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PREFACE TO PART I

Tin: work, of which tlio part now issued is a first instal-

ment, has been compiled from notes made at various periods

of the last fourteen years, and chiefly during* the engagements

of teaching. !Many of the abbreviated methods and mnemonic

rules are in the form in which I originally wrote them for my

pupils.

The general object of the compilation is, as the title

indicates, to present within a moderate compass the funda-

mental theorems, formulas, and processes in the chief branches

of pure and applied mathematics.

Tlie work is intended, in the first place, to follow and

supplement the use of tl,ic ordinary text-books, and it is

arranged witli tlie view of assisting tlie student in the task of

revision of book-w^ork. To this end I have, in many cases,

merely indicated the salient points of a demonstration, or

merely referred to the theorems by which the proposition is

proved. I am convinced that it is more beneficial to tlie

student to recall demonstrations with such aids, than to read

and re-read them. Let them be read once, but recalled often.

The difference in the effect upon the mind between reading a

mathematical demonstration, and originating cue wholly or
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partly, is very great. It may be compared to tlic difference

between the pleasure experienced, and interest aroused, when

in the one case a traveller is passively conducted through the

roads of a novel and unexplored country, and in the other

case he discovers the roads for himself with the assistance of

a map.

In the second place, I venture to hope that the work,

when completed, may prove useful to advanced students as

an aide-memoire and book of reference. The boundary of

mathematical science forms, year by year, an ever widening

circle, and the advantage of having at hand some condensed

statement of results becomes more and more evident.

To the original investigator occupied with abstruse re-

searches in some one of the many branches of mathematics, a

work which gathers together synoptically the leading propo-

sitions in all, may not therefore prove unacceptable. Abler

hands than mine undoubtedly, might have undertaken the task

of making such a digest ; but abler hands might also, perhaps,

be more usefully emj^loycd,—and with this reflection I have the

less hesitation in commencing the work myself. The design

which I have indicated is somewhat comprehensive, and in

relation to it the present essay may be regarded as tentative.

The degree of success which it may meet with, and the

suggestions or criticisms which it may call forth, will doubt-

Ic: ! have their effect on the subsequent portions of the work.

With respect to the abridgment of the demonstrations, I

may remark, that while some diffuseness of explanation is not

only allowable but very desirable in an initiatory treatise,

conciseness is one of the chief reciuiremcnts in a work intended
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for tlio piii-i)OSos of revision and rcfiTeiico only. In order,

liowever, not to sacrifice clearness to conciseness, much moro

la])our has been expended upon this part of the subject-matter

of the book than will at first sip^ht be at all evident. The only

])alpal)le I'esult lK'in<^ a compression of the text, the result is

so far a neji^ative one. The amount of compression attained

is illustrated in the last section of the present part, in which

moro than the number of propositions usually given in

treatises on Geometrical Conies are contained, together with

the figures and demonstrations, in the s})ace of twenty-foui*

pages.

The foregoing remarks have a general application to the

work as a whole. With the view, however, of making the

earlier sections more acceptable to beginners, it will be found

tliat, in those sections, important principles have sometimes

been more fully elucidated and more illustrated by exam})les,

than the plan of the work would admit of in subsequent

di\isions.

A feature to which attention may be directed is the uni-

form system of reference adopted throughout all the sections.

AVithtlie object of facilitating such reference, the articles have

been numbered progressively from the commencement in

large Clarendon figures ; the breaks which will occasionally

be found in these numbers having been purposely made, in order

to leave room for the insertion of additional matter, if it should

be re(piired in a future edition, without distui-bing tlie oi'iginal

numbers and references. With the same object, demonstrations

and examples have been made subordinate to enunciations and

formidie, the former being [)rinted in small, the latter in bold
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type. By tliese aids, tlic intordcpcndoncc of propositions is

more reudily sliown, and it becomes easy to trace the connexion

Ijetwecn theorems in different branches of mathematics, with-

out the loss of time which would be incurred in turning to

separate treatises on the subjects. The advantage thus gained

will, however, become more apparent as the work proceeds.

The Algebra section was printed some years ago, and does

not quite correspond mth the succeeding ones in some of

the particulars named above. Under the pressure of other

occupations, this section moreover was not properly revised

before f>'oing to press. On that account the table of errata

will be found to apply almost exclusively to errors in that

section ; but I trust that the hst is e:s.haustive. Great pains

liave been taken to secure the accm^acy of the rest of the

volume. Any intimation of errors will be gladly received.

I have now to acknowledge some of the sources from which

the present part has been compiled. In the Algebra, Theory

of Equations, and Trigonometry sections, I am largely in-

debted to Todhunter's well-known treatises, the accuracy and

completeness of which it would be superfluous in me to dwell

upon.

In the section entitled Elementary Geometry, I have added

to simpler propositions a selection of theorems from Town-

send's Modern Geometiy and Salmon's Conic Sections.

In Geometrical Conies, the line of demonstration followed

agrees, in the main, with that adopted in Drew's treatise on the

subject. I am inclined to think that the method of that

author cannot be much improved. It is true that some im-

portant properties of the ellipse, which are arrived at in
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Drew's (\)nic Si^ctioiis tlirou^^h ccitnin iiitcnncdialc jn'oposi-

tions, can be dcMliicod at once from tlie circle ])y tlic metliod of

orthogonal projection. But the intcM-mediate propositions can-

not on that account be dispenscnl w itli, for they are of value in

th(Mns('lv(\^. ]\Ioreov(>r, tlie nietliod of projection applied to

Ili(> hyperbola is not so successful; because a pi-oj)erty which

lias first to bo proved true in the case of the equilateral

hyperbola, might as will be proved at once for the general case.

I have introduced the method of projection but spanngly,

alwavs giving prefei'ence to a demonstration which admits of

being n])])li(Ml in the same identical form to the ellipse and to

the hyperbola. The remarkable analogy subsisting between

the two curves is thus kept prominently before the reader.

The account of the C. G. S. system of units given in the

preliminary section, has been compiled from a valuable con-

tribution on the subject by Professor Everett, of Belfast,

published by the Physical Society of London.* This abstract,

and the tables of physical constants, might perhaps have found

a more appropriate place in an after part of the work. I have,

however, introduced them at the commencement, from a sense

of the great importance of the rcfonu in the selection of units

of measurement Avhich is embodied in the C G. S. system,

and from a belief that the student cannot be too early

familiarized with the same.

The Factor Table wliich folluAvs is, to its limited extent, a

rei)rint of Burckluirdt's " Tnhlr.^ ilrs diviscurs,'' published in

* "Illustrations of the Centimetrc-Grammc-Sccoiid System of Units."

London : Taylor and Francis. 1875.
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1814-17, which give the least divisors of all numbers from 1

to 3,036,000. In a certain sense, it may be said that this is

the only sort of purely mathematical table which is absolutely

indispensable, because the information which it gives cannot

be supplied by any process of direct calculation. The loga-

rithm of a number, for instance, may be computed by a

formula. Not so its prime factors. These can only bo

arrived at through the tentative process of successive divisions

by the prime numbers, an operation of a most deterrent kind

when the subject of it is a liigh integer.

A table similar to and in continuation of Burckhardt's has

recently been constructed for the fourth million by J.^Y. L.

Glaisher, F.R.S., who I believe is also now engaged in com-

pleting the fifth and sixth millions. The factors for the seventh,

eighth, and ninth millions were calculated previously by Dase

and Rosenberg, and pubhshed in 1862-05, and the tenth

million is said to exist in manuscript. The history of the

formation of these tables is both instructive and interesting.*

As, however, such tables are necessarily expensive to pur-

chase, and not very accessible in any other way to the majority

of persons, it seemed to me that a small portion of them

would form a useful accompaniment to the present volume.

I have, accordingly, introduced the first eleven pages of Burckh-

ardt's tables, which give the least factors of tlie first 100,000

integers nearly. Each double page of the table here pi-iiUed is

* Sec " Factor Table for the Fourth JifiJltoii." By James Glaisher, F.R.S.

London: Taylor and Francis. 1880. Also Camh. J'hil. Soc. Proc, Vol. TIL,

Pt. IV., and Nature, No. 542, p. 402.



an exact rcpi'otluctiuii, iu all l)iit tlie tyi'e, of ;i Hiii^^e (|iiar(o

I)ai^n: of JJm-c'kluirdt's great work.

It may l)e noticed licro that Prof. Lebesquo constructed

ji tal)le to a))out tliis extent, on tlio ])lan of omlttinj^ tlio

n)ulti|)les of seven, and tlius re<lucins^^ tlie size of tlie tabic

))y about one-sixtli.* ]3ut a small calculation is re(|uired iu

using the table which counterbalances the advantage so gained.

The values of the Gamma-Function, pages 30 and 31 , have

been taken from Legendre's table in his ^'Excrciccs de Calcnl

Infnjral,'' Tome I. The table belongs to Part II. of tliis

Volume, but it is placed here for the convenience of having

all the numerical tables of Volume I. in the same section.

