and add the (new) quotient; the fresult
will be the quotient here (required).”’?

That is to say, if in the equation
ax 4 ¢ = by,
a = mb + a’, we may neglect the portion m#b of the divi-
dend and proceed at once with the solution of

a’x 4+ c=by.
Let x = a, y = B be a solution of this equation. Then
da4-c=108;
. (mb + aa + ¢ = b(ma + B),
or aa + ¢ = b(ma + B).

Hence x=a, y=ma -+ B is a2 solution of the
given equation. .

Brahmagupta’s Rules. For the solution of Arya-
bhata’s problem Brahmagupta (628) gives the following
rule:

“What remains when the divisor corresponding
to the greater remainder is divided by the divisor corres-
ponding to the smaller remainder—that (and the latter
divisor) are mutually divided and the quotients are
severally set down one below the other. The last
residue (of the reciprocal division after an even number
of quotients has been obtained?) is multiplied by

3

1 MBb, i. 47.
2 Compare the next rale: “Such is the process when the
quotients (of mutual division) are even etc.”
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such an optional integer that the product being added
with the difference of the (given) remainders will be
exactly divisible (by the divisor corresponding to that
residue). ‘That optional multiplier and then the (new)
quotient just obtained should be set down (underneath
the listed quotients). Now, proceeding from the lower-
most number (in the column), the penultimate is
multiplied by the number just above it and then added
by the number just below it. The final value thus
obtained (by repeating the above process) is divided
by the divisor corresponding to the smaller remainder.
The residue being multiplied by the divisor correspond-
ing to the greater remainder and added to the greater
remainder will be the number in view.”?

He further observes:

“Such is the process when the quotients (of mutual
division) are even in number. But if they be odd,
wnat has been stated before as negative should be made
positive or as positive should ‘be made negative.”’?

Regarding the direction for dividing the divisor
corresponding to the greater remainder by the divisor
corresponding to the smaller remainder, Prthidakasvimi
(860) observes that it is not absolute, rather optional;
so that the process may be conducted in the same way
by starting with the division of the divisor correspond-
ing to the smaller remainder by the divisor correspond-
ing to the greater remainder. But in this case of inver-
sion of the process, he continues, the difference of
the remainders must be made negative.

That is to say, the cquation
by=ax+ ¢
can be solved by transforming it first to the form
ax = by — o,

1 BrSpSi, xviii. 3-5. 2 BrSpSi, xviil. 13.
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so that we shall have to start with"the division of / by 4.

Mahivira’s Rules. Mahivira (850) formulates his
rules with a view to the solution of

ax ¢
_—b:t— =

in positive integers. He says:

“Divide the coefficient of the unknown by the
given divisor (mutually); reject the first quotient and
then set down the other quotients of mutual division
one below the other. When the residue has become
sufficiently small, multiply it by an optional number
such that the product, being combined with the inter-
polator, which if positive must be made negative (and
vice versa) in case (the number of quotients retained is)
odd, will be exactly divisible (by the divisor correspond-
ing to that residue). Place that optional number and
the resulting quotient in order, under the chain of quo-
tients. Now add the lowermost number to the product
of the next two upper numbers. The number (finally
obtained by this process) being divided by the given
divisor, (the remainder will be the least value of the
unknown).”? ’

This method has been redescribed by Mahavira
in a slightly modified form. Here he continues the
mutual division until the remainder zero is obtained
and further takes the optional muitiplier to be zero,

“With the dividend, divisor and remainder reduced
(by their greatest common factor the operations should
be performed). Reject the first quotient and set down the
other quoticnts of mutual division (one below the other)
and underneat.. them the zero? and the given remainder

TGS, vi. 115} (first portion).
2 W'e have emended sdgra of the printed text to &hdgra.
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(as reduced) in succession. The remainder, being multi-
plied by positive or negative as the number of quotients is
even or odd, should be added to the product of the next
two upper numbers. The number (finally obtained by
the repeated application of this process) whether posi-
tive or negative, being divided by the divisor, the
remainder will be (the least value of) the mulitiplier.”?

Aryabhata II. ‘The details of the process adopted
by Aryabhata II (950) in finding the general solution of
(ax + ¢)/b = y in positive integers have been described
by him thus: :

“Set down the dividend, interpolator and divisor
as stated (in a problem): this is the first operation.

“Divide them by their greatest common divisor
so as to make them without a common factor: this is the
second operation.

“Divide the dividend and interpolator by their
greatest common divisor: the third operation.

“Divide the interpolator and divisor by their

greatest common divisor: the fourth operation.

“Divide the dividend and interpolator, then the
interpolator (thus reduced) and divisor by their respec-
tive different greatest common divisors: the fifth operation.

“On forming the chain from these (reduced
numbers), if the remainder becomes unity, then the
object (of solving the problem) will be realised; but
if the remainder in it be zero, the questioner does not
know the method of the pulveriser.

“Divide the (reduced) dividend and divisor reci-

procally until the remainder becomes unity. (The quo-
tients placed one below the other successively will form)

1 GSS, vi. 136} (first portion). Our interpretation differs from
those of Rangacharya and Ganguly.
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the (auxiliary) chain. Note down whether the number
of quotients is even or odd. Multiply by the ultimate
the number just akove it and then add unity. The chain
formed on replacing the penultimate by this result is
the corrected one. Multiply by the un-destroyed
(7.., corrected) penultimate the number just above
it, then add the ultimate number; (now) destroy
the ultimate. On proceeding thus (repeatedly) we
shall finally obtain two numbers which are (techni-
cally) called Awzza. 1 shall speak (later on) of those
two quantities as obtained in the case of an odd number
of quotients. If on dividing the dividend by the divisor
once only the residue becomes unity, then the quotient
is known te be the upper Autfa and the remainder
(¢.e., unity) the lower Axtta.

“The upper and lower A&#/fz thus obtained, being
both multiplied by the interpolator of the given equation
and then divided respectively by its dividend and divisor,
the residues will be the quotient and multiplier respec-
tively.

“In the case of the third oper:tion (having been
performed before) multiply the upper £##¢a by the inter-
polator of the question and the lower &#/#z by the inter-
polator as reduced by the greatest common divisor. The
same should be done reversely in the case of the fourth
operation. In the case of these two operations, the £x/ta
after being multiplied as indicated should be divided
respectively by the dividend and divisor stated by the
questioner, the residues will be the quotient and multi-
plier respectively.

“In the fifth operation, multiply the upper &#tia
by the greatest common divisor of the dividend and the
interpolator, and the lower one by the other (s.e., the
greatest common divisor of the given divisor and the
reduced interpolator). The products are the inter-
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mediate quotient and ‘'multiplier. Multiply the divisor
of the question by the intermediate quotient and also
its dividend by the intermediate multiplier. Difference of
these products is the required intermediate divider. The
intermediate quotient and multiplier are multiplied by the
interpolator of the question and then divided by the
intermediate divider. The quotients thus obtained being
divided respectively by the dividend and divisor of the
question, the residues will be the quotient and multiplier
(required).

“The quotient and multiplier are obtained correctly
by the process just described in the case of a positive
interpolator when the chain is even and in the case of a
negative interpolator if the chain is odd. In the case of
an even chain and negative interpolator, also of an odd
chain and positive interpolator, the quotient and multi-
plier thus obtained are subtracted respectively from tne
dividend and divisor made prime to each other and the
residues give them correctly.”’?

The rationale of these rules will be easily found to
be as follows: o
() It will be noticed that to solve
by = ax +o, M
in positive integers, Aryabhata II first finds the solution
of

) by = ax 4 1.
If x = a, y = P be a solution of this equation, we get
bp = aa.+ 1, .
or b(eB) = a(ca) + c.

Therefore x = ca, y = ¢B is a solution of (1).
(7)) Let a=4dg, ¢ =¢'g; then (1) reduces to
b.yf J— (Z,x :t ‘_”

1 MSi, xviii. 1-14.
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there y" = y/g.
lLet x =a, = p be a solution of

by =a'x 41,
so that we have

Ep = d’a + 1.
Hence bge'B = d’gr’a 4 g ;
or H(eB) = a(¢’a) - .

Therefore x = o, y=¢p is a solution of (1).

@iy Let b=g'b’, c=g'c"; then (1) reduces to
b’y = ax’ 4 ¢”,

where x’ = x/g’. If x’ = a, y =B be a solution of

b’y = ax’ + 1,
we have
_ OB = aa 1.
Therefore b'gc"B = ag’c”a 4 g’c”,
or b(c”B) = alca) £ c.

Hence x =vca, y =" is a solution of (1).
() Let a=4dlyg c=1/g b=>5"g" and " = "g".
Then the given equation 4y = ax + ¢ reduces to

by =a'x" + ¢,
where x" = x[g"”, ¥ =/g. Now, if »" = a, V=25
be a solution of

by =a'x" + 1,
we shall have, multiplying both sides by gg”,

b’:gg”ﬁ — ﬂ’gg”a :t ggll,

or H(eP) = a(g"e) £ 28",
oo o) - o) e
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Since  gg” = a(g”a) ~ b(gB), we get
b (2B) — _f_(@.___ :
{a(g”oo ~ b(gm} “ {a(g"a) ~TE
Therefore

ORI € 4 N ()
a(g" @) ~ b(gB) 2(g" ) ~ b(gB)

is a solution of the given equation 4y = ax + ¢. Since
¢ =c"gg"” = c"{a(g"”a) ~ b(gB)}, both these values are
integral.

In each of the above cases the minimum values of
x, y satisfying the equation by = ax 4 ¢ are given by the
residues left on dividing the values of x, y as calculated
above by & and « respectively, provided the two quo-
tients are equal.

Let x=P, y =0 be the solution as calculated
above ; further suppose that

P=mb+p, Q=na+g;
where 2, # are integers such that p < b, ¢ < a.
If 7 # n, the minimum solution is either
x =p, x=0m—nb+p
Sl mataf® or 32, )
according as m# < or > #. Now, if the interpolator ¢

is positive, it can be shown that (2) is not a solution.
For, if it were,

bg — ¢

a

= x, an integer,
=m—nb+ p>b.
But ¢ < 4, therefore,

l_)q__._f < b,

a
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which is absurd. Therefore, (1) must be the minimum
solution in this case, not (2).

Similarly, if the interpolator ¢ is negative, it can
be shown that (2) 15 the minimum solution, not (1).

Hence the following rule of Aryabhata 11:

“If the quotients (7, #) obtained in the case of any
proposed question be not equal, then the (derived)
value for the multiplier should be accepted and that of
the quotient rejected, if the interpolator is positive. On
the other hand when the interpolator is negative, then
the (derived) value for the quotient should be accepted
and that for the multiplier rejected. How to, obtain
the ~juotient from the multiplier and the multiplier from
the ¢uotient correctly in all cases, 1 shall explain now.
Multiply the (accepted) value of the multiplier by the
dividend of the proposed question, add its interpolator
and then divide by the divisor of the proposed question;
the quotient is the corrected one. The product of the
proposed divisor and the (accepted) quotient being
added by the teverse of the interpolator and then divided
by the dividend of the proposed question, the \quotient
is the (correct) multiplier.””?

He has further indicated how to get all positive
integral solutions of the equation by = ax 4 ¢ after
having obtained the minimum solution.

, “The (minimum) quotient and multiplier being
addea respectively with the dividend and divisor as stated
in the question or as reduced, after multiplying both
by an optional number, give various other values.”2
That is to say, if x == @, y = be the minimum
solution, the general solution will be

x=bm+ a, y=am-}+ B.

I MSi, xviil. 15-8. 2 MS7, xviii. 20.
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Sripati’s Rule. Sripati (1039) writes:

“Divide the dividend and divisor reciprocally
until the residue is small. Set down the quotients
one below the other in succession:; then underneath
them an optional number and below it the correspond-
ing quotient, the optional number being determined.
thus: (the number) by which the last residue must be
multiplied such that the product being subtracted by
the interpolator and then divided by the divisor (corres-
ponding to that residue), leaves no remainder. Tt is
to be so when the number of quotients is even; in the
case of an odd number of quotients the interpolator,
if negattve, must be first made positive and conversely,
if positive, must be made negative; so it has been taught
by the learned in this (branch of analysis). Now multi-
ply the term above the optional number by it (the
optional number) and then add the quotient below.
Proceeding upwards such operatipn should be per-
formed again and again until two numbers are obtained.
The first one being divided by the divisor, (the residue)
will give (the least value of) the multiplier; similarly
the second being divided by the dividend, will give
(the least value) of the quotient.””!

Bhiaskara II's Rules. Bhaskara II (1150) des-
cribes the method of the pulveriser thus:

“Divyide mutually the dividend and divisor made
prime to each other until unity becomes the remainder
in the dividend. Set down the quotients one under
the other successively; befieath them the interpolator
and then cipher at the bottom. Multiply by the
penultimate the number just above it and add the

1 §iSe, xiv. 22-25.
This rule is the same as that of Bhiskara I and holds under
the same conditicns. (See pp. 99f).
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ultimate;. then reject that ultimate. Do so repeatedly
until only a pair of numbers is left. The upper one of
these being divided by the reduced dividend, the remain-
der is the quotient; and the lower one being divided
by the reduced divisor, the remainder is the multiplier.
Such is precisely the process when the quotients (of
mutual division) are even in number. But when they
are odd, the quotient and multiplier so obtained must
be subtracted from their respective abraders and the
residues will be the true quotient and multiplier.”?

Bhiskara'Il then shows how the process of solving
a problem by the method of the pulveriser can some-
times be abbreviated to a great extent. He says:

“The ‘multiplier is found by the method of the
pulveriser after reducing the additive and dividend by
their common divisor. Or, if the additive (previously
reduced or not) and the divisor be so reduced, the
multiplier found (by the method) being multiplied by
their common measure will be the true one.

“Such is the process of finding the multiplier and
quotient, when the interpolator is positive. On sub-
tracting them from their’ respective abraders will be
obtained the result for the subtractive interpolator.”?

Krsna (¢c. 1580) gives the following rationale of these
rules:

We shall have to solve in positive integers

by = ax + c. ®
(/) Suppose g is the greatest common measure of s«
and ¢, so that ¢ = 2’g, ¢ =¢"g. Then

by =a'gx + ',
or by =a'x 4 ¢, (1.1)
where ' =y/g. If x = a, 3" = B be a solution of (1.1),

1 BB, pp. 25f; L, p. 77 2 BBi, p. 26; L, pp. 78, 79.
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Then, forming the chain as directed in the rule, we get

NN - o

90

o)

By the rule, * Mult1ply by the penultimate the number just
above it etc.,” the two numbers obtained finally are 2430
and 1530.1 D1v1d1ng these by 100 and 63 respectively,

the remainders are 30 and 18.

Hence x = 18, y = 30.

Second Method. Reducing the dividend and the
additive by their greatest common divisor (10), we have

the statement:

DiVideﬂd = 10 .
Divisor = 63 Additive = ¢

Since

63) 10 (0

10) 63 (6
6o

"3)10(3
9

1

1 Successive operations in the application of the rule are :

1
1
1

90 )

5y
8

ﬂgﬁMMHHH

1
1

1

2 2 630
g 270 | 2 270
1 90

!

\

oy

1 ( 1
| l 1530
l 900 | 900
% 630 | 2 63y
2 2Ry | B 2Ry
188! 1 o,
ay | ay
Y 1 §

|
1
b
%
%
X
sy
\

2430
1530
oQY
€3y
RXY

oy
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we get the chain

0w & D

>

By the rule, “Multiply by the penultimate etc.,” wc
obtain finally the numbers 27 and 171. Dividing them
respectively by 10 and 63, we get the residues 7 and 45.
Since the number of quotients of the mutual division
is odd, subtracting 7 and 45 from the corresponding
abraders 10 and 63, we get 3 and 18. In this case we
necglect 3. So x = 18; whence by the given equation
y =130. Or, multiplying the quotient 3 as obtained
above by the greatest common divisor 10, we get the
same result y = 3o.

Third Method. Reducing the divisor and the additive
by their greatest common divisor (9), the statement is :

Dividend = 100 qditive — 10
ivisor =7

Since
7) 100 (14
98
2)7(3
6
T
we get the chain

14
3
10
o

By the rule, “Multiply by the penultimate etc.,”” wc
obtain the two numbers 430 and 30. Dividing them .
by 100 and 7 respectively, the residues are 30 and 2.
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Multiplying the latter by the greatest common divisor
9, we get x = 18and y= 30.

Fourth Method. Dividing the divisor and the addi-
tive by their common measure (9) and again the dividend
and the reduced additive by their common measure
(10), we have

Dividend = 10

Divisor = 7 Additive =1
Since 7) 10 (1
7

3)7(2

S

1

we get the chain

I
2
I
o

By the rule, “Multiply by the penultimate etc.,” we have
finally the numbers 3 and 2. Dividing them by 1o and
7 respectively, the residues are the same. Multiplying
them respectively by the common measure 10 of the
dividend and reduced additive, and 9 of the divisor and
additive, we get as before x = 18 and y = 3o0.

Adding to these minimum wvalues (18, 30) of (x, )
optional multiples of the corresponding abraders
(63, 100), we get the general solution of 1cox 4- 90 =63y
in positive integers as x = 63 -+ 18, y = 1007 -} 30,
where 7 is any integet.

Rules similar to those of Bhéskara I1I have been
given by Nardyana,! Jiidnardja and Kamalikara.?

L NBi, I, R. 55-6o. 2 §i T/, xiii. 183-190.
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Solution of by = ax 4- 1

Constant Pulveriser. Though the simple indeter-
minate equation by = ax 4- 1 is solved exactly in the
same way as the equation 4y = ax + ¢ and is indeed a
particular case of the latter, yet on account of its special
use in astronomical calculations? it has received separate
consideration at the hands of most of the Hindu algebra-
ists. It may, however, be noted that the separate treat-
ment was somewhat necessitated by the physical condi-
tions of the problems involving the two types. In the
case of by = ax +- ¢ the conditions are such that the value
of either y or &, more particularly of the latter, has to be
found and the rules for solution are formulated with
tnat object. But in the case of the other (by = ax + 1)
the physical conditions require the values of both y and x.

The equation Jy = ax +- 1 is generally called by the
name of sthira-kuttaka or the “constant pulveriser” (from
sthira, meaning constant, steady). Prthdakasvami
(860) sometimes designates it also as drdba-£uttaka (from
drdba = firm). But that name disappeared from later
Hindu algebras because the word drdha was employed
by later writers?as equivalent to wiccheda (having no
divisor) or mirapavarta (irreducible). The origin of the
name ‘‘constant pulveriser” has been explained by
Prtkddakasvami as being due to the fact that the inter-
polator (4 1) is here invariable. Ganes$a® (1545) explains
it in detail thus: In astronomical problems involving

1 Thus Bhiskara II observes, <“This method of calculation is
of great use in mathematical astronomy.” (BBi, p. 31). He
then points out how the solutions of wvarious astronomical
problems can be derived from the solution of the same indeter-
minate equation. (BB, p. 32; L, p. 81).

2 This special technical use of the word drdba occurs befcre
Brahmagupta (628) in the works of Bhaskara I (522).

3 I7de his commentary on the Li/dvasi of Bhaskara II.
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cquations of the type by — ax = 4-¢, the physical
conditions are such that the dividend (&) and the divisor
(b) are constant but the interpolator (¢) always varies; so
for their solution different sets of operations will have
to be petformed if we start directly to solve them all.
But starting with the equation by — ax = 4- 1, we can
derive the necessary solutions of all our equatlons from
a constant set of operations. Hence the name is very
significant. A similar explanation has been given by
Kirsna (¢. 1580).
Bhiskara I’'s Rule. Bhiaskara I (522) writes :

““The method of the pulveriser is applied also after
subtracting unity. The multiplier and quotient are
respectively the numbers above and underneath. Multi-
plying those quantitics by the desired number, divide by
the reduced divisor and dividend; the residues are in
this case known to be the (elapsed) days and (residues of)
revolutions respectively.””1

In other words, it has been stated that the solution
of the equation
ax — ¢

v
can be obtained by multiplying the solution of
ax — 1 _
;o

by ¢ and then abrading as before. In general, the
solution of the equation by = ax -+ ¢ in positive integers
can be easily derived from that of by = a~x 4+ 1. 1If
x =a, y =B be a solution of the latter equation, we
shall have
b = ca 4- 1.
‘Then b(eB) = a(ca) 4 c.

1 MBB, i. 45.
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Hence x =ca, y = ¢f is a solution of the former. The
minimum solution will be obtained by abrading the
values of x and y thus computed by 4 and # tespectively,
as indicated before.

Brahmagupta’s Rule. To solve the equation
by = ax — 1, Brahmagupta gives the following rule :

“Divide them (7.e., the abraded coeflicient of the
multiplier and the divisor) mutually and set down the
quotients one below the othet. The last residue (of the
reciprocal division after an even! number of quotients
has been obtained) is multiplied by an optionial integer
such that the product being diminished by unity will
be exactly divisible (by the divisor corresponding to
that residue). The (optional) multiplier and then this
quotient should be set down (underneath the listed
quotients). Now proceeding from the lowermost term
to the uppermost, by the penultimate multiply the term
just above it and then add the lowermost number. (The
uppermost number thus calculated) being divided by the
reduced divisor, the residue (is the quantity required).
This is the method of the constant pulveriser.”2

Bhiaskara II’s Rule. Bhiskara II (1150) writes :

“The multiplier and quotient determined by sup-
posing the additive or subtractive to be unity, multiplied
severally by the desired additive or subtractive and then
divided by their respective abraders, (the residues) will
be those quantities corresponding to them (i.¢., desired
interpolators).””3

This rule has been reproduced by Nirdyana4 We
take the following illustrative example with its solution

11n view of the rule in BrSpSi, xviii. 13.
2 BrSpSi, xviii. 9-11. 3BBi, p. 31; L, p. 81.
4 NB;, I, R. 6s.
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from Bhéskara IT 2
221x 4 65
195 =7
On dividing by the greatest common divisor 13,
we get
17X+ 5
15 =
Now, by the method of the pulveriser the solution of the
equation
SRR
Is =7
is found to be x=7, y=8. Multiplying these values by
s and then abrading by 15 and 17 respectively, we get
the required minimum solution x=j3, y=6.
Again a solution of
175 — 1
15
will be found to be x=8, y=9. Multiplying these
quantities by § and abrading by 15 and 17, we get the
solution of

17X — 5 _
T J

to be x=10, y=r11.

Solution of by + ax = H4-¢

An equation of the form by + ax = 4 ¢ was gene-
rally transformed by Hindu algebraists into the form
by = — ax 4- ¢ so that it appeared asa particular case
of by = ax 4 ¢ in which @ was negative.

Brahmagupta’s Rule. Such an equation seems to

1 BB, pp. 28, 31; L, pp. 77, 8r1.
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have been solved first by Brahmagupta (628). But his
rule is rather obscure: ‘“The reversal of the negative
and positive should be made of the multiplier and inter-
polator.””*  Prthidakasvimi’s explanation does not
throw much light on it. He says, “If the multiplier be
negative, it must be made positive; and the additive
must be made negative: and then the method of the
pulveriser should be employed.” But he does not
indicate how to derive the solution of the equation

) by =—ax+«¢ (1)
from that of the equation
by=ax—c¢ (2)

The method, however, seems to have been this :

Let % = a, y = f be the minimum solution of (2).
Then we get

b =ca—r¢
or bla — B) = — a(a— b) + .
Hence x = & — &, y = a — f is theminimumsolution of
(1). This has been expressly stated by Bhiskara IT and
others.

Bhiaskara I’s Rule. Bhiskara II says :

“Those (the multiplier and quotient) obtained for
a positive dividend being treated in the same manner
give the results corresponding to a negative dividend.””2

The treatment alluded to in this rule is that of
subtraction from the respective abraders. He has fur-
ther elaborated it thus :

“The multiplier and quotient should be deter-
mined by taking the dividend, divisor and interpolator
as positive. They will be the quantities for the
additive interpolator. Subtracting them from their

1 BrSpSi, xviii. 13. " 2 BB;, p. 26.
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respective abradets, the quantities for a negative inter-
polator are found. "If the dividend or divisor be nega-
tive, the quotient should be stated as negative.’?

Nirdyana. Niriyana (1350) says:

“In the case of a negative dividend find the multi-
plier and quotient as in the case of its being positive
and then subtract them from their respective abraders.
One of these results, either the smaller one or the greater
one, should be made- -negative and the other positive.”’2

Illustrative Examples. Examples with solutions
from Bhaskara II:3

Example 1. 13y = — Gox 4 3.

By the method described before we find that the
minimum solution of

13y = Gox + 3

is x =11, y == 51. Subtracting these values from their
respéctive abraders namely 13 and 6o, we get 2 and 9.
Then by the maxim. “In the case of ‘the dividend and
divisor being of different signs, the results from the
operation of division should be known to be so,”
making the quotient negative we get the solution of

13y = — Gox 4 3

as x = 2, y = — 9. Subtracting these values again from

their respective abraders (13, 60), we get the solution of
13y = — Gox — 3

as x = 11, y= — §1I.

Example 2. — 11y = 18x 4 10.
Proceeding as before we find the minimum solution

of 11y = 18x 4 10

-

1 BB, p. 29. 2 NB;, 1, R. 63.
3 BBi, pp- 29, 30. o
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to be x =8, = 14. These will also be the values
of x and y in the casc of the negative divisor but the
quotient for the reasons stated before should be made
negative. So the solution of
— 11y = 18x 4 10
is x =8, y=— 14. Subtracting these (7., their
numerical values) from their respective abraders, we get
the solution of
— 11y = 18x — 10
as x =3 J=—4
“Whether the divisor is positive ot negatwe the
numercial values of the quotient and multiplier remain
the same: when either the divisor or the dividend
is negative the quotient must always be known to be
negative.”
The following example with its solution is from
the algebra of Niérayana :1
Ty = — 30X 4 3.
The solution of
7y = 30x 4+ 3
is x = 2, y = 9. Subtracting these values from the res-
pective abraders namely 7 and 30, and making one of

the remainders negative, we get x = 5, y = — 21 and
x = — 5, y = 21 respectively as solutions of
7Y = — 30X I 3.

Particular Cases. The Hindus also tound special
types of general solutions of certain particular cases of
the equation by + ax = ¢. For instance, we find in the
Gapita-sdra-sanigraba of Mahivira (850) problems of the
foliowing type : )

“The varpa (or colours) of two pieces of gold
weighing 16 and 10 are unknown, but the mixture of

NB;i, I, Ex. 29.
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them has the varpa 4; what is the varpa of each piece
of gold 1
If x, y denote the required varpa, then we shall have
16x - 10y = 4 X 26;
or in general
ax + by = c(a -+ b).
Therefore a(x — ¢) = ble — y);
whence : x=c+ mla, y=c¢F mlb,
where # is an arbitrary integer.

Hence the following rule of Mahivira :

“Divide unity (severally) by the weights of the two
ingots of gold. The resulting varsa being set down at
two places, increase or decrease it at one place and do
reversely at the other place, by the unity divided by its
own - quantity of gold (the results will be the corres-
ponding varpa).”’®

He has also remarked that “assuming an arbitrary
value for one of the varpa, the other can be found as
before.”3

A variation of the above problem is found in the
Lildvati of Bhiskara 11 :

“On mixing up two ingots of gold of werpa 16
and 10 is produced gold of varpa 12 ; tell me, O friend,
the weights of the original ingots.”’4

That is to say, we shall have to solve the equation

16x -+ 10y = 12(x -+ ¥);

ax + by = ¢(x -+ y).
Hence x =mc—b), y=m(a—c),
where 7 is an arbitrary integer.

or in general

1 GSS, vi. 188, 2GSS, vi. 187.
3 GSS, vi. 189. 11, p. 26.
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Hence the rule of Bhiskara 11 :

“Subtract the resulting zarpa from the higher
varga and diminish it by the lower varpa; the remain-
ders multiplied by an optional number will be the
weights of gold of the lower and higher varna respec-
tively.”?

In the above example ¢ — b =12, a—¢c=4. So
that, taking » = 1, 2, or 1/2, Bhiskara II obtains the
values of (x, ¥) as (2, 4), (4, 8) or (1, 2). He then
observes that in the same way numerous other sets
of values can be obtained.

14. ONE LINEAR EQUATION IN MORE THAN
TWO UNKNOWNS

To solve a linear equation involving more than two
unknowns the usual Hindu method is to assume arbi-
trary values for all the unknowns except two and then
to apply the method of ‘the pulveriser. Thus Brahma-
gupta remarks, “The method of the pulveriser (should
be employed), if there be present many unknowns (in
an equation).”’® Similar directions have been given by
Bhéskara 11 and others.3

One of the astronomical problems proposed by
Brahmaguptat leads to the equation :
197x — 1644y — g = 6302.
1644y + % + 6302
197
The commentator assumes g = 131. Then
1644y + 0433,

;\,:—’

197

11, p. 25. 2 Br§SpSi, xviii. s5.1.
3 BB, p. 76. 4 Br&pJSi, xviii. 55.

Hence x =
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hence by the method of the pulveriser
X =41, y=1.
The following example with its solution is from
the algebra of Bhaskara II :

“The numbers of flawless rubies, sapphires, and
pearls with one person are respectively 5, 8 and 7; and
O friend, another has 7, 9 and 6 respectively of the same
gems. In addition they have coins to the extent of go
and 62. They are thus equally rich. Tell quickly, O
intelligent algebraist, the price of each gem.”!

If x, y, g represent the prices of a ruby, sapphire
and pearl respectively, then by the question

5% -+ 8y + 7% + 90 = 7> -+ 9y + 63 4 62.

Therefore x = — +2:< + 28
Assume g =1; then
2

whence by the method of the pulveriser, we get

X =14 —m, y=2m-+ 1,
where s is an arbitrary integer. Putting m = o, 1, 2, 3,...
we get the values of (x, ¥, ) as (14, 1, 1), (1353, 1),
(12, 5, 1), (11, 7, 1), etc. Bhiskara II then observes,
“By virtue of a variety of assumptions multiplicity of
values may thus be obtained.”

Sometimes the values of most of the unknowns
present in an equation are assumed arbitrarily or in terms
of any one of them, so as to reduce the equation to a
simple determinate one. Thus Bhiskara II says :

“In case of two or more unknowns, x multiplied
by 2 etc. (7.e., by arbitrary known numbers), or divided,

1 BB, p. 77.
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increased or decreased by them, or in some cases
(simply) any known values may be assumed for
the other unknowns according to one’s own sagacity.
Knowing these (the rest is an equation in one un-
known).”!

The above example has been solved again by
Bhiskara II in accordance with this rule thus :2

(1) " Assume x = 33, y = 2g. Then the equation
reduces to
383 + 90 = 453 + 62,
Therefore ¢ = 4. Hence x = 12, y = 8.

(2) Orassume y =35, 3= 3. Then the equation
becomes
§x 4 151 = 7x 4 125. ~
Whence x = 13.

15. SIMULTANEOUS INDETERMINATE EQUATIONS
OF THE FIRST DEGREE

Sripati’s Rule. We have described before the rule
of Brahmagupta for the solution of simultaneous equa-
tions of the first degree.® In the latter portion of that
rule there are hints for the solution of simultaneous
indeterminate equations by the application of the method
of the pulveriser. Similar rules have been given by
iater Hindu algebraists. ‘Thus Stipati (1039) says :

“Remove the first unknown from any one side of an
equation leaving the rest, and remove the rest from the
other side. 'Then find the value of the first by dividing
the other side by its coefficient. If there be found thus
several values (of the first unknown), the same (opera-

1 BBi, p. 44- 2 BB, p. 46.
3 See pp. s4f.
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tions) should be made again (by equating two and two
of those values) after reducing them to 2 common deno-
minator. (Proceed thus repeatedly) until there results
a single value for an'unknown. Now apply the method
of the pulveriser; and from the values (determined in
this way) the other unknowns will be found by pro-
ceeding backwards. In the pulveriser the multiplier
will be the value of the unknown associated with the
dividend and the quotient, of that with the divisor.””?

Bhiskara II’s Rule. Bhiskara II (1150) writes :

“ Remove the first unknown from the second side
of an equation and the others as well as the absolute
number from the first side. Then on dividing the
second side by the cocflicient of the first unknown, its
value will be obtained. If there be found in this way
several values of the same unknown, from them, after
reduction to a common denominator and then dropping
it, values of another unknown should be determined.
In the final stage of this process, the multiplier and
quotient obtained by the method of the pulveriser
will be the values of the unknowns associated with the
dividend and the divisor (respectively). If there be
several unknowns in the dividend, their values should be
determined after assuming values of all but one arbitrari-
ly. Substituting these values and proceeding reversely,
the values of the other unknowns can be obtained. If on
so doing there results a fractional value (at any stage),
*he method of the pulveriser should be employed again.
Then determining the (integral) values of the latter
unknowns accordingly and substituting them, the values
of the former unknowns should be found proceeding
reversely again.”?

A similar rule has been given by Jiidnarija.

1 §ife, xiv. 15-6. 2 BB, p. 76.
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Example from Bhaskara 1I:

“ (Four merchants), whe have horses §, 3, 6 and 8
respectively ; camels 2, 7, 4 and 1 ; whose mules are 8,
2, 1 and 3; and oxen 7, 1, 2 and 1 in number ; are all
owners of equal wealth. Tell me instantly the price of
a horse, etc.”?

If x, 5, g, » denote respectively the prices of a
horse, a camel, a mule and an ox, and ¥ be the total
wealth of each merchant, we have

sx+2y+ 8+ =W (1)
x+ 1t xtw=W (2)
6x +4y+g+2v=W (3)
8x+y+3x+w=W (4)
Then x = ¥(5y — 6% — 6w), from (1) ahd (2)

=3y + 23— ») from(2)and(3)
— 43y — 217+ #), from (3) and (a)
From the first and second values of x, we'get
= (203 + 162) ;
and from the second and third values, we have
J = (8% — 52).
Equating these two values of y and simplifying,
207 + 16% = 247 — 15W.

Therefore R = 3—? .

Take w = 4}; then
. 2 =31¢, y=76f x =85z
Special Rules. Bhiskara II observes that the

physical conditions of problems may sometimes be such
that the ordinary method of solving simultaneous in-

1 BEi, p. 79.
9
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determinate equations of the first degree, which has
been just explained, will fail to give the desired result.
One -such problem has been described by him as
follows :

“Tell quickly, O algebraist, what number s that
which multiplied by 23 and severally divided by 6o
and 8o leaves remainders whose sum is 100.”1

Let the number be denoted by x; the quotients by
#, v; and the remainders by s, . Then we have

23X — S5 _ . 23x — b

6o 7 g~ 73

also § 4 £ == 100.
Thergfore x = bou + 5 i)

23 23
Hence o Gou 4 8ov + s -+ z"

46
or o 304 -+ 400 4 50
23

For the solution of the above he observes :

“Here, (although) there is more than one quotient
(#, v) in the dividend, the value of any should not be
atbitratily assumed ; for on so doing the process will
fail.”’2  “In a case like this,” continues he, “the (given)
sum of the remainders should be so broken up that
each remainder will be less than the divisor corres-
ponding to it and further that impossibility will not
arise ; then must be applied the usual method.”»

In the present example we thus suppose s = 40,
# = 6o. Hence we have

{Gou 4+ 40 = 8ov - 6o

1 BB;, p. 91. 2 BB, p. 91f.
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__8ov+ 20 4+ 1,
- 6o 3

or

whence by the method of the pulveriser, we get
v= 3w+ 2, 4= 4%+ 3.
240w -+ 220
T 23
Again, applying the method of the pulveriser in order to
obtain an integral value of x, we have

W= 23m -+ 1, X = 2490m 4 20.

If we take s = 30, # = 70, we shall find, by proceed-
ing in the same way, another value of x as 240w 4 go.

General Problem of Remainders. One type of
simultaneous indeterminate equations of the first degree
is furnished by the general problem of remainders,
vig., to find a number N which being severally d1v1ded
by ay, a5, ay, ..., a, leaves as remainders r,, 75, 75, ..., 7,
respectively.

In this case, we have the equations

N =apx; + r) = apxy+ ry =agxg + r3=...

=a,x, + 1,

The method of solution of these equations was
known to Aryabhata I (499). For this purpose the
term dviccheddgram occurring inhis rule for the pulveriser
must be explained in a different way so that the last line
of the translations given before (pp. 94-5) will have to be
replaced by the following: “(The result will be) the
remainder corresponding to the product of the two
divisors.”® This explanation is, in fact, given by
Bhiskara I, the direct disciple and eatliest commentator
of Aryabhata 1. Such a rule is expressly stated by

Therefore Xx =

! See Bibhutibhusan Datta, BCMS, XX1V, 1932,
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Brahmagupta.l

The rationale of this method is simple: Starting
with the consideration of the first two divisors, we have

N = ayx; + ry = agxy + 7.

By the.method described before we can find the
minimum value a of x; satisfying this equation. Then
the minimum value of IN will be 4,0 4- .  Hence the
general value of N will be given by

N = ay(agt + a) 4 7y,
= aydgl + a4y + 1y,
where 7 is an integer. Thus #,a 4- r; is the remainder
left on dividing N by #,4,, as stated by Aryabhata I and

Brahmagupta. Now, taking into consideration the third
condition, we have

N =ayayt + a10+ 7y = agXg + rg,
which can be solved in the same way as before. Pro-

ceeding in this way successively we shall ultimately
arrive at a value of IN satisfying all the conditions.

PrthiidakasvAmi remarks:

“Wherever the reduction of two divisors by a
common measure is possible, there ‘the product of the
divisors’ should be understood as equivalent to the
product of the divisor corresponding fo the greater
remainder and quotient of the divisor corresponding
to the smaller remainder as reduced (/.e., divided) by
the common measure.?. When one divisor is exactly
divisible by the other then the greater remainder is the
(required) remainder and the divisor corresponding to

1 BrSpSi, xviii. s.
2je., if p be the L.C.M. of 4; and a,, the general value of
N satisfying the above two conditions will be
. N =pt + a0+ ny
instead of N = ayapt + ay0 + 3.
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the greater remainder is taken as ‘the product of the
divisors.’ (The truth of) this may be investigated by an
intelligent mathematician by taking several symbols.”
Examples from Bhiskara 1:
(1) “PFind that number which divided by 8 leaves
as remainder, divided by 9 leaves 4 as remainder and
divided by 7 leaves 1 as remainder.”?

That is to say, we have to solve

N=8x+5s=9r+4=797+ I
The solution is given substantially thus : The minimum
value of IN satisfying the first two conditions

N=8+ 5=97+ 4
is found by the method of the pulveriser to be 13.
This is the remainder left on dividing the number by
the product 8.9. Hence

N =92t + 13 = 72+ 1.
Again, applying the same method we find the minimum
number satisfying all the conditions to be 8.

(2) “Tell me at once, O mathematician, that
number which leaves unity as remainder when divided
by any of the numbers from 2 to 6 but is exactly divisible
by 7.7 -

By the same method, says Bhiskara 1 (522), the
number is found to be 721. By a different method
Stryadeva Yajvid obtains the number 3o01. It is in-
teresting to find that this very problem was afterwards
treated by Ibn-al-Haitam (s 1000) and Leonardo
Fibonacci of Pisa (¢. 1202).2

To solve a problem of this kind Bhiskara II adopts

1 See his commentary on A, ii. 32-3.
3L.E. Dickson, History of the theory of Numbers, Vol. 1II,
referred to hereafter as Dickson, Numbers 11, pp. 59, 6os
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two methods. One is identical with the method of
Aryabhata T and the other follows from his general rule
for the solution of simultaneous indeterminate equations
of the first degree. They will be better understood
from his applications to the solution! of the following
problem which, as Prthidakasvami (86o) observes 2 was
popular amongst the Hindus :

To find a number N which leaves remainders s, 4,
3, 2 when divided by 6, 5, 4, 3 respectively.
ie, N=6x+5=35y+4=43+3=73%+ 2
(1) We have
RS bk SN 3w — 1

> ) z -

6 5 4

Now by the method of the pulveriser, we get from the
last equation

w=4t+ 3, 3 =13+ 2,
where # is an arbitrary integer. Substituting in the
second equation, we get
12247
P
To make this integral, we again apply the method of
the pulveriser, so that
t=17554+4, y=125- 1L
This value of y makes x a whole number. Hence we
have finally
w =205 + 19,3 =155 + 14, y = 12§ - 11, X =105+ 0.
*.. N = Gos + s9.
(2) Or we may proceed thus :
Since N==6x-+5=57+ 4 .

1 BB, pp. 85f.
2 Vide his commentary on Br§SpJSi, xviii. 3-6.
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we have x = SJ—G—I
But x must be integral, so y =645, x = 5¢+ 4.
Hence N = 30f + 29.
Again N = 30f 4 29 = 4% + 3.
r=2"10
15

Since # must be integral, we must have g = 155 + 14 ;
hence # = 25 + 1. Therefore
N = 6os + 59.

The last condition is identically satisfied. Prthidaka-
svami followed this second methoy to solve the above
problem.

Conjunct Pulveriser. The foregoing system of
indeterminate equations of the first degree can be put
into the form?

by = ayx £ ’1]
by, = agx & ’2I (1)

On account of its important applications in mathematical
astronomy this modified system-has received special
treatment at the hands of Hindu algebraists from
Aryabhata II (950) onwards. It is technically called

1 For, we have

ayxy vy =agxy -1y =agxg 4 rg = ... = apXy + ry.
Then agycy = ayxy + (r; — 1),
2149 )
GgX3 =~ x + z (ry — 13)s
3 3
@a a.
dyxy = Lﬁxl_l_ 2 (ry — 70)s
4, a4
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samslistakattaka or the “‘conjunct pulveriser” (from,
kuttaka = pulveriser and samilista = joined together,
related).

For the solution of the above system of equations
Aryabhata I lays down the following rule :

,  “In the solution of simultaneous indeterminate
equations of the first degree with a common divisor,
the dividend will be the sum of the multipliers® and the
interpolator the sum of the given interpolators.”?

A similar rule is given by Bhiskara II. He says:

“If the divisor be the same but the multipliers
different then making the sum of the multipliers the
dividend and the sum of residues the residue (of a
pulveriser), the investigation is cartried on according to
the foregoing method. This truc method of the pul-
veriser is called the conjunct pulverjser.””3

Rationale. If the equations (1) are satisfied by
some value 2 of x, then the same value will satisty the
equation
by e+ )= +a+.)x+ 4+t ...) (2).

Thus, if we can find the géneral value of »x satis-

fying equation (2), one of these values, at least, will
satisfy all the equations (1).

To illustrate the application of the above Bhiskara
II gives the following example :4
63y, = 5x — 7
63_)/; = 10X — 14} ()
Adding up the equations and dividing by the common
factor 3, we get
21Y = sx — 7,

11n the equations (1), 4;, 4, ... are called multipliers.
2 MS7, xviii. 48. 3 BBi, p. 33; L, p. 82.
4 BB, p. 33 ; L, p. 82.
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where Y = y; + 5,. By the method of the pulveriser
the least positive value of x satisfying this equation is
x = 14. This value of x is found to satisfy both the
equations (A).

Generalised Conjunct Pulveriser. A generalised
case of the conjunct pulveriser is that in which the
divisors as well as the multipliers vary. Thus we
have

by = aypx + o,
by yp = ayx & 6y
by ys = agx - ¢5,

Simultaneous indeterminate equations of this type have
been treated by Mahivira (850) and Sripati (1039).
Mahivira says :

“Find the least solutions of the first two equations.
Divide the divisor corresponding to the greater solution
by the other divisor (and as in the method of the pul-
veriser find the least value of) the multiplier with the
difference of the solutions as the additive. That multi-
plied by the divisor (corresponding to the greater
solution) and then added by the greater solution (will be
the value of the unknown satisfying the two equations).”?

A similar rule is given by Sripati :

“Find the least solutions of the first two equations.
Dividing the divisor corresponding to the greater solu-
tion by the divisor corresponding to the smaller solution,
the residue (and its divisor) should be mutually divided.
Then taking the difference of the numbers as the addi-
tive, determine (the least value of) the multiplier of the
divisor corresponding to the greater solution in the
manner explained before. Multiply that value by the

1 GSS, vi. 1158, 1364 (last lines).
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latter divisor and then add the solution (cotresponding
to it). The resulting number (severally) multiplied by
the two multipliers and divided by the corresponding
divisors will leave remainders as stated.”?

The rationale of these rules will be clear from the
following : ' '

Taking the first two equations, we have

by = ay¥ & oy,

by Yy = agx % 5.
Suppose o, to be the least value of x satisfying the first
equation as found by the method of the pulveriser.
T?'len bym + a;, where » is an arbitrary integer, will
be the general value of x satisfying that equation.
Similarly, we shall find from the second equation the

general value of x as byn + oy  If the same value of x
satisfies both the equations we must have

bon + o, = bym 4 a,
or byt = by + (a; — a,);

supposing a, > a,. Solving this equation, we can find
the value of » and hence of bym + a, of x satisfying
both the equations. The general value of x derived
from this may be- equated to the value of x from the
third equation and the resulting equation solved again,
and so on.

In illustration. of his rule Mahivira proposed
several problems. One of these has alteady been given
(Part I, p. 233). Here are two- others :

(1) “Five (heaps of fruits) added with two (fruits)
were divided (equally) between nine travellers; six
(heaps) added with four (fruits) were divided amongst
cight ; four (heaps) increased by one (fruit) were divided

1 5i8e, xiv. 28.
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amongst seven. Tell the number (of fruits in each
heap).”!
This gives the equations :

9y =35x+ 2, 8y, =06x+ 4, 7y3=4x+ 1.

(2) ““The (dividends) are the sixteen numbers
beginning with 35 and increasing successively by three ;
divisors are 32 and others successively increasing by 2 ;
and 1 increasing by 3 gives the remainders positive and
negative. What is the unknown multiplier ?°*2

This gives the equations :

32 = 35X b1, 34y = 38x 44, 30 = 41X 27, ..
Alternative Method. In four palm-leaf manus-
cript copies of the L#/dvati of Bhaskara 11 Sarada Kanta
Ganguly discovered a rule describing an alternative
method for the solution of the generalised conjunct
pulveriser.® There is also an illustrative example. The
genuineness of this rule and example is accepted by
him; but it has been questioned by A. A. Krishna-
swami Ayyangar* who attributes them to some commcn-
tator of the work. His arguments are not convincing.3
The chief points against the presumption, which have
been noted also by Ganguly, are: (1) the rule and example
in question have not been mentioned by the earlier
commentators of the L#ldvatf and (2) they have not been
so far traced in any manuscript of the Bijaganita, though
the treatment of the pulveriser occurs nearly word for

1 GSS, vi. 1298. 3 GSS, vi. 1384,

38S. K. Ganguly, “Bhiskaricirya and simultaneous indeter-
minate equations of the first degree,” BCMS, XVII, 1926, pp. 89~
98.

4+ A. A. Krishnaswami Ayyangar, “Bhiskara and samslishta
Kuttaka,” JIMS, XVIII, 1929.

5 For Ganguly’s reply to Ayyangar’s criticism see JIMS, XIX,
1931.
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word in the two works., Still we are in favour of
accepting Ganguly’s conclusion.! The rule in question
is this :

“If the divisors aswell as the multipliers be different,
find the value of the unknown answering to the first
set of them. That value being multiplied by the second
dividend and then added by the second interpolator will
be the interpolator (of a new A#/faka); the product of the
second dividend and first divisor will be the dividend
there and the divisor will be the second divisor. The
value of the unknown multiplier determined from the
£nttaka thus formed being multiplied by the first divisor
and added by the previous value of the unknown multi-
plier will be the value (answering to the two divisors).
The dividend (for the next step) has been stated to be
equal to the product of the two divisors. So proceed
in the same way with the third divisor. And so on
with the others, if there be many.”

The rationale of this rule is as follows: ILet a;, be
the least value of x satisfying the first equation of the
system, vig.,

by, = ayx + 6.
Hence the general value is x = §,¢ -+ a,, where £ is any
integer. Substituting this value in the second equation,

we get
by Jg = aghf + (a0 = ).
If =t be a solution of this equation, a value of x

1 Of the four manuscripts containing the rule and example in
question two are from Puri, in Oriya characters, with the com-
mentary of Sridhara Mahépitra (1717) ; the other two, in Andhra
characters and without any commentary, are preserved in the
Oriental Libraries of Madras and Mysore. So these four manus-
cript copies do not appear to have been drawn from the same
source. This is a strong point in favour of the genuineness of the
rule and example.
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satisfying both the equations will be a, =4t a,
as stated in the rule, Now the general value of # will
be #=bym+ 1, where m is an integer. Hence
x = bif + oy = bbymw + byv + a; = b by 4 a,.  Subs-
tituting this value in the third equation we can find the
least value of 7 and hence a value of x answering to the
three equations. And so on for the other equations.

The example runs thus :

“Tell me that number ,which multiplied by 7 and
then divided by 62, leaves the remainder 3. That
number again when multiplied by 6 and divided by 101
leaves the remainder 5 ; and when multiplied by 8 and
divided by 17 leaves the remainder 9. Also (give) at
once the process of the pulveriser for (finding) the
number with the remainders all positive.”

Symbolically, we have
(1) 62y, = 7x — 3, 10LY, = 6X — §, I7¥y = 8x — O;
(2) 62y; = 7x + 3, 101y, = 6x + 5, 17)3 = 8x 4 9.

16. SOLUTION OF Nx2® 4 1 =32

Square-nature. The indeterminate  quadratic

equation
Nx2 4 ¢ = y2,

ir called by the Hindus Varga-prakrti or Krti-prakrti,
meaning the ‘“Square-nature.””! Bhiskara II (1150)
states that the absolute number should be rupa
which means ‘“unity” as well as “absolute number” in
general. Kamalikara (1658) says :

1 Vargs = kr#ti = ““square” and prekr#i = “nature,” “princi-
ple,” “‘origin,” etc. Colebrooke has rendered the tetrm rarga-
prakrti as “Affected Square.”

% “Tatra rlipaksepapadédrthamh tdvat”—BBEi, p. 33.
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“Hear first the nature of the varga-prakrt: : in it the
square (of a certain number) multiplied by a multiplier
and then increased or diminished by an interpolator
becomes capable of yielding a square-root.”?

It was recognised that the most fundamental equa-
tion of this class is

Nx?+ 1 =%
where IN is 2 non-square integer.

Origin of the Name. As regards the origin of
the name varga-prakrts, Krsna (1580) says: “That in
which the. varga (square) is the prakrti (nature) is called
the varga-prakrti ; for the square of ydvat, etc., is the
ﬁrmé_rti (origin) of this (branch of) mathematics. Or,

ecause this (branch of) mathematics has originated from
the number which is the prakr# of the square of ydvat,
etc., so it is called the vargs-prakr#. In this case the
number-which is the multiplier of the square of ydvat,
etc., is denoted by the term prakr#i. (In other words)
it is the coefficient of the square of the unknown.”?
This double interpretation has been evidently suggested
by the use of the tertn prakrts by Bhiskara II in two
contexts. He has denoted by it sometimes the quantity
N of the above equation as in ““There the number
which is (associated) with the square of the unknown is
the prakrti;’3 and at.other times x2, as in “Supposing the
square of one of the two unknowns to be the prakrsi.’4
Other Hindu algebraists have, however, consistently

1 §iT1/, xiii. 208.

2 See his commentary on the Bijagapita of Bhiskara II.

3 ““Tatra varnavarge yo’nkah si praketih” (BB, p. 100).
Compare also ““Tatra yivattdvadvarge yo'nkah si prakrtih”
(p. 107); “Istarh hrasvarh tasya vargah prakrtyd ksunno...” (p. 33).

$ “Tatraikirh varnakrtith prakrtih prakalpya...” (BBs, p. 100).
Compare also “SarGpake varpakiti tu yatra tatrecchaikirh prakstirh
prakalpya...” (p. 105).



SOLUTION OF Nx2.- 1 = )? 143

employed the term prakr#i to denote N only.! Brahma-
gupta (628) uses the term gwpaka (multiplier) for the
same purpose.2 This latter term, together with its
variation gupa, appears occasionally also in later works,®

We presume that the name wvaerge-prakrti origi-
nated from the following consideration: The principle
(prakrti) underlying the calculations in this branch of
mathematics is to determine a number (or numbers)
whose nature (prakr#i) is such that its (or their) square
(or squares, varga) or the simple number (or numbers)
after certain specified operations will yield another
number (or numbers) of the nature of a square. So the
name is, indeed, very significant. This interpretation
seems to have been intended, at any rate, by the earlier
writers who used the term in a wider sense4 It is
perhaps noteworthy that we do not find in the works
of Brahmagupta the use of the word prakrti either in
the sense of IN or of x2.

Technical Terms. Of the various technical terms
which are ordinarily used by the Hindu algebraists in
connection with the Square-nature we have already
dealt with the most notable one, prakrti, together with
its synonyms. Others have been explained by Prtha-
dakasvami (860) thus :

“Here are stated for ordinary use the terms which

1 For instance, PrthiidakasvAmi (860) writes : ‘““The multiplier
(of the square of the unknown) is known as the prakr#i ;> Sripath
(r039):  “Krter-gunako  prakrtirbhréoktah” (§ife, xiv. 32);
Kamaldkara: “Guno yo risi-vargasya saiva prakstirucyate.”

2 BrSpSi, xviii. 64.

3 For instance, Sripati employs the term gupaka (SiSe, xiv. 32);
Bhaskara II and Nirdyana use gupa (BB, p. 42 ; NBi, I, R. 84). |

4 For instance, Brahmagnpta seems to have considered the scope
of the subiect wide enough to include such equations as

x+y=8 x—y=10 xy+ 1 =102

amongst others (cf. BrSpsy, xviii. 72).
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are well known to people. The number whose
square, multiplied by an optional multiplier and then
increased or decreased by another optional number,
becomes capable of yielding a squate-root, is designated
by the term the lesser root (kanistha-pada) or the first
root (ddya-m#ilz). The root which results, after those
operations have been petformed, is called by the name
the greater root (jyestha-pads) or the second root
{anya-miilz). 1If there be a number multiplying both
these roots, it is called the augmenter (#dvartaka) ; and,
on the contrary, if there be a number dividing the roots,
it is called the abridger (apavartaka).”!

Bhiaskara II (1150) writes :

“An optionally chosen number is taken as the lesser
root (brasva-m#la). That number, positive or negative,
which being added to or subtracted from its square
multiplied by the prakr# (multiplier) gives a result
yielding a square-root, is called the interpolator
{ksepaka). And this (resulting) root is called the greater
root (jyestha-méla).”’?

Similar passages occur in the works of Nirdyana,3
Jaidnardja and Kamalikara 4

. 'The terms ‘lesser root’ and ‘greater root’ do not
appear to be accurate and happy. Forif x =m, y ==
be a solution of the equation Nx2 4 ¢ = 2, » will be
less than #, if N and ¢ are both positive. But if they
are of opposite signs, the reverse will sometimes happen.®

1 See Prthiidakasvimi’s commentary on BrSpSs, xviii. 64. In
the equation Nx® 4 ¢=)?, x = lesser toot, y = greater root,
N = multiplier, and ¢ = interpolator.

2 BB/, p. 313.

8 NBi, I, R. 72.

4 57TV, xiii. 209,

8 For instance, take the following example from Bhéskara II
(BBi, p. 43):
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Therefore, in the latter case, where > #n, it will be
obviously ambiguous to call » the lesser root and »
the greater root, as was the practice in later Hindu
algebra. This defect in the prevalent terminology was
rioticed by Krsna (1580). He explains it thus: “These
terms are significant. ‘Where the greater root is some-
times smaller than the lesser root owing to the inter-
polator being negative, there also it becomes greater
than the lesser root after the application of the Principle
of Composition.” The earlier terms, ‘the first root’
(ddya-mhla) for the value of x and ‘the second root’ or
‘the last root’ (amtya-mila) for the value of y, are quite
free from ambiguity. ‘Their use is found in the algebra
of Brahmagupta (628).2 The later terms appear in the
works of his commentator Prthidakasvimi (860).

The interpolator is called by Brahmagupta &sgpa,
praksepa ot praksepaka® Stipati occasionally employs
the synonym Asip#ti4 When negative, the interpolator
is sometimes distinguished as ‘the subtractive’ (fodhaka).

13%% — 13 =3,
.One solution of it is given by the author as x = 1, ¥ = o} so that
here the lesser root is greater than the greater root. The same is
the case in the solution x = 2, ¥ = 1 of his example (BB, p. 43)
— sx% 4 21 =42
Brahmagupta gives the example (BrSpS7, xviii. 77)
3x% — 8oo =3,
which has a solution (x = 20, y = 20) where the two roots are equal,
1 For example, by composition of the solution (1, o) of the
equation 1 3x2 — 13=_% with the solution (3, 1) of the equation
15x2 + 1 =2, we obtain, after Bhiskara II, a new solution (%',
37 of the former in which the greatet root is greater than the lesser
root Similarly, by composmon of the solution (2, 1) of the
equation — 5x2 + 21 =)? with the solution (%, §) of the equation
— sx24-1=)% we get a new solution (1, 4) of the former
satisfying the same condition.
2 BrSpSi, xviil. 64, 66f. 3 BrSpSi, xviil. 6s.

¢ §5iSe, xiv, 32.
10
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The positive interpolator is then called ‘the additive.”

Brahmagupta’s Lemmas. Before proceeding to
the general solution of the Square-nature Brahmagupta
has established two important lemmas. He says:

“Of the square of an optional number multiplied
by the gupaka and increased or decreased by another
optional number, (extract) the square-root. (Proceed)
twice. The product of the first roots multiplied by the
gunaka together with the product of the second roots
will give a (fresh) second root ; the sum of their cross-
products will be a (fresh) first root. The (corresponding)
interpolator will be equal to the product of the (previous)
interpolatgrs.”’?2

The rule is somewhat cryptic because the word
dvidhd (twice) has been employed with double implica-
tion. According to one, the carlier operations of finding
roots are made on two optional numbers with two
optional interpolators, and with the tesults thus obtained
the subsequent operations of their composition are
performed. According to the other implication of the
word, the earlier operations are made with one optionally
chosen number and one interpolator, and the subsequent
anes are carried out after the repeated statement of those
roots for the second time. It is also implied that in the
composition of the quadratic roots their products may
be added together or subtracted from each other.

That is to say, if x = a, y = B be a solution of the
equation
Nx? + & =2,
and x = o’, y = p’ be a solution of
Nx2 4 & =2,
then, acéording to the above,

1 BrSpSi, xviii. 64-5. 2 BrSpSi, xviil, 64-5.
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x = af’ 4 o«’f, y = B’ 4- Naa’
is a solution of the equation
N2 | k' = 52
In other words, if
No® + £ = B2,
. Na2 £ & — p*2,
then
N(ap’ £ o'B)* + &&" = (B’ £ N o’)% @
In particular, taking « =o', 8 =, and &= 4,
Brahmagupta finds from a solution x = a, y = B of the
equation

Nx2 4 £ =2,
a solution x = 2af, y = 2 + Nea? of the equation
Nx? 4 £2 = 52
That is, if
. Na? + k= 62’
then :
N(z208)? 4 £2 = (B2 + Na2)% (I1)

This result will be hereafter called Brahmagupta’s
Corollary.

Description by Later Writers. Brahmagupta’s
Lemmas have been described by Bhéskara I1(1150) thus :

“Set down successively the lesser root, greater root
and interpolator ; and below them should be set down
in order the same or another (set of similar quantities).
From them by the Principle of Composition can be
obtained numerous roots. Thercfore, the Principle of
Composition will be explained here. (Find) the two |
cross-products of the two lesser and the two greater
roots ; their sum is a lesser root. Add the product of
the two lesser roots multiplicd by the praérti to the
product of the two ‘greater roots; the sum will be a
greater root. In that (equation) the interpolator will be
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the product of the two previous interpolators. Again
the difference of the two cross-products is a lesser root.
Subtract the product of the two lesser roots multiplied
by the prakrri from the product of the two greater roots;
(the difference) will be a greater root. Here also, the
interpolator is the product of the two (previous) inter-
polators.”1

Statements similar to the above are found in the
works of Nirdyana®? (1350), Jfanarija (1503) and
Kamalakara® (1658).

Principle of Composition. The above results
are called by the technical name, Bbdvand (demonstration
or proof, meaning anything demonstrated or proved,
hence theorem, lemma ; the word also means composi-
tion or combination). They are further distinguished as
Samdisa Bbdvand (Addition Lemma or Additive Composi-
tion) and Antara Bhaivani (Subtraction Lemma or Sub-
tractive Composition). Again, when the Bbdvand is made
with two equal sefs of roots and interpolators, it is
called Twlya Bhdvani (Composition of Equals) and when
with two unequal sets of values, A#ulya Bhiévani (Compo-
sition of Unequals). Krsna has observed that when it
is desired to derive roots of a Square-nature, larger in
value, one should have recourse to the Addition Lemma
and for smaller roots one should use the Subtraction
Lemma. .

Brahmagupta’s Lemmas were rediscovered and
recognised as important by Euler in 1764 and by
Lagrange in 1768.