In addition to tlie autliors already named, tlie following

treatises have been consulted—Algebras, by AYood, Bourdon,

and Lefebure de Fourcy ; Snowball's Trigonometry ; Salmon's

Higher Algebra ; the Geometrical Exercises in Potts's Euclid
;

and Geometrical Conies by Taylor, Jackson, and Renshaw.

Articles 2G0, 431, o69, and very nearly all the examples,

are original. The latter have been framed with great care, in

order that they might illustrate the propositions as completely

as possible.

G. S. C.

Hadi.ry, ^Iiiii>i,i;.sKx
;

AIu)/ 23, 18ba.

* "Tables divcrscs pour la decomposition des nombrca en leura HietLurs

premiers." Par V. A. Lebesque. Paris. 18G-ii.

b



EIUiATA.

Art. 13,



TABLE OF CONTEXTS.

PAUT I.

SECTION I.—MATHEMATICAL TABLES. Pap,

Introduction. The C. G. S. Systkm of Units—
Notation and Definitions of Units... ... ... ... 1

Physical Constants and Formulas ... ... ... ... 2

Table I.—English Measures and Equivalents in C. G. S. Units 4

II.—Pressure of Aqueous Vapour at different temperatures 4

III.—Wave lengths and Wave frequency for the principal'

lines of the Spectrum ... ... ... ... ... 4

lY.

—

The Principal Metals — Their Densities ; Coeffi-

cients of Elasticity, Rigidity, and Tenacity ; Expan-

sion by Heat ; Specific Heat ; Conductivity ; Rato

of conduction of Sound ; Electro-magnetic Specific

Resistance ... ... ... ... ... ... 5

V.

—

The Planets— Their Dimensions, ^Masses, Densities,

and Elements of Orbits ... ... ... ... 5

VI.—Powers and Logarithms of TT and e ... ... ... G

Vll.^Square and Cube Roots of the Integers 1 to .30 ... 6

VIII.— Common and Hyperbolic Logarithms of the

Prime numbers from 1 to 100... ... ... ... G

IX.

—

Factor Table—
Explanation of the Talilo .. ... ... ... 7

The Least Factors of all numbers from 1 to 00000... S

X.

—

Values OF THE Gamma-Function 30

SECTION IT.—ALriEBRA. x.^of
Ailiilo

Factors ... ... ... ... ... ... ... ... 1

Newton's Rule for expanding a Binniuial ... ... ... 12

Multiplication and Division ... ... ... ... ... 2S

Indices ... ... ... ... ... ... 20

Highest Common Factor 30



xii CONTENTS.

No. of

Artu-lo

Lowest Common Multiple 33

Evolution—
Square Root and Culic Root ... ... ... ... 3.5

Useful Transformations ... ... ... ... ... 38

Quadratic Equations 45

Theory OP Quadratic Expressions SO

Equations IN ONE Unknown Quantity.—Exam rr,i:s 54

Maxima and Minima by a Quadi-atic lv[uation 58

Simultaneous Equations and Exam it, i:a 59

Ratio AND Proportion ... ... ... ••• ••• ••• ^^

The /.• Theorem 70

Duplicate and Triplicate Ratios ... ... ... ... ^2

Compound Ratios ... ... ... ... ... •• '^

Variation ... ... ... ... ••• ••• •• ••• 7G

Arithmetical Progrkssion ... ... ... ... ... •-• 79

Geometrical Progression ... ... ... ... ... ... 83

Haumonical Progression 87

Permutations AND Combinations ... ... ... 94

Surds ... ...
108

Simplification of -/a+ \/fe and Va-^\/h 121

Simplification of Va-^ V~h 124

Binomial Theorem 125

Multinomial Theorem 137

Logarithms ... ... ••• •.• 142

Exponential Theorem 149

Continued Fractions and Convergents ... ... ... ... 160

General Theory of same ... ... ... 167

To convert a Series into a Continued Fraction ... ... 182

A Continued Fraction with Recurring Quotients ... 186

Indeterminate Equations ... ... ... ... ... ... 188

To reduce A Quadratic Surd to a Contini-kd Fkaction 195

To form high Convergents rapidly ... ... ... 197

General Theory ... ... ... ... ... ... 199

Equations—
Special cases in the Solution of Simultaneous Equations, .. 211

Method by Indeterminate Multipliers ... ... ... 21.S

^liscellancous Equations and Solutions ... ... ... "J 11

On Symmetrical E.xpressions ... ... ... ... iM'.l

Imaginahy Expressions ... ... ... ... ... ... 2"J;?

^IeT1K)D OF InDETEKMINATI; CoEl'FiiTlN IS ... ... ... ... 'I'.Vl

Method OK Proof BY I NDiCTioN ... ... ... ... ... 233

Parfial FuACTiONS.— F(tuR Cases 235

CONVEHGENCY AND J')lVEK(iENCY OF SeKIES ... ... ... ... 2:5;»

General Theorem of ^ (a:) ... ... ... ... ... 2li>



CONTENTS. XI

U

N... <.f

Expansion of a FKAnmN ... ... ... ... ... ... -1-H

Ui;cLKi:iN(i Skhiks -•'''I

Tho General Term ... ... ... ... ... ... -">7

Case of Quailratic Fuctiir with Iiiia^Miiary Koots... ... 258

Lagrann^e's Rule ... ... ... ... ... ... 203

SlMMATIOX OF SkRIKS BY THE ^[Ernon OF DlFFIMiKNCE.S ... ... 2r,t

Interpolation of a term ... ... ... ... ... 2t;7

DiRKCT Fact(M{ial Skrik.s ... ... ... ... ... ... 2(58

Invkusk Factorial Serifs 270

Su.MMATiON IJY Paktial Fractions ... ... ... ... ... 272

CoMi'OsiTE Factorial Series ... ... ... ... ••• 271

Miscellaneous Series—
Sams of tho Powers of the Natural Numbers 27G

Suraof (i+(a+ J)r+(a + 2(Z);-Hctc 27'J

Sum of n'' — n (7i— l)''4-&c. ... ... ... ... ... 2H.5

POLYOONAL Nu.MI!ERS ... ... ... ... ... 287

FuiURATE Numbers 289

Hypergeometrical Series 21>1

Proof that c" is incommensurable ... ... ... ... 21*5

Interest ... ... ... •• ••. ••• ••• ••• 2'JG

Annuities '^^^2

PROr.AniLITIES... ••• ••• •• ^*^^

Inequalities ... ... ... ••• 330

Arithmetic ^Ican > Geometric 'Mean ... ... ... 332

Arithmetic Mean of ?h*'' powers > m^^ power of A. ^l. ... 334

Scales OF Notation ... ... ... -.. ••• •^•i2

Theorem concerning Sam or Difference of Digits ... 3i7

Theory OF NuMRERS 3^9

Highest Power of a Prime ji contained in \m^ ... ... 305

Format's Theorem ... ... ... .... ... ... 3r)9

Wilson's Theorem ... ... ... ... ... •• 371

Divi.sors of a Number ... ... ... ... ... 374

S, (livisil.lebv2» + l 380

SECTION TIT.^THHOKY OF EQX'ATTON.S.

Factors OF AN EyuATiox ... ... ... ... -.. ••• '^'"^

To compute /(a) numcricallv 4i»3

Di.scriminati(m of Roots ... ... •.. ... ... ^O'J

Descartes' Rule OF SicNs 410

The DEiiiVED Functions of/ (.}•) ... ... .. -.. •• 424

To remove an assigned term ... ... ... ... 428

To transform an equation ... ... ... .. •• 430

Ei^TAL Roots OF an Equation ... ... ... •• ••• 4.32

Pra-tical Rule •^^''



XIV CONTEXTS.

No. of

Article.

Limits OF THE Roots 448

Newton's Method 452

Rolle'fi Tlieorem 454

Newton's Method OF Divisors ... ... ... ... ... 459

RECiPROC-\Ti Equations 4GG

Binomial Equations 472

Solution of .^"±1 = bj Do Moivre's Tlicorcm 480

Cubic Equ.viions ... ... ... ... ... ... ... 483

Cardan s Method 484

Trigonometrical Method ... ... ... ... ... 489

Biquadratic Equ.ations—
Descartes' Solution ... ... ... ... ... ... 492

Ferrai'i's Solution ... ... ... ... ... ... 496

Euler's Solution 499

Commensurable Roots 502

Incommensurable Roots—
Sturm's Theorem ... ... ... ... ... ••• 506

Fourier's Theoi-em ... ... ... ... ... ... 518

Lagrange's Method of Approximation ... ... ... 525

Newton's Method of Approximation ... ... ... 527

Fourier's Limitation to the same ... ... ... ... 528

Newton's Rule for the Limits of the Roots 5.30

Sylvester's Theorem ..

.

... ... ... 532

Horner's Method 533

Symmetrical Functions of the Roots of an Equation—
^ms of the Powei'S of the Roots ... ... ... ... 534

Symmetrical Functions not Powers of the Roots... ... 538

The Equation whose Roots are the Squares of the

Differences of the Roots of a given Equation

Sum of the m"' Powers of the Roots of a Quadratic

Equation

Approximation to the Root of an Equation through the

Sums of the Powers of the Roots

E-KPANsioN of an Implicit Function of a;

Determinants—
Definitions ...