Proof. The proof of Brahmagupta’s Lemmas has
been given by Krsna substantially as follows :

1 BBj, p. 34. 2 NBi, I, R. 72-754.
3 TV, xifi. 210-214.
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We have
Na? + £ = p2,
Na’2 + £ = p’2
Multiplying the first equation by p’2, we get
- No2B'2 - £p'2 = p2p"2.
Now, substituting the value of the factor p’2 of the
interpolator from the second equation, we get
N3’  £(Na'2 + &) = p2p"2,
or No?p’2 4 Nka? 4 k& = B2
Again, substituting the value of £ from the first equa-

tion in the second term of the left-hand side expression,
we have

Na?p’? 4 Na'(* — No?) + bk’ = B2
or N(a2|3’2 -4~ a’.’BZ) + bt — {32[3’2 + N2a2y/2,
Adding +- 2Nafa’B’ to both sides, we get
N(a’ & oB)* + & — (30" = Naw')
Brahmagupta’s Corollary follows at once from the
above by putting o/ = o, ' = p and &’ = 4.
General Solution of the Square-Nature. It is clear

from Brahmagupta’s Lemma (1) that when two solutions
of the Square-nature,

Nx2 4 1 =2,
ate known, any number of other solutions can be found.

For, if the two solutions be (g, ) and (a’, &’), then two
other solutions will be

x=all & d’b, y="hbb + Nad'
Again, composing this solution with the previous ones,
we, shall get other solutions. Further, it follows from
Brahmagupta’s Corollary that if (#, 4) be a solution of

the equation, another solution of it is (24b, 42 4+ Na2).
Hence, in order to obtain a set of solutions of the
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Square-nature it is necessary to obtain only one solu-
tion of it. For, after having obtained that, an infinite
number of other solutions can be found by the repeated
application of the Principle of Composition. Thus
Sripati (1039) observes: “There will be an infinite (set
of two roots).”” Bhiaskara II (1150) remarks: “Here
(i.e., in the solution of the Square-nature) the roots are
infinite by virtue of (the infinitely repeated application
of) the Principle of Composition as well as of (the
infinite variety of) the optional values (of the first
roots).”’? Nirayana (1350) writes, “By the Principle of
Composition of equal as well as unequal sets of roots,
(will be obtained) an infinite number of roots.””3

Modern historians of mathematics are incorrect in
stating that Fermat (1657) was the first to assert that
the equation Nx2 -+ 1 =%, where N is a non-square
integer, has an unlimited number of solutions in inte-
gers.* The existence of an infinite number of integral
solutions was clearly mentioned by Hindu algebraists
long before Fermat. )

Another Lemma. Brahmagupta says :

“On dividing the two roots (of a Square-nature) by
the square-root of its additive or subtractive, the roots
for the interpolator unity (will be found).”*

That is to say, if = a, y = f be a solution cf the
equation

Nx?% 4 A2 == 52,
then x ==a/k, y = B/kis a solution of the equaticn
Nx2Z 4 1= 2
This rule has been restated in a different way thus :

1 8iSe, xiv. 33,

2 “Jhanantyarh bhivanibhistathestatah”—BB, p. 34.
* NBi, I, R. 78. Compare also S/TT7, xiil. 217.

4 Smith, History, 11, p. 453. 8 BrSpSi, xviii. 65.
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“If the interpolator is that divided by a square
then the roots will be those multiplied by its square-
root.”!

That is, suppose the Square-nature to be
Nx? 4 p2d = 32,
so that its interpolator p2d is exactly divisible by the

square p®. Then, putting therein » = x/p, v =y/p,
we derive the equation

Nu?2 & d =12,

whose interpolator is equal to that of the original
Square-nature divided by p2. It is clear that the roots
of the original equation are p times those of the derived
equation.

Bhaskara II writes :

“If the interpolator (of a Square-nature) divided
by the square of an optional number be the interpolator
(of another Square-nature), then the two roots (of the
former) divided by that optional number will be the
roots (of the other). O, if the interpolator be multi-
plied, the roots should be multiplied.”2

The same rule has been stated in slightly different
words by Narayana® and Kamalikara.* Jhanarija simply
observes:

“If the interpolator (of a Square-nature) be divided
by the square of an optional number then its roots will
be divided by that optional number.”

Thus we have, in general, if x =a, y = be :
solution of the equation

Na? 4 & = 32,

1 BrS].J.S'i, Xviii. 0. 2 BB/, p. 34.
3 NBi, I, R. 76-764. 8 SiTVG, xiii. 215,
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x = alm, y = B/w is a solution of the equation
Nx2 A &jm? = y%
and x = na, y = #B is a solution of the equation
Nx? + n2%k =2,
where », n ate arbitrary rational numbers.
By this Lemma, the solutions of the Square-natures
(7)) 6x%+ 12 =32
) 6x2+ 75 =%,
and (#7) 6x2+ 300 =%,
can be derived, as shown by Bhiaskara II,! from
those of
6x% + 3 =72,
since 12 = 2%3, 75 = 523, and 300 = 102.3. How to
solve this latter equation will be indicated later on.
Rational Solution. In order to obtain a first
solution of Nx% + 1 =) the Hindus generally suggest
the following tentative method: Take an arbitrary
small rational number a, such that its square multiplied
by the gwpaka N and increased or diminished by a
suitably chosen rational number 4 will be an exact
square. In other words, we shall have to obtain
smpirically a relation of the form
No? + & = f2,
wherte a, £, B are rational numbers. This relation will

be hereafter referred to as the Auxiliary Equation. Then
by Brahmagupta’s Corollary, we get from it the relation

N(z2aB)? + £% = (B2 4 No2)2,
ox N = (BT

1 BBj, p. 41.
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Hence, one rational solution of the equation Nx2? 4 1
= )% is given by

2a8 __p%2+ Ne?
= T E

Sripati’s Rational Solution. Stipati- (1039) has
shown how a rational solution of the Square-nature
can be obtained more easily and directly without the
intervention of an auxiliary equation. He says:

“Unity is the lesser root. Its square multiplied by
the prakrti is increased or decreased by the prakrii
combined with an (optional) number whose square-root
will be the greater root. From them will be obtained
two roots by the Principle of Composition.”?

If m? be a rational number optionally chosen, we
have the identity

Nat 4 (m?— N) = m?,

or N.12 — (N — »?%) = m*.

Then, applying Brahmagupta’s Corollary to either, we
get

()

Ny + (2 ~ NY: = (m* + N)

o ym? 4 Ny?2
N(1112~N) +I_(/712~N
2
Hence x = -—.ﬂN, Jy= m—t—llt]]: (B)

where m is any rational number, is a solut1on of the
equation

Nx? 4+ 1 =32

The above solution reappears in the works of later
Hindu algebraists. Bhéskara 11 says :

1 858, xiv. 33.
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“Or divide twice an optional number by the differ-
ence between the square of that optional number and the
prakrti.  This (quotient) will be the lesser root (of a
Square-nature) when unity is the additive. From that
(follows) the greater root.”?

Nirdyana states :

“Twice an optional number divided by the difference

between the square of that optional number and the

gunaka will be the lesser root. From that with the
additive unity determine the greater root.”?

Similar statements are found also in the works of
Jfidnarija and Kamalikara.3

. - 2
If 7 be an optional number, it is stated that ————
mi~ N

is a lesser root of Nx?% 4 1 =% Then, substituting
that value of x in the equation, we get

.}'2=N( ,4~N) + 1,
(w“+ N)

7t~
Hence the greater root is
m2 m? + N N
m? ~ N
The same solution will be obtained by assuming
. Y= mx — 1.
Krsna points out that it can also be found thus :
4Nm? = (m? 4 N)2 — (m? ~ N)?, identically.
o 4Nm? A (2 ~ N =2+ N)?,

1 BBi, p. 34. t NB;, 1, R. 77£.
3 $iTV7, xiii. 216.
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or NG = (BN

His remark that this method does not require the help
of the Principle of Composition shows that Bhaskara 11
and others obtained the solution in the way indicated
by Stipati.

The above rational solution of the Square-nature has
been hitherto attributed by modern historians of mathe-
matics to Bhéskara II. But it is now found to be due
to an anterior writer, Sripati (1039). It was redis-
covered in Europe by Brouncker (1657).

Illustrative Examples. In illustration of the fore-
going rules we give the following examples with their
solutions from Bhiskara II.

Examples. ““Tell me, O mathematician, what is that
squate which multiplied by 8 becomes, together with
unity, a square; and what square muluphed by rr and
increased’ by unity, becomes a square.”!

That is to say, we have to solve
(1 8xT4 1=77
(2) 11x%4 1=~
Solutions. ““In the second example assume 1 as the
lesser root. Multiplying its square by the praksr#, namely
11, subtracting 2 and then extracting the square-root,
we get the greater root as 3. Hence the statement for
composition is?

m=11 /=1 £=13 i=—
/=1 Z2=73 [ =
1 BBi, p. 35
2 The abbreviations are: m = multiplier, / = lesser root,
£ = greater root and 7 = interpolator. In the original they are

tespectively pra, ka, jye, and kse, the initial syllables of the cor-
responding Sanskrit terms.
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Proceeding as before we obtain the roots for the
additive 4: /=6, g= 20, (for) 7= 4. Then by the
rule, ‘If the interpolator (of a Square-nature) divided by
the square of an optional number etc.,”t are found the
roots for the additive unity: /=3, g= 10 (for) 7 = 1.
Whence by the Principle of Composition of Equals, we
get the lesser and greater roots : /= 6o, g = 199 (for)
/= 1. In this way an infinite number of roots can be

deduced.

“Or, assuming 1 for the lesser root, we get for the
additive 5 : /=1, g=4, (for) /= 5. Whence by the
Principle of Composition of Equals, the roots are /=8,
g =27, (for) i = 25. Then by the rule, ‘If the inter-
polator (of a Square-nature) divided by the square
of an optional number etc.,’ taking 5 as the optional
number, we get the roots for the additive unity:
/=8[s, g= 275, (for) i = 1. The statement of these
for composition with the previous roots is .

m=11 [=8]s g=27[s i=1
/=3 g=r10 i=1

By the Principle of Composition the roots are obtained
as: /= 161f5, g=s534/s (for)7/=1.

“Or composing according to the rule, ‘The differ-
ence of the two cross-products is a lesser root etc.,” we
get the roots : /=1f5, g=06[s (for) i=1. And
$O on in many ways.

“The two roots for the additive unity will now be
found in a different way by the rule, ‘Or divide twice
an optional number by the difference between the square
of that optional number and the prakssi etc.” Here, in
the first example, assume the optional number to be 3.
Its square is 9; multiplier is 8; their difference is 1;

1 Vide supra, p. 151.
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dividing by this twice the optional number, namely 6,
we get the lesser root for the additive unity as 6.
Whence, proceeding as before, the greater root comes
out as 17.

“In the same way, in the second example also, as-
suming the optional number to be 3, the lesser and
greater roots are found to be (3, 10).

“Thus, by virtue of (the infinite variety of) the
optional values as well as of (the infinitely repeated
application of) the Principle of Additive and Subtractive
Compositions, an infinite number of roots (may be
found).”?

Solution in Positive Integers. As has been stated
before, the aim of the Hindus was to obtain solutions
of the Square-nature in positive integers; so its first
solution must be integral. But neither the tentative
method of Brahmagupta nor that of Sripati is of
much help in this direction, for they do not alway;
yield the desired result. These authors, however, dis-
covered that if the interpolator of the auxiliary equation
in the tentative method be 4 1, 4~ 2 or 4 4, an integral
solution of the equation INx24 1 = 3% can always be
found. Thus Sripati (1039) expressly observes, “If 1,
2 or 4 be the additive or subtractive (of the auxiliary
equation) the lesser and greater roots will be integral
(abhinna).?

(7) If £ = 4 1; then the auxiliary equation will be®

Na2 :f: I = BZ,

UThe original is, “Evamistava$it samésintarabhivanabhyim
ca padiniminantyam.” (BBi, p. 36).
2 “Dvyekambudhlksepawsodhanabhyam
. . Syitimabhinne laghuvrddhamile. ”-—SJSe Xiv. 3z.
The Sanskrit word abbinna literally means non-fractxonaL”
:  The special treatment of the equation Nx? — 1 = »? is given
ater on,
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whete a, B are integers. ‘Then by Brahmagupta’s Corol-
lary, we get

x = 20, y = p%+4 Na?
as the required first solut1on in posmve integers of the
equation NNx2 4 1 =)3

(7#) Let &= - 2; then the auxiliaty equation is
Na2 4 2 = 2
By Brahmagupta’s Corollary, we have
N(zaB)? + 4 = (82 + Na2p,

or N(af)2 4 1 =(Eﬁj_2—l\]af)2.

Hence the required first solution is
x=af, y=}(p*+ Na?).
Since Noa? = 82 F 2,
we have 1(82 4 Na?) = 82 FF 1 = a whole number.
(777) Now suppose £ = + 4; so that
No?+ 4 = p2
With an auxiliary equation like this the first integral
* solution of the equation Nx2 4 1 =2 is

x = }af,
o J =30 — 2);
if a is even; ot
x = $a(p? — 1),
J =3B — 3)

if g is odd.

Thus Brahmagupta says :

“In the case of 4 as additive the square of the second
root diminished by 3, then halved and multiplied by

the second root will be the (required) second root;
The square of the second root diminished by unity and
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then divided by 2 and multiplied by the first root will
be the (required) first root (for the additive unity).”2

The rationale of this solution is as follows :
Since Na? + 4 = 32, (D)

Q£ 2 i B?
we have N(—z—) —{—I—(—Z—)- (2)
Then, by Brahmagupta’s Corollary, we get
L af 2 B2 o \2
N(— =(—-+N—).
() +r=(+N)
Substituting the value of IN in the right-hand side ex-

~ pression from (1), we have
2

N Y = (B2y? 5

2

Composing (2) and (3),

N{%(ﬁz —~ 1)}2+ I ={—E—(62 — 3)}
Hence x = gap, y==}§(p*— 2);

and x = fa(f?— 1), y= 4B(B%— 3);
are solutions of

2

Nx? 4 1 =32
If B be even, the first values of (x, y) are integral.
If B be odd, the second values are integral.
(7v) Finally, suppose £ = — 4 ; the auxiliary equa-
tion is
No2 — 4 = 82
Then the required first solution in positive integers of
Nx2 4 1 =3%1s
x o= JaB(B? 4 3)(B*+ 1),
v =B+ 2){3B* + 3)(B*+ 1) — 1}.

1 BrSpSs, xviii. 67.
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Brahmagupta says :

“In the case of 4 as subtractive, the square of the
second is increased by three and by unity; half the
product of these sums and that as diminished by unity
(are obtained). The latter multiplied by the first sum
less unity is the (required) second root; the former
multiplied by the product of the (old) roots will be
the first root corresponding to the (new) second root.””1

The rationale of this solution is as follows :

No? — 4 = B2 (1)
o\ 2 B \2
N(;)—r=(5)-
Hence by Brahmagupta’s Corollary, we get
af \2 B o2 \2
N(=-) ++ —(—4—+N—4—)
={3(6*+ 2)}™ (2)
" Again, applying the Corollary, we have
N{$ap(p? + 2)}2 + 1 = {3(* + 48+ 2)}% (3)
Now, by the Lemma, we obtain from (2) and (3)
© N{3aB(8 + 5)(B2 + )2+ 1
= [(B+ 2){3(F*> + 3)(B* + 1) — 1}]
Hence x = 3af(p% 4 3)(B%*+ 1),
o=+ {E+ 3)B* + 1) — 1},
is a solution of Nx2 + 1 = 32
It can be proved easily that these values of x, y
are integral. For, if B is even, f24- 2 is also even.
Therefore, the above values of x, y are integral. If on
the contrary B is odd, p2 is also odd ; then p%2+ 1 and

B2+ 3 are even. Hence in this case also the above
values are integral.

1 BrSpSi, xviii. 68.
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Putting p = af, 4= p%2-+ 2 we can write the
above solution in the form

x = §p(g* — 1),
> = 344> — 3),
in which it was found by Euler.

’

17. CYCLIC METHOD

Cyclic Method. It has been just shown that
the most fundamental step in Brahmagupta’s method
for the general solution in positive integers of the
equation

Noc? + 1 =2,
where IN is a non-square integer, is to form an auxiliary
equation of the kind

Na® + & =52,

where 4, 4 are positive integers and £ = 4 1, 4 2 or
-+ 4. For, from that auxiliary equation, by the Principle
of Composition, applied repeatedly whenever necessary,
one can derive, as shown above, one positive integral
solution of the original Square-nature. And thence,
again by means of the same principle, an infinite number
of other solutions in integers can be obtained. How to
form an auxiliary equation of this type was a problem
which could not be solved completely and satisfactorily
by Brahmagupta. In fact, he could not do it otherwise
than by trial. But Bhaskara IT succeeded in evolving a
very simple and elegant method by means of which
one can derive an auxiliary equation having the required
interpolator <+ 1, + 2 or + 4, simultaneously with its
two integral roots, from another auxiliary equation
cmpirically formed with any simple integral value of the
interpolator, positive or negative. This method is called

I1
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by the technical name Cakravila or the “Cyclic Method.”

The purpose of the Cyclic Method has been defined
by Bhiskara II thus: “By this method, there will
appear two integral roots corresponding to an equation
with + 1, 4 2 or 4 4 as interpolator.”?

Bhiskara’s Lemma. The Cyclic Method of Bhis-
kara 11 is based upon the following Lemma :

1f Na? + & = b2,
\\k/lhcre a, b, £ are integers, £ being positive or negative,
then

am - b\2  wm?— N bm 4 Nay2
1\7( e ) + Vs :( yox ) ’
where # is an arbitrary whole number.
The rationale of this Lemma is simple : We have
Na? + £ = 17,
and N.12 - (#2 — N) = »*, identically.
Then by Brahmagupta’s Lemma, we get )
Nfam -+ b)? -+ £(m* — N) = (bm + Na)2
amt <= b\ 2 — N b 4 Nay>
N ( £ ) T A :( % ) .
Bhiskara’s Rule. Bhiskara 11 (1150) says :

“Considering the lesser root, greater root and inter-
polator (of a Square-nature) as the dividend, addend
and divisor (respectively of a pulveriser), the (indeter-
minate) multiplier of it should be so taken as will make
the residue of the prakr#/ diminished by the square of
that multiplier or the latter minus the prakrzi (as the case

1The Sanskrit word Cakrardla means “‘circle,” especially
“horizon.” The method is so called, observes Siiryadisa, because
it proceeds as in a circle, the same set of operations being applied
again and again in a continuous round.

* BBi, p. 38. - |
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may be) the least. That residue divided by the (original)
interpolator is the interpolator (of a new Square-
nature) ; it should be reversed in sign in case of sub-
traction from the prakrti. The quotient corresponding
to that value of the multiplier is the (new) lesser root ;

thence the greater root. The same process should be
followed repeatedly putting aside (each time)the previous
roots and the mterpolator This process is called
Cakravdla (or the ‘Cyclic Method’).! By this method,
there will appear two integral roots corresponding to
an equation with 4 1, 4- 2 or + 4 as interpolator. In
order to derive 1ntegra1 roots corresponding to an
equation with the additive unity from those of the
equation with the interpolator 4 2 or - 4 the Principle
of Composition (should be applied).””2

Suppose we have an equation of the form
Na® + £ =02 (1)
where ¢, 4, £ are simple integers, relatively prime, £
being positive or negative. Then by Bhiskara’s Lemma

N(ﬂﬂl-{- ZJ) + - N:(blfi-{— Na)z’ (2)

where m is an arbitrary integral number. In the above
rule, m has been styled the indeterminate multiplier.
Now, by means of the pulveriser, its value is determined
so that

a___m':— b is a whole number.

1The original text is cakravdlamidar; jagup. The commentator
Krsna explains, “4ciryi etadganitarh cakravalamiti jaguh” or “The
learned professors call this method of calculation the Cakravila.”
So Bhiskara II appears to have taken the Cyclic Method from
earlier writers. But it is not found in any work anterior to
him so far known.

2 BB/, pp. 36f%.
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Again, of the various such values, Bhéskara II chooses
that one which will make |#2 — N| as small as possible.
Let that value of 7# be n. Now let

n-+b
)
bn 4+ Na
bl:T’
- N
by ="

The numbers «y, b, #, are all integral. The equation
(2) then becomes

Nay® + £ = b (3)
Proceeding exactly in the same way, we can obtain
from (3) a new equation of the same kind,

Nag? 4 £y = by?,

where again a,, b, £, are whole numbers. By
repeating the process, we shall ultimately arrive at an
equation, states Bhaskara II, in which the interpolator £
will reach the value {- 1, -+ 2 or 4 4, and in which (g, %)
will be integers.

Nirdyana’s Rule. The above rule of Bhaskara II
has been reproduced by Nirdyana (x350). He writes:

“Making the lesser root, greater root and inter-
polator (of a Square-nature) the dividend, addend and
divisor (respectively of a pulveriser), the (indeterminate)
multiplier of it should be determined in the way des-
ctibed before. The prakrti being subtracted from the
square of that or the square of the multiplier being
subtracted from the prakrti, the remainder divided by the
(original) interpolator is the interpolator (of a new
Square-nature); and it will be reversed in sign in case
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of subtraction of the square of the multiplier. The
quotient (corresponding to that value of the multiplier)
is the lesser root (of the new Squarc-nature); and that
multiplied by the multiplier and diminished by the
product of the previous lesser root and (new) inter-
polator will be its greater root. By doing so repeatedly
will be obtained two integral roots corresponding to the
interpolator 4 1,4+ 2 or 4 4. In order to derive
integral roots for the additive unity from those answer-
ing to the interpolator 4 2 or 4 4, the Principle of
Composition (should be adopted).”!

It will be noticed that Niriyana does not expressly
state that the value of the indeterminate multiplier
should be so chosen as will make |#% — N|least. Itis
perhaps particularly noteworthy that he recognised the
relation

by = ayn — kya.
bn -+ Na
Ié 2

£ — N. .
‘:/z(al Zﬂ)—f— a’ [ ak = an+ b]

— (PN,

= a — ,éla,

For by =

an — by
&
Similarly, it will be found that
b — by — Ndl.
' 1
For byn = an® — kyan,

a =

1 NBi, 1, R. 79-82.
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= a, (N + £k,) — kyan,
[, &%, =n*— N]
= a,IN + £,0, [ ayk=an-+ b]
byn — Nay
b= e
Illustrative Examples. In illustration of the
Cyclic Method, Bhiskara II works out in detail the fol-
lowing examples :
“What is that number whosc square multiplied by
67 or 61 and then added by unity becomes capable of
yielding a square-root ? Tell me, O friend, if you have
a thorough knowledge of the method of the Square-
nature.””! :

That is to say, we are to solve
(@) 67x% 4+ 1 =2
(f5) 61x®+4 1 =2
Leaving out the details of the operations in con-
nection with the process of the pulveriser, Bhéskara’s
solutions are substantially as follows :
€)) 67x% 4 1 = )%
We take the auxiliary equation
67.12 — 3 = 82,
Then, by the Lemma,
67( Iz—;— 8) n /712_—367 _ (Sm -+ 67.1)2. @)

By the method of the Kuttaka the solution of
m-+ 8

= an integer,

1 BB, p. 38.

It is remarkable that the equation 61x? -+ 1 =_)® was proposed
by Fermat to Frénicle in a letter of February, 1657. Euler solved it
in 1732,
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is m=—3l+ 1 Putting # = — 2, we get m=17
which makes |#? — 67| least. On substituting this
value, the equation (1) reduces to

67.52 4+ 6 = 412
Again, by the Lemma, we have

67(5”Jg41)2+”2—6 67 :(“ﬂt 67.5)2_ @)

The solution of
5%+ 41
6
is n==6¢t4 5. |#n*— 67| will be least for the value
¢ = o, that is, when » ='5. The equation (2) then
becomes ‘

= a whole number,

67.112 — 7 = 90?,
Now, we form

o (BEE) B - (L) )

The solution-of
11p+ 90
-7
is p=— 9t+ 2. Taking t=— 1, we have p=o;
and this value makes | p2 — 67 [ least. Substituting that
in (3) we get

= an integral number,

67.272 — 2 = 2212, i
By the Principle of Composition of Equals, we get
from this equation '
67 (2.27.221)2 4 4 = (2212 + 67.27%)%,
ot 67(11934)% + 4 == (97684)%.
Dividing out by 4, we have
67 (5967)% + 1 = (48842)%.
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- Hence x = 5967, y = 48842 is a solution of (7).
@) 61x% 4 1 =)=
Here we start with the auxiliary equation
61.12 4 3 = 82,
By the Lemma, we have
61(’%—“;)2+ m2:61=(8m—;—61)2. (1)

Now the solution of

m—+ 8

——— = aninteger,

is m = 3¢+ 1. Putting # = 2, we get the value » = 7
which makes |72 — 61| least. On substituting this
value in (1), it becomes

61.52 — 4 = 39%
Dividing out by 4, we get
61(8)* — 1 = (%)% (2)
By the Principle of Composition of Equals, we have
61(2.3. 5% 4+ 1 = {(%")* + 61(3)%}%,
or 61149 + x = (L2 )
Combining (2) and (3),
61(3805)2 — 1 = (29718)2
Composing this with itself, we get
61(226153980)% 4+ 1 = (1766319049)2.
Hence x = 226153980, y = 1766319049 is a solution
of (7).
The following two examples have been cited by
Nardyana :
() 103x% 4 1 = )2,
@) 973+ 1 =2
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Their solutions are given substantially as follows :
For (7¢) we have the auxiliary equation
103.12 — 3 = 102
By the Lemma, we get
w + 10 — 10 107 + 103
oy (M2 4 23 (remreny’

The general solut1on of
m —+ 10
—3
is m= — 34+ 2. Putting #= — 3, we get m = 11.
Then )

= an integer,

103.72 — 6 = 712
Again, by the Lemma,
105(7 n+ 71) + — 105 (7m+ 103. 7)

The solution of

K__*—Tﬂ = a whole number,
is n=— 6t+4 1. Taking #+ = — 1, we get

103.20% + 9 = 203%
Next, we have

20p + 2032 2 103 ,203p + 103.20\2
10 (RLTI0) p I = (BRI
Now, fi;_—-i% = an integral number

for p = ot + 2. When # = ;, p = 11. On taking this

value we find
103.47% + 2 = 477%
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Applying the Principle of Composition of Equals,
we get
103(2.47-477)* + 4 = (477% + 103.47%%
ot 103(44838)% 4 4 = (455056)%.
Hence 103(22419)% + 1 = (227528)%,
which gives x = 22419, y = 227528 as a solution of (/7).
For the solution of (i7) the auxiliary equation is
97.1% 4 3 = 102
Therefore
w4 10N\2 | wW®— 97 107 + 97\?2
7(=5—) + = ( )
3 . 3 3
The solution of

m -+ 10
3
is m = 3¢+ 2. Taking #= 3, wehave # = 11. Then

97-7% + 8 = 69.2

== an integer,

Next, we have

2 2 __ 2
97(7H8- 69) 47 _ 97 _ (69n4;;97-7) .

The solution of

77+ 69
)

is n =8¢+ 5. Taking # = 1, that is, » ="13, we get
97.20% + 9 = 1972,

= an integer,

Whence
20p + 197\* | p*— 97 197p + 97.20\2
9 9 9
The solution of

20p + 197
9

=3 whole number,
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is p =9t + 5. DPutting =1, we get p = 14. With
this value of p we have

97.53% + 11 = 5222

Whence
539 + 52242 ¢*— 97 5229+ 97.53\?
97( I1 ) - 11 _( 11 ) )
The solution of
ﬂi‘%"z = an integer,

is ¢ = 1144 8. The appropriate value of ¢ is given
by #=o. So, taking g4 = 8, we have

97.86% — 3 = 847>
Next, we find

97(86r_—+—5847) i r2: 97 _ (8477’ -+ 97-86)2-

. 3 —3
The solution of
w = a whole number,
is 7 = 344 1. Putting # = — 3, we get r = 10. Tak-

ing this value, we have
97.569%2 — 1 = 56042,
By the Principle of Composition of Equals, we find
97(6377352)% + 1 = (6280963 3)2.
Hence x = 6377352, y = 62809633 is a solution of (/7).
Proofs. It has been stated by Bhiskara II that:

(1) when g, is an integer; £, and 4, are each a
whole number ;

(2) his Cyclic Method will in every case lead to
the desired result.

He has not adduced proofs. We presume that he
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knew a proof at least of the first proposition. For
he must have recognised the simple relation

by = ayn — Kya,
which has been expressly stated by Nirdyana (1350).
This shows at once that #; will be a whole number,
if £, is so. This is also evident from the equation,
Na?2 + & = b2 itself. Hence, it now remains to prove
that £, is an integral number.

Eliminating & between

an + b
@ =—7,
and bl — ZZE_i/é_.Nf’
we have & (ayn — b)) = a(n2 — N),
or iaé; (ayn — b)) = n® — N.
Therefore é (aym — b)) is an integer.

Since £ and 2 have no common factor, z must
divide #,# — &, ; that is
2 _ T
an—>by w*— N 2
= =K
a £
Hence 4, also is 2 whole number.1

= an integer.

1 Hankel’s Proof : Hankel proves these two results thus :

Since ayk = an + b and & = 42 — Na?,
we get a(* — Na*) = an + b,
or —g (ay & — 1) = (n + Naay).

Since @, & have no common factor, @ must divide % — 1; that is,

al — 1 .
, ~ = aninteger.



SOLUTION OF INx2? - ¢ = y2 173

18. SOLUTION OF Nx2 {- ¢ == )%

The general solution of the indeterminate quadratic

equation .
Na2 :[: P ,)’2 .

in positive integers was first given by Brahmagupta (628).

He says:

“From two roots (of a Square-nature) with any
given additive or-subtractive, by making (combination)
with the roots for the additive unity, other first and
second roots (of the equation having) the given additive
or subtractive (can be found).””?

Eliminating » between -
ayk=uan+ b, bk =bn- Na,
we get abh — ab, = 1.

abh — 1
1 = a whole number.

Hence by ==

B2 N2
Now n”— N= (,a"é i)z Na

_ @k — 2bka + E

= 3

k(g k— 2bay + 1)

= 2 .

a

Therefore ;,é? (4‘1% — 2ba; + 1) is a whole number.

Since 4, £ have no common factor, it follows that
aifk —2bay + 1 n*— N

= k, = an integer.

a* £
2 __ 2p .
Also /el="kN=”1"a 200y o 3
_ 4% — Na*) — 2ba) 4+ 1

a2

i _ (alb —1 )72 — Nap.

a

 BrSpSi, xviii, 66.
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Thus having known a smgle solution in positive
integers of the equation Nx2 4 ¢ =32 says Brahma-
gupta, an infinite number oi other integral solutions
can be obtained by making use of the integral solutions
of Nx2 4+ 1 =2 1If (p, ) be a solution of the former
equation found empirically and if (a, ) be an integral
solution of the latter then, by the Principle of Com-
position,

x=pp4qa, y=4qB4 Npa

will be a solution of the former. Repeating the opera-
tions we can easily deduce as many solutions as we like,

This method reappears in later Hindu algebras.
Bhiskara II says:

“In (a Square-nature) with the additive. or sub-
tractive greater (than unity), one should find two roots
by his own intelligence only ; then by their composition
with the roots obtained for the additive unity an infinite
number of roots (will be found).””