General Tlieory

To raise the Order of a Dotonninant

Analysis of a Deterniinaut ...

Synthesis of a Detcrminiuit

Product of two Determinants of the 7i"' Onlei

Synimetrioal Determinants ..

Reciprocal Determinants ...

Partial and Ci>niplcnu'ntary DcierininnntH

545

548

551

55-i

556

564

568

569

570

574

575

576



CONTENTS. XV

\u. ..f

Aril. I.'.

Theorem of a Partial Ik-ciprocal Dclonuiiiunt ... ... .')77

Product of DiU'ercuce.s of /i Quantitius ... ... ... 578
Product of Squares of UiiTereiices of samo ... ... 579

Rational Algebraic Fraction expressed as a Ucleniiinant 5sl

Eli.mi.n.mio.n—
Solution of Linear Ecjuations ... ... ... ... r»s2

Orthogonal Transformation ... ... ... ... r)Sl.

Theorem of the ?i.—'2"' Power of a Deteniiinant... ... r).s5

Bezout's Method of Elimination ... ... ... ... 5SG

Sylvester's Dialytic Method ... ... ... ... 587
^lethod by Symmetrical Function.^ ... ... ... 5H8

Eliminatiox BY llu;iii:sT Cu.MMON Factou ... ... 5'J3

SECTION IV.—PLANE TRIGONOMETRY,
Angular Measuremext ... ... ... ... ... ... COO
Trigonometrical Ratios ... ... ... ... ... ... GOG

Formula) involving one Anglo ... ... ... ... G13
Formula; invoMng two Angles and Multii)lc Angles ... G27
Formula-" involving three Angles ... ... ... ... G7-1

Ratios OF 45°, G0=, 15°, 18°, <fcc GOO
Properties of THE Triangle 700

The s Formula) for sin ^^, &c. ... ... ... ... 70-i

The Triangle and Circle 709
Solution of Triangles—

Right-angled Triangles ... ... ... ... ... 718

Scalene Triangles.—Three cases ... ... ... ... 720

Examples on the same ... ... ... ... ... 859

Quadrilateral in a Circle 733

Bi.sector of the Side of a Triangle 738

Bisector of the Angle of a Triangle ... ... ... 71-2

Perpendicular on the Base of a Triangle ... ... ... 711i

Regular Polygon AND Cikcle 74G

Subsidiary Angles ... ... ... ... ... 749

Limits of Ratios 753
De Moivre's Theorem 75G

Expansion of cos ?i0, &c. in ])owcrs of sin and cosO ... 758

Expansion of sinO and cos in jiowers of ... ... 7G4

Expansion of cos" ami shi" U in cosines or sines of

multiples of (^ ... ... ... ... ... ... 772

Expansion of cos 7i0 and sin7j8 in powers of biuO ... 775
Expansion of cosn9 and sin «0 in powers of cos ... 779
Expansion of cos nO in descending powers of cos ... 780
Sin a -f- c sin (a + /3) + <tc., and similar series 783



XVI CONTENTS.

No. of

Artiol.;.

Gregory's Scries for in powers of tauO .. ... ... 71>1

Formulas for tlio calculation of TT ... ... .. ... 792

Proof that TT is iucomracnsural)lc ... ... ... ... 795

Sina; = ?i sin (a;+ a.).—Series for a; ... ... ... 790

Sum of sines or cosines of Angles in A. P. ... ... 800

Exi^ansion of the sine and cosine in Factors ... ... 807

Sin 1/0 and cosnf expanded in Factors ... ... ... 808

Sin(? and cos in Factors involving (^ ... ... ... 815

e'— 2cos6+ e"' expanded in Factors ... ... ... 817

De Moivre's Property of the Circle ... ... ... 819

Cotes's Properties ... ... ... ... ... ... 821

Additional Formulae ... ... ... ... ... ... 823

Properties of a Right-angled Triangle ... ... ... 832

Properties of any Triangle... ... ... ... ... 835

Area of a Triangle ... ... ... ... ... ... 838

Relations between a Triangle and the Inscribed,

Escribed, and Circumscribed Circles ... ... 841

Other Relations between the Sides and Angles of a Triangle 850

Examples of the Solution of Triangles ... ... ... 859

SECTION v.—SPHERICAL TRIGONOMETRY.

Introductort Theorems—
Definitions

Polar Triangle

Right-angled Triangles—
Napier's Rules

Oblique-angled Triangles.

Formula) for cos a and cos A
The (S Formula) for siniJ, sinJa, <tc. ...

sin^ — sin JB _ sin

sin a sin b sin c

cos 6 cos (7 = cot a sin i— cot ^1 sin

Napier's Formula) ...

Gauss's Formulas

Spherical Triangle and Circle—
Inscribed and Escribed Circles

Circumscril)cd Circles

Si'UERiCAL Areas—
Spherical Excess

Area of Sphei'ical Polygon ...

Cagnoli's Theorem ...

Lhuillior's Theorem

870

871

881

882

884

894

895

89G

897

898

900

902

903

904

905



CONTKNTS. XV 11

N... o<

ArtirUi.

PoLTiiEnnoNs ... ... ... ... ... ... ... i'06

The five RcgulaT Solids 1>07

Tlio Aiii^'lo hot woiMiAdjiuvnt Faces i'OO

Kadi i of Iii.siTil)L'd and Circiim.scriheil Spheres... ... 'JlO

SECTION VI.—ELEMENTARY GEOMETRY.

Miscellaneous Propositions—
Reflection of a point at a single surface ... ... ... 920

do. do. at Buccussive surfaces ... ... i.'2I

Relations between the sides of a triangle, the segments

of the base, and the line drawn from the vertex ... i'22

Equilateral triangle Yli'C; P.'P+ Pi>"+ i'0" 923

Sum of squares of sides of a quadrilateral ... ... 024

Locus of a point whose distances from given lines or

points are in a given ratio ... ... ... ... 92(3

To divide a triangle in a given ratio ... ... ... 930

Sides of triangle in given ratio. Locus of vertex ... 032

Harmonic division of base ... ... ... ...' 933

Triangle with Inscribed and Circum.scril}ud circles ... 935

TuE PRor.LE.Ms OF TUE Tangencies 037

Tangents and cliord of contact, fty =. u- ... . ... 0-48

To find any sub-multiple of a line ... ... ... 950

Triangle and three concurrent lines ; Three cases ... 951

Inscribed and inscribed circles ; /?, s— t/, &c. ... ... 953

Ni.N'E-PoixT Circle... ... ... ... ... ... ... 954)

CoNSTULCTiox OK Tkiano.les ... ... ... ... ... 900

Locus of a point from which the tangents to two circles

have a constant ratio .. . ... ... ... ... 003

CoLLiNEAR AND CoxcuKUENx Systems 007

Triangle of constant species circum.scribcd or inscribed

to a triangle ... ... ... ... ... ... \)77

Radical Axis—
Of two Circles l*8i

Of three Circles il'j7

Inveksiox—
Inversion of a point ... ... ... ... ... loOU

do. circle ... ... ... ... ... lii(,»0

do. right line ... ... ... ... ... Iiil2

Pole and Polar ... ... ... ... ... ... ... \u\C,

Coaxal Circles ... ... ... ... ... ... ... Iu21

Centres and Axes of Similitude—
Homologous and Anti-homuldgons pi )ini.s ... ... Iu37

do. do. chord.s ... ... Iu38

C



xvin CONTENTS.

Constant product of anti-siniilitudc

Circle of similitude

Axes of similitude of three circles

Gergonne's Theorem

Anharmoxic Ratio and Pencil

HoMOGUAi'Hic Systems of Points

Involution ...

Projection ...

On Perspective Drawing ...

Orthogonal Projection

Projections of the Sphere

Additional Tueorems—
Squares of distances of P from equidistant points on a

circle ...

Squares of perpendiculars on radii, etc. ...

Polygon n-ith inscribed and circumscribed circle

of perpendiculars on sides, &c....

Sum

No. of
Article.

1U43

1045

1046

1049

1052

1058

1066

1075

1083

1087

1090

1094

1095

1099

" SECTION VII.—GEOMETRICAL CONICS.

Sections of the Cone—
Defining property of Conic PS = ePM
Fundamental Equation

Projection from Circle and Rectangular Hyperbola

Joint Properties of the Ellipse and Hypereola—
Definitions ...

CS:CA:CX
F8 ±PS'=AA'
CS" = AC ^ PC
SZ bisects ^ QSP
If PZ be a tangent PSZ is a right angle

Tangent makes equal angles with focal distances

Tangents of focal chord meet in directrix

CN.CT =AC'
as :PS =e
NG : NC =^ PC' : AC
Auxiliai-y Circle

J'N: QN = PC :AC
P^- : AN. NA' = L'C- : JO'-

Cn.a = PC'

sy.s'Y' = PC'

PP = A(!

To draw two tangents

Tangents subtend equal angles at the focus

1151

1156

1158

1160

1162

1103

1164

1166

1167

1168

1169

1170

1171

1172

117;i

1174

1 1 7t;

1177

1178

1179

1180

Ubl



TON TK NTS.