Nirayana writes similarly :

“When the additive or subtractive is greater than
unity, two roots should be determined by one’s own
intelligence. Then, by combining them with the roots

for the additive unity, an infinite number of roots can be
obtained.”’2

We take the following illustrative examples with
solutions from Nariyana :

Example. *“Tell me that square which being muld-
plied by 13 and then increased or diminished by 17
or 8 becomes capable of yielding a square root.”3

1 BBi, p. 42. .2 NBj, I, R. 86.
3 NBj, I, Ex. 44.
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That is, solve
(1) 1358 37 =%,
(2) 13x%4- & =2,

Solution. “In the first example it is stated that the
multiplier = 13 and interpclator = 17.

“Now the roots for the interpolator 3 are (1, 4).
And for the interpolator 51, the roots are (1, 8). For
the composition of these with the previous roots (1, 4)
the statemc 1t will be

m=13 [=1 g=28 7= 351

/=1 £=4 I=3
So, by the Addition Lemma, we get the roots corres-
ponding to the interpolator 153 as (¥z, 45). The rule
says, ‘If the interpolator (of a Square-nature) be divided
by the square of an optional number etc’ Now take
the optional number to be 3, so that the interpolator
may be reduced to 17. For 32=9 and 153/9 = 17.

Therefore, dividing the roots just obtained by the
optional number 3, we get the required roots (4, 15).

“Applying the Subtraction Lemma and proceeding
similarly we get the roots for the interpolator 17 as
(4/3, 19/3).

“In the second example the statement is : multiplier
= 13, interpolator = — 17. Proceeding as beforc we
get (by the Addition Lemma) the roots (147, 530); and
(by the Subtraction Lemma), the roots (3, 10).7t

Form Mn®x? 4 ¢ = y2. Brahmagupta says:

“If the multiplier is that divided by a squarc, the
first root is that divided by its root.””?

1 Qur MS. does not contain the solution of the equations
13x248 =92
2 BrSpSi, xviii. yo.
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That is to say, suppose the equation to be
MiPx? 4 ¢ =32, (1)

so that the multiplier (7.e., coeflicient of x?) is divisible
by #%. Putting nx = #, we get

Mn? 4 ¢ = 5% - (2)
Then clearly the first root of (1) is equal to the first root

of (2) divided by n The corresponding second root
will be the same for both the equations.

The same rule is taught by Bhiskara II' and
Nirayana. The latter says :

“Divide the multiplier (of a Square-nature) by an
arbitrary square number so that there is left no
remainder. Take the quotient as the multiplier (of
another Square-nature). The lesser root (of the reduced
equation) divided by the squatre-root of the divisor will
be the lesser root (of the original equation).””2

Form a>x2 4 c==y2 For the solution of a
Square-nature of this particular form, Brahmagupta gives
the following rule :

“If the multiplier be a square, the interpolator
divided by an optional number and then increased and
decreased by it, is halved. The former (of these results)
is the second root ; and the other divided by the square-
root of the multiplier is the first root.””3

Thus, it is stated that \

1 ¢
X o= ——(i——w),
as m

y= {,(;—t—f—{-w),

/4

L BB;, p. 4z. ? NB;, I, R. 84.
3 BrSpSi, xviii. 69.
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where » is an arbitrary number, is a solution of the
equation
a*x% 4 ¢ =2

The same solution has been given by Bhiskara 1I
and Nirdyana.! Bhiskara’s rule runs as follows :

“The interpolator divided by an optional number is
set down at two places ; the quotient is diminished (at
one place) and increased (at the other) by that optional
number and then halved. The former is again divided
by the square-root of the multiplier. (The quotients)
are respectively the lesser and greater roots.””?

The rationale of the above solution has been given
by the commentators Stiryadisa and Krsna substantially
as follows : .

+ ¢ =% — a2x?
= (y— ax)(y -+ ax).
Assume y— ax = m, m being an arbitrary rational
number. Then
+ ¢

J+¢x=7.

Whence by the rule of concurrence, we gc;,t
1/+¢
=G =)

= g,(if+,,,).

Form c— Nx2 = Though the equation of
the form ¢ — INx2 = 32 Kas not been considered by any
Hindu algebraist as deserving of special treatment,
it occurs incidentally in examples. For instance,
Bhaskara II has proposed the following problem :

1 NB;, I, R. 8s. ? BB, p. 42.
12
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“What is that square which being multiplied by — §
becomes, together with 21, a square? Tell me, if you
know, the method (of solvmg the Square-nature) when
the multiplier is negative.”!

Thus it is required to solve

— §x% 4 21 = »% (x)
Niriyana has a similar example, 2732
— 11x2% + 6o =2, (2)

Two obvious solutions of (1) are (1, 4) and (2, 1).
Composing them with the roots of

_ 5x2 + 1 =J2,
says Bhiskara II, an infinite numbet of roots of (1)
can be derived.
N Form Nx2? — k? = y2. Bhiskara II observes:

“When unity is the subtractive the solution of the
problem is impossible unless the multiplier is the sum
of two squares.”’3

Nirdyana writes :

“In the case of unity as the subtractive, the multi-
plier must be the sum of two squares. Otherwise,
the solution is impossible.’*

Thus it has been said that 2 rational solution of
Nx? — 1 =%
and consequently of
Nx2 — &2 = 52

is not possible unless N is the sum of two squares.

1 BB, p. 43. 2 NBj, I, Ex. 43.
3 «“Ripasuddhau’ khiloddistarh vargayogo guno na cet”—BB;,

p- 4o0.
¢ NBi, I, R. 83.
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For, if x = p/g, y = r/s be a possible solution of
the equation, we have

N g — & = (7/5)%

ot N = (qr/ps)* + (qk/p)*

Bhiskara II then goes on:

“In case (the solution is) not impossible when unity
is the subtractive, divide unity by the roots of the two
squares and set down (the quotients) at two places.
They are two lesser roots. Then find the correspond-

ing greater roots at the two places. Or, when unity is
the subtractive, the roots should be found as before.”

Thus, according to Bhiskara II, two rational solu-
tions of

Nx? — 1 =2,
where N = 72 4 »2, will be
I I
x = — x = —
m 7
_on _m
I = Y=

So two rational solutions of
~ (1% 4 n?) x? — % =)t

will be
£ *
= — N = —
m 7
_ kn |’ __km
~ wm T

The following illustrative example of Bhaskara
11! is also reproduced by Nirdyana :2
1352 — 1 =2

L BBi, p. 41. 2 NBi, I, Ex. 38.



180 ALGEBRA

The former solves it substantially in the following
ways :
(1) Since 13 = 22 4 32 two rational solutions are

(1/2, 3/2) and (1/3, 2(3).
(2) An obvious solution of
13x% — 4 =)°

is x =1, y = 3. Then dividing out by 4, as shown
before, we get a solution of the equation 13x% — 1 =52

as (1/2, 3/2).
(3) Again, since an obvious solution of
1352 — 9 = )2
is x = 1, y.= 2, we get, on dividing out by 9, a solution
of our equation as (1/3, 2/3).

(4) From these fractional roots, we may detive
integral roots by the Cyclic Method. Since

13— 1= (3%
we have, by Bhiskara’s Lemma, 7 being an indeterminate
multiplier,

13(m/z'._—{— 3/7.) + 2—15 (3m/z+ 15/2)2’

I

15(777—1—3) —13 (37”+ 13)

or

The suitable value of » which will make (#+3)/2 an

integer and |#2 — 13| minimum is 3. So that we have
13.3% 4+ 4 = 112

From this again we get the relation

15(5:7-:— 11)2+ n2—4 15 (IL’?—I—413.5)2.

»
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The appropnate value of the indeterminate multiplier in
this case is =3 Substituting this value, we have

13.52 — 1 = 182,

Hence an integral solution of our equation 13x2% — 1= )2
is (5, 18).

“In all cases like this an infinite number of roots
can be derived by composition with the roots for the
additive unity.”!

Nirayana states the methods (2) and (3) only.

I9. GENERAL INDETERMINATE EQUATIONS OF THE
SECOND DEGREE: SINGLE EQUATIONS

The earliest mention of the solution of the general
indeterminate equation of the second degree is found
in the Bijagapita of Bhiskara II (1150). But there are
good grounds to believe that he was not its first dis-
coveter, for he is found to have taken from certain
ancient authors a few illustrative examples the solutions
of which presuppose a knowledge of the solution of such
equations.? Neither those illustrations nor a treatment
of equations of those types occurs in the algebra of
Brahmagupta or in any other extant work anterior to
Bhiskara II.

BhiskaraIl distinguishes two kinds of indeterminate
equations : Sakrz samikarapa (Single Equations) and
Asakrt samikaraga (Multiple Equations).?

Solution. For the solution of the general indeter-
minate equation of the second degree, Bhiskara II
(1150) lays down the following rule:

L%Iha sarvatra paddnim rlpaksepapadibhyim bhivanay4’-
nantyam’—BBji, p. 41.
2 Vide infra, pp. 2671 - 3 BB, pp. 106, 110.
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“When the square, etc., of the unknown are present
(in an equation), after the equi-clearance has been made,
(find) the square-root of one side by the method des-
cribed before for it, and the root of the other side by
the method of the Square-nature. Then (apply) the
method of (simple) equations to these roots. If (the
other side) does not become a case for the Square-nature,
then, putting it equal to the square of another unknown,
the other side and so the value of the other (7.c., the new)
unknown should be obtained in the same way as in the
Square-nature ; and similarly the value of the first un-
known. The intelligent should devise various artifices
so that it may become a matter for (the application of)
the Square-nature.”1

He has further clucidated the rule thus :

“When, after the clearance of the two sides has been
made, there remain the square, etc., of the unknown,
then, by multiplying the two sides with a suitable number
and by the help of other necessary operations as des-
cribed before, the square-root of one side should be
extracted. If there be present on the other side the
square of the unknown with an absolute term, then the
two roots of that side should be found by the method
of the Square-nature. There the number associated with
the square of the unknown is the prekr#7 (‘multiplier’),
and the absolute number is to be consideted as the
interpolator. What is obtained as the lesser root in this
way will be the value of the unknown associated with the
multiplier (prakr?i); the greater root is (again) the root
of that square (formed on the first side). Hence making
an equation of this with the square-root of the first
side, the value of the unknown on the first side should
be determined.

-~

‘1 BB/, p. 99.
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“But if there be pre‘isent on the second side the
square of the unknown together with (the first power
of) the unknown, or only the (simple) unknown with
or without an absolute numbers, then it is not a case for
the Square-nature. How then is the root to be found
in that case? So it has been said: ‘If (the other side)
does not become a case for the Square-nature etc’
Then, putting it equal to the square of another unknown,
the square-root of one side should be found in the way
indicated before, and the two roots of the other side
should then be determined by the method of the Square-
nature. There again the lesser root is the value of the
unknown associated with the prakrti and the greater root
is equal to the square-root of that side of the equation.
Forming proper equations with the roots, the values
of the unknowns should be determined.

“If, however, even after the second side has been
so treated, it does not turn out to be a case for the
Square-nature, then the intelligent (mathematicians)
should devise by their own sagacity all such artifices
as will make it a case for the method of the Square-
nature and then determine the values of the un-
knowns.””1 ’

Having thus indicated in a general way the broad
outlines of his metiiod for the solution of the
general indeterminate equation of the second degree,
Bhéaskara II discusses the different types of equations
severally, explaining the rules in every case in greater
detail with the help of illustrative examples.

(2) Solution of ax?® + bx + ¢ = y*
For the general solution of the quadratic indeter-

minate equation
ax? 4+ bx 4 ¢ =52, (1)

1 BB;, p. 100.
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Bhiskara II gives the following particular rule:

“On taking the square-root of one side, if there be
on the second side only the square of the unknown
together with an absolute number, in such cases, the
greater and lesser roots should be determined by the
method of the Square-nature. Of these two, the greater
root is to be put equal to the square-root of the first
side mentioned before, and thence the value of the
first unknown should be determined. The lesser will
be the value of the unknown associated with the prakrii.
In this way, the method of the Square-nature should be
applied to this case by the intelligent.””?

As an illusttation of this rule Bhiskara IT works out
in detail the following example;

“What number being doubled and added to six
times its square, becomes capable of yielding a square-
root? O ye algebraist, tell it quickly.””2

Solution. “Here let the number be x. Doubled
and together with six times its square, it becomes
6x2 4 2x. This is a square. On forming an equation
with the square of y, the statement is

6x2 + 2x + 0)% = ox? + ox + 2.
On making equi-clearance in this the two sides are
6x% - 2> and 2

“Then multiplying these two sides by 6 and
superadding 1, the root of the first side, as described
before, is 6x + 1.

“Now on the second side of the equation remains
6y + 1. By the method of the Square-nature, its roots
are : the lesser 2 and the greater 5, or the lesser 20 and
the greater 49. Equating the greater root with the
square-root of the first side, »73., 6x + 1, the value of

1 BBi, pp. 100-1. t BBi, p. 101.
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x is found to be 2/3 or 8. The lesser root, 2 or 20,
is the value of y, the unknown associated with the
prakrti. In this way, by virtue of (the multiplicity of)
the lesser and greater roots, many solutions can be
obtained.”!

In other words the method described above is this :

Completing the square on the left-hand side of the
equation ax? + bx + ¢ = 32, we have

(ax + 40 = 0 + J0* — 4a0).
Putting g = ax + 3b, &= }(b® — 4ac), we get
2 + k= g2 (1.1)

If y = /, 3 = m» be found empirically to be a solution of
this equation, another solution of it will be

y=Ilq + mp,
R = myq + alp,

where ¢p? + 1 = 4% Hence a solution of (1) is
b I
X =— Z’*‘;(”’qﬂ:“@),
J =g & mp.

Now suppose x =r, when g=m; that is, let
m = ar.+ bJ2. Substituting in the above expressions,
we get the required solution of (1) as

I

pwniran)
Y =g & (apr + 1bp);

where ap?+ 1 =q%and ar® + br + c = 2.

Thus having known owe solution of ax? 4 bx -+ ¢
= %, an infinite number of other solutions can be

1BBi, p. 101.
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easily obtained by the method of Bhiskara II. The
method is, indeed, a very simple and elegant one. It
has been adopted by later Hindu algebraists. As the
relevant portion of the algebra of Nirdyana (1350)
is now lost, we cannot reproduce his description of the
method. Jfidnardja (1503) says:

“(Find) the square-root of the first side according to "
the method described before and, by the method of the
Square-nature, the roots of the other side, where the
coefficient of the square of the unknown is considered
to be the prakr#i and the interpolator is an absolute
term. Then the greater root will be equal - to the
previous square-root and the other (7.¢., the lesser root)
to the unknown associated with the prakrti.”

The above solution (1.2), but with the upper sign
only, was rediscovered in 1733 by Eluer.! His method
is indirect and cumbrous. Lagrange’s (1767) method
begins in the same way as that of Bhiskara II. by
completing the square on the left-hand side of the
equation.?

(i) Solution of ax®+ bx + c=ay2 by~ ¢
Bhiskara 11 has treated the more general type of
quadratic indeterminate equations :

ax®+4-bx+c=a'y 4+ Uy + . (2)
His rule in this connection runs as follows :

“If there be the square of the unknown together
with the (simple) unknown and an absolute number, put-
ting it equal to the square of another unknown its root
(should be investigated). Then on the other side (find)

1 Leonard Euler, Opera Mathematica, vol. 11, 1915, pp. 6-17;
Compare also pp. §76-611.

* Additions to Elements of Algebra by Leonard Euler, translated
into English by John Hewlett, sth edition, London, 1840, pp.

5376
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the roots by the method of the Square-nature, as has
been stated before. Put the lesser root! equal to the
root of the first side and the greater root equal to that
of the second.”?

He further elucidates the rule thus :

“In this case, on taking the square-root of the first
side, there remain on the other side the square of the
unknown and the (simple) unknown with or without
an absolute number. In that case forming an equation
of the second side with the square of another unknown,
the roots (should be found). Of these (roots just
determined), making the lesser equal to the root of the
first side (of the given equation) and the greater to
the root of the second side, the values of the unknowns
should be determined.” '

Example. “Say what is the number of terms of a
series (in A. P.) whose first term is 3, the common differ-
ence is 2 ; but whose sum multiplied by 3 is equal to the
sum of a different number of terms.””3

Solution. ‘“Here the statements of the series. are :
first term = 3, common difference = 2, number of
" terms = x'; first term = 3, common difference = 2,
number of terms = y. The two sums are (respectively)
x2 4 2x, y?+ 29. Making three times the first equal
to the second, the statement for clearance is

3x2 A 6x =%+ 2.
After the clearance, multiplying the two sides (of the

equation) by 3 and superadding 9, the square-root
of the first side is 35 4 3. On the second side of the

1 The meaning of the terms ‘lesser root’, ‘greater root’, etc.,
as used here, will be clear from the illustration and the general
solution given below.

2 BBi, p. 104. 2 BBj, p. 104.
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equation stands 332 4 6y + 9. Forming an equation of
this with g2, and similarly multiplying the sides by 3
and superadding — 18, the root of it i1s 3y 4 3. Then
" the roots of the other side, 332 — 18, by the method of
the Square-nature are the lesser = 9 and greater = 1y,
or the lesser = 13 and greater = 57. Equating the lesser
root with the square-root of the first side, namely,
3x 4 3, and the greater root with the square-root of
the second side, namely, 3y -+ 3, the values of x, yare
found to be (2, 4) or (10, 18). So in every case.”

In general, on completing the square on the left-
hand side, equation (2) becomes

(@ + 3B = ad's® + by + i’ + (4 b ).
Put ax + 3 =2, (z.1)

and then complete-the square on the right-hand side.
Thus the given equation is finally reduced to

ad': — p = 2, (2.2)
where w=aay+ }ab',, (z.3)
and B =a%'c’ + (30* — ar) aa’ — (Yab’)2.

Now, if ¢ = /, w = m be a solution of the equation
(2.2), another solution will be

X =lq £ mp,
w=mq+adlp,
where 2’ap? 4 1 = ¢2 Substituting in (z.1) and (2.3),
we get .
b
x=— ——+—(lq + mp),
bl 1 (2 * 4)
+—(mq & aa ip).

Now, let / = ar + 3band m = ad’s + }al’. Substi-
tuting in the above expressions, we get the required

J=-

2a’
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solution of (2) in the form :

X = —;—;(gb + pab’ — b) + gr & pa's,

(2.5)
¥ = (g & palb — V) + g5 & par;
where ad'p? + 1 = g%,
and ar?+ br 4+ c=da's> 4 Vs + /.

The form (2. 5) shows that having found empirically
one solution of ax? + bx + ¢ = a’y® + b’y + ¢ Bhiskara
could find an infinite number of other solutions of it.

Jiinardja (1503) says:

“If on the other side be present the square as well
as the linear power of the unknown together with an
absolute term, put it equal to the square of anothes
unknown and then determine the lesser and greater

roots. The lesser root will be equal to the first square-
root and the greater to the second square-root,”

He gives with solution the following illustrative
example :

3(x% + 4x) =y + 47,
or (3% +6)* = 3? + 12y + 36.
Putting 3x -+ 6 = g, where g is the “first square-
rcot” of Jfidnarija, we get
gt = 30"+ 12)% + 36,
ot 332 =(3y + 6)* -+ 72.

Now put 3y + 6 =», where » is the “second
square~-root.” Then

392 — 72 = 22 i
Therefore, by the method of the Square-nature,
g =18, w = 30. Whence x =4, y = 8, is a solution.
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(#2i)  Solution of ax? + by 4 ¢ = g2

Bhiskara 11 followed several devices for the solution
of the equation \

ax®+ by + =22 . B
In every case his object was to transform the equation
into the form of the Square-nature. He says :

“In such cases, where squares of two unknowns
with (or without) an absolute number are present,
supposing either of them optionally as the prakrs,
the rest (of the terms) should be considered as
the interpolator. Then the roots should be investi- .
gated in the way described before. If there be mote
quuations than one (the process will be especially help-
ul).””?

"He then explains further :

“Where on finding the square root of the first side,
there remain on the other side squares of two unknowns
with or without an absolute number, there consider the
squate of one of the unknowns as the prakssi; the
remainder will then be the interpolator. Then by the
rule: ‘An optionally chosen number is taken as the
lesser root, etc.,’? the unknown in the interpolator
multiplied by one, etc., and added with one, etc.,
or pot, according to one’s own sagacity, should be
assumed for the lesser root ; then determine the greater
root.”’3

There are thus indicated two artifices for solving
the equation (3). They are:

(/) Set x = my; so that equation (3) transforms into

1 BBi, pp. 105f.

2The reference is to the rule for solving the Square-nature
(ride supra p. 144) (BBJ, p. 33).

3 BBi, p. 106.
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= (a4 b)y: + ¢
= a2+
where o = am?®+ b. Hence the required solution of
ax? 4+ b2+ c=2g%1is
x=my=m(rqg + ﬁf),
J=rq =t ps,
=99t opr;
where 52 = w24 ¢ and g% = ap? 4- 1
(%7) Set x = my 4+ n; then the equation reduces to
¥= ay® + 2amny + v
where a = g2 4 band v = an? + .

Completing the square on the right-hand side of
this, we get

o2 — B =n?
where w = ay 4 amn and B = ya— a*#*n® = a(bn?
-+ cn®) -+ be. '
If =135, w=r be a solution of this equation,
another solution will be

g =$q % rp,

W =rq + usp;
where g% = ap? 4 1. Hence the solution of ax? -+ 4y?
+e=2%1s

X = %(rq + asp F amn) 4 n,

= (g % esp F am)
R =50 & 775

where q2~a 2L 1, PP=as2— B, a=agm?+{ b and

B = a(bn® + cm®) - (7; -
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In working certain problems, Bhiskara II is found
to have occasionally followed other artifices also for
the solution of the equation (3). For instance :

(@it Set w2 = py? + ¢. Then equation (3) becomes
g2 — w? = ax2

Whence = 7(—57+;71)x,
and W= %(%-—m)x;

where # is an arbitrary number. Therefore

_ 2mw
a— mé’
a -+ m?
Z = (a —_— ”12
Now, if y =/, w = r be a solution of
= b_}'z +
another solution of it will be
= lq & pr,
w=rq+blp;

where ap2—|— I = g% ‘Therefore, the solution of (3)
will be

m

= lg + pr,

2=t g - bipy

where 2p? 4 1 = =g%and b2+ ¢ = r2,

(w{l2 bSupposc ¢ = 0; then the equation to be solved
e

1 See BB/, p. 108. % BBi, p. 106.
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In this case set x = #y, ¢ = »y; so that #, » will be
given by
an® + b =12,
which can be solved by the method of the Square-
nature. Some of these devices were followed also by

lJater Hindu algebraists, for instance, Jfidnarija (1503)
and Kamalikara (1658).1

Example from Kamalikara :2
7xE 4 B2 = 22
This is one of a double equation by Bhéskara II.3
To solve ax? 4 by? 4 ¢ = g2, Kamalikara observes:

“In this case, suppose the coefficient of the square
of the first unknown as the prakr#; and the coefficient
of the square of the other unknown together with the
absolute number as the interpolator to that. ‘The two
roots can thus be determined in several ways.””#

And again:

“(Suppose) the coeflicient of the square of one of
the unknowns as the prakr#7 and the rest comprising two
terms, the square of an unknown and an absolute
number, as the interpolator. Then assume the value
of the lesser root to be equal to the other unknown
together with an absolute term.”’®

He seems to have indicated also a slightly different
method :

“Or assume the value of the lesser root to be equal
to another unknown plus or minus an absolute number

1 5 TV3, xiii. 260-1. "2 §iTVi, xiii. 258.
3 BBi, p. 106. ¢ $iTV, xiii. 264.
5 SiTU7, xiii. 267 f.

13
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and similarly also the value of the greater root. The
remaining operations should be performed by the intel-
ligent in the way described by Bhiskara in his algebra.”

That is to say, assume
x=mw 4 a =rmv+4p.

Substituting in the equation ax24 bt 4 =23
we get

(am® — w2 + 2w (ama F 1B) + by?
+ (¢ + a0t —p7) = o.

Putting A = am® — n2, p = ama F nB, v = ¢ + aa® — B2,
this equation can be reduced to

— AbyR 4 (02— VA) = %2,
where # = Aw + p.

Kamalikara gives also some other methods which
are applicable only in particular cases.

Casei. Suppose that & and ¢ are of different
signs.2  Two sub-cases arise:

(1) Form ax® 4 by* — c =2
First find #, v, says Kamaldkara, such that
an® — ¢ =12,

: b
A = .
ssuming x \/ — v+ 4
we have
ax2+b_y2—;=iv2,2+z ‘_’_/ZW + b2
=Y — 4y + by

+ (au? — ¢)
(a2 — 2t 2\ [ Ly + b+ 02

b
c

1 $iTV7, xiit. 265. 2 8iTVi, xiii. 285-7.
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=d—b’l”+2 D + 2
c 7 c v

ab 2
= (\/—;‘ uy + V) .
ab
Hence = \/7{1)}—1— v,

The following illustrative example and its solution
are given :1

sx% + 16y — 20 = g2
Its solution is
L x =3y + 4,
R=24+
where §#%2 — 20 =2 An obvious solution of this
equation is given by # =3, » = 5. Hence, we get 2
solution of the given equation as
x =2y 3,
2=0+s. ]
Therefore  (x, ¥) = (5, 1), (7, 2), (95 3)s = ~erv-
(2) Form ax®— by + ¢ =g
In this case first solve
au'® + c =2,
Then the required solution is

by
X = Ev_y-}-u,

: ab , ,
z:\/d?u_y—l—v.

Example from Kamalakara :2
sx2 — 2092 4 16 = g2

1 §iT 174, xiii. 279. 2 §i TV, xiil. 279,
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Then
=Yy + o,
=+
where §#2 + 16 = »"2.  One solution of this equation
is #" == 2,2"=6. The corresponding solution of the
given equation s
x=13y+ 2,
. x=75y+6.
Therefore  (x,%) = (5, 1), (8, 2), (11, 3), etc.
Cuse ii. Let the two terms of the interpolator be of
the same sign and positive.
Example from Kamalikara:!
5x% + 82 + 23 = 2%
Assume atbitrarily a value of x or y and then find the
other by the method of the Square-nature.?

(7v) Solution of a®x%+ by + ¢ =22

Let the coefficient of x2 (or_y?) be a square number,
The equation is of the form

For this case Bhaskara II observes :

“If the prakrti is a square, then obtain the roots by
the rule: ‘The interpolator divided by an optional
number is set down at two places, etc.” >3

Thus, according to Bhiskara II, the solution of the
above equation is
Bs (1?)'2 +¢

) —m,
2a V4

X =

1 85iTV3, xiil. 296. 28TV, xiii, 293,
3 BBi, p. 106.
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by2
v = ;(J’ + ¢ +m);
where 7 is an arbitrary number.

Kamalidkara divides equations of this form into two
classes according as ¢ is or is not a square.!

(1) Lete¢ be asquare (= 42 say). That is to say, we
have to solve
@2+ by? 4 d? = 22,
The solution of this particular case, says Kama-
lakara, is given by

2ad]
For,. with this value, we have
3= 1”4 + o2+ 4
. _._ (@,2 1T 242)2.
2
Hence. g = by + d.

(2) When ¢ is not a square, Kamalikara first finds a, f
such that

a? 4- ¢ = 2.
He next obtains # such that the value of
apn — b/2
a“. a/a

is also 7 ; and then says that

a
x=”2 J—
e+ —

_ 1 Vide his gloss on SiTVi, xiii. 275.
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whence will follow the value of z.

"Since apn— bjz =1,
aa
we get = b H
5 "=
. a
so that x = (6 = a) + —.
Therefore g2 = a%x? + by2 - ¢
S S R L
4B — o (ﬁ DR
_ Bby® 2
R R R
_ {_— by? }2
2(8 — a) )
- b?
Hence = 6= a) — 4 B.

Example from Kamaldkara :
4x* + 48)® + 20 = 2.
Since 42 -~ 20 = 62, and the solution of
1207 — 24
8

is # =06, we get the required solution of the given
cquation as

=1

X o= 6_)/2 + 2,
g =122+ 6.
It may be noted that the solation stated by Kamala-

kara follows casily from that of Bhaskara II, on puttmg
therein == p-— o, where o+ ¢ = 2
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In particular, if we put ¢ = o and 4 = 1, Bhéskara’s
solution reduces to

X = %(%_}ﬂ —-”i),
] b
= Jz(;)’z +m);
where m is arbitrary.

If b = o, taking m = 2Bp?, we easily arrive at

X = aqz - ﬁpz,
J = 2pq,
g = og*+ Bp?,

where p, g are arbitrary integers, as the solution in posi-
tive integers of 2= x2-+ 2 This solution was
given by A. Desboves (1879).1

Taking m = 2v?, we can derive Matsunago’s
(¢- 1735) solution of g2 = x% -+ b2, viz.,
X = bu? — v2,
y = 2pv,
g = bu?+ v
where p, v are arbitrary integers.
() Solution of ax® + bxy + ¢y* = 32
For the solution of the equation
Bhiskara II lays down the following rule :

“When there are squares of two unknowns together
with their product, having extracted the square-root
of one part, it should be put equal to half the difference
of the remaining part divided by an optional number

1 Dickson, Numbers, 11, p: 405.
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and the optional number.””?

It has been again elucidated thus:

“Where there exists also the product of the un-
kndwns (in addition to thelr squares), by the rule, “‘when
there are squares etc.,” the square-root of as much
portion of it as affords 2 root, should be extracted. The
remaining portion, divided by an optional number and
then diminished by that optional number and halved,
should be put equal to that square-root.”?2

The above rule, in fact, contemplates a particular
case of equation () in which z of ¢ is 2 square number.

(#) Suppose a = p% The equation to be solved is then
P2+ bxy + o =2~ G-.1)

Therefore ( px + 5 ) + },2( — 22) = 32

Putting px + —2; = », we get
b2
e _p2—p2(,— ).
z w .}, ¢ 4p2)
Whence T — W=},
_ )
xtr=5(— )

wherte A is an arbitrary rational number. So

w={f{x( 4],2)“'7‘}

» as stated in the rule, Therefore

zjb {},2 (e ) } pz’

Y. Mikami, The Development of Mathematics in China and

]aj)dﬂ, Leipzig, 1913, p. 231
2 BBi, p. 106.
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2 b2
and z:%{%(c—‘}—j@)—kk}.

Now, if we suppose y = m[n, where , n are
arbitrary integers, we get the solution of (5.1) as

= §}.—;2n—4 {n® (4cp® — b2 — 402p%2 — 4Momn},

F/4
.}’ = 73
T = g (77 4t — ) + ).