No. of
Arti.l.'.

To draw two tanj^ents

1201

Asymptotic PHOi'F.nTir.s ok Titr TTviM;i;itor,\—
RN^-IW = IK" 11^:^

rn.p>=n(" ... n-i-

('!:= AC ll-<'

J'l> i.s i-Mnillcl (o the A.svni|.l..t.- 1I>^7

Qh'=r- '
"^^

rrj = n an.i (>v = <iV n^i^

Qn.Qx= Plr= UV'--(iV- ll'-'l

Arn.TK = cs'
^

••• ii-'"-i

Joint Propkrtiks of Ellipre and HYi-r.Kr.oLA rksi'mkh. Cox-

jniATK DiAMETKKS—
QV-.FV.VF'^CD'' :Cr^ 11^.'^

rF.cn = AC .no nin.

rF.ra = nc" ami ff-fo'^zAC ii ''•'»

PG.FG' = Cr)' ll'-'7

Diameter bisects parallel cliord.s ... ... ... ...
11'''^

Supplemental chord.s

Diameters arc mutually conjugate

CV.CT=r!F^ l-"-5

CN=dR, CB = pN l--^0.-S

CN^ ± CK' = A C\ FF- ^F}r- = FC- 1 '2' i7

CP± (72)^ = ^1dfc 7>C''' I'-^H

FS.PS' = cn' 1-^-5

OQ . Oq \ OQ' . O'i = CD- : CF- 121t

SR:QL = e
1-'1'»

Director Circle ... ... ••• •• ••• •• 1-''

Properties of Parabola deduced from the Ellipse ... 121'.»

The PAHAnoLA

—

Defining property I',S' = P.!/- •.• 1'2"20

Latus Rectum = 4JN ••
^'-^'^

If FZ be a tangent, I'SZ is a right angle 1
-•^3

Tangent bisects Z ,ST.U and fe';^ .If l—'i

ST=SF = Sa l--'^

Tangents of a focal fliord intersect at right anglos in

directrix ... ... ... ... .•• •• l'--*^

A^ = AT l--^27

NG = 2AS l^^*^

FN"- = iAS.AN l^^O

SA:SY:SF 1-'^^

SQ:SO:SQ' l--^-^

Z OSQ = OSQ' and QOQ' = { QSQ' 1 ^'-i-

DiAMF.TK.nS ... ... ... ... ... •• •• l-'^'^

The diameter bi.sects itanilh'l chords ... ... ... I'-^^S



XX CONTENTS.

QP=4P.9.Pr
0(2.0q :0(/ : Oq =rS iFS
Pai-abola two-thirds of circnmscribing parallelogram

Methods OF Drawing A Cuxic

To find the axes and centre

To construct a conic from the conjugate diameters

Circle OP Curvature

Chord of curvature = QV^ -^ PV ult

c • 1 1 . , CT)'' OD'- CL^
bemi-cliords ot curvature, —-—, rf^,=r, -77-r

C-P PJf AC
In Parabola, Focal chord of curvature = 4SP ...

do. Kadius of curvature = 2SP"' -^ ST
Common chords of a circle and conies are equally i

clined to the axis

To find the centre of curvature ...

MiSCKLLAM;OUS TlIKOKLMS

No. of
Article.

1239

1242

1244

1245

1252

1253

1254

1258

1259

12G0

12G1

1263

1265

1267



INDEX TO TROPOSITIONS OF EUCLID

REFERRED TO IX THIS WORK.

Tho references to Euclid are made in Koinan and ^Vrabic numerals ; e.g. (VI. 19).

BOOK T.

I. 4.—Triaui^'los arc equal and similar if two sides and the included

an<^le of each are equal each to each.

I. 5.—The angles at the base of an isosceles triangle are equal.

1. 0.—The converse of 5.

I. 8.—Triangles are equal and similar if tlie tliroe sides of eacli arc

ecjual each to each.

I. IT).—The exterior angle of a triangle is grojiter than the interior

and opposite.

I. 20.—Two sides of a triangle are greater than the third.

I. 26.—Triangles are equal and similar if two angles and one corres-

ponding side of each are equal each to each.

I. 27.—Two straight lines are parallel if tlicy make equal alternate

angles with a third line.

I. 29.—The converse of 27.

I. 32.—The exterior angle of a triangle is cqiial to tho two interior

and opposite; and tlic three angles of a triangle are equal

to two right angles.

C'riK. 1.—The interior angles of a ]-)olygon of n sides

= («-2)7r.

C'oK. 2.—The exterior angles = 27r.

I. 35 to 38.—Parallelograms or triangles upon tlie same or equal

bases and between tho same parallels are equal.

I. la.—The conq)lements of the parallelograms about the diameter

of a parallelogram are c([ual.

T. M

.

—Tlio square on the hypotenuse of a right-angled triangle is

equal to the scpiares <m the other sides.

I. 48.—The converse of 47.
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BOOK II.

II. 4.—If a, h arc the two parts of a riglit line, {a+ iy = a" -\-1nh-\-h-.

If a right line be bisected, and also divided, internally or

externally, into two nnequal segments, then
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II. 5 and 6.—The rectangle of the unequal segments is eqnal to the

difference of the squares on half the line, and on the line

between the points of section; or (a + i) (a-h) = a?— l/.

II. 9 and 10.—The squares on the same unequal segments are together

double the squares on the other parts ; or

II. 11.—To divide a right line into two parts so that the rectangle

of the whole line and one part may be equal to the square on

the other part,

II. 12 and 13.—The square on the base of a triangle is equal to the

sum of the squares on the two sides lolus or mimis (as the

vertical angle is obtuse or acute), twice the rectangle under

either of those sides, and the projection of the other upon it

;

or a- = h- + c''-21jccosA (702).

BOOK III.

III. 3.—If a diameter of a circle bisects a chord, it is perpendicular to

it : and conversely.

III. 20.—The angle at the centre of a circle is twice the angle at the

circumference on the same arc.

III. 21.—Angles in the same segment of a circle are equal.

III. 22.—The opposite angles of a quadrilateral inscribed in a circle

are together equal to two right angles.

ITT. 31.—The angle in a semicircle is a right angle.

111. 32.—The angle betAveen a tangent and a chord from the pcint of

contact is equal to the angle in the alternate segment.

111. 33 and 34.—To describe or to cut of ti segment of a circle which

shall contain a given angle.

III. 35 and 30.—The rectangle of the segments of any chord of a

circle drawn through an inta'ual or external point is eiiual

to the square of the semi-chord perpendicular to the

diameter through the internal point, or to the square of the

tangent from the external point.

III. 37.—The converse of 3G. If the rectangle be equal to the .scpiare,

tlic lino which meets the circle touches it.
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lUJUK IV.

IV. 2.—To insoi-ilif a trian^k' of yivcii form in a i-irclc

IV. 3.—To describu tlic same about a circle.

IV. 4.—To inscribe a circle in a triangle.

IV. 5.—To describe a circle about a triangle.

IV. 10.—To construct two-iiftlis of a right angle.

1\'. 11.—To construct a regular pentagon.

VI

VI. 4.

VI.

VI.

VI.

BOOK VI.

VI. 1.—Triangles and parallelograms of the same altitude arc

proportional to their bases.

VI. 2.—A right line parallel to the side of a triangle cuts the other

sides proportionally ; and conversely.

3 and A.—The bisector of the interior or exterior vortical angle of

a triangle divides the base into segments proportional to

the sides.

Eipiiangular triangles have their sides proportional honio-

logously.

5.—Tlie converse of -i.

0.—Two triangles are equiangular if they have two angles equal,

and the sides about them proportional.

7.—Two triangles are equiangular if they have two angles equal

and the sides about two other angles proportional, provided

that the third angles are both greater than, both less than,

or both equal to a right angle.

6.—A right-angled triangle is divided by the perpendicular from

the right angle upon the hypotenuse into triangles similar

to itself.

11 and l.'i.—Equal lyaralldoijrams, or trianjlcs which have two
angles equal, have the sides about those angles reciprocally

jiroportional ; and conversely, if the sides are in tliis i)ro-

jiDi-tion, the figures are eciual.

ll*.—Similar triangles are in the duplicate latio of their homo-

logous sides.

2".—Likewise similar jjiilyg'ons.

23.—E(|uiangular parallelogi-auis are in the ratio compoundetl of

the ratios of their sides.

B.—The rectangle of the sides of a (riangle is ccjual to the s(]uare

of the bisector of the vertical angle i>lus the rectangle of

the segments of the base.
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VI

VI.

VI.

VI.

VI.
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VI. C.—The rectangle of the sides of a triangle is equal to tlie rect-

angle under the perpendicular from the vertex on the

base and the diameter of the circumscribing circle.

VI. D.—Ptolemy's Theorem. The rectangle of the diagonals of a

quadrilateral inscribed in a circle is equal to both the

rectangles under the opposite sides.

BOOK XI.

XI. 4.—A right line perpendicular to two others at their point of

intersection is perpendicular to their plane.

XI. 5.—The converse of 4. If the first line is also perpendicular to a

fourth at the same point, that fourth line and the other

two are in the same plane.