Since the given equation is homogeneous, any multiple
of these values of x, y, g will also be its solution. There-
fore, multiplying by 8ip2s2, we get the followmg
solution of the equation p2x2 4 bxy + ¢y* =%? in in-
tegers :

oy = 8hmnp?,

z = 2 (40p? — b?) + 4022,
where 7, n, are arbitrary integers.

In particular, putting a=b=c¢=1, and A =p

= 1 in (5.2), we get

x = 3m® — qn(n + m),

y = 8w,

g = 3m* + 4%,
as the solution of the equation

x2 4 xy + y? =22

Dividing out by 8, the above solution can be put into
the form

x = m? (4cp? — b%)'— 42%*p*n® — 4hbmn,
(5-2)

5”72 —n —'m),

x—g(
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J =,
1
= —87(5”12 + 47%);

as has been stated by Nardyana :

“An arbitrary number is the first. Its square less
by its (square’s) one-fourth, is divided by an optional
number and then diminished by the latter and also by the
first. Half the remainder is the second number. The
sum of their squares together with their product is a
square.”!

It is noteworthy that in practice Niriyana approves
of only integral solutionis of his equation, For instance,
he says:

“ ‘Any arbitrary number.is'the first.” Suppose it to
be 12, Then with the optional number unity, are
obtained the numbers (12, 95/2). For integral values,
they are doubled (24, 95). With the optional number
2, are obtained (12, 20). It being possible, these are
reduced by the common factor 4 to (3, 5). In this way,
owing to the varieties of the optional pumber, an infi-
nite number of solutions can be obtained.”2

(/1) If neither « nor ¢ be a square, the solution can
be obtained thus :

Multiplying both sides of the equation (5) by 4 and
then completing a square on the left-hand side, the
equation transforms into

(ax + b + (ar — P2y = az.
Putting  ax + 3by =wand B = L(h? — 4ac),
we get w? = a3z® 4 By (5-3)

1GK, i 55.
2 See the example in illustration of the same.
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The method of the solution of an equation of this form,
according to Bhiskara II, has been described before.

Assume w = py, g = #y; so that the values of #,»
will be given by

V2 = an® + B. (5.4)

If #=m, v=n be a solution of (5.4), another
solution will be

u = mq + pn,
v = ng - amp;
where ap? + 1 = 4% Therefore, a solution of (5) is
= J _
= o (2(rg k= amp) — b},

R =)(mq £ p);
where 4p?+ 1 = g% and am? 4 B = »%

Put # = ar + 46 and y =— ; then we have
x = E{q(zar + &) - 2amp — b},
$
J =7
7 = L{mq + p (2ar + b)}.

\Iultlplymg by 2at, we get the following solution
of ax? + bxy + ¢y = g2 in integers :
x = 5{ q (zar + b) & 2amp — b},
Y = 2as,
g = as{zmq + p(rar + b)};
where ap?+ 1 =4 and w?2 = ar® 4 br +c.
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20. RATIONAL TRIANGLES

Rational Right Triangles: Early Solutions. The

earliest Hindu solutions of the equation

X2 4 5t = 22 Q
are found in the Sw/ba. Baudhiyana (r. 8co B.C),
Apastamba and Kityiyana (¢. 500 B.C)! give a method
for the transformation of a rectangle into a square,
which is the equivalent of the algebraical identity

w— n)2 (/;z — ﬂ)2
. ]

nn = (lll —_
2

2
where 72, n are any two arbitrary numbers. Thus we get
— m— n\2 7 - p\2
(Vi + (=) =(=7).

Substituting p?%, ¢% for m, n tespectively, in order to
eliminate the irrational quantities, we get

2__ L2 2 2 2,2
P+ (ﬁ—zq—) =(£¥) ;

which gives a rational solution of (1).

]ii)r finding a square equal to the sum of a number
of other squares of the same size, Kityayana gives a
very elegant and simple method which furnishes us with
another solution of the rational right triangle. Katya-
yana says :

“As many squares (of equal size) as you wish to
combine into one, the transverse line will be (equal to)
one less than that; twice a side will be (equal to) one
more than that ; (thus) form (an isosceles) triangle. Its
arrow (7.e., altitude) will do that.””2

1 BS/, 0. 58; ApSl, ii. 7; KS/, iik 2. For details of the cons-
truction see Datta, Su/ba, pp. 83f, 178f.
2 K§7, vi. 5 ; Compare also its Parifista, verses 4o-1.
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Thus for combining » squares of sides @ each, we form the

isosceles triangle ABC, such that AB=.AC=(n+1)z/2,

A

: Fig. 2
and BC = (#—1)a. Then AD? = na®. 'This gives the

formula
42(\/;)2 + az(ﬂ_:z_l)z _ 02(1:{—2_1)2.

Putting 72 for » in order to make the sides of the right-
angled triangle free from the radical, we have

2 2 2
”m I m: 41
m2a® 4 ( ) a® ——(———2 )a2,

which gives a rational solution of (1).

Tacit assumption of the following further general-
isation is met with in certain constructions described by
Apastamba :1

If the sides of a rational right triangle be increased
by any rational multiple of them, the resulting ﬁgure will
be a right triangle.

In particular, he notes
324+ 4% =52,
G+ 3.3+ @+ 4.3=( +5-3)%
G+3.42+@+4.42=0G 4 5.4%

1 4pSi, v. 5, 4. Also compare Datta, Su/ba, pp.-65f
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52 4 122 = 132,
(s + 5.2+ (124 12.2)2 = (13 + 13.2)%

Apastamba also derives from a known right-angled
triangle several others by changing the unit of measure
of its sides and vice versa.l In other words, he recognised
the principle that if (a, B, v) be a rational solution of
x? + 92 = g2, then other rational solutions of it will be
given by (/a, /B, /v), where / is any rational number.
This is clearly in evidence in the formula of Kityiyana in
which ¢ is any quantity. It is now known that all rational
solutions of x* 4 y> =22 can be obtained without
duplication in this way.

Later Rational Solutions. Brahmagupta (628) says:

“The square of the optional (i574) side is divided
and then diminished by an optional number; half the
result is the upright, and that increased by the optional
number gives the hypotenuse of a rectangle.”?

In other words, if 7, n be any two rational numbers,
then the sides of a right triangle will be

, g(”;— ,;), %(”_: + n).

The Sanskrit word 757z can be interpreted as imply-
ing “given” as well as “optional”., With the former
meaning the rule will state how to find rational right
triangles having a given leg. Such is, in fact, the inter-
pretation which has been given to a similar rule of
Bhiskara I1.8

1 Datta, Sufba, p. 179. 2 BrSpSi, xii. 35. )

3 Vide infra p. 211 ; H. T. Colebrooke, Algebra with Arith-
metic and Mensuration from the Sanscrit of Brabmegupta and Bhascara,
London, 1817, (referred to hereafter as, Colebrooke, Hindu
Algebra), p. 61 footnote.
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A similar rule is given by Sripati (1039):

“Any optional number is the side; the square of
that divided and then diminished by an optional
number and halved is the upright; that added with the
previous divisor is the hypotenuse of a right-angled
triangle. For, so it has been explained by the learned in
the matter of the rules of geometry.”? .

Karavindasvami a commentator of the Apastamba
Swulba, finds the solution
7”2+ 21 4 2n3 2
7 (2ﬂ—f— z)m’ ( 2n+4 2 )/71,
by generalising a rule of the Su/ba.?

Integral Solutions. Brahmagupta was the first to
give a solution of the equation x? 4 % = 32 in integers.
1t is

mE— 2 2mn, w4 nd,
m, n being any two unequal integers.?

Mahivira (850) says :

“The difference of the squares (of two elements)
is the upright, twice their product is the base and the
sum of their squares is the diagonal of a generazed
rectangle.’’

He has re-stated it thus :

. “The product of the sum and difference of the
elements is the upright. The serkramans® of their
squares gives the base and the diagonal. In the opera-
tion of generating (geometrical figures), this is the
process.”’®

L $iS%e, xiii. 41.

3 ApSi, 1.2 (Com.); also see Datta, Swlba, pp. 14-16.

8 BrSpSi, xii. 33 ; vide infra, p. 222. 4 GSS, vil. 9o}.
8 For the definition of this term see pp. 43f.

8 G5, vii. 938.
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Bhiskara II (1150) writes:

~“Twice the product of two optional numbers is
the upright ; the difference of their squares is the side;
and the sum of their squares is the hypotenuse. (Each
of these quantities is) rational (and integral).””

It has been stated before that the early Hindus
recognised that fresh rational right triangles can be
derived from a known one by multiplying or dividing its
sides by any rational number. The same principle has
been used by Mahévira and Bhiskara 11 in their treat-
ment of the solution of rational triangles and quadri-
laterals. Gane§a (1545) expressly states:

“If the upright, base and hypotenuse of a rational
right-angled triangle be multiplied by any arbitrary
rational number, there will be produced another right-
angled triangle with rational sides.”

Hence the most general solution of x% + 3% = g2
in integers 1s
(122 — ), 2mnl, (n® + #2)/
where 2, », / are integral numbers.

Mahivira’s Definitions. A triangle or a quadri-
lateral whose sides, altitudes and other dimensions can
be expressed in terms of rational numbers is called
Jjanya (tmeaning generated, formed or that which is
generated or ‘formed) by Mahivira? Numbers which

1L, p. 36.

2 GSS, introductory line to vii. god. The section of Mahévira’s
work devoted to the treatment of rational triangles and quadri-
laterals bears the sub-title janya-pyavabira ( janya operation) and it
begins as “Hereafter we shall give out the janya operations in cal-
culations relating to measurement of areas.” Mahivira’s treatment
of the subject has been explained fully by Bibhutibhusan Datta in a
paper entitled: “On Mahavira’s solution of rational triangles and
rnadrilaterals,” BCAS, XX, 1928-9, pp. 267-294.
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are employed in forming a particular figure are called its
bija-sanikhyd (element-numbers) or simply bga (element
or seed). For instance, Mahavira has said: “Forming
O friend! the genetated figure from the bijaz 2, 3,1
“forming another from half the base of the ﬁgurc
(rectangle) from the bijz 2, 3,’% etc. Thus, according
to Mahavira, “forming a rectangle from the bija m, w
means Lakmg a rectangle with the upright, base and
diagonal as m? — #®, z2mn, m*4- n* respectively. It is
noteworthy that Mahavira’s mode of expression in this
respect very closely resembles that of Diophantus who
also says, “Formmg now a right-angled triangle from
7, 4, meaning “taking a right-angled triangle with
sides 72 — 42, 2.7.4, 72+ 4% or 33, 56, 65.°% It should
also be noted that Mahivira never speaks of “right-
angled triangle.”” What Diophantus called “forming a
right-angled triangle from m, »,” Mahivira calls “form-
ing a longish quadrilateral or rectangle from w, 1.”

Right Triangles having a Given Side. In the

Sulba we find an attempt to find rational right triangles
having a given side, that is, rational solutions of

x% 4 q% = g2

In particular, we find mention of two such right
triangles having a2 common side a4, v%., (2, 3a/4, 52/4)
and (@, se/1z, 134/12)% The pr1nc1ple underlying
/these solutions will be easily detected to be that of
the reduction of the sides of any rational right
triangle in the ratio of the given side to its corresponding

1 “Bije dve trini sakhe ksetre janye tu sathsthipya’-—GJSS, vii.,
924

2“He dvitribijakasya ksetrabhujirdhena cinyamutthipya”—
GSS, vii. 1113,

® Arithmetica, Book 111, 19 ; T. L. Heath, Diophantus of Alexan-
dria, p. 167.”°

4 Datta, Sulba, p. 180.

14
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side. This principle of finding rational right triangles
having a given side has been followed explicitly by
Mahavira (850).1

It has been stated before that one rule of Brahma-
gupta? can be interpreted as giving rational solutions of
x2 4 a2 =g2% as

o 3(Z—n), 4 ),

where 7 is any rational number. In fact, he has used this
solution in finding rational isosceles triangles having a
given altitude.® This solution has been expressly stated
by Mahivira (850). He says:

“The sarikramana between any optional divisor of
the square of the given upright or the base and the
(respective) quotient gives the diagonal and the base
(or upright).”?

He has restated the solution thus ;

“The sarkramapa between any (rational) divisor
of the upright and the quotient gives the elements;
or any (rational) divisor of half the side and the quotient
are the elements.””® '

The right triangles formed according to the first half
of this rule are :8

2
a, 5(%‘2‘_P2), L P2 +P)

Y Vide infra, p. 213 2 Vide supra, p. 206.

3 Vide infra, p. 223 , 1 GSS, vil. 974.

5GSS, vil. 954,

8 The “clements” hcre are 3(a[p + p), 3(a/p — p), where p is
an optional number.
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and those according to the second half are :1
a2
44"

Bhiskara IT gives two solutions one of which is
the same as that of Brahmagupta. He says:

e

“The side is given: from that multiplied by twice
an optional number and divided by the square of that
optional number minus unity, is obtained the upright ;
this again multiplied by the optional number and
diminished by the given side becomes the hypotenuse.
This triangle is a right-angled triangle.

“Or the side is given: its square divided by an
optional number is put down at two places ; the optional
number is subtracted (at one place) and added (at
another) and then halved ; these results are the upright
and the hypotenuse. S1m11ar1y from the given upright
can be obtained the side and the hypotenuse.”’2

That is to say, the two solutions are

a 214 ﬂ( 2na ) a
bl ﬂz— I’ ”2_ I bl

and a, 3‘,((;—12 —ﬂ), i,(-(;—z—l—n).

Bhiskara II illustrates this by finding four right
triangles having a side equal to 12, wz (12, 35, 57) <g
16, 20), (12, 9, 15) and (12, §, 15)

, The rationale of the first solution has been given by
Suryadasa (1538) thus : Starting with the rational right
triangle #* — 1, 25, #%2 + 1, he observes that if x, y, 7

1 The “clements” here are ¢, @f2g, where ¢ is an optional
number.

L, p. 34 3 L, pp. 34f.
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be the corresponding sides of another right triangle,
then

X =J —__ X
m—1 2n 4+ 1 £ (s2y)
Hence — x = At — 1), y =21k, 3= k@*+ 1).
Therefore x4 3 = 244% = my.
If now we have x = 4, then
a
k= prrp—r
21
Hence V=m0
2na
and z=nj—a=ﬂ(”2_1)——a

The second rule has been demonstrated by Strya-
dasa, Ganesa and Ranganatha thus:
Since x% 4 a® = g2,
we have =22 — x2= (g — x) (g + %)
Assume g — x = #n, where # is any rational num-
ber ; then
22

g+ x= 2

Z_%('—’f‘”) X——v(—_—”

Generalising the method of the Apastamba Sulba
the commentators obtained the solution?! .

7, (/71- 2”2) (/;12 ~+ 2m + z)a.

2/ -+ 2 2m -+ 2

1 Datta, Sulba, p. 16.



RATIONAL TRIANGLES 213

Right Triangles having a Given Hypotenuse.
For finding all rational right triangles having a given
hypotenuse (¢), that is, for rational solutions of

Mahidvira gives three rules. The first rule is :

“The square-root of half the sum and difference of
the diagonal and the square of an optional number are
they (the elements).””

In other wozds, the required solution will be obtain-

ed from the “elements” \/(¢c + p?)/2 and /(¢ — p?)/2,
where p is any rational number. Hence the solution is

.p23 \/cz - P4’ 2
The second rule is :
“QOr the square-root of the difference of the squares

of the diagonal and of an optional number, and that
optional number are the upright and the base.””2

That is, the solution is

P, VeE—pt, e

These solutions are defective in the sense that
Vet — pt or /c2 — p? might not be rational unless
p is suitably chosen. Mahiavira’s third rule is of greater

importance. He says:

“Each of the various figures (rectangles) that can
be formed from the elements are put down; by its
diagonal is divided the given diagonal. The perpendi-
cular, base and the diagonal (of this figure) multiplied
by this quotient (give rise to the corresponding sides
of the figure having the given hypotenuse).””?

1.GSS, vii. 953. 2 GSS, vii. 973.
3 GSS, vii. 12284, . _
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Thus having obtained the general solution of the
rational right triangle, wig., m2— n®, 2mn, m® 4 7%,
Mahédvira reduces it in the ratio ¢/(%? 4 #%), so that
all rational right triangles having a glven hypotenuse
¢ will be given by -

(7722 — n2

m2+”2) (,,,2+ 2)5 b

By way of illustration Mahédvira finds four rec-
tangles (39, 52), (25, 60), (33, 56) and (16, 63) having
the same diagonal 65.2

This method was later on rediscovered in Europe
by Leonardo Fibonacci of Pisa (1202) and Vieta. It has
been pointed out before that the origin of the method
can be traced to the Swlba.

Bhiskara II (1150) says:

“From the given hypotenuse multiplied by an
optional number and doubled and then divided by the
square of the optional number added to unity, is obtained
the upright ; this is again multiplied by the optional

number ; the difference between that (product) and the
given hypotenuse is the side.

“Or divide twice the hypotenuse by the square of
an optional number added to unity. The hypotenuse
minus the quotient is the upright and the quotient
multiplied by the optional number is the side.””?

Thus, according to the above, the sides of a right-
angled triangle whose hypotenuse is ¢ are :

271 ( 291 )
m?+ 1’ m? 4 1
2m¢ 2¢

P  — ————
m? 4 1 m2 4+ 1

— 6 O
or

1 GSS, vil, 123-1243. 2L, pp. 35, 36.
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By way of illustration Bhaskara II finds two
right triangles (51, 68) and (40, 75) having the same
hypotenuse 85.1

Stryaddsa demonstrates the above substantially
thus :

If (x, y, %) be the sides of the right triangle, we
have

X )

g
mE—1  am T w41

= £ (say),

where » is any rational integer. Then

x = k(m?— 1), y=2mk, 3 = kK(m®+ 1).

Therefore X 4 g = 2km? = my. )
Since g is given to be equal to ¢, we have
k=t
Hence y= %T’
and x=;;gy-—z=m(7,;m—1[—l—)—a

Problems Involving Areas and Sides. Mahivira
proposes to find rational rectangles (or squares) in which
the area will be namerically (samkhyayi) equal to any
multiple or submultiple of a side, diagonal or perimeter,
or of any linear combination of two or more of them.
Expressed symbolically, the problem is to solve

x4 g% = g2, } (1)
mxX 1y + p3 = r’%y);

m, n, p, r being any rational numbers (» 3£ 0). For the

solution of this problem he gives the following rule :

1L, pp. 35f. .
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“Divide the sides (or their sum) of any generated
square or other figure as multiplied by their respective
given multiples by the area of that figure taken into its
given multiple. The sides of that figure multiplied by
this quotient will be the sides of the (required) square
or other figure.”!

That is to say, starting with any rational solution of

N (2)
we shall have to calculate the value of -
mx" 4+ ny' + p3 = O, say. (3)

Then the required solution of (1) will be obtained by
reducing the values of x7, ¥/, g’ in the ratio of Q/rx’y’.

Thus
x = X0l = Oy,
) =0 LQIrxy =LQ|rx, (@
R =3 Q=Y.

Mahivira gives several illustrative examples some
of which are very interesting:

“In a rectangle the area is (numerically) equal to the
perimeter ; in another rectangle the area is (numerically)
equal to the diagonmal. What are the sides (in each
of these cases) 77’2

Algebraically, we shall have to solve

X2 4 §2 =22,
i) — v ) (&)
an .
X2 4 y2 = 22,
)= 2. } (1.2)

Starting with the solution 52 — £2, 24¢, 52 -+ 72 of (2)
and putting w =n=12, p=o0, r=1 in (4), We get

1 GSS, vii. 1123. 2 GSS, vii. 1153.
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the solution of (x.1) as
2(s%2 — #2) + a5t 2(s% — #2) + 4s¢
252 > 52— f2 ’
2(s2 — %) + 4J‘Z‘} 2 | .2
{ 252 (52 — £¥) (s + £9.

And putting # = n = o, p = r = 1, in (4), we have

the solution of (1.2) as
2R 22 (524 22
258 7 §%— 12 251(s2 — 1)

Bhiskara II solves a problem similar to the second
one above :

Find a right triangle whose area equals the hypote-
nuse.!

He starts with the rational right triangle (3, 4x,
sx); then by the condition, area = hypotenuse, finds
the value x = 5/6. So that a right triangle of the
required type is (5/2, 10/3, 25/6). ~ He then observes :
“In like manner, by virtue of various assumptions,
other right trlangles can also be found.”? ‘The general
solution in this case is

2422 2(s2 4 2 (524 £2)2
st 7 52— 20 s(s?— %)
Another example of Mahivira runs as follows :
“(Find) a rectangle of which twice the diagonal,

thrice the base, four times the upright and twice the
perimeter are together equal to the area (numerically).”?

Problems Involving Sides but not Areas. Maha-
vira also obtained right triangles whose sides multiplied

1 BB, p. 56.
2 “Evamistava$idanye’pi”—BB/, p. 56.
3GSS, vil. 1174,
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by arbitrary rational numbers have a given sum.
Algebraically, the problems require the solution of

xz +J2 e 22’ .
re+ gy +iR=A;
whete 7, 5, ¢, A are known rational numbers. His
method of solution is the same as that desctibed above.
Starting with the general solution of
72 __{_]lZ — z/g
we are asked to calculate the value
rx" 4+ 5y’ + 13" = P, say.
Then, says Mahavira, the required solution is
x =/ A[P, y=yAJP, 3= AJP.
One illustrative problem given by Mahdvira is :
“The perimeter of a rectangle is unity. Tell me
quickly, after calculating, what are its base and upright.”?
Starting with the rectangle m2 — #2, 2mn, m? + n?,
we have in this case P = 2(w? — #2 - 2mn). Hence
all rectangles having the same perimeter unity will be
given by
w2 — p? mn .
2(m? — n? + 2mny m? — n® -+ mn’
m, n being any rational numbers.
The isoperimetric right triangles will be given by
m—n np m? 4 n? .
( 212 )P m—+ {2,,,(,,,+,,)}P’
where p is the given perimeter.
Another example is:
“(Find) a rectangle in which twice the dlagonal
thrice the base, four times the upright and the perimeter
together equal unity.”2

1 GSS, vii. 1183.° 2 GSS, vil. 1194.
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Pairs of Rectangles. Mahivira found “pairs of
rectangles such that .

(?) their perimeters are equal but the area of one
is double that of the other, or

(i7) their areas are equal but the perimeter of one
is double that of the other, or

(¢ii) the perimeter of one is double that of the
.other and the area of the latter is double
that of the former.”

These are particular cases of the following general
problem contemplated in his rule :

To find (x, y) and (#, v) representing the base
and upright respectively of two rectangles which are
related, such that

2m(x + ) = 2n(u + v),} (A1)
CPxy = quv;
where 2, n, p, g are known integers.
His rule for the solution of this general problem is :

“Divide the greater multiples of the area and the
perimeter by the (respective) smaller ones. The square
of the product of these ratios multiplied by an optional
number is the upright of one rectangle. That diminished
by unity will be its base, when the areas are equal. Other-
wise, multiply the bigger ratio of the areas by that
optional number and subtract unity ; three times the
upright diminished by this (difference) will be the base.
The upright and base of the other rectangle should be
obtained from its area and perimeter (thus determined)
with the help of the rule, ‘From the square of half the
perimeter, etc.,” described before.”?

1 GSS, vil. 1313-133. The reference in the concluding line is
to rule vii. 1293. :
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In other words, to solve (A), assume
y = s{(ratio of perimeters)(ratio of areas)}?, (1)
and x =y — 1, ifp=g, (2)
or x = 3[y— {s(ratio of areas) — 1}], if p # 4, (2°)
where s is an arbitrary number, and the ratios are to be
so presented as always to remain greater than or equal
to unity.
Let m>=n q=p. Then we shall have to
assume
nlq?
)= P
7 ()
4 1 .
x—g,( ‘])2_:7_1_1)
Substituting these values in {A), we get
2

q
V= — - e >
u -+ (4 -p‘ 35P+3) (4)
. mq, mq g
m;—s.r”zp(.rﬂzpz Jp—l—l).
Then
m2g® 5 5
(= =2 (s = % + ) + EA(F — 4)}.
Now, if the arbitrary mult1p11er sbe chosen such that
= (5)
4
we have
n2q? 95q
—y =2 — 6
Z (4 e 2 + 3). (6)

From (4) and (6) we get
s M S |
v= W EE Ty T )

= 3579
4np
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Substituting the value of s from (5) in (3) and (7)
we have finally the solution of (A), when = > #,

g>p,as

5 =44 v =32,
" i @
weq
x-s@”%-—w, ‘—¢~@ —3)-

Mahivira has observed that ¢ when the areas are
equal” we are to assumel

mz
_}1=J'”2,

/722
x:.f*ﬂT'—I.

1 Bibhutibhusan Datta has shown that this restriction is
not necessary.  In fact, starting with the assumption

Py
P o

gt mznq>0p,
X =J —1I;

ﬂ2P2

and proceeding in the same way as above, he has obtained another
solution of (A) in the form

miq i )
=2 » L= —
TT ” @
x=zm’q -1 u—”’(4 ——z).
#p ? n*p ]
Datta finds two general solutxons of (A), vig.
_ . ]
n"’pz
— rmzq rmtq® rq + t)
PR \ npt ? ’ (1
=79
Y= ,;];
_ rmtq® rmiq® _ rq ]
¥ = — - n2p2 , )( ﬂzpz ?+t)9 )
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Isosceles Triangles with Integral sides. Brahma-
gupta says :

“The sum of the squares of two unéqual numbers is
the side ; their product multiplied by two is the altitude,

and twice the difference of the squares of those two un-
equal numbers is the base of an isosceles triangle.”?

Mahivira gives the following rule for obtaining
an isosceles triangle from a single generated rectangle:

“In the isosceles triangle (required), the two dia-
gonals (of a generated rectangle?) are the two sides, twice
1its side is the base, the upright is the altitude, and the
area (of the generated rectangle) is the area.”3

Thus if », » be two integers such that »# = #, the
sides of all rational isosceles triangles with integral sides
are:

@ m+n? m A n?, 2(m? — 7 ;

or () m® 4 n?, m? 4 n?, g,

and
¢ —"(r _
=T v==(5 ¢),
23 2.9 v
=74 Lq___,) y =T )
2 \ ! np \ tnPp?

where 7 2= #, 4 > p and r, #are any two integers.

See Datta, “On Mahdvira’s solution of rational triangles and
quadrilaterals,” BCMS, XX, 1928-9, pp. 267-294; particularly
p. 285.

1 BrSpSi, xii. 33.

ZA rectangle generated from the numbers = and »# has its
sides equal to m2 — #% and 2mn and its diagonal equal to m? + n2.
Cf. pp. z08-9.

3 GSS, vil. 1083,
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The altitude of the former is 27 and of the latter
m? — n? and the area in either case is the same, that
is, 2mn(m* — n®).

Juxtaposition of Right Triangles. It will be
noticed that the device employed by Brahmagupta and
Mahivira to find the above solutions is to juxtapose
two rational right triangles—equal in this case—so as
to, have a common leg. It is indeed a very powerful
device. For, every rational triangle or quadrilateral may
be formed by the juxtaposition of two or four rational
-right triangles. So, in order to construct such rational
figures, it suffices to know only the complete solution
of x* + 3 =2? in integers. The beginning of this
principle is found as early as the Bandbiyana Sulba® (800
B.C.) wherein is described the formation of a kind of
brick, called #bhayi (born of two), by the juxtaposition
of the eighths of two suitable rectangular bricks of the
same breadth (and thickness) but of different lengths.

Isosceles Triangles with a Given. Altitude.
Brahmagupta gives a rule to find all rational isosceles
triangles having the same altitude. He says :

“The (given) altitude is the producer (&arapi). Its
square divided by an optional number is increased and
diminished by that optional number. " The smaller is
the base and half the greater is the side.””2

That is to say, the sides and bases of rational isosceles
triangles having the same altitude z are respectively,

&(‘-‘,;Jr ”), é(‘}} ) and (

where 7 is any rational number.

a2 — m
m )’

1 BSY, iii. 122 ; Compare Datta, Sulba, p- 45, where necessary
figures are given.
2 BrSpJsis, xviii. 37.
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In particular, let the given altitude be 8. Then
taking 7 = 4 Prthidakasvami (860) obtains the rational
isosceles triangle (10, 10, 12).

Pairs of Rational Isosceles Triangles. Mahavira
gives the following rule for finding two isosceles tri-
angles whose perimeters, as also their areas, are related
in given proportions :

“Multiply the square of the ratio-numbers of the
perimeters by the ratio-numbers of the areas mutually
and then divide the larger product by the smaller.
Multiply the quotient by 6 and 2 (severally) and then
diminish the smaller by unity : again (find severally) the
difference between the results, and twice the smaller
one : these are the two sets of elements for the figures
to be generated. From them the sides, etc., can be
obtained in the way described before.”?

If (53, 5p) and (A Ap) denote the perimeters and
areas of two rational isosceles triangles, such that
11 Sp=m: 1, D1 Ne=p" q, (1)
where the ratio-numbets », », p, 4 are known integers,

then the triangles will be obtained, says Mahavira, from
the rectangles generated from

np #wp ”2P
( g’ 2777‘3; I)and(4 q-{— q——z),
where #%p > 7%q, when the dimensions of the first
are multiplied by # and those of the second by ».

The dimensions of the isosceles triangle formed
from the first set of bija are :

. 25 (2 2 2
31de;7n{(6%) + (z;—;;— I) },

1555, vil. 137,
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np_ )

//1"- ( miq

2 2
altitude = m{( Z/f ) ( //1~q 1) } ;

and from the second set

base = 24m

side -_71{(4 wp + 1 ) +(4;}—2—-—\2)2},
base = 4n (477 s .+ ><4,,,2q 2),

2 2
altitudc:n{( ’”2 + 1 ) :;fq z) }

It can be easily verified that the perimeters and
areas of the isosceles triangles thus obtained satisfy the
conditions (1).

In particular, putting m = n = p = g = 1, we have
two isosceles triangles of sides, bases and altitudes (29,
40, 21) and (37, 24, 35) which have equal perimeters (98)
and-equal areas (420). This particular case was treated
by Frans van Schooten the Younger (1657), J. H. Rahn
(1697) and others.!

- It is evident that multiplying the above values by

mtq® we get pairs of isosceles triangles whose dimen-
sions are integral.

Rational Scalene Triangles. Brahmagupta says:

“The square of an optional number is divided twice
by two arbitrary numbers; the moieties of the sums of
the quotients and (respective) optional numbers are the
sides of a scalene triangle; the sum of the moieties of the
differences is the base.””2

1 Dickson, Numbers, 11, p. zo01. 2 BrSpSi, xil. 34.
15
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That is to say, the sides of a rational scalene triangle
are ‘

2 2 2 2
W5 +2) 3+ 0).3(5 — 2) +3(-—9)

where 7, p, ¢ are any rational numbers. The altitude
(m), area and segments of the base of this triangle are
all rational.

Mahivira gives the rule :

“Half the base of a derived rectangle is divided by
any optional number. With®this divisor and the quo-
tient is obtained another rectangle. The sum of the
uprights (of these two rectangles) will be the base of
the scalene triangle, the two diagonals, its sides and the
base (of either rectangle) its altitude.”?

If m, » be any two rational numbers, the rational
rectangle (\AB’BH)

Fig. 3 Fig. 4

formed from them is
% — n2, 2mn, m? 4 nt

If p, g be any two rational factors of mn, that is, if
mn = pq, the second rectangle (AC’CH) is

P2 4% 2pg, PP
1. GSS, vii. 1103.
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. . .
Now, juxtaposing these two rectangles so that they do
not overlap (Fig. 3), the sides of the rational scalene
triangle are obtained as

P4 P (B — ) + (22— D),
where mn = pg. Evidently the two rectangles can be

juxtaposed so as to overlap (Fig. 4). So the general
solution will be !

P gt P R (P — §°) & (7 — AP
The altitude of the rational scalene triangle thus obtained
is 2mn or 2pq, its area pg(p* — ¢%) 4 mna(m? — n*) and
the segments of the base are p% — 42 and w? — »2.

In particular, putting =12, p=06, g=18 in
Brahmagupta’s general solution, Prthidakasvimi derives
a scalene triangle of which the sides (13, 15), base (14),
altitude (12), area (84) and the segments of the base
(5, 9) are all integral numbers.

In order to get the above solutions of the rational
scalene triangle the method employed was, it will be
noticed, the juxtaposition of two rational right triangles
so as to have a common leg. In Europe, it is found
to have been employed first by Bachet (1621). The
credit for the discovery of this method of finding
rational scalene triangles should rightly go to Brahma-
gupta (628), but not to Bachet as is supposed by
Dickson.1

Triangles having a Given Area. Mahivira
proposes to find all triangles having the same given area
A. His rules are:

“Divide the square of four times the given area by
three; The quotient is the square of the square of a
side of the equilateral triangle.”’2

1 Dickson, Numbers, 11, p. 192.
2 GSS, vil, 1544.
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“Divide the given area by an optiopal number;
the square-root of the sum of the squates of the quotient
and the optional number is a side of the isosceles tri-
angle formed. Twice the optional number is its base
and the area divided by the optional number is the
altitude.”?

“The cube of the square-root of the sum of eight
times the given area and the square of an optional
number is divided by the product of the optional number
and that square-root; the quotient is diminished by half
the optional number which is the base (of the required
triangle). The sarikramapa between this remainder and
the quotient of the square of the optional number
divided by twice that squarc-root will give the two
sides.”?

The last rule has been tre-stated diffetently.? *

21. RATIONAL QUADRILATERALS

Rational Isosceles Trapeziums. Brahmagupta has
shown how to obtain an isosceles trapezium whose sides,
diagonals, altitude, segments and area are all rational
numbers. He says: '

“The diagonals of the rectangle (generated) are the
flank sides of an isosceles trapezium; the square of its
side is divided by an optional number and then lessened
by that optional number and divided by two; (the
result) increased by the upright is the base and lessened
by it is the face.”*

That is to say, we shall have (Fig. 5)

CD — %(4”;”2 —p) + 2 — ),

L GSS, vil. 1564. 2 GSS, vil, 1584,
3 GSS, vil. 160}-1614. 4 BrSpSi, xii. 36.
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292
AB=&(1‘—”§’~—p)—<w‘-’—n2),
AD = BC = m2 4 »n%;

also
DH = 7% — n2,
2,2
HC = 11,(4”;” — )
24,2
AC=BD =3(*5= +p),
AH = 2mn,
- 2,2
area ABCD = ”7”(4”;” -—p).

By choosing the values of m, 7 and p suitably, the
values of all the dimensions of the isosceles trapezium
can be made inteiral. Thus, starting with the rectangle
(s, 12, 13) and taking p = 6, Prthiidakasvimi finds, by
way of illustration, the isosceles trapezium whose flank
sides = 13, base = 14, and face = 4. Its altitude (12),
segments of base (5, 9), diagonals (15) and area (108)
are also integers.

Mahavira writes :

“For an isosceles trapezium the sum of the per-
pendicular of the first generated recrangle and the
perpendicular of the second rectangle which is generated
from any (rational) divisor of ha.lg the base ot the first
and the quotient, will be the base; their difference will
be the face; the smaller of the diagonals (of the generated
rectangles) will be the flank side; the smaller perpendi-
cular will be the segment; the greater diagonal will be
the diagonal (of the isosceles trapezium); the greater
area will be the area and the base (of either rectangle)
will be the altitude.”?

1 GSS, vii. 994,
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The first rectangle (AA1"DH) generated from m, # is
mE — n®, 2mn, w2 52
If p, g be any two rational factors of half the base of
this rectangle, that is, if pg = wn, the second rectangle
(AB’CH) trom these factors will be
PP— 4% 2pg PP+ g%

By judiciously juxtaposing these two rectangles, we
sirall obtain an isosceles trapezium of the type required

(ABCD):

A:
poc— -
)
]
t
]
t
'
1
]
}
1
]
i
i

D H J o
Fig. 5

CD = (4 — @) + (v — 22,
AB = (5 — ) — (> — ),
AD = BC = n2 -+ 2, if w24 n?2 < p2+ 4%
DH = u® — n2, if 7?2 — 1? < p* — g%
AC = BD = p*+ g%, if p?+ g% > m* 4 n?,
AH = 2mn = 2pq,
area ABCD =.2pq (p% — 4%,
if 2pq (p? — 45> 2mn(m® — n2).

The necessity of the conditions w? + #* < p? + 4%,
m? — 2 < p* — g% etc., will be at once realised from a
glance at Figs. 5 and 6. The above specifications of the
dimensions of a rational isosceles trapezium will give
Fig. 5. But when the conditions are reversed so that
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RS PRt Mt > PR — gt 2pg (R — )
<a2mn(m® — n?), the dimensions of the isosceles tra-
pezium (Fig. 6) are :

S
‘»
LY

)

H
Fig. 6

CD = (m* — ) + ($* — ),
AB = (m* — ) — (5 — g,

AC = BD = p*+ 42,

DH = m* — 2,

AD = BC = m? + 2,

AH = 2mn = 2pq,

area ABCD = 2mn(n® — »?).

Pairs of Isosceles Trapeziums. Mahivira gives
the following rule for finding the face, base and equal
sides of an isosceles trapezium having an area and altitude
exactly equal to those of another isosceles trapezium
whose dimensions are known :

“On petforming the visama-satikramana between the
square of the perpendicular (of the known isosceles
trapezium) and an optional number, the greater result
will be the equal sides of the (required) isosceles tra-
pezium; half the sum and difference of the smaller result
and the moieties of the face and base (of the known
figure) will be.the base and face (respectively of th:
required figure).”’?

1 GSS, vil. 1734.
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Let @, b, ¢, b, denote respectively the face, base,
cqual sides and altitude of the known isosceles
trapezium and let &’, &, ¢/, #’, denote the corresponding
quantities of the required isosceles trapezium. Then,
since the two trapeziums are equal in area and altitude,
we must have

b= h,
V+ad=b+a, (1)
’” bV — a4 \2
and 2 — ( 3 ) = 52,
or {’ + (V' — )2} {¢ — (¢’ — a)]2} = F?,
whence = —a)z2=r,
and ¢4 (b — )|z = B¥r,
r being any rational number. Then
¢ = J(B|r + 1), (2)
v — a*= (B*lr — r). (3)
From (1) and (2), we get
b=+ a2+ (BFr— 1)z, 4
a = b+ a)]2 — (Br — 7). (5)

If a=4, b= 14, ¢ = 13, b= 12, taking r = 10,
we shall havel & = 34/5, 6" = 56/5, ¢’ = 61/5.
It has been stated above that, if », #, p, g are rational
aumbers such that 7% + #? < p% 4 4%, we must have

a=(p— g) — (n* — ),
b= (2 — g% + (2 — ),
¢ = m?+ n?

h = 2mn = 2pq.

l

1 GSS, vii. 1743,
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Substituting these values in (2), (4), (5) we get
the dimensions of the equivalent isosceles trapezium as

a’' = (p*— ¢°) — (ap*¢®|r — 7)[2,
V' =@*— ¢ + (ap*g*lr — 1)/2,
& = (ap®q®r + r)[2.
1f m? - #? > p? 4 47, the sides of the pair of isos
celes trapeziums equal in area and altitude will be

a =t — ) — (" — ),
b= — )+ (¢ — ¢,

¢ =p+ 4%

a’ = (m? — n%) — (qm*nt[r — r)[2,

b= (m? — n®) + (qm®n[r — 1)/,

¢ = (gm*n®[r 4 r)/z.

These two isosceles trapeziums will also have equal

diagonals.

Rational Trapeziums with Three Equal Sides.
This problem is neatly the same as that of the rational
isosceles trapezium with this difference that in this
case one of the parallel sides also is equal to the slant
sides. Brahmagupta states the following solution of
the problem :

“The square of the diagonal (of a generated rect-
angle) gives three equal sides; the fourth (is obtained)
by subtracting the square of the upright from thrice
the square of the side (of that rectangle). If greater,
it is the base; if less, it is the face.””®

The rectangle generated from m, # is given by

% — n® 2mn, m® -+ n2

1 BrSpSi, xii. 37,
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If ABCD be a rational trapezium whose sides 4B, BC,
AD are equal, then

AB = BC = AD = (m® + n%)?,

CD = 3(2mn)® — (m* — n*)% = 14m®n® — m* — 1,
or CD = 3(m® — n®)? — (2mn)? = 3m* + 3m* — 10m%n°.

In particular, putting = = 2, » = 1, Prthiadaka-
svimi deduces two rational trapeziums with three equal
sides, »/z., (25, 25, 25, 39) and (25, 25, 25, II).

The first solution is also given by Mahdvira who
indicates the method for obtaining it. He says:

“For a trapezium with three equal sides (proceed)
as in the case of the isosceles trapezium with (the rect-
angle formed from) the quotient of the area of a genera-
ted rectangle divided by the square-root of its side
multiplied by the difference of its elements and divisor;
and that (formed) from the side and upright.””1

That is to say, from any rectangle (#2% — #%, 2mmn,
m? -+ #2), calculate

2mn(m? — %)
V 2mn(m — n)

Then from /2mn(m — n), \ 2mn(m + ) form the
rectangle

= \/ 221 (m + 7).

82, qmn(m®—n®), qmn(m®+n®). @)
Again from 2mn, m* — »* form another rectangle
6P — mh — b, qmn (M — %), (m? + nBR (2)

By the juxtaposition of the rectangles (1) and (2)
we get Brahmagupta’s ratlonal trapezium with three

1 GSS, vii. 101},
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2]
(o7}
A

equal sider: @

CD == 8m 12+ (6m*2 — A — 1) = 1422 — % — i,

AB = 8m® — (61202 — mt — ) = (#? 4 #2)% = AD
= BC, if m? -+ n?2 < 4mmn.

The segment (CH), altitude (~1H), diagonals (AC,
BD) and area of this trapezium are also rational, for

CH = 6m*n? — A — 1A,

AH = qmn(m? — n?),

AC = BD = gmn(wm? + n%),
area ABCD = 3201 (m? — n?).

Rational Inscribed Quadrilaterals. Brahmagupta
formulated a remarkable proposition: To find all
quadrilaterals which will be inscribable within circles
and whose sides, diagonals, perpendiculars, segments
(of sides and diagonals by perpendiculars from vertices
as also of diagonals by their intersection), areas, and
also the diameters of the circumscribed circles will be

expressible in integers. Such quadrilaterals are called
Brahmagupta quadrilaterals.

The solution given by Brahmagupta is as follows :

“The uprights and bases of two right-angled tri-
angles being reciprocally multiplied by the diagonals
of the other will give the sides of a quadrilateral of
unequal sides: (of these) the greatest is the base, the least
is the face, and the other two sides are the two flanks.”?

Taking Brahmagupta’s integral solution, the sides
of the two right triangles of reference are given by

nrt — w2 2mp, w2

P2— g% 2pq, p 4 q%;

L BrSp8s, x5 8.
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where m, n, p, q are integers. Therf the sides of a
Brahmagupta quadrilateral are

(m® — (P2 + 4%, (p* — g)(@? + #9),
zm(ﬁz + 4%, 2pq(m* + 7). } S

Mahavira says :

“The base and the perpendicular (of the smaller
and the larger derived rectangles of reference) multi-
plied reciprocally by the longer and the shorter diagonals
and (each again) by the shorter diagonal will be the
sides, the face and the base (of the required quadrilateral).
The uprights and bases are reciprocally multiplied and
then added together; again the product of the uprights
is added to the product of the bases; these two sums
multiplied by the shorter diagonal will be the diagonals.
(These sums) when multiplied respectively by the base
and perpendicular of the smaller figure of reference will
be the altitudes; and they when multiplied respectively
by the perpendicular and the base will be the segments
of the base. Other segments will be the difference of
these and the base. Half the product of the diagonals
(of the required figure) will be the area.”?

If the rectangle generated from , # be smaller than
that from p, ¢, then, according to Mahivira, we obtain
the rational inscribed quadrilateral of which the sides
are

(2 — BB + @)+ 1, (B — P+ 1),
20(p° 4+ g2 (% + #%),  2pq(m® 4 77,
. whose diagonals are
{209(#* — 1) + 20n(p® — gD} (7 + #7),
((m* — w)(p% — gB) + amnpg)(m® + 1) ;
1 GSS, vii. 1034,



RATIONAL QUADRILATERALS 237

whose altitudes are
{2pq(n* — 5% + 2mn(p® — q%)} 27m,
{(m? — a(p* — g°) + amnpg}(m® — #%);
whose segments are
(3pg(m® — 1) + 2mn(p2 — @)} (m® — ?,
{(m* — n®)(p?® — q%) + amnpq}2mn ;
and whose area is
3 2pq(m* — n®) + 2mn(p? — g9} {(w* — *)(p? — 4%
-+ qmnpq}(m® 4 nB):
Sripati writes :

“Of the two right triangles the sides and uprights
are reciprocally multiplied by the hypotenuses; of the
products the greatest is the base, the smallest is the face
and the rest are the two flank sides of a quadrilateral
with unequal sides.””?

Bhiskara II gives the rule :

“The sides and uprights of two optional right
triangles being multiplied by their reciprocal hypote-
nuses become the sides : in this way has been derived a
quadrilateral of unequal sides. There the two diagonals
can be obtained from those two triangles. The produdt
of the uprights, added with the product of the sides,
gives one diagonal; the sum of the reciprocal products of
the uprights and sides is the other,””2

Bhaskara 113 illustrates by taking the right triangles
(3, 4, 5) and (5, 12, 13) so that the resulting cyclic
quadrilateral is (25, 39, Go, 52). The same example was

t §iS%e, xiii. 42. 2L, p.s1.
3L, p. s52.



238 ALGEBRA

given before by Mahéviral and Prthidakasvimi.2 This
cyclic quadrilateral also appears in the Trifstikd of
Stidhara® and in the commentary of the Aryabbatiya
by Bhiaskara I (522). The diagonals of this, quad-
rilateral are, states Bhidskara 1I, 56 (= 3.12 4 4.5)
and 63 (== 4.12 + 3.5) (Fig. 7). He then observes: -

“If the figure be formed by changing the arrange-
ment of the face and flank then the second diagonal will
be equal to the product of the hypotenuses of the two
right triangles (of reference), 7.e., 05.”> (Fig. 8).

By taking the right triangles (3, 4, 5) and (15, 8, 17)
Bhiskara 11 gets another cyclic quadrilateral (68, 51, 40,
75), whose diagonals are (77, 85), altitude is 308/s,
segments arc 144/5 and 231/5, and area is 3234. (Fig. 9).
With the sequence of “the sides (68, 40, 51, 75) the

LGSS, vil. 1048. 2 Br&pSi, xii. 38 (Com.).
3 Tris, Ex. 80. 4 L, pp. 40fL.
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diagonals are (77, 84) (Fig. 10), and with (68, 40, 75, 51)
they are (84, 85). (Fig. 11).

Fig. 11

The deep significance of Brahmagupta’s results
has been demonstrated by Chasles! and Kummer.2

L M. Chasles, Apergn bistorigue sur Porigine ef development des
miéthodes en géométrie, Paris, 1875, pp. 436f.

2E. E. Kummer, “Uber die Vierecke, deren Seiten und Dio-
gonalen rational sind,” Journ. fiir Mazb., XXXVII, 1848, pp. 1-20.
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In fact, according to the sequence in which the
quantities () are taken, there will be two varieties of
Brahmagupta quadrilaterals having them as their sides :,
(1) onein which the two diagonals intersect at right
angles and (2) the other in which the diagonals
intersect obliquely. The arrangement (4) gives a
quadrilateral of the first variety. For the oblique variety,
the sides are in the following order :
9= g )
2mn(p 4 q%),  2pq(m® + 52); (B)
or (p2— A2+ #%), 2mn(p? + 4P,
(7% — B)(p? + %),  2pq(n? + ”2).} (@)

Bhiskara II points out that the diagonals of the
Brahmagupta quadrilateral are in the (.4) variety,
2pq(m®— 1%) + 2mm(p2— q%),  amwnpg+ (P2 — q¥) (w2 — n%);
in (B),

2pq(m* — %) + 2m0(p? — ¢°),  (P* + ¢°)m* + nP);
and in (C), . -

4mnpq + (P2 — g*)(m? — %), (p%+ ¢*) (" 4 7).
The diameter of the circumsctibed circlé in every case
is (P2 + g2)(#* + #%).

Ganesa (1545) shows that the quadrilateral is formed
by the juxtaposition of four right triangles obtained
by multiplying the sides of each of two rational right
triangles by the upright and base of the other. He
writes : .

“A  quadrilateral is divided into four triangles
by its intersecting diagonals. So by the juxtaposition of
four triangles a quadrilateral will be formed. For that
purpose the four triangles are assumed in this manner :
Take two right triangles formed in the way indicated

Compare also L. E. Dickson, “Rational Triangles and Quadril-
aterals,” Amer. Math. Mon., XXVIII, 1921, pp. 244-250.



RATIONAL QUADRILATERALS 241

before. 1If the upright, base and hypotenuse of a
rational right triangle be multiplied by any arbitrary
rational number, there will be produced another right
triangle with rational sides. Hence on multiplying the
sides of cach of the two right triangles by an optional
number equal to the base of the other and again by an
optional nnmber equal to the upright of the other, four
right triangles will be obtained by the judicious juxta-
position of which the quadrilateral will be formed.”

He then shows with the help of specific examples
(sce Figs. 12, 13 & 14) that we can obtain in this way

3 \ \ “ '.

Fig. .13 Fig. 14
16 '
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from the same set of two rational right triangles two
varieties of 'rational convex quadrilaterals: One in
which the diagonals intersect each other perpendicularly;
and the other in which they do so obliquely.

Inscribed Quadrilaterals having 2 Given Area.
Mahivira proposes to find .all rational inscribed
rectangles having the same given area (A4, say). He says :

“The square-root of the exact area is a side of the
square. 'The quotient of the area by an optional number
and that optional number will be the base and upright
of the rectangle.’?

For findingall inscribed rational isosceles trapeziums
having the same area A4 his rule is :

“The given atea multiplied by the square of an
optional number is diminished by the area of a generated
rectangle and then divided by the base of that rectangle ;
the quotient divided by the optional number is the face ;
the quotient added with twice the upright and divided by
the optional number gives the base ; the base (of the
generated rectangle) divided by the optional number
is the altitude ;- ahd the diagonal divided by the optional
number gives the two flank sides.”2

That is to say, if #2— #2, 2mn, n? -+ #? be the
upright, base and diagonal of a tectangle formed from
m, n, the dimensions of the isosceles trapezium will be

$2A — 2mm(m? — )

face = ,
2mns
1 (524 — 2mn(m® — n®)
base — { 2 __ 2 }
ase = — e + 2(m n?)

2 A4 2mn(m® — 7#%)
o 2mnS$ i

L GSS, vil. 146. 2 GSS, vil. 148.
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: 2mn
altitude = —,
s
2 2
: m? 4 n
side = ———;——'——;

where s is an arbitrary rational number chosen such that
$2A > 2mn(mP—n?).
For the construction of an inscribed trapezium of
. three equal sides Mahivira gives the foléowing rule :

“The square of the given area is¥divided by the
cube of an optional number and then increased by that
optional number ; half the result gives the (equal) sides
of a generated trapezium of three equal sides (having
the given area); twice the optional number dimfinished
by the side is the base ; and the given area divided by
the optional number is the altitude.”

In other words, the dimensions of an inscribed trape-
zium of three equal sides having a given area .4 will be

) A2 '
side = %(T + 5), ’

2 N
base =25— % i;——f—.\'),
altitude = i

To find inscribed quadrilaterals having a given area
Mahivira gives the following rule :

“Break up the square of the given area into any
four arbitrary factors. Half the sum of these factors
is diminished by them (severally). The remainders are,
the sides of an (inscribed) quag;lrilateral with unequal
sides.””2 "

1 GSS, vii. 150.
2 GSS, vii. 152. ‘This result follows from the fact that the

area of a cyclic quadrilateral is V(s — a)(s — )(s — e)}(s — 4).
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Triangles and Quadrilaterals having a Given
Circum-Diameter. Mahivira proposes to find all
rational triangles and quadrilaterals inscribable in a circle
of given diameter. His solution is :

“Divide the given diameter of the circle by the
calculated diameter (of the circle circumscribing any
generated figure of the required kind). The sides of
that generated figure multiplied by the quotient will be
the sides of the required figure.”?

In other words, we shall have to find first a rational
triangle or cyclic quadrilateral ; then calculate the dia-
meter of its circum-circle and divide the given diameter
by it. ,Dimensions of the optional figure multiplied by
this quotient will give the dimensions of the required
- figure of the type.

It has been found before (p. 227) that the sides of a
rational triangle are proportional to

M4 12 P g (PP— )+ (2 — )
and its altitude is proportional to 2z# (or 2pg), m, 1, p, ¢
being any rational numbers-such that »z = pg. The
diameter of the circle circumscribed about this triangle

is proportional to
(m* 4+ )(p* + 4%
2040 )
Then the sides of a rational triangle inscribed in a
circle of diameter D will be
2mnD  2mmD (P2 — g% & (m® — ),
Pt LA 2mnD G IEYo
and its altitude will be
D(2m1)?
RN Rl

1 GSS, vil. 221).



SINGLE INDETERMINATE EQUATIONS 245

The dimensions of a rational inscribed quadrilateral,
as stated by Mahavira, have been noted before (p. 236).
The diameter of its circum-circle is
@ + g + 7o)
Then, according to Mahivira, the sides of a rational
quadrilateral inscribed in a circle of diameter D, are

( 2mn ) (m2—n2) ( 2pq q°

PR ey 2’ 7+ 92) (—+q_i\)’

its diagonals are |

D
{2pq (7% — n®) + 2mn (p* — 92)}(p2 F A+ n2)’\
D
{(’”2 - ”2)(P2 - qZ) + W”Pq}(Pz + qz)(m2+ ”2);

and its area is
2
RS gzl))(,,,z Ty (P40t — ) + 2mn(p® — )}
X {(m? — n*)(p* — 4% + amnpq};

so that the sides, diagonals and area are all rational.

22. SINGLE INDETERMINATE EQUATIONS
OF HIGHER DEGREES

The Hindus do not seem to have paid much attention
to the treatment of indeterminate equations of degrees
higher than the second. Some interesting examples
involving such equations are, however, found in the
works of Mahivira (850), Bhaskara II (1150) and
Niridyana (1350).

‘Mabhévira’s Rule. One problem of Mahivira is as
follows :

Given the sum (s) of a series in A.P., to find its
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first term (@), common difference (b) and the number
of terms (»). ‘

In other words, it is required to solve in rational
numbers the equation

o+ (

containing three unknowns «, & and », and of the
third degree. The following rule is given for its
solution :

“Here divide the sum by an optional factor of it ;
that divisor is the number of terms. Subtract from the
quotient another optional number; the subtrahend is
the first term. The remainder divided by the half of
the number of terms as diminished by unity is the
common difference.””

Bhiskara’s Method. Bhiskara II proposes the
problems :

“Tell those four numbers which are unequal but
have a common denominator, whose sum or the sum of
whose cubes is equal to the sum of their squares.”?

If x, , g, @ be the numbers, then

(1) x+y++w=x2+)"+ 2+ 9%

(2) X3+_)'3+ 5{3'*_ W3=X2'+_}/2—-|— 22_*_ 22,

Let the numbers be x, 2x, 3, 4x, says Bhaskara II.
That is, suppose y = 2x, g = 3x, w = 4x in the above

fi— I
2

)b}ﬂz 5,

1 GSS, vii. 78.

There are also other problems where instead of s, the given
quantityis s +-a, s + b, s +nors +a-+ b4 n (GSS,ii. 83 ; <.
also vi. 80). For such problems also the method of solution is the
samé as before, /.e., to assume suitable arbitrary values for two
of the unknowns so that the indeterminate cubic equation.is there-
by reduced to a determinate linear equation in one unknown.
(GSS,ii. 82 ; vi. 317).

2 BB, p. 55.
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equations. Then by (1) we get

10X = 30X72,
— 1
X = T
Hence x0hLw=1%4%3 4,
A

is a solution of (1).

Again, with the same assumption, the equation
(2) reduces to

100Xx3% = 30x2.
Sooox =1
Hence X0 5% =1 ' o 16
is a solution of (2).

The following problem has been quoted by Bhis-
kara II from an ancient author: -

“The square of the sum of two numbers added with
the cube of their sum is equal to twice the sum of their
cubes. Tell, O mathematician, (what are those two
numbers).”’! ’ '

If x, y be the numbers, then by the statement of the
question

. 40P+ ()P = 2(x* + 5.

“Here, so that the operations may not become lengthy,”
says Bhiskara II, “assume the two numbers to be # -+ v
and # — ».”  So on putting

X=u+v, y=u4—1,
the equation reduces to
425 + 44° = 12002,
or 422 + qu = 1202,
or (2# + 12 = 1202 4 1.

1 BB, p. 101,
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Solving this equation by the method of the Square-
natute we get values of », ». Whence the values of
(%, y) are found to be (5, 1), (76, 20), etc.

Nirdyana’s Rule. Nariyana gives the rule :

“Divide the sum of the squares, the square of the
sum and the product of any two optional numbers by
the sum of their cubes and the cube of their sum, and
then multiply by the two numbers (severally). (The
results) will be the two numbers, the sum of whose
cubes and the cube of whose sum will be equal to the
sum of their squares, the square of the sum and the
product of them.”1

That is to say, the solution of the equations
() 2+ =x2+)7 (4) (¢ F0)° = x"+75
(2) *+PB=0+9% () +)P=(+I)%

() X+ =2, (6) e+ =x,
are respectively
[ _ (7 A+ ) x (7 4 )m
P . (m +nB°
(1.1) Sy (’”2+ﬂ2)ﬂ’ (4.1) S J:(ﬂ?2+ﬂ2)n;
{ w3 4 73 | (m+ n3.
_(m+ mPm (. (m+ n)Pm
md +m 49‘: (m —+ np’
(2.1) (”1+”)2”’ (5.1) _};:(”’7_'_ ﬂ)z'”.
k 3 + 73 | (,” + ”).j ’
( P ( .
R 'x—(m—|—ﬂ)3’
(3.1) < i (6.1) 3 o
Cy:m; _)'=(m+”)3;

1 GK, i. 58.
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where », n are rational numbers.

It will be noticed that the equation (2) can be

reduced, by dividing out by x + 3, to
' Xyt =x+y;
and similatly (5) can be reduced to
x4y =1.

With m = 1, n = 2 Nirdyana gives the following

sets of particular values :

(1.2) %,y =3, I (4.2) x, 9 =&, 33
(2.2) X, y=1,2 (5.2) x,39 =% 3,
(3'2) X,}’_—_%,% (6'2) X:)’='§.=)7,7217"

He then observes: “In this way one can find by his
own intelligence two numbers for the case of difference,
etc.”

Form ax?"*? | bx2® = y2. For the solution of an
equation of the form

axnt2 _I_ hocen :J2’
where # is an integer, Bhiskara II gives the following
rule :

“Removing a square factor from the second side,
if possible, the two roots should be investigated in this
case. Then multiply the greater root by the lesser.
Qr, if a biquadratic factor has been removed, the greater
root should be multiplied by the square of the lesser root.
The rest of the operations will then be as before.”*

Suppose ax? 4+ b = g2 then the equation becomes
y2 — x2nz2.
So Yy =Xy
The method of solving ax? -+ b = g2 in positive integers
has been described before.

7

1BBi, p. 102.
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Two examples of equations of this form occur in
the Bijagapita of Bhiskara II:1

(1) s5x%— 100x% =32,

(2) 8x8 1 49x% =2 .

It may be noted that the second equation appears in
the course of solving another problem.

Equation ax*-- bx?4 ¢ =ud. One very special
case of this form arises in the course of solving another
problem. It is2

(o + 20 a2 =8,

ot xt 2052 | 242 = 48,
Let # = x?, supposes Bhiaskara II, so that we get

x8 — xt = 24% } 2452,
or xt (2x% — 1) = (22 + x2)2,

which can be solved by the method indicated before.
Another equation is3
§xt = 45,

In cases like this “the assumption should be always such,”
remarks Bhéskara II, “as will make it possible to remove
(the cube of) the unknown.” So assume # = mx;
then

x = }us,

23. LINEAR FUNCTIONS MADE SQUARES OR CUBES

Square-pulveriser. The indeterminate equation of
the type

bx + ¢ =2

1 BBi, pp. 103, 107. % BBi, p. 103 ; also vide infra, p. 280.
3 BBi, p. 50; also vide infra, p. 278.
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is called uarga-/éu_tté,éa or the “Square-pulveriser,”® inas-
much as, when expressed in the form

P—c

b
the problem reduces to finding a square (vargs) which
being diminished by ¢ will be exactly divisible by &,
which closely resembles the problem solved by the
method of the pulveriser (kutfaka).

For the solution in /ntegers of an equation of this
type, the method of the eatlier writers appears to have
been to assume suitable arbitrary values for y and then
to solve the equation for x. Brahmagupta gives the
following problems :

“The residue of the sun on Thursday is lessened
and then multiplied by 5, or by 10 Making this
(result) an exact square, within a year, a person becomes
a mathematician.”®

“The residue of any optional revolution lessened
by 92 and then multiplied by 83 becomes together with
unity a square. A person solving this within a year is
a mathematician,”3

That is to say, we are to solve the equations :
(1) sx — 25 =33,
(2) 10X — 100 =%,
(3) " 83x — 7635 =%
Prthidakasvimi solves them thus:
(1.1) Supposey = 10; then x = 125. Or, put y = 5;
then x = 10.
(2.1) Suppose_y = 10; then x = 20.
(3.1) Assume y = 1; then x = 92.