XI. 6.—Right lines perpendicular to tlie same plane are parallel.

XI. 8.—If one of two parallel lines is perpendicular to a plane, the

other is also.

XI. 20.—Any two of three plane angles containing a solid angle are

greater than the third.

XI. 21.—The plane angles of any solid angle are together less than

four r'nAit ano'les.
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involved in its production, and the pressure of other duties,

must form the autlior's excuse.

In the compilation of Sections VIII. to XIV., the

following works have been made use of :
—

Treatises on theDifFerential and Integral Calculus, by liertratid,

Hymer, Todhunter, Williamson, and Gregory's Examples

on the same subjects; Salmon's Lessons on HigherAlgebra.

Treatises on the Calculus of Variations, by Jellett and Tod-

hunter ; Boole's Differeutial Equations and Supplement

;

Carmichtiers Calculus of Operations ; Boole's Calculus of

Finite Differences, edited by Moulton.

Salmon's Conic Sections; Ferrors's Trilinear Coordinates;

Kompo on Linkages {Fruc. of Roij. Soc, Vol. 23) ; Frost

aud Wolstenholme's Solid Geometry ; Salmon's Geometry

of Three Dimensions.

Wolstenholme's Problems.

The Index which concludes the work, and which, it is

hoped, will supply a felt want, deals with 890 volumes of

o2 serial publications : of tliese publications, thirteen belong

to Great Britain, one to Xew South Wales, two to America,

four to France, five to Germany, three to Italy, two to

Russia, and two to Sweden.

As the volumes only date from the year 180(j, the
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important contributions of Euler to the " Transactions of

the St. Petersburg Academy," in the last centur}^ are

excluded. It was, however, unnecessary to include them,

because a ver^- complete classified index to Euler's papers,

as well as to those of David Bernoulli, Fuss, and others in

the same Transactions, already exists.

The titles of this Index, and of the works of Euler

therein referred to, are here appended, for the convenience

of those who may wish to refer to the volumes.

Tableau general des publications de I'Academie Imperiale de

St. Pek'i-sbourg depuis sa fondation. 1872. [B.M.C.:* 11. Ii.

2050, e.]

I. Commentarii Academias Scientiarum Imperialis Petropolitanae.

1726-1746; 14 vols. [B.M.C: 431,/.]

II. Novi Commentarii A. S. I. P. 1747-75, 1750-77; 21 vols.

[B. M. C. : 431,/. 15-17, g. 1-16, h. \, 2.]

III. Acta A. S. I. P. 1778-86; 12 vols. [B.M.C: 431, /i.;3-8; or

T.C. 8,a. 11.]

IV. Nova Acta A. S. I. P. 1787-1806; 15 vols. [B. M. C. : 431,

A. 9-15, LIS; or T.G. 8, a.23.]

V. Leonliardi Euler Opera minora coUecta, vel Commentationes Aritli-

meticte collectse ; 2 vols. 1849. [B. M. rj. : 853 J-, ee.]

VI. Opera posthuma mathematica et pliysica ; 2 vols. 1862. [B.M.C:

8534,/]

VII. Opuscula analytica ; 1783-5; 2 vols. [B.M.C: 50,/. 15.]

Analysis infinitorum. [B.M.C: 529,6.11.]

G. S. C.

Endslkigh Gakdkns,

London, N.W., 1886.

British Museum Ctitiilogui
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MATHEMATICAL TAJiLKS.

INTRODUCTION.

The Ccnthnctrv-Grammc-Second system of units.

Notation.—The decimal measures of length are the kilo-

metre^ hectometre, decametre, metre, decimetre, centimetre,

miUimetre. The same prefixes are used with the litre and

gramme for measures of capacity aud volume; ^'^''f^
Also, 10' metres is deuouiinated a metre-><ei:en; 10"^ metres,

a seventh-metre ; lO^f grammes, a gramme-fy'tcen ; and so on.

A o;rainme-imttwH is also called a megagramme ; and a

milliontli-gramme, a microgramme ; and similarly "with other

measures.
Definitions.—The C. G. S. system of units refers idl pliy-

sical measurements to the Centimetre (cm.), tlie (Jramme (gm.),

and the Second (sec.) as the units of length, mass, and time.

Tlie quadrant of a meridian is approximately a metre-

seven. More exactly, one metre = 3-28U8Gyi feet = 89-370-i-j2

inches.

The Gramme is the Unit of mass, and the weight of a

gramme is the Uiiit qftveight, being approximately the wciglit

of a cubic centimetre of water; more exactly, 1 gm. =
15-432:U1) grs.

The jL/f;v' is a cubic decimetre: but one cubic centimetre

is the C. G. S. Unit of volume.

1 litre = -035317 cubic feet = '22000(37 gallons.

The l)i/ne (dn.) is the Unit offorce, and is the force wliicli,

in one second generates in a gramme of matter a velocity of

one centimetre per second.

The 7'i/v/ is the Unit of worlc and energg, and is the work
done by a dyne in the distance of one centimetre.

The absolute Unit (f atmospltcric pressure is one meg:ulyno

})er square centimetre = 71«'0G1 cm., or 2!>"."j14 in. of mercurial

column at 0" at London, where ^ = y8ri7 dynes.

Elasticitij of Volume = l\ is the pressure per unit area

upon a body divided by the cubic dilatation.

15
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Rigidity = n, is the shearing stress divided hj the angle

of the shear.

Young's Modiihifi = M, is the longitudinal stress divided

by the elongation produced, = 9nh -h (3/j+ ??).

Tenacity is the tensile strength of the substance in dynes

per square centimetre.

The Gramme-degree is the Unit of heat, and is the amount

of heat required to raise by 1° C. the temperature of 1 gramme
of water at or near 0°.

Thermal capacifi/ of a body is the increment of heat

divided by the increment of temperature. When the incrc-

raonts are small, this is the thermal capacity at the given

temperatu"e.

Specific heat is the thermal capacity of unit mass of the

body at the given temperature.

The Electrostatic iinit is the quantity of electricity which

repels an equal quantity at the distance of 1 centimetre mth
the force of 1 dyne.

The Electromagnetic unit of quantity = 3 X 1 0^'' electro-

static units approximately.

The Unit ofpotential is the potential of unit quantity at

unit distance.

The Ohm is the common electromagnetic unit of resistance,

and is approximately = \(f G. G. S. units.

The Volt is the unit of electromotive force, and is = 10^

C. G. S. units ofpotential.

The Weber is the unit- of current, being the current due to

an electromotive force of 1 Volt, with a resistance of 1 Ohm.
It is = -j^ C. G. S. unit.

Resistance ofaWiTe= Specific resistance X Length -r- Section.

Physical constants and Formulce.

In the lutitudc of London, cj = 3:2-1908t' feet per second.

= l>!^ri7 centimetres per second.

In latitude X, at a liciglit h above the sea level,

g = (98O-0U56— 2-.'')028 cos 2/\— -OOOOO:]/;) centimetres per second.

Seconds ])endaliim = (iJ9-85G2— -2536 cos 2\— -0000003 h) centimetres.

THE 7';.17i"i7f.— Semi-polar axis, 20,854890 feet* = G-3;.4ll x lO^centims.

Mean semi-equatorial diameter, 20,9_'G202 „ * = 3782t x 10"

Quadrant oi" meridian, 39-377780 x 10' inches* = TOOOlOO x lO" metres.

Volume, r08279 cubic centimetre-nines.

JIass (with a density 5g) = Six gramme- twenty-sevens nearly.

* These dimensions nro liikcn frjiu C'larko'a "Geodesy," 1880.
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Velocity in orbit = 2033000 ccntims per sec. Ohii.iuity, -2:f 27' lo".»

Aiii^ular vclucily of rotation = 1 -=- 13713.

Precession, t>0"'20.* Prounession of Apse, U"-2.'). I':cCentricity, e = -01079.

Centrifugal Ibrce of rotation at tlio equator, ;>-3'.)12 dynes per «^nunnio.

Force of attraction upon moon, -2701. Force of sun's attraction, -0839.

Katio of (/ to centrilu^ral force of rotation, g : rw* = 2H0.

Sun's horizontal parallax, h"7 to '.»'.* Aberrat i<.n, 20"-ll to 20"70.*

Semi-diameter at earth's mean distance, 1»>' l"b2.*

Approximate mean distance, 1>2,UUOUUO miles, or l"'i8 centimetre-tliirleens.t

Tropical year, 3Go2422l6 days, or 31,550927 seconds.

Sidereal year, 305-250374 „ 31,558150 „
Anomalistic year, 305-259544 days. Sidereal day, 8010 !• seconds,

TJllJ M0UN.—Uas8 = Earth's ma.'^s X -011304 = 0-98 10^ granimes.

Horizontal parallax. From 53' 50" to 01' 24".*

Sidereal revolution, 27d. 7h. 43m. 1 l-40s. Lunar month, 29d. 12h. l-lin. 2878.

Greatest distance from the earth, 251700 miles, or 4U5 centinieire-tens.

Least „ „ 225000 „ 303
Inclination of Orbit, 5° 9'. Annual regression of Nodes, 19° 20'.