=x’

1 BB, p. 122. 2 BrSpSi, xviii 76.
8 BrSpSi; xviil. 794
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He then remarks that by virtue of the multiplicity
of suppositions there will be an infinitude of solutions
in every case. But no method has been given either by
Brahmagupta or by his commentator Prthidakasvimi
to obtain the general solution.

The above method is reproduced by Bhaskara II.1
He has also given the following rule:

“If a simple unknown be multiplied by the number
which is the divisor of a square, etc., (on the other side)
then, in order that its value may in such cases be integral,
the square, etc., of another unknown should be put
equal to (the other side). The rest (of the operations)
will be as described before.”2

-His gloss on this rule runs as follows :

“In those cases, such as the Square-pulveriser, etc.,
where on taking the root of one side of the equation
there remains on the other side a simple unlnown
multiplied by the number which was the divisor of the
square, etc., the square, etc., of another unknown plus
or minus; an absolute term should be assumed for (the
value of this other side) in order that its value may
be integral. The rest (of the operations) will be as
taught betfore.”

Bhiskara has also quoted from an ancient author the
following rule :

“(Find) 2 number whose square is exactly divisible
by the divisor, as also its product by twice the square-
root of the absolute term. An unknown multiplied by
that number and superadded by the square-root of the
absolute term should be assumed (for the unknown on
the other side). If the absolute term does not yield a
square-root, then after dividing it by the divisor, the

L Vide infra, p. 255f. 2 BB, p. 120.
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iemainder should be increased by so many times the
divisor as will make a square. If this is not possible,
then the problem is not soluble.””?
Case i Let ¢ be a square, equal to B2, say. Then

we have to solve

bx + P2 =2
The rule says, find p such that

p2=1bg, ipP=br.

Then assume y=pu+B;
whence we get x = gu® + ra4.
Bhaskara II prefers the assumption
J="b+B,
so that we have x = b2 4+ 280.

Case ii. Ifcis not a square, suppose ¢ = bm + n.
Then find s such that

n-+ sb=r2
Now assume y=bu+r.

Substituting this value in the equation &x + ¢ = 2,
we get
bx 4 ¢ = (bu 4 r)?
= b2 - 2bru + 72,
or bx + ¢ — r? = 0242 L 2bru,
or bx + b(m — §) = b2 + 2bra.
: x = bu? + 204 — (m — ).
Example from Bhiskara II :2
7x + 30 = )2
On dividing 30 by 7 the remainder is found to be
2; we also know that 2 4 7.2 == 42, Therefore, we

1 BB, p. 121. 2 BB, pp. 120, 121.
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assume in accotrdance with the above rule

=714 4
whence we get X = 74° 4 8y — 2,
which is the general solution.

Cube-pulveriser. The indetetminate "equation of
the type
bx 4 ¢ =3
is called the ghana-kuttaka or the “Cube-pulveriser.”’?
For its solution in integers Bhiskara II says : -

“A method similar to the above may be applied
also in the case of a cube thus: (find) 2 number whose
cube is exactly divisible by the divisor, as also its product
by thrice the cube-root of the absolute term. An un-
known multiplied by that number and superadded by
the cube-root of the absolute term should be assumed.
If there be no cube-root of the absolute term, then after
dividing it by the divisor, so many times the divisor
should be added to the remainder as will make a cube.
The cube-toot of that will be the root of the absolute
number. If there cannot be found a cube, even by so
doing, that problem will be insoluble.””2

Case i, Letc= g% Then we shall have to find p

such that
pP=1q, 3pB=br.
Now assume y=pr+ B.
Substituting in the equation bx + p3 = 3 we get
b B2 = (p0 + B)°
= p%°% 4 3p0B(pr + B) + B3,
or bx = bgr® + bro(pv 4 B).
. x = gv® + ro(pv 4 B).

1 BBj, p. 122, 2 BBi, p. 121.
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Or, if we assume y = v -+ B, we shall have
= 6% 4 3Pu(by + B).

Case #i. ¢ s a cube. Suppose ¢ = bm + n; then
find s such that
n+4sb=rd
Now assume  y = &v + r, whence we get
x = 628 4 3rv(by + r) — (m — ),
as the general sclution.
Example from Bhiskara II :1

sx 4+ 6 =53
Since 6=5.1+ 1 and 1 4 43.5 = 63,
we assume Jy=sv—+ 6.

Therefore x = 253 + 18v(5v + 6) + 42,
is the general solution.

Equation bx 4- ¢ =ay% To solve an equation
of the type

@ = bx + o,
Bhiaskara II says :

“Where the first side of the equation yields a root
on being multiplied or divided? (by a number), there also
the divisor will be as stated in the problem but the abso-
lute term will be as modified by the operations.””?

1 BBi, p. 122.

2 The printed text has Abitsd kgsiptd (subtracting or adding).
After collating with several copies Colebrooke accepted the reading
batvd ksiptd (multiplying or adding). But we think that the correct
reading should be batvi hrfvd (multiplying or dividing) For in his

loss Bhaskara II has employed the terms gumito vibbakts va
? multiplied or divided). Our emendation is further supported by
the rationale of the rule.

3 BBj, p. 121.
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What is implied is this : Multiplying both sided of
the given equation by 2, we get
a*y? = abx 4 ac,
Put # = ay, v = ax. 'Then the equation reduces' to
#2 = bv 4 ac,
which can be solved in the way described before.
We take the following illustrative example with its
sclution from Bhiaskara II :1
5y% -+ 3 = 16x.
Multiplying by 5, and putting #= 5y, v=5x, we get
%2 = 160 — 15.
The solution of this is
w= 8w 1,
v=yqw*+ w4+ 1.
Therefore, we have
1) sy=8w+41,
or (2) sy=8w—1.
Now, solving by the method of the pulveriser, we get
the solution of (1) as

J= 8243,

w=7s5t+3;
and that of (2) as

J =83,

w=75t-+1 2,

where # is any rational number.

Equation bx 4 c=ay" After describing the
above methods Bhiskara II observes, ityagre’psi yojyamiti
Sesap or “the same method can be applied further on

1 BBi, p. 121.
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(d.e., to the cases of higher powers) 1 Again at the end
of the section he has added evaz? buddhimadbbiranyadapi
. yathdsambhavan yojyam, ie, ‘“‘similar devices should be
applied by the mtelhgent to further cases as far as
practicable.”®? What is implied is as follows :

(1) To solve il 2: ¢ == .
Put x = mg + A& Then

X zi: c__ {/””Z j: nmr—1 'n—lé + ﬂ(ﬂ I)mn—Z{n—2k2 !

oo R (o A (AP ko)
= S £ gtk 1]

&n
+ () (5
Now, if
£ ;t ¢ — a whole number,
ll 2: © will be an integral number when (1) » =4 or

(2) b is a factor of m™, nm™-1 &, etc. Or, in other words,
knowing one mtcgral solution of (1) an infinite number
of others can be derived.

(2) To solve ax"bj: 4 =

Multiplying by an-1, we get
anrxm j; can-1 ——

1 BB, p. 121. 2 BB/, p. 122.
17
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Putting # = ax, v = ya™1, we have

#* 4 a1
b
which is similar to case (1).

3>

24. DOUBLE EQUATIONS OF THE FIRST DEGREE

The earliest instance of the solution of the simulta-
neous indeterminate quadratic equation of the type
X+ a=u?
x -+ b= 02,
is found in the Bakhshili treatise. The portion of the
manuscript containing the rule is mutilated. ‘The
example given in illustration can, however, be restored
as follows :

“A certain number being added by five {becomes
capable of yielding a square-root} ; the same number
{being diminished by} seven becomes capable of
yielding a square-root. What is that number is the
question.””?

That is to say, we have to solve

Vx+ 5 =u, Vx—7=u.
The solution given is as follows :

“The sum of the additive and subtractive is |12];
its half | 6 | ; minus two |4|; its half is | 2 | ; squared [ 4|
‘Should be increased by the subtractive’; {the subtrac-
tive is} |7|; adding this we get [11]|. ‘This is the
number (required).” o

From this it is clear that the author gives the

1 BMs, Folio 59, recto.
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solution of the equations

X+a=1u2 | x—b=122,
_ {yrat+b 2
as x—{g( p m)}—i—b,

where  is any integer.}

Brahmagupta (628) gives the solution of the general
case. He says:

“The difference of the two numbers by the addition
or subtraction of which another number becomes a
square, is divided by an optional number and then
increased or decreased by it. The square of half the
result diminished or increased by the greater or smaller
(of the given numbers) is the number (required).”’2

. a—1b 2
.£. ¢= 1% m a,
s x {‘( n + ) } +
(,ra— b
or =
<=5
where 7 is an atbitrary integer.
The rationale is very simple. Since

W=x+a ¥*=x4+10,

I f//) }2 qzib,

we have - e 2=t g F b
Therefore H—v=1m,
and #4+ v = w,'

w
where 7z is arbitrary. Hence
gyt aFb _ o aea—b
p=3=5 )= Ei(

-+ ”1).

1 In the above solution » is taken to be 2.
2 BrSpSi, xviiiz 74.
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Since it is obviously immaterial whether # is
taken as positive or negative, we have

a—b

Similarly v = é( Fm).
2
Therefore X = { } F a,
or X = }2 F b

where m is an arbitrary number.

Brahmagupta gives another rule for the particular
case :
X 4 2=
x— b =12
“The sum of the two numbers the addition and
subtraction of which make another number (severally)
a square, is divided by an optional number and then
diminished by that optional number. The square of
half the remainder increased by the subtractive number
is the number (required).”

i.e., x = {_{,(aj”_b—m)}z—{- b.

Nirdyana (1357) says :

“The sum of the two numbers by which another
number is (severally) increased and decreased so as to
make it 2 square is divided by an optional number and
then diminished by it and halved ; the square of the
result added with the subtrahend is the other number.”?

He further states :

1 BrSpSi, xviil. 73. 2GK,i. s2.
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“The difference of the two numbers by which
another number is incteased twice so as to make it
a square (every time), is increased by unity and then
halved. The square of the result diminished by the
greater number is the other number.”?

. _(a—b41\%
SRS ES N
is a solution of ‘
xta=u x+b=1% a>b
“The difference of the two numbers by which
another number is diminished twice so as to make it a
square (every time), is decreased by unity and then
halved. The result multiplied by itself and added with
the greater number gives the other.””?

d—b—I)2+a

ioEo, X = '———2

is a solution of
XxX—a=u x—b=1% a>b.
The general case
g ax -+ ¢ = 42,
MY (@)
bx + d =12
has been treated by Bhiskara II.  He first lays down the
rule : .
“In those cases where remains the (simple) unknown
with an absolute number, there find its value by ferming
an equation with the square, etc., of another unknown
plus an absolute number. Then proceed to the solution
of the next equation comprising the simple unknown
with an absolute number by substituting in it the root
obtained before.”3

1GK, i. 53. 2 GK, i. 54.
8 BBi, pp. 117-8.
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He then proceeds to explain it further :

“In those cases where on taking the square-root of
the first side, there remains on the other side the (simple)
unknown with ot without an absolute number, find there
the value of that unknown by forming an equation with
the square of another unknown plus an absolute number.
Having obtained the value of the unknown in this way
and substituting that value (in the next equation) further
operations should be proceeded with. 1If, however, on
equating the root of the first with another unknown
plus an absolute number, no further operations remain
to be done, then the equation has to be made with the
square, etc., of a known number.”

() Set # = mw + a; then substituting in the first
€quation, we get
X == —;-(l/‘zszz + 2mwa + a® — o).
Substituting this value of x in the next equation, we have
—?(/f;%ﬂ + 2mwa + o — ) 4+ d =17, (1.1)

which can be solved by the method of the Square-nature.

(#7) In the course of working out an examplel

Bhiskara Il is found to have followed also a different
rocedure, which was subsequently adopted by Lag-

range.?

Eliminate x between the two equations. Then

bu? + (ad — be) = a?,

or abu?® 4 & = 32, (1.2)

where w = av, & = a%* — ale.

1 Vide infra, p. 265.
2 Addition to Enler’s Algebra, p. 547.
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If w=1r, w = s be a solution of this transformed
equation, another solution of it will be

u=rq -+ ps,
w=gs - abrp ;
where abp? + 1 = g% Therefore, the general solution
of (1) is
X = i(r + ps5)?2 — £
h a q .p 2’
u=rq -+ ps,
— Lgs )

where abp? + 1 = ¢? and abr? + a?d — abe = 52
Now, a rational solution of the equation
abp? + 1 =42 is
2t t2 -+ ab
P=p—wp 1= rm—up
where £ is any rational number. Therefore, the above
general solution becomes

]

X = ;(F——-[-)—)—z{r(tz—}—ab)j:z.rt} —'—2—,
u=—(—2—:—){r’(z‘ —i—ab):]:z:t}, b (1:3)
A=) { s(22 + ab) :i:\zabrt }, ,

where abr? + a2d — abe = 52,

(77) Suppose ¢ and 4 to be squares, so that ¢ = a2,
d = 2. 'Then we shall have to solve

ax + a? = 42

b+ B2 =12,
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The auxiliaty equation @br? + a2d — abe = s? in this
case becomes
abr? 4 (a*p® — aba?) = s2.
The same equation is obtained by proceeding as in
case (7) with the assumption » = by + B.

An obvious solution of itis » = a, s = af. Hence
in this case the general solution (1.3) becomes

x = = h)z{“(tz + ab) + 24B2}% — —
y = —(t—"-j{a(tz -+ ab) + 2482},
V= E— {B(22 + ab) + 2bat},

where # is any rational number.
Putting @« = f = 1, # = @, and taking the positive
sign only, we get a particular solution of the equations

ax + 1 = #?
bx-—{—1=1)2}
as
__ 8(a+b) _3a+t b y__a—{—;l;
T Ta—op YT a=b "T a—=4b"

This solution has been stated by Brahmagupta (628):

“The sum of the multipliers multiplied by 8 and
divided by the square of the difference of the multipliers
is the (unknown) number. Thrice the two multipliers
increased by the alternate multiplier and divided by
their difference will be the two roots.””?

It has been described partly by Nirdyana (1357)
thus :

L BrSpSi, xviii, 71,
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“The two numbers by which another number is
multiplied at two places so as to make it (at every place),
together with unity, a square, their sum multiplied
by 8 and divided by the square of their difference is

«the other number.””1

We take an illustrative example with its solution
from Bhiskara II:

“If thou be expert in the method of the elimination
of the middle term, tell the number which being severally
multiplied by 3 and 5, and then added with unity, be-
comes a square,”?

That is to say, we have to solve -
3x -+ 1 =i, }
sx 4+ 1 =12,
Bhiskara II solves these equations substantially as
follows : :
(1) Set #= 3y + 1; then from the first equation,
x = 3% 4 2y.
Substituting this value in the other equation, we get
1592 -+ 10y + 1 = 1%,
or (159 + §5)2 = 1522 + 10,
By the method of the Square-nature we have the solu-
tions of this equation as

L)

A}

v=09 v = 71
15y + 5 = 55}’ 15y+ 5 = 275}""
Therefore J= 2,18, ...
Hence , x = 16, 1008, ...
(2) Or assume the unknown number to be
X = '.'13‘(”2 - I),

1 GK, i. 51. ® BBi, p. 118.
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so that the first condition of the problem (i.c., the first
equation) is identically statisfied. Then by the second
condition

@ — 1)+ 1 =12
or (5#)®> = 1502 + 10.
Now, by the method of the Square-nature, we get the

values of (#, ) as (7, 9), (55, 71), etc. Therefore, the
values of »x are, as before, 16, 1008, etc.

The following example is by Nirdyana :

“O expert in the art of the Square-nature, tell me
the number which being severally multiplied by 4 and 7
and decreased by 3, becomes capable of yielding a square-
root.”?
That is, solve:
4% — 3 =4,
X — 3= 02.}
Nirdyana says: “By the method indicated before the
number is 1, 21, Or 1057.”

25. DOUBLE EQUATIONS OF THE SECOND DEGREE

First Type. The double equations of the second
degree considered by the Hindus are of two general
types. The first of them is

ax? + by + ¢ = 42,
axt+ Uy = 1/2.}

Of these the more thoroughly treated particular cases

are as follows :

2 2 — 2
Case i, {x T 1=

1 GK, p. 40.
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XA )P — 1 =4,
x2— 3yt — 1 =2

Case ii. {

It should be noted that though the eatliest treat-

ment of these equations is now found in the algebra of
Bhiskara II (1150), they have been admitted by him
as being due to previous authors (ddyodéharanam).

For the solution of (5) Bhaskara IT assumest
xP =522 — 1, %= 458
so that both the equations are satisfied. Now, by the
ethod of the Square-nature, the solutions of the equa-
tion 52%— 1 = x2 are (1, 2), (17, 38),... Therefore, the
solutions of (/) are
X == z} X = 38}
=217 y=34)
Similarly, for the solution of (#7), he assumes
x=s5t+ 1, P =434
which satisfy the equations. By the method of the
Square-nature the values of (3, x) in the equation
5924 1=1x2 are (4, 9), (72, 161), etc. Hence ‘the
solutions of (#) are
x = 9} x = 161}
=28 y=144) |
Bhiskara II further says that for the solution of

equations of the forms (5) and (#7) a more general as-
sumption will be

=21, y%= mie;
where p, 7 are such that
P + m? = a square,

1 BBj, p. ro8.
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the upper sign being taken for Case / and the lower sign
for Case 7. Both the equations are then identically
satisfied. Suppose

P+ m? = ;2’
p— m:= £
Whence S = -&(%ﬁ -+ ﬂ),
(2R
= &(—”—- — ),

where # is any rational number. Therefore
qmt 2\
p=3(g+ ).

Here he observes that #2 should be so chosen that p
will be an integer,

4mt —

Hence x% = ;}—( ﬂ—2—f— 722){2 FI, (1)
92 = m2;

the upper sign being taken for Case 7 and the lower sign

for Case 7.

Whence = {;(75;”—2 + n)z,

‘Or, we may proceed ina different way, says Bhiskara
II:

Since
(" + 47 = 29
is always a square, we may assume
X2 = (P4 gwr F 1,
IR = 2pgn?.
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For a rational value of y, 2pg must be 2 square. So
we take
p=2m? g=rt
Hence we have the assumption
x% = (4qm* 4 W F 1, )
92 = 4mPnn? - } '
the upper sign being taken for Case / and the lowet
sign for Case 7.
Whence
# = (2m® + nP)w,
v = (2m® — ®)w,
1t will be noticed that the equations (1) follow from
(2) on putting w ="g/2#. So we shall take the latter as
our fundamental assumption for the solution of the
equations (/) and (7). Then, from the solutions of the
_ subsidiary equations <
: (47* + m)w? F 1 = x?,
by the method of the Square-nature, observes Bhidskara

II, an infinite number of integral solutions of the
original equations can be derived.l

Now, one rational solution of
(4t + 4 x = 2
is
. 2r
- (-4,,14 724) —
(g )+ 12
@y —
Therefore, we have the general solution of
x24 92— 1 =292
LA

1 Cf. BB, p. 110.
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as
(a4 4 2r(2m® 4 #?)
Tartm—r T A= | 4
. s (1)
Amnr 2r(z2m® — %)

b

el s P =
J (gt + nt) — 72 (4t - nt) — r?
where m, n, r are rational numbers.
For r = s/t, we get Genocchi’s solution.l

In particular, put =24 #=1, r=8£2—1 in
(A). Then, we get the solution

872 — 1.2 6424 — 1
=) T oa= T @
82 — 1 - 17822 — 142

V=T v=1(=—)

Putting w = #,n =1, r == 22 4 2¢ 4 1 in (A), we
have?

&

y=1, v=171—r—.

Agdin, if we put w=14 n=1,7r=122 in (A),
we get
x =84 1, u=4%22+ 1),}
oy = 85, v = 41%(2#2 — 1). ©

These three solutions have been stated by Bhaskara
IT in his treatise on arithmetic. He says,

1 Nowv. Ann. Math., X, 1851, pp. 80-85; also Dickson,
Naumbers, 11, pp. 479. For a summary of important Hindu results
in algebra see the article of A. N. Singh in the Archeon, 1936.

2 Here, and also in (¢), we have overlooked the negative sign
of x, y, u and v.
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“The square of an optional number is multiplied
by 8, decreased by unity, halved and then divided by that
optional number. The quotient is one number. Half
its square plus unity is the other number. Again, unity
divided by twice an optional number added with that
optional number is the first number and unity is the
second number. The sum and difference of the squares
of these two numbers minus unity w111 be (severally)
squares.”’!

“The biquadrate and the cube of an optional number
is multiplied by 8, and the former product is again in-
creased by unity. The results will be the two numbers
(required).”’2

Nirayana writes :

“The cube of any optional number is the first
number ; half the square of its square plus unity is the
second. The sum and difference of the squares of these
two numbers minus unity become squares.”3

That is, if 7 be an optional number, one solution
of (i7), according to Nirdyana, is
wt >

_———{—1 u—(mz—{—z)—

2
y = s, u—(mz—z)mT

It will be noticed that this solution follows easily

from the solution (¢) of Bhiskara II, on putting # = /2.

This special solution was found later on by E. Clere

(1850).4

1L, p. 13. L, p. 14.

3 GK, i. 46.

¢ Nouy. Ann. Math., 1X, 1850, pp. 116-8; also Dickson,
Numbers, 11, p. 479 ; Singh, 1. c.



272 ALGEBRA

Now, let us take into consideration the equation
(4772 + P)p? — 1 = x2.
Its solutions are known to be

* I 1
Ve EERPY
o 270 ’ o M
v e . 272

From these, by the Principle of Composmon we
get tespectively two other solutions

1672 + it + nt

- s = s

_ 3278 + Gmtnt ’ . — 78+ 3nimt
" Y’

Therefore, the general solutions of

x4 924 1 =42
X — )24 1 =122

are
__2m® 212 4 p2
T TR — T gz ?
’ @)
__2m am? — p?
I=T e V=T
I Y
o = —(32m% + GuPnt),
bl
] =i
c L (a”)

#= %(16/714 + #)(2m? + #?),

= ;117(16”:4 + ) (am? — )5 |
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273
o 2t
T YT T W
n 2m? — @)
Y=g VT T E
and
I -
x = mi(n6 + 322m%),
n
)y =5t + ),
L (bll)

= Ls(m“' + 1) (272 + #2),

277

y = ;I_mﬁ(m + ) (2w — #2).

Putting #=1 in (¢) and (¢”), we have the in-
tegral solutions
X o= 2m2 u=2m?+ 1, ’
y = 2m, v=zm2—1;} @. 1)t
and
x = 2mY(16m® + 3),
= 2m(16m* + 1), (@ 1)
# = (16m* + 1)(2m* + 1), )
v = (16w + 1)(2m® — 1).

Similarly, if we put 7z = 1 in (") and (4”), we get

X = 2, = 2""" > y
i Rt § A -5
and
g RO et ] U S S
y=ah+ 1), v=A+ Dm— 2 ¢

1This solution was given by Drummond (Amer. Math.
Mon., IX, 1902, p. 232).

18
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The solution (¥’.1) is stated by Nardyana thus :

“Any optional number is the first and half its square
is the second. The sum and difference of the squares
of these two numbers with unity become capable of
yielding a square-root.”? .

Case izi. *Form

ax? + by = 2,
ax?4- b2 4o =2

For the solution of double equations of this {form
Bhiaskara II adopts the following method :

The solution of the first equation is x = my,
# = ny ; where

am® ++ b = n2,
Substituting in the second equation, we get
(@n? 4 0)y*+ & =12
which can be solved by the method of the Square-
nature.
Example from Bhaskara II :2
7x2 + 8_)12 — ,,2}
7x2'—8_)’2+ 1 = 22}°
He solves it substantially as follows :

In the first equation suppose x = 2y ; then » = Gy.
Putting x = 2y, the second equation becomes

202 4 1 =22
By the method of the Square-nature the walues of y
satisfying this equation are 2, 36, etc. Hence the solu-
tions of the given double equation are
N o= 4,.72, -+
y=2,36, ...

1 GK, i. 45. . 2 BBi, p. 119,
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Case iv. Form
a(o? £ + ¢ =,
f@¢ij%+w%=ﬁ}

Putting x? 4 y% = g Bhdskara II reduces the above

equations to
ag + ¢ = 1(2,}
C A+ =05
the method for the solution of which has been given
before.

Example with solution from Bhéskara IT :1
22—+ 5 =)
3(x2— %) + 3 =02}’

Set x%2—j)2=1¢g; then

2+ 3 =4

33+ 3 =%
Eliminating ¢ we get

=20 + 3,
or (34)2 = 622 + 9.
Whence v =6, 6o, ...

34 = 15, 147, ...
Therefore #=75, 49, ...
Hence X2 — =g =11, 1199, ...

Therefore, the required solutions are
11 ’ 11 M
]:%(—,}2———”7) ]:{,(—,79?——”1)
where » is an arbitrary rational number.

! BBi, p. 119.
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For m =1, the values of (x,%) will be (6, s),
(600, 599), ...
For m = 11, we get the solution (6o, 49), ..
Case v. For the solution of the double equation of
the general form
ax®+ bt 4+ c=u?
ax?+ YR+ = vz}
Bhiskara II’s hint! is: Find the values of x, # in the
first equation in terms of y, and then substitute that value
of x in the second equaticn so that it will be reduced to
a Square-nature. He has, however, not gwen any
illustrative example of this kind.
Second Typé. Another type of double equatlon
of the second degree which has been treated is
a*x% + bxy + o = 42,
axt+ Uy 4 2+ d = 1}2.}
‘The solution of the first equation has been given
beforé to be

L y2 _
U { ) }

y?
ztz%{x(:—~)+? }
where A is an arbitrary rational number, Putting A =y,
we have

PN
x= za([ 4a* ! ) 22
y i
H=>(¢e— —-+1);
2 (¢ 4a® )
1 b2 b
where a=—(c——— 1)~ ,
2a 4a 24

L Vide sapra, pp. 190f.:
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Substituting in the second equation, we get

(@ + Vet Ny + d' =02
which can be solved by the method.of the Square-nature.
This method is equally applicable if the unknown part in

the second equation is of a different kind but still of
the second degree.

‘Bhaskara 1T gives the fo]lowmg illustrative example
together with its solution :!

X2+ xy 4 )P = uz}.
(x+Nu+ 1 =12
Multiplying the first equation by 36, we get

(6 4 39)% + 27)% = 3642

2992
Whence 6x+3y=%_,(—l{— —h),
=3 1 1),

where } is an arbitrary rational number. Taking A =y,
we have . v

6x + 3y = 13y,
or x = %y,
and u= %y

Substituting in the second equation, we get
56)° + 9 = 9v*.

By the method of the Square-nature the values of y
are 6, 180, ...

Hence the required values of (x,y) are (10, 6),
(300, 180), ..

1 BBi, pp. 107f. -
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26. DOUBLE EQUATIONS OF HIGHER DEGREES

There are a few problems which involve double
equations of degrees higher than the second. The
following examples are taken from Bhaskara II :

Example 1. “The sum of the cubes (of two
numbers) is a2 square and the sum of their squares is a
cube. If you know them, then I shall admit that you
are a great algebraist.””?

We have to solve the equations

X2 A g2 = 13,
A3+}3=02.}

The solution of this problem by Bhaskara II is as
follows :

“Here suppose the two numbers to be g2 232

pp \ oImbeLs U 5 2%,

'The sum of their cubes is 938.  This is by itself a square
and its square-root is 3%3.

“Now the sum of the squares of those two numbers
1s 534 ‘This must be a cube. Assuming it to be equal
td the cube of an optional multiple of 5% and removing
the factor g% from both sides (we get ¢ = 25p3, where
p 1s an optional number); so, ds stated before, the
numbers are (putting p = 1) 625, 1250. The assump-
tion should be always such as will make it possible to
remove (the cube of) the unknown.””?

In general, assume x = mwz?, y = #g?; substituting
in the sccond equation, we have

X8 B = (73 + M8 = 12
If - 73 4 3 = a squarc = p?, say,

then v = pgo.

1 BBi, p. s56. 2 BBi, pp. 56f.
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Now, from the first equation, we have
(2 L 12)gh = 43,
Assume # = rg ; then

73
= L
Hence we get
. — mr® ot
(m® + n2y J D >

where r is any integer and 2, # are such that -
m3 -+ 7% = a square.

Oune obvious solution! of this equation is # = 1, # = 2.
Hence we get the solution

76 zr6

252 2 T 2

This particular solution has been g1ven by Niriyana,
who says :

“The square of the cube of an optlonal number is

the one and twice it is the other. These divided by 25
will be the two numbers, the sum of whose squares will

1 Now =2 - #° can be made a square by putting

m={pP*+ )P, ="+

so that =%+ g
Hence the solution of our equation will be ,
pré
T EF OO
g

= PR
Putting 7 = (p® + 45(»® + 4°s, we have the solution in
positive integers as 1
x _p(Pz + qZ)A(pS + 93)858’
Y=g+ ) + )5

wherte p, ¢, s are any integral numbers.



280 ALGEBRA

be a cube and the sum of whose cubes will be a square.”!
He then adds by way of illustration :

“With the optional number 1, we get the two
numbers (1/25, 2/25); with 2, (64/25, 128/25); with s,
(625, 1250); with 1/2, (1/1600, 1/800); with 1/3,
(1/18225, 2/18225). Thus by virtue of (the multiplicity
of) the optional number many solutions can be found.”

Example 2. “O most learned algebraist, tell me
those various pairs of whole numbers whose difference
is a squarc and the sum of whose squares is a cube.””?

That is to say, solve in positive integers

Yy — X =4
PE 4 X% =8

Bhiskara II’s process of solving this problem is as
follows :

“Let the two numbers be x, y. Putting their differ-
ence, y — x, equal to #%, we get the value of x as

— #%. Having thus found the value of x, the two
numbers become y — #2, y.

“The sum of their squares = 2y% — 2y#2 - #%. This

isa cube. Making it equal to #% and transposing we get
5 — oyt = 2y% — 2942,
Multiplying both sides by 2 and superadding #%, we get
the square-root of the second side = 2y — #2, and the
first side = 24% — #%. Dividing out by #* (and putting
w for 2y/u?—1), we get
24 — 1= 1072,

By the method of the Square-natutre the roots of this
equation are

H=5,29,

12/ - 7’ 412

1GK, 1. s0. 2 BBi, p. 103.
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“Then by the rule, ‘Ox, if a biquadratic factor has
been removed, the greater root should be multiplied by
the squate of the lesser root,’ we get

2y — 25 = 175,
.+ ot 2y — 841 = 34481.
Therefore ¥ = 100, 17661, ...