Hulk.—{The yt'ar+l)-^19. The remainder is the Guhlen Number.

{Tlie Uulih'ti Number— 1) X 11-^30. The remainder is the Ejiact.

GRAVITATION.— Attraction between masses ) mm
clvues

m, m' at a distanco / j ~ ;-' x l-54o x It/

The mass which at unit distance (1cm.) attracts an eijual mass with unit

force (1 dn.) is = v/(l-543x 10^; gm. = 3iV28 gm.

Tr.rr^/i!.—Density at 0°C., unity ; at 4°, 1 0000l3 (Kupffer).

Volume elasticity at 15°, 2-22 X iV".

Compression for 1 megadyue per sq. cm., 4-51x10-* (Amaury and

Descamps).
The heat required to raise tlie temperature of a mass of water from 0° to

i° is proportional to <+ -00002/" + OiJ00003i* (Regnault).

G'yI-8'ii'iS'.—Expansion for 1° C, -003065 = 1-4-273.

Spccitic heat at constant pressure _ i.jAq

Specific heat at constant volume

Density of dry air at 0° with Bar. at 76 cm. = -0012932 gm. per cb. cm.

(Regnault).

At unit pres. (a megadyne) Density = -0012759.

Density at press, p = jtx 1-2759 X 10"'.

Density of saturated steam at t°, with j) taken) _ -7931 .09^;)

from Table 11., is approximately j (i -|- OUoOOO lO"*

SOUND.—Velocity = \/(elasticify of mediuvi -^ detusifij).

Velocity in dry air at t° = 3o2 10 ^(1 -+--00300/) centimetres per second.

Velocity in water at U' = 14;:U(J0 „ „

LIGHT.— A'elocity in a medium of absolute refrangibility /i

= 3004 X lO"'-^^ (Coruu).

If I' be the pressure in dynes per sq. cm., and / the temperature,

^i-l = 29(K; X lU-''i'-4-(l-|--OO30i;/) (Biot & Arago).

• These fliita iire from the "Nautical .Mmniiack" for 1S8:{.

t Inuisil ol' Vuuus, IbTt, " Aalruin. S c. XuI.lcs,'' Vols. 37, '<i8.
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Table I.

Various Measures and their Equivalents in C. G. S. units.

Dimensions.

1 inch = 2-5400 cm.
1 foot = 30-4797 „
1 mile = 160933 „

1 nautical do. = 185230 „

1 sq. inch = 6'451G sq. cm,
1 sq. foot = 929-01 „
] Pq. yard = 83G1-13 „
1 sq.mile = 2-59 X 10^°,,

1 cb. inch = 16387 cb. cm.
1 cb. foot = 28316
1 cb. yard = 761535 .,

1 gallon = 4541 „
= 277-274 cb. in. or the vo-

lume of 10 lbs. of water
at 62° Fall., Bar. 30 in.

1 grain

1 ounce
1 pound
1 ton

1 kilogramme
1 pound Avoir

1 pound Troy

Mas^.

= -06479895 gra.

= 28-3495
= 453-5926 „
= 1,016047 „
= 2-20462125 lbs.

= 7000 grains

= 5760 „

^'cIoclfl/.

1 mile per hour = 44704 cm. per sec.

1 kilometre „ = 27'777 „

Pressure.

1 gm.persq.cm.= 981 dynes per sq.cm,
1 lb. pcrsci.foot = 479 „
1 lb. per sq. in. = 68971
76 centimetres-)

of mercury [ = 1,014,000 „
at 0° C. )

^^^^- P^^ ^q- ^"- = 70-307 = ^
gms. per sq. cm. -014223

Force of Gravity.

upon 1 cramme = 981
1 grain = 6fi-^)Cj777

„ 1 oz. =2-7811x10*
„ 1 lb. = 4-4497 X 10-^

„ 1 cwt, =4-9837x10'
„ 1 ton = 9-9674 X 10»

WorJc (^ = 981),

1 gramme-centimetre = 981

dynes

erofs.

1 kilogram-metre

1 foot-grain

1 foot-pound

1 foot-ton

981 X 10-"^

1-937 xlO\,
1-356x10" „

= 3-04 XW „
1 'hor.se po-wer' p. sec. = 7-46x10®

ITeat.

1 gramme-degree C, = 42 X 10" ergs,

1 pound-degree =191x10- „

1 pound-degree Fah. = 106 x lU* „

Table II.

Pressure of Aqueous Vapour in

dynes per scquare centim.

Teinj).
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BURCKTIARDT'S FACTOR TABLES.

For all M.'.Mr.KKS FJiOM 1 to 9'JOOO.

Explanation.—Tlic tables give the least divisor of cvciy

number from 1 up to 99000 : but numbers divisible by 2, 3,

or 6 are not printed. All tlie digits of the number whoso
divisor is sought, excepting the units and tens, will be found

in one of the three rows of larger figures. The two remaining

digits will be found in the left-haiid column. The least divisor

will then be found in the column of the first named digits, and
in the row of the units and tens.

If the number be prime, a cipher is printed in the place of

its least divisor.

The numbers in the first left-hand column are not conse-

cutive. Those are omitted which have 2, 3, or 5 for a divisor.

Since 2"-. 3. 5"^ = 300, it follows that this column of numl)er3

will re-appear in the same order after each multiple of 300 is

reached.

Mode of using TnE Tables.—If the number whose prime

factors are required is divisible by 2 or 5, the fact is evident

upon inspection, and the dinsion must be effected. The
quotient then becomes the number whose factors are required.

If this number, being within the range of the tables, is yet

not given, if is dirisihle by 3. Di\'iding by 3, we refer to the

tables again for the new quotient and its least factor, and so on.

Ex.\Mrr,ES.— Required the prime factors of 3101-55.

Dividinrr by 5, the quotient is G2031. This number is within the range

of the tables. But it is not found printed. Therefore 3 is a divisor of it.

Dividing by 3, the quotient is 20G77. The table gives 23 for the least factor

of 2ftr)77. Dividing by 23, the quotient is SW.
The table gives 2i» for tlie least factor of H'.tO. Dividing by 20, the quo-

tient is 31, a prime number. Therefore 31015-3 = 3.5.23.20.31.

Again, roipiired tiie divisors of 02881. The table gives 203 for the least

divisor. Dividing by it, the quotient is 317. Referring to the tables lor 31 7,

a cipher is found in tbe place of the least divisor, and this signifies that 317

is a prime nundjer.

Tlitrefore 02S81 = 203 X 317, the product of two primes.

It may be remarked that, to have resolved 02881 into these factors with-

out the aid of tiio tables by the method of Art. 3G0, would have iuvolved

fifty-nine fruitless trial divisions by prime uumbei-a.
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FACTORS.

1 a'-h'= (n-b) («+6).

2 <r-lr = (a-b) {(r-\-(tb-irb-).

3 a'-\-i/' = (a-\-b) {(r-ab-\-b').

And generally,

4 «"-.ft" = (a—b) («"-^+ «"--/>+ ... + //-') iilwiiys.

5 a"— b" = {(i+ b) {a"-'— a"--b+...—b"-') if n be even.

6 a"-\-b" = {a-\-b) («"-^-a»- -6+...+6"-') if n be odd.

8 Gr+^O G^*+&) (^<'+ c) = .^•^^+(^f+ />+ r') .r-^

ft / I
/\-' '

I .1 / I 7' 'i-(bc-{-('a-\-(ih).i -\-(ihc.
9 (r^+ o)- = (r-\-'2(W-\-b-. ' V I I

/ .

10 {(i-b)- = ir-'lab-\-}r.

11 (^/+ 6)'' =: a'-^\\irb^?uib-^-b^ = a'^b'-^i\ab {a-\-b).

12 {a-bf = a'-[\(rb-{-{\alr-lf' = d'-li'-Wab {a-b).

Generally,

{a±by=a'±7(i'b-]-2\(vb-±'^'m'b'-\-:irui'b'±2](tW-^^

Newton's Rule ior forming- the coefficients : Miiltiphj (inn

coefficient by the index of the leading qnantifi/, and divide bij

the number of terma to that place to obtain the coefficient of the

term next following . Tims 21xr)-^3 gives 35, the following

coefficient in the example given above. See also (125).

To square a polynomial : Add to the square of each term

twice the 2)roduct of that term and every term that folloivs it.

Thus, {a-\-b-^r-]-f/y

= rt-+ 2rt(ft+ r-+f/) + //-+2/>(r+^/)+r-+ 2rr/+^/-.
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13 a'-f a-6"+6' = {a--^ah-\-h-) {ir-ab-\-¥).

14 a'+b' = {a'+ab V2-\-I)') (a'-ab V2+6^).

15 („.+iy=,.Hi+2, (.+iy=.'+-L+3(,,.+i).

16 {a-\-b-^cY = (r-\-b--]-c'+2bc-\-2('a-\-2ab.

17 (a-^b+ cf = a'-\-b'-[-c'-\-',^ {b'c^bc--\-c'a-\-ca'

^a-b+a¥)-\-6abc.

Observe that in an algebraical equation the sign of any
letter may be changed throughout, and thus a new formula
obtained, it being borne in mind that an even power of a

negative quantity is positive. For example, by changing the

sign of c in (16), we obtain

{a-\-b-cf = a^+ h'+ c'-2bc-2ca+ 2ab.

18 a'+b'-c'+2(ib = {a-^b)--c' = («+6+c) {a+b-c)

^y (1).

19 (r-b'-r-\-2bc = a'-(b-cy = (a+ b-c) {a-b-\-c).

20 a'-\-b'-\-c'-^abc = {a-^b+c) {a'-\-b'-\-c'-bc-ca-ab).

21 bc'+b'c-\-ca'+chi+ab'-\-(rb-{-a'-\-b'-\-e'

= {a-^b+c^((r+b'-^r).

22 bc'-\-b-c-\-c(r+c'a+ ab''-^a-b+ :\(ibc

= {a-\-b-\-c){bc-}-ca-\-ah).

23 bc'-\-b'c+ m''-\-c'a-\-ab'+(rb+ 2abr={b-{-c)(c-\-((){a-j-b)

24 b(r+ b'c+ cd'+ c'n+ ab-+ (rb— 2abe— ({'— h'— r

'

= {b^c-a) {c^(i-b) {(i^b-c).

25 bc^-b^c+ ca'-c^a-irab'-irb = (b-c) (c-a) (a-b).

26 2b'c'-\-2c'a'-Jr2a'b~-a*-b'-c'

= {(i+ b-]-c) ib-\-c-a) (c+a-b) (a-\-b-c).

27 .rH2.t%+2.r/+ // = (,,+//) C^-•+ .^//+ /^).

Generally for the division of {x+ //)" — {x" -\- //") by .r- + xi/ -\-
y-

see (545).
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MrLTirLTCATTON AXD DTVTSTOX,

15YTHE MKTIKil) OF DETACH HI) roKFFICI KNTS.

28 Ex. 1 (a*-SaV + 2ab'+ b*) x (a'-2a6»-26').

1+0-3+2+1
l+U-2-2

1+0-8+2+1
-2-0+6-4-2

-2-0+6-4-2

1+0-5+0+7+2-6-2

Result a^-5aV- + 7a%* + 2o:'b'-Gab"-2b'

Ex. 2: (x^-bx' + 7x'+ 2x'-6x-2)-r-(x*-Sx' + 2x+ l).

1+0-3+2+1) 1+0-5+0+7+2-6-2(1+0-2-2
-1-0+3-2-1

0-2-2+6+2-6
+2+0-6+4+2

-2+0+6-4-2
+2+0-6+4+2

Result a;»-2.i— 2.

S(/ntlift}r Dici.sinn

.

Ex. 3: EmployiTig the ]a.st example, the work stands thus,

1+0-5+0+7+2-6-2
0+0+0+0
+3+0-6-6

-2+0+4+4
-1+0+2+2

-0
+3

-1

1+0-2-2

Re.sult [See also (248).

Note that, in all operations with detached coefficients, the result mn.st he

written out in successive powers of the quantity which stood in its successive

powers in the original cxpre.-^sion.
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INDICES.

29 Multiplication: a}x c(^ = a}'^^ = a^, or ^^a^;

a'
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32 Otherwise. — To form the H. C F. of two or more
algebraical expressions : Sfpanite the e.rprcHtiions into their

simplcd fdctorx. The 11. C. F. will be the product of the

factors co)nmoiL to all the exjyrGSsionSy taken in the loivest

powers that orcur.

LOWEST COMMON MULTIPLE.

33 The L. G. M. of two quantities is equal to their product

dicided hi/ the E. G. F.

34 Otherwise.— To form the L. C. M. of two or more
algebraical expressions : Separate them into their simplest

factors. The L. G. M. will he the product of all the factors

that occur, taken in the highest powers that occur.

Example.—The H. C. F. of a\h-xfchl and aXh-xfc'e is a=(6-.r)V
and the L. C. M. is a'{b — xY'c'de.

EVOLUTION.

To extract the Square Root of

., 3a \/a S\/a , 41a , ,"'-—^ 2- + 16-+'-

Arranging accoi'ding to powers of a, and reducing to one denominator, the

16a2-24;a'-|-41a-24a5 +16
expression becomes

16

35 Detaching the coefficients, the work is as follows :-

16-24+ 41 -2-4 + 10 (4-3 + 4

16

8-3
-3

-24+ 41

24- 9

8-6 + 4 32-24 + 16

' -32 + 24-16

D li. 4a — 3o* + 4 T / , 1Result —'— =a— ^v/a+l



38 ALGEBRA.

To extract the Cube Root of

37 Sx'- 36a;'' ^ij + 66x'y- 63xhj ^y + 33,cy- 9^-^y + y\

The terms here contain the successive powers of .r and \/y ; therefore,

detaching the coefficients, the work will be as follows:—
I. II. III.

6-3) 12 8-36 + 66-63+33-9 + 1(2-3 + 1

-6) -18+ 9^
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42 0^'+.y)' = (.r-//)-'+4r//.

43 {^-f/Y = (.r+//)'-4f//.

44 Examples.

2 yg^- b' + ^6'- x' _ 3 y/g^- //- + y/r-- ^Z'^

v/c^-o^ y/c^-rf^

9(r-a;^) =4(r-tZ-),

,[38.

a^ = y^c'+w

To simplify a compound fraction, as

' .,+ 1
a^— ab + h- a- + ah + li-

1 1

a*— a6+ 6* a*+ ab + b''

multiply the numerator and denominator by the L. C. M. of all the smaller

denominators.

Result
(a^ + ab + b') + (a'-ab + b')^a- + lr

(a- + ab + b')-(a--ab \-b') ab

QUADKATIC EQUATIONS.

'2(1

46 If «cr-+2^>( -fr = (I ; that is, if the coefficient of ,r be

an even number, .i' = .

47 Method of solution without the formula.

Ex.: 2.r— 7« + 3 = U.

7 3
Divide by 2, x'— -—x+ - = 0.

2 <j
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n w ^1 2 7
,

/7\- 49 3 25
Complete the square, x^ x-\- { = = —-

.

2 \ 4 / 16 2 16

Take square root, re— — = ± —

,

4 4

.r = ^^ = 3 or -"4 2*

48 Rule for "completing the square" of an expression like

33^— fci' : Add the square of half the coefficient of x.

49 The solution of the foregoing equation, employing formula (45), is

_fc±v/fe2_4^^ 7^y49_24 7±5 o 1

"
=

2a
= 4 =-^ = ^ "'

2-

THEORY OF QUADRATIC EXPRESSIONS.

If a, /3 be the roots of the equation ax--\-hx-\-c = 0, then

50 a.v'-]-kv-{-c = a {a—a){.v-S).

51 Sum of roots a+/8 = — -.
a

52 Product of roots a/3 = -.
a

Condition for the existence of equal roots

—

53 b^—4<ac must vanish.

54 The solution of equations in one unknoAvn quantity may
sometimes be simplified by changing the quantity sought.

Ex.(l): 2.+ «»L-l+ l^Lte =14 (1).
Sx + 1 dx' + bx—l

6.^- + 5.g-l ^ 6(3j; + 1) ^ j^
3a;+ l 6ar + bx— l

-^^^^ (^)-
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thus y + - = i^-

y

y having been dcUrininetl from this quadratic, x is afterwards found from (2).

55 Ex.2: a;H -, +X+-- =4.

(..!)%(.. l) = c.

Pat x-\ = ij, and solve the qnadi-atic in y.
X

56 l'^>i- '^ x' +x+^^2x' + x + 2 = -iy + 1

2x- + X + S v/2.«* + x+ 2 = 2,

lx^ + x + 2 + 3y/2.x^ + x + 2 = 4.

Put v2x*-\-x + 2 = y, and solve the quadratic

57 Ex.^: ^^"+3|v.= ¥-'

'i , 2 ? Iti
'' + 3

' = 3
2.1

A quadratic in y =z x^

.

58 Tojind Md.vitnd (ind MininKt rahn'.s hi/ menus of a

Q 1 1 (I (h'd t ic Ju/uatiou.

Ex.—Given ;/ = 3.r + G.c + 7,

to find what value of x will make y a maximum or mitiimnm.

Solve the quadratic equation

3.c' + 6a; + 7-y = 0.

Tl,>,s ^^ -3±y3y-12
,.45

o

In order that .r may be a real quantity, we must have '^y not less than 12
;

therefore 4 is a minimum value of //, and the value of x which makes y a

minimum is — 1.

O
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SIMULTANEOUS EQUATIONS.

General solution icith tu-o unknotvn quantities.

Given

59 (ti^v-\-b,ij = Cil ^^. — c,b,—cA
^

^ c,a,-c,a,

a.a-[-b,i/=eJ'
' a^h.—a,h^ h^a.—b^a^

General solution with three unknown quantities.

60 Griven chA^-{-b,y-^c,z = (U\

a..v-\-biy-^c.z = dj

_ d,(h,c,-hc.?i+ d, {b,e,-b,Cs)+ (h (brC,-b,e,)
^

«i {b-2Cz—bsCo)-{-ao {hc^—b,Cs)-\-a3 {biC.— b.eyY

niid symmetrical forms for y and z.