“Finding the respective values of the numbers, they
are (75, 100), (16820, 17661), etc.”

Example 3. “Bring out quickly those two numberts
of which the sum of the cube (of one) and the square
(of the other) becomes a square and whose sum also is a
square.”?

That is to say, solve
Btp=u (1)
{ x-+y = (2)

This problem has been solved by Bhiskara II in
two ways, which ate substantially as follows :

First method. From (1) we get
=T =),
where A is an arbitrary number. Putting 1 = x, we get
i # =3+ x), y= 42— x).
Substituting this value of y in (2), we get
x? 4+ x = 217,
or (2x + 1)2 = 8% + 1.

1 The reference is to the rule on p. 249.
2 BB/, p. 107. -
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By the method of the Square-nature we have
v=2=0 } v =35 }
2x+1=17)’ 2x+1=099§" """
Whence the values of (x, ¥) are (8, 28), (49, 1176), ...
Second Method. Assume x = 202, y = 722, Then
x +y=ogw? = (3w)%

So the equation (2) is satisfied. Now, substituting
those values in (1) we get

828 + 40wt = 22,

or w82 + 49) = 42,
If 8% + 49 = 25,
then # =W

Now the values of » making 8#w2 -+ 49 a square
are 2, 3, 7... Hence the required numbers (x, y) are
(8, 28), (18, 63), (98, 343), ...

Example 4. <“What is that number which multiplied
by three and added with unity becomes a cube; the
cube-root squared and multiplied by three becomes,
together with unity, a square.”?

That is to say, solve
X+ 1 =4, (1)
{5142 + 1 =2 (2)
It has been solved by Bhiskara II thus : '

From (2), by the method of the Square-nature, we
get the values of (#, ) as (1, 2), (4, 7), (15, 26), -..
Whence the values of x are 21, 3374/3, ...

1 BB, p. 119. This problem is admittedly taken by Bhiskara
II from an earlier writer.
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Alternatively! we assume # = 3y 4 1; then from
the equation (1) we get .
x = 3(3* + 3+ 1).
Also from (2) we have
27+ 18y + 4 =0
= (my — 2)?, say,
Hence Y= I%—‘_*_izl.
m:— 27
Therefore, the required value of x is
L 18 - qm\3 18—{-4/// 18—}—4///
= (7/12 — 27) 9 /;12 ) + (,,,z — )

where # is a rational number greater than 5.
The first of the previous solutions is given by 7 = 9.
Double Equations in Several Unknowns. To
solve a double equation involving several unknowns,
Bhiaskara IT gives the following hints :

“When there are square and other powers of three
or more unknowns, leaving out any two unknowns at
pleasure, the values of others should be arbitrarily as-
sumed and the roots investigated.”?

For the case of a single equation, he says :

“But when there is only one equation, the roots
should be determined as before after assuming optional
values for all the unknowns except one.”

27. MULTIPLE EQUATIONS

There are some very elegant problems in which
three or more functions, linear or quadratic, of the un-
knowns have to be made squares or cubes. The

1 See BBj, p. 121. ° 2 BBi, p. 106.
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following example occurs in the Lagbu-Bbaf,édr #ya of
Bhiskara I' (522):

Example 1. To find two numbets x and y such that
the expressions x + y, x — 3, xy + 1 are each a perfect
square. .

Brahmagupta gives the following solution :

“A square is increased and diminished by another.
The sum of the results is divided by the square of half
their difference. Those results multiplied (severally)
by this quotient give the numbers whose sum and
difference are squares as also their product together
with unity.”2

Thus the solution is :

x = P(m? 4+ %),

y = P(n? — n?),

(m2 + n®) 4 (% — n?) .
R RN

any rational numbers.

where P =

Niriyana (1357) says:

““The square of the square of an optional number is
set down at two places. It is decreased by the square
(at one plac) and increased (at another), and then
doubled. The sum and difference of the results are
squares and so also their product together with unity.”3

That is, x = 2(pt + p?),
J = 2(p* =1
where p is any rational number.

1 ] Bh, viii. 17. 2 BrSpSs, xviil. 72.
3GK, i. 47.



MULTIPLE EQUATIONS 285

The rationale of this solution is as follows :

Suppose
x = 2% + %), y = 233(m% — n?),
so that x 4~ y are already squares. We have, therefore,
only to make
Coxy 4 1= 434 + n®)(® — n*) + 1 = a square.
Now
AR — 1)+ 1 = (220 — 1) 4 4 — ).
Hence, in order that xy - 1 may be a square, one
sufficient condition is
m? = P,
2 (R ) 4 (% — )
nt B ) — (ot — )]
Again x o= 233(m? + n®) = 2(nt + PP,
or x = 2(p*+ p?), if p=zn.
Therefore = z(p* — po).

Example 2. “If thou be expert in mathematics,
tell me quickly those two numbers whose sum and
difference are squares and whose product is a cube.”?

That is, solve

X+ y= squares,}

xy =a cube.

Therefore  2g2 =

Bhiskara 1T says:

“Here let the two numbers be 532, 432 They are
assumed such as will make their sum and difference both squares.
Their product is 203%.  This must be a cube. Putting
it equal to the cube of an optional multiple? of 105 and
removing the common factor g3 from the sides as before,
(we shall ultimately find) the numbers to be 10000,
12500.”

1 BBi, p. 56. 2G.K, i. 49.



286 ALGEBRA

In general, let us assume, as directed by Bhaskara II,
x = (m+n"R% = 2mn3?,

which will make x 4y squares. We have, therefore,
only to make

2mn(m? 4 n%)z* = a cube.

Let 2mn(m® + n?)3t = p338.
Th SR A
en LT (L )
_ (R
Therefore X = (2 F 7))
2mnp®

J= {2mn(m? + n2)}?
where m, n, p ate arbitrary.

This general solution has been explicitly stated by
Niriyana thus:

“The square of the cube of an optional number is
divided by the square of the product of the two numbers
stated above and then severally multiplied by those
numbers. (Thus will be obtained) two numbers whose
sum and difference are squares and whose product is a
cube.?

The two numbers stated above? are 22 - #% and
27n whose sum and difference are squares.

In particular, putting » = 1, # = 2, p = 10, Niri-
yana finds x = 12500, y = 10000. With other wvalues
of m, n, p he obtains the values (3165/16, 625/4),
(62500117, 250000[507), (15625/1872, 15625/2028);
and observes: “thus by virtue of (the multiplicity of)
the optional numbers many values can be found.”

1GK, i. 49. 2 The reference is to rule i. 8.
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Example 3. To find numbers such that each of
them severally added to a given number becomes a
square ; and so also the product of every contiguous
pair increased by another given number.

For instance, let it be required to find forr numbers
such that

X+ a=p? xy + B = &3,
yt+a=g, KR+ B=u?
2+ a=r3 ¥+ B =%

W o= 52,

The method for the solution of a problem of this
kind is indicated in the following rule quoted by Bhaskara
II (1150) from an earlier writer, whose name is not
known :

“As many multiple (g#pa) as the product-interpolator
(vadha-ksepa) is of the number-interpolator (réfi-ksepa),
with the square-root of that as the common difference
are assumed certain numbers ; these squared and dimi-
nished by the number-interpolator (severally) will be
the unknowns.”!

+ In applying this method to solve a particular
problem, to be stated presently, Bhaskara II observes by
way of explanation :

“In these cases, that which being added to an
(unknown) number makes it a square is designated as
the number-interpolator. The number-interpolator
‘multiplied by the square of the difference of the square-
roots pertaining to the numbers, is equal to the product-
interpolator, For the product of those two numbers
added with the latter certainly becomes a square. The
products of two and two contiguous of the square-
roots pertaining to the numbers diminished by the

1 BBi, p. 68.
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number-interpolator are the square-roots corresponding
to the products of the numbers.”!

Since x=p?— 0o, y=4¢%>— a, we get
)9+ B = (" — a)g* — @) + B
= (pg — O +{p — (g — p)?}.
In order that xy + B may be a square, a sufficient
condition 1is

a(q - p)z =B,
or g=p+ VBla=p+v, wherey=v/pJa.
Then xy—+ B =(pg— o)
Hence E=pg— a.

Similarly r=q+v, s=r-+Lv.

Thus, it is found that the square-roots p, ¢, 7, &
form an A.P. whose common difference is vy (= V/f/a).
Further, we have '

x=pt—a,

J=(pE£V)?—q

g=(px 21 —o

p=(p 31—
as stated in the rule.

These values of the unknowns, it will be easily
found, satisfy all the conditions about their products.
For

xy 4B = {p(p £ ¥) — a}?
IRAB={(p £ ¥)p £ 2v) — o}3,
4B = {(p £ 2v)(p £ 3v) — a}%

1 BBi, p. 67.
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Thus we have
‘ E =P (P :t Y) —a
M= EN(PE2r)—q
E=(@£2)(p £ 37)— o
as stated by Bhiskara II.

It has been observed by him that the above principle
is well known in mathematics. But we do not find it
in the works anterior to him, which are available to us.

It is noteworthy that-the above principle will hold
even when all the f’s are not equal. For, suppose
that in the above instance the second set of conditions
is replaced by the following :

xy+ B, = &%
IR+ B = 7%,
2"’-!- ﬁa == §2-

Then, proceeding in the same way, we find that
g=p% VBje, r=g+ VBio, s=r+ Vh/e,
and E=pg—a, n=¢qgr—a, [=rs—a

It should also be noted that in order that xy +'[3

or p%g? — a(p® 4 ¢%) 4 a®*4- p may be a square, there
may be other values of g besides the one specified

above, namely g = p 4 VBJo. We may, indeed, regard
P4 — a(p? + g% + o® + B = EZ

as an indeterminate equation in 4. Since we know one
solution of it, namely g=p + v, E=p(p L+ ¥) — o,
we can find an infinite number of other solutions by the
method of the Square-nature.

Now, suppose that another condition is imposed on
the numbers, v/%.,

wx 4 B/ = pl
19
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" On substituting the values of x and » this condition
transforms into

P 6vpE + (9v? + 2a)p® - Gavp + o® —off + B = 1,
an indeterminate equation of the fourth degree in p.

In the following example and its solution from
Bhiskara 11 we find the application of the above
principle :

Example. “What are those four numbers which
together with 2 become capable of yielding square-
roots ; also the products of two and two contiguous of
which added by 18 yield square-roots ; and which are
such that the square-root of the sum of all the roots
added by 11 becomes 13. Tell them to me, O algebraist
friend.”* »

Solution. ““In this example, the product-interpolator
is 9 times the number-interpolator. The squate-root of
9 1s 3. Hence the sql}:arc-toots corresponding to the
numbers will have the common difference 3. Let
them be ,

x, %43, x4 6, x4 0.

‘“Now the products of two and two contiguous of
these minus the number-interpolator are the square-
roots pertaining to the products of the numbers as
increased by 18. So these square-roots are

X2+ 3x— 2,
x% 4 gx + 16,
x2 4 15x + 52..

“The sum of these and the previous square-roots
all together is 3x2 4 31x 4 84, This added with 11

1 BBi, F
It will be noticed that by vittue of the last condition the
problem becomes, in a way, determinate.
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becomes equal to 169. Hence
3x% 4+ 31x 4+ 95 = ox? + ox + 169.

“Multiplying both sides by 12, superadding 961,
and then extracting square-roots, we get

6x -+ 31 = ox -+ 43.
x = 2.

“With the value thus obtained, we get the values of
the square roots pertaining to the numbers to be 2,
5, 8, 11, Subtracting the number-interpolator from the
squares of these, we have the (required) numbers as 2,
23, 62, 119.” ’

Example 4. To find two numbers such that
x—y + & =4
x4y + & =25
Xt — gt R =2
DXL R =2
Bhiaskara 11 says :

“Assume first the value of the square-root pertain-
ing to the difference (of the numbers wanted) to be any
unknown with or without an absolute number. The
root corresponding to the sum will be equal to the
root pertaining to the difference together with the
square-root of the quotient of the interpolator of the
difference of the squares divided by the interpolator for
the sum or difference of the numbers. The squares of
these two less their interpolator are the sum and differ-
ence of the numbers. From them the two numbers can
be found by the rule of concurrence.’’

1 BBj, pp- 111l
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That is to say, if # is any rational number, we .
assume
#=wka,

where a is an absolute number which may be o. Then
v=(» + a) + VL&
Now x% — 2 + & = (x — J)(x +) + &
= @2 — B2 — k) + &
= w%? — K(W? + 1%) + K2+ K,
One sufficient condition that the right-hand side may be
a square is
kv —n)?=F,
or v=u+ VK |k,
which is stated in the rule. Therefore,
x—y= W+ aP— 4,
x+y=@+fat VERE— &
Hence = 3{(v + o+ @ £ a + VEJR? — 24},
y=¥@+ o+ VLA~ @+ ap}
Now, if y denotes /&, we get
x2 4 92 =24+ 2742 + (372 — 28)2
+ 27(y? — £)u 4 3£+ H(¥E — A)E
So it now remains to solve
A+ 2vs® + (3Y2 — 28)42 + 2v(Y: — K)u
+ 32+ S(vP — KRR+ KT = £,
which is an indeterminate equation in #.

Applications. We take an illustrative example with
its solution from Bhaskara 1I.

“O thou of fine intelligence, state a pair of
numbers, other than 7 and 6, whose sum and difference
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(severally) added with 3 are squares ; the sum of their
squares decreased by 4 and the difference of the squares
increased by 12 are also squares; half their product
together with the smaller one is a cube ; again the sum
of all the roots plus 2 is a square.”?

That is to say, if x>y, we have to solve
X —3y+ 3 =42
x4y 4 3 =12
X2 — y2 4 12 = 42,
Xty —a =1
2y + = p’
ut+v+4 s+ t4p+42=4%
This problem has been solved in two ways :

First Method. As directed in the above rule,
assume

y=w_—1,
Then X—y=w—1)2— 3 =n%— 20— 2,
X+ y=@— 14 22— 3=n24 v — 2.
Therefore x=w%—2, y= 2w

Now, we-find that
X2 — 9% 4 12 = (02 — 4)%,
X2yt — 4= A,
Ixy 4y = no.
So all the equations except the last one are already
satisfied. ‘This remaining equation now reduces to

20 - 3w — 2 = g%
Completing the square on the left-hand side of this
equation, we get
(7 + 3)* = 84% + 25.

! BBi, p. 115.
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By the method of the Square-nature its solutions are

g=>: } 4= 175 }
w+3=15) 4w+ 3=1495)’
Thetefore w=3, 123, ...
Hence the values of (x, y) are (7, 6), (15127, 246), ...
Second Method. Or assumel .

x —y+ 3 =nk
then x+y+3 =2+ 4w+ 4= (w+ 2)2
Whence X=w+ 2w —1, y=20+ 2.
Now, we find that
x2— 92412 = (0% 4 2w — 3)2
x4 92— 4= w2+ 2w + 1),
Py +y=@+1)>%
Then the remaining condition reduces to
292 4 9 + 3 = 4%
Completing the square on the left-hand side, we get
(47 + 7)* = 84> + 235.
Whence by the method of the Square-nature, we get

' g="7 } 9= 175}
w+7=15)" 4w+ 7=495)
Therefore w=2, 122,...
Hence .9 = (7, 6), (15127, 246), ...

Another very interesting example which has been
botrowed by Bhaskara 11 from an earlier writer is the
following:2

1This is clearly equivalent to the supposition, # = w,
v = -} 2.

? The text is kasydpysudibaranam (““the example of some one”).
This observation appears to indicate that this particular example -
was borrowed by Bhiskara II from a secondary source ; its primary
source was not known to him.
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“Tell me quickly, O sound algebraist, two numbers,
excepting 6 and 8, which are such that the cube-root of
half the sum of their product and the smaller one, the
square-root of the sum of their squares, the square-roots
of the sum and difference of them (each) increased by 2,
and of the difference of their squares plus 8, all being
addedltogethcr, will be capable of yielding a square-
root.” (

That is to say, if x >_y, we have to solve
V3ICo +2) + VX2 + 2+ VaZ— 218
+ Vx4y+ 2+ \/x—J+ 2 =g~
In every instance of this kind, remarks Bhéskara II,
“the values of the two unknown numbers should be
so assumed in terms of another unknown that all the
stipulated conditions will be satisfied.” In other words,
the equation will have to be resolved into a number of

other equations all of which have to be satisfied simul-
taneously. Thus we shall have to solve

x_.}l+2=”2: .

X+]+2=02,
x2—y2 4 8 =4,
x2+]2=12,

309 +J) = 27
a4v4 s+ t+ p =4~
The last equation: represents the original one.
There: have been indicated several methods of solv-
ing these ‘equations.
(/) Set x =m?— 1, y = 2w ; then we find that
x—y+2=(@— 10
xX+y+2=w@+ 1)}

1 BB, p. 110.
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3B — g+ 8= (#% — 30,
x84 g% = (@2 + 1)%,
3o +0) ==~

So all the equations except the last one are identically
satisfied. This last equation now becomes /

2?4 3 — 2 = g%,
Completing the square on the left-hand side, we get
(4% + 3)2 = 8% + 25.
Solutions of this are

q9=> } q=3o‘ q=175}
@+ 3=15)" 4w+ 3=285)" g+ 3=495)
Therefore, we have the solutions of our problem
as
(o, ) = (8, 6), (1677/4, 41), (15128, 246), ...
Or set
.\ x = 2| 2,
#) {y = 2 + 2;
x =p?— 2w,
(#7) {_y= 12

: x =2+ 4w+ 3,
r

or () {J'= 2 + 4.

In conclusion Bhiskata II remarks: ‘“Thus there
may be a thousandfold artifices ; since they are hidden
to the dull, 2 few of them have been indicated here out
of compassion for them.”1

1t will be noticed that in devising the various arti-
fices noted above for the solution of the problem,
Bhiaskara II has been in each case guided by the result
that if # = w - o, then, v = » 4 a + \/F [k He has
simply taken different values of a in the different cases.

1 BB, p. 110,
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28. SOLUTION OF axy = bx + ¢y + d

Bakhshil? Treatise. The eatliest instance of 2
quadratic ihdeterminate equation of the type axy = bx
+ ¢y + 4, in Hindu mathematics occurs in the
Bakhshah Treatise (¢c. 200).1  The text is very mutilated.
But the example that is preserved is

xy=3x+4+4yF1,
of which the solutions preserved are

x=1%:l+4=u,
J=1-1+3=4;

and :
X=1-+4=173,
1—34+1+5=16

Hence, in general, the solutions of the equation
xy = bx+ ¢y + 4,
which appear to have been given are :

_be+d x=m-+cq,
T om +a or be +d
="

+ b

Jy=m+b;
where 7 is an arbitrary number.

An Unknown Author’s Rule. Brahmagupta (628)
has described the following method taken from an
author who is not known now.2

1 BMs, Folio 27, recto; compare also Kaye’s Introduction §82.

2Prthudakasvafru (860) says that the method is due to a
writer other than Brahmagupta. This is further corroborated by
Brahmagupta’s strictures on it (vide infra, p. 299).
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““The product of the coefficient of the factum and the
absolute number together with the product of the coeffi-
cients of the unknowns is divided by an optional number.
Of the optional number and the quotient obtained, ‘the
greater is added to the lesser (of the coefficients of the
unknowns) and the lesser to the greater (of the coeffi-
cients), and (the sums) are divided by the coefficient of
the factum. (The results will be values of the unknowns)
in the reverse order.’”?

As has been observed by Prthiidakasvimi, this rule
is to be applied to an equation containing the factum
after it has been prepared by transposing the factum term
to one side and the absolute term together Wwith the
simple unknown terms to the other. Then the solutions
will be, 7 being an arbitrary rational number,

I
x = —d—(m =+ ¢),

ad 4 be

1
J= 7( - T b),
ifb>¢ and m» > ﬂd:; 1”. If these conditions be re-

versed then x and y will have their values interchanged.

The rationale of the above solutions can be easily
shown to be as follows :

axy = bx + ¢y + d,

or a®xy — abx — acy = ad,
or (ax — ¢)ay — b) = ad + be.
Suppose ax — ¢ = m, a rational number ;
_ad+be
then @y — b= —

1 BrSpSi, xviit, 6o.
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Therefore x= %(m + o),
1 sad+ be
y=—(=—F=+¢).

Or, we may put ay— b=m;

then we shall have ax — p = ad;: l”;
whence (aa’ iy +e )
y= 7(/72 -+ b).

It will thus be found that the restrictive condition of
adding the greater and lesser of the numbers » and
(@d + be)[m to the lesser and greater of the- numbers
b and ¢ respectively as adumbrated in the above rule 1s
quite unnecessary.

Brahmagupta’s Rule. Brahmagupta gives the
following rule for the solution of a quadratic indeter-
minate*equation involving a factum :

“With the exception of an optional unknown,
assume arbitrary values for the rest of the unknowns,
the product of which forms the factum. The sum
of the products of these (assumed values) and
the (respective) coefficients of the unknowns will be
absolute quantities. The continued products of the
assumed values and of the coefficient of the factum will
be the coefficient of the optionally (left out) unknown.
Thus the solution is effected without formingan equation
of the factum. Why then was it done so?™?

The reference in the latter portion of this rule is
to the method of the unknown writer. The principle

1 BrSpSi, xviii. 62-3, vide sapra, p. 297.
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underlying Brahmagupta’s method is to reduce, like the
Greek Dijophantus (r. 275),! the given indeterminate
equation to a simple determinate one by assuming
arbitrary values for all the unknowns except one. So
it is undoubtedly inferior to the eatlier method.
Brahmagupta gives the following illustrative example :

“On subtracting from the product of signs and
degrees of the sun, three and four times (respectively)
those quantities, ninety is obtained. Determining the
sun within a year (one can pass as a proficient) mathe-
matician,’”

If x denotes the signs and y the degrees of the sun,
then the equation is
Xy — 3X — 4y = 90.
Thus this problem, as that of Bhéskara II (infra), appears
- to have some relation with that of the Bakhshili work,

Prthidakasvami solves it in two ways. Frrstly, he as-
sumes the arbitrary number to be 17, then

y=—07+3) =20

Second)y, he assumes arbitrarily y = 20. On substituting
this value in the above equation, it reduces to

20X — 3X =170 ;
whence x = 10.

Mahivira’s Rule. Mahivira (850) has not treated
equations of this type. There are, however, two pro-
blems in his Gaita-sdra-sanmigraba which involve similar
‘equations. One of them is to find the increase or

1 Heath, Diophantus, pp. 192-4, 262.
® BrSpSi, xviii. 61,
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cecrease of two numbers (2, §) so that the product of
the resulting numbers will be equal to another optionally
given number (4). Thus we are to solve

(@ £2)b+y)=4
or xy 4= (bx + @y) = d — ab.
The rule given for solving this is :

“The difference between the product of the given
numbers and the optional number is put down at two
places. It is divided (at one place) by one of the given
numbers increased by unity and (at the other) by the
optional number increased by the other given number.
These will give in the reverse otder the values of the
quantiti€s to be added or subtracted.”!

That is to say,

- d ~ ab o d ~ ab

: d—+4 b or b+ 1
_d~ab |’ . d~ab
eSS Vil =ul B

Thus the solutions given by Mahivira are much
cramped. The other problem considered by him is to
separate the capital, interest and time when their sum is
givenn: If x be the capital invested and y the period of
time in months, then the interest will be s>y, where m
is the rate of interest per month. ‘Then the problem
is to solve

mxy -+ X+ y == p.
Mahivira solves this €quation by assuming arbitrary
values for .2

LGSS, vi. 284. 2 GSS, vi. 35.
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Sripati’s Rule. Sripati (1039) gives the following
» rule :

“Remove the factums from one side, the (simple)
unknowns and the absolute numbers from the other.
The product of the coefficients of the unknowns being
added to the product of the absolute quantity and the
coefficient of the factum, (the sum) is divided by an
optional number. The quotient and the divisor should
be added arbitrarily to the greater or smaller of the
coefficients of the unknowns. These divided by the
coefficient of the factum will be the values of the un-
knowns in the reverse order.”’?

1 (ad + be

] x——l(m'c) X = —
6y X = —(m + = prnl

+ ¢)

d 4 b ’
y=(EFE D) y= et

where 7 is arbitrary.

Bhiaskara II’s Rule. Bhaskara II (1150) has given
two rules for the solution of a quadratic indeterminate
equation containing the product of the unknowns. His
first method is the same as that of Brahmagupta:-

“Leaving one unknown quantity optionally chosen,
the values of the other should be assumed arbitrarily’
according to convenience. The factum will thus be
reduced and the required solution can then be obtained
by the first method of analysis.”2

Bhiskara’s aim was to obtain /nfegral solutions. ‘The
above method is, however, not convenient for the
purpose. He observes :

“On assuming in this way an arbitrary known
value for one of the unknowns, the integral values of the

1 §iSe, xiv. z0-1. 2 BBi, p. 123.
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two unknowns can be obtained with much difficulty.”
So he describes a second method by which they can
be obtained with little difficulty.”

“Transposing the factum from one side chosen at
pleasure, and the (simple) unknowns and the absolute
number from the other side (of the equation), and then
dividing both the sides by the coefficient of the factum,
the product of the coefficients of the unknowns together
with the absolute number is divided by an optional
number. ‘The optional number and that quotient should
be incteased or diminished by the coefficients of the
unknowns at pleasure. They (results thus obtained)
should be known as the values of the two unknowns
reciprocally.””?

This rule has been elucidated by the author thus :

“From one of thetwo equal sides the factum be-
ing removed, and from -the other the unknowns
and the absolute number; then dividing the two
sides by the coecfficients of the factum, the product
of the coefficients of the unknowns on the other side
added to the absolute number, is divided by an
optional number. The optional number and the quo-
tient being arbitrarily added to the coefficients of the
unknowns, should be known as the values of the un-
knowns in the reciprocal order. That is, the one to
which the coefficient of the £#/aka (the second unknown)
is added, will be the value of the ydvat-tipat (the first
unknown) and the one to which the coefficient of the
ydpat-tdvat is added, will be the value of the Adlufa.
But if, after that has been done, owing to the magnitude,
the statements (of the problem) are not fulfilled, then

1 “Evamekasmin vyakte ri$au kalpite sati bah{indy4senabhinnau
ra$1 jiidyete”’—BBi, p. 124.
2 BBi, pp. 124f.
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from the optional number and the quotient, the coefhi-
cients of the unknowns should be subtracted, and (the
remainders) will be the values of the unknowns in the
reciprocal order.”

Thus Bhiskara’s solutions are

‘L w — Ly
A——;:tfli x-_aj:n

b ’ b " g
I=g I=gEm

. ) 1 b, d
where 7/ is any atbitrary number and #' = = ( =+ = ).
y ry o ( ) + 2 )

The rationale of these solutions is as follows :
axy = bx + ¢y + 4,
d

b ‘
Of YT XY=

or (x——i—)(y——f;):%—%f—g:m’n’,say.

Then, either

i
H-
m\

or
y—

f
H
s‘

QA s

whence the solutions.

Bhiskara’s Proofs. The same rationale of the
above solutions has been given also by Bhiskara II with
the help of the following illustrative example. He
observes that the proof “is twofold in every case: one
geometrical (ksetragata), the other algebraic (rdsigata).””!

Example. “The sum of two numbers multiplied
by four and three, added by two is equal to the product

1 BBi, p. 125.
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of those numbers. Tell me, if thou knowest, those
two numbers.”’1

Solution. “Having performed the operations as

stated, the sides are
Xy = 4X + 3y + 2.

The product of the coefficients of the unknowns plus
the absolute term is 14. Dividing this by an optional
number (say) unity, the optional number and the quotient
are 1, 14. To these being atbitrarily added 4, 3, the
coefficients of the unknowns, the values of (x, ) are
(4, 18) or (17, 5). (Dividing) by (the optional number) 2,
(other values will be) (5, 11) or (10, 6.)2

Geometrical Proof. ““The second side of the equation
is equal to the factum. But the factum is the area of an
oblong quadrilateral of which the base and upright are
the unknown quantities. Within this figure (Fig. 15)
exist four x’s, three y’s and the absolute pumber 2.
From this figure on taking off four x’s and y minus four
multiplied by its own coefficient, (i.e., 3), it becomes
this (Fig. 16).

€ummmeaa® ey
- e

Fig. 15 Fig. 16
The other side of the equation being so treated there-

1 BBi, pp. 123, 125. 2 BBi, p. 125.
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results 14. This must be the area of the figure remaining
at the corner (see Fig. 16) within the rectangle represent-
ing the factum, and is the productof its base and upright.
But these are (still) to be known here. Thetefore, assum-
ing an optional number for the base, the upright will be
obtained on dividing the area 14 by it. One of these,
base and upright, being increased by 4, the cocflicient
of x will be the upright of the figure representing the
factum, because when four x’s were separated from the
factum-figure, its upright was lessened by 4. Similarly
the other being increased by 3, the coefficient of y, will
be the base  They are precisely the values of x and y.”

Algebraic Progf  “This is also geometrical in
origin, In this the values of the base and upright of
the smaller rectangle within the rectangle whose base
and upright are x and y respectively, are assumed to be
two other unknowns # and ».2 One of them being
incfeased by the coefficient of x will be the value of
the upright of the outer figute and the other being
increased by the coefficient of y will be taken to be the
value of the base of the outer figute. Thus y=# 4 4,
»x =v -+ 3. Substituting these values of the unknowns
x, 9, on both sides of the equation, the upper side will
be 3# 4 42 + 26 and the factum side will be w4 3#
+ 47+ 12. On making perfect clearance between
these sides, the lower side becomes #v and the upper
side 14. This is the area of that inner rectangle and it is
equal to the product of the coefficients of the unknowns
plus the absolute number. How the values of the
unknowns are to be thence deduced, has been alrcady
explained.”?

1 BBi, p. 126.

2 In the original text they are respectively »7 (for #ilaka) and pf
(for pitaka).

3 BBi, p. 127.
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Bhaskara II further observes :

“Thus the proof of the solution of the factum has
been shown to be of two kinds. What has been said
before—the-product of the coefficients of the unknowns
together with the absolute number is equal to the area
of another rectangle inside the rectangle representing
.the factum and lying at a corner—is sometimes othet-
wise. For, when the coefficients of the unknowns are
negative, the factum-rectangle will be inside the
other rectangle at one corner ; and when the coefficients
of the unknowns are greater than the base and upright
of the factum-rectangle, and are positive, the other
will be outside the factum rectangle and at a corner, as

(Figs. 17, 18).

C-momm = U >
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) |
x v
Fig. 17 Fig. 18 -

When it is so, the coefficients of the unknowns lessened
by the optional number and the quotient, will be the
values of x and 3.1

1 BBi, p. 127.
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