Methods of solving simultaneous equations bettceen two

unknown quantities x and y.

61 I. By substitution.—Find one unhioivn in terms of the

other from one of the tivo equations, and substitute this value

in the remaining equation. Then solve the resulting equation.

Ex.: .r + 52/ = 23 (1)]
77/ = 28 {-I)]'

From (2), y = 4-. Substitute in (1) ; thus

.i- + 20 = 23, .r=3.

62 IL By the method of Multipliers.

Ex.: '6x + 5y = 36 (1) \

2x-:hj= 5 (2)V
Eliniinitc .» l)y multiplyincr oq. (1) by 2, and (2) by 3; thus

6x + l0y = 72,

6x— % = 15,

I9y = 57, by subtraction,

.'/= 3;

,T = 7, by substitution in Lt[. (2).
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63 Til. />// clKm^,in^: thr (/unnfitirs .sou;iIif.

Ek. 1: x-y= 2 (1))

.r-2/- + a- + v/ = :iO (-1))'

Let .(• + //
= ", x— if = i\

Substitute tliese valiius in (1) and (2),

uv + u = 30 )

n = 10
;

x-\-i/ = 10,

From which x = 6 and // = -i.

64 Ex.2: 2 -Ltl + 10 ^l^JL = 9 (1)^* X—
1J

x+ y

z' + 7>r = 0i (2)

Substitute ;: for ^^^' in (1) ;x-y

,. 2.-^1^ = 0;

2-^-92+10 = 0.

From which z = ~ or 2,

—!^ = 2 or —

.

x-y I

7
From which x — '.iy or — »/.

Substitute in (2) ;
tlius .'/ = 2 and x = 6,

or ^ ~ 77?
^"'^ '*^~ ~^'^'

65 Ex.3: 3.j; +5^= a-y (1) )

2x + 7y = 3.vy (2))-

Divide each (juantity by xy
;

^+ ^ =1 (^))
y « f

- + ^=3 (I, •

V *' I

Multiply (o) by 2,- and (I) by 3, and by subtraction y i.s eliminated.
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66 IV. % substituting y = tx, tfhen the equations are

homogeneous in the terms tvhich contain a' and y.

Ex.1: 52x^ + 7.ry = 52/^ (1)7

^x-^ = n (2)5"

From (1), h^x' + ltx' = 6fx' (3)
j

and, from (2), bx-Stx = 17 (4))'

(3) gives 52 + 7t = 6t\

a quadratic equation from whicli t must be found, and its value substituted

in (4).

X is thus determined ; and then y from y = tx.

67 Ex.2: 2x'' + xy + '3y' = l6 (1)
|

3y-2x= 4 (2)3'

From (1), by putting y = tx,

x'(2 + t + 5t') = 16 (3)) .

from (2), a. (3^-2)= 4 (4)3 '

squaring, a;' (9^^-12^+ 4) = 16 ;

9t'-12t + 4^ = 2 + t + Sf,

a quadratic equation for t.

t beino- found from tliis, equat'on (4) will determine x
;
and finally y — tx.

RATIO AND PROPORTION.

68 \i a\h v. e \ d\ then ad = be, and —= — ;

a-\-b __c-\-d ^ a— b _ e—d ^
a-^b _ e-\-d

~~b d ' b ~ d ' a— b c—d

69 " T = 17
=7 = '^"

'

""" T - i+</+/+&c.-

General theorem.

70 If ^ = 4 = 4 := kv. = k say, then
b d J

. ^ ^ pa''+ f/c"-]-re"+ Szc. } I

lpb"-\-qd"-\-rf"-^&G.))

where /), q, r, Sic. arc any quantities ^vhatever. Proved as

in (71).
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71 Rile.—To verify any equation between such proportional

quantities: Suhsfifufe for d, r, c, (Jv., their eqiiicalenta kh, Inly

kj\ ^'c. respect Ivcl ij, in the given equation.

Ex.—If a '.h '.: c : d, to show that

y/g—

6

_ \/a— \/b

^c — d Vc— -/d

Fni kb for a, and kd for c ; thus

^/a^> ^/kb-b s/by/k-i s/b

x/c-d -^kd-d Vds/k-l ^d

Va-K/h ^ Vkh-Vb _ v/6 ( x/k-1) ^ v^
Vc-Vd s/kd-Vd ~VdWk-\) -/d'

Identical results being obtained, the proposed equation must be true.

72 li a : b : c I d '. e &c., forming a continued proportion,

then a : c :: cr : fr, the duplicate ratio of a I b,

a : di: a^ : b^, the triplicate ratio of a I b, and so on.

Also \^a : ^^h is the subduplicate ratio of a : 6,

a' : h^ is the sesquiplicate ratio oi a : h.

73 The fraction -^ is made to approach nearer to unity in

value, by adding the same quantity to the numerator and

denominator. Thus

-—!— IS nearer to 1 than — is.

6+ aj f)

74 Def.—The ratio compounded of the ratios a : b and c : d

is the ratio ac : Id.

75 li a : b :: c : d , and a' : b' :: c' : d' ; then, by compound-

ing ratios, aa : bl/ :: cc' : dd'.

VARIATION.

76 If rt oc c and Ij a c, then (a+ b) cc c and \/ab a c.

77 If ^ Gc^ 7 i.u LI 1 "' '^

• •
^ - [ , then ac cc bd and — oc —

.

and coed) c d

78 If <t cc^) ^ve may assume a = hib, where m is some constant.
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ARITHMETICAL PROGRESSION.

Generalform of a series in A. P.

79 a, a-\-(I, a+ 2f/, «+ ;W, a-\-{n — l)d.

a = first term,

d = common difference,

/ = last of n terms,

s = sum of n terms ; then

80 I =a-[-{n-l)d.

81 * = («+ /)I

.

82 s={2a-\-{n^l)d}^.

Proof.—By writing (79) in reversed order, and adding both series

together.

GEOMETRICAL PROGRESSION.

Generalform of a series in G. P.

83 a, ar, ar, ar^, «r" "^

a = first term,

r = common ratio,

I = last of n terms,

s = sum of n terms ; then

84 l = ar"-\

85 s = a or a
r—

1

1—

r

If r be less than 1, and n be infinite,

86 s= -i^, since r" = 0.
I—

r

Proof.— (85) is obtained by multi]>lyiiig (83) by r, and siil)(racting one
series from the other.
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HARMONICAL PROGRESSION.

, -, — , -y, &G. are in Aritb. Prog.,

87 cf, b, Cy d, &c. are in Harm. Prog, when the reciprocals

i_ 1_ 1 1
a b r a

88 Or when a : b :: a -b : b— c is tlie rehition subsisting

between any three consecutive terras.

89 «^'' term of the series = r^ ; -. [87, 80.
{n-l)a-{n-2)

90 Approximate sum of n terms of the Harm. Prog.

, &c., wlien d is small compared with a,

ft+ rf' a+ 2d' a-^Sd

_ {a-{-(l)"-a"

1 2

Proof.—By takintr instead the G.P.
, + 7——77-0 + ;

—

r^TK + ••• •

91 Arithmetic mean between a and h = —^^.

92 Geometric do. = \/ab.

93 Harmonic do. = ——r.
<t-\-h

The three means are in continued proportion.

PERMUTATIONS AND COMBINATIONS.

94 Tlie nui'iber of permutations of v things taken all at a

thne = n{u-\){n^'>) ...\\.'lA = n\ or ;i"".

Proof hy IxnucriON.—Assume the foniiiila to ho true for n things.

Now take ?i + l things. After eaeh of those the remaining n things may bo

arranged in n ! ways, making in all nX n\ [that is (»t + l) !J
permutations of

w + 1 things; therefore, &c. See also (23."^) for the mode of proof by

Induction.



4S ALGEBRA.

95 The number of permutations of n things taken r at a

time is denoted by P {n, r).

P {n, r) = n (w-1) {n-2) ... (w-r+l) = n(^>.

Proof.—By (94) ; for («—r) things are left out of each pei-mutation
;

therefore P (n, r) = nl -i- {n—r)l .

Observe that r = the number of factors.

96 The number of combinations of 7i things taken r at a

time is denoted by G (n, r).

r r,, r) - n{n-l)in-2) ...(n-r-j-l) _ n^^^

^ ' ^

~
1.2.3. ..r = 7T

= C {n, n — r).
r\ {n— r)

For every combination of r things admits of r ! permuta-

tions; therefore G {n, r) = P{ii, r) -^ r!

97 G {n, r) is greatest when r = ^u or i{n + \), according

as n is even or odd.

98 The number of homogeneous products of r dimensions

of n things is denoted by H(y, r).

^ ^ ' * ^
1.2...r

=
V\

•

When r is > n, this reduces to

(>-+l)(>'+2)...(/^+ >— 1)
99

(V-I)!

PrOOK.—Jl{n, r) is equal to the number of terms in the pi-otluct of the

expansions by the Bin. Th. of the n expressions (1— a.i')~\ (1 — Z/.j)"\

(1 — cr)"', &c.

Pnt a=-h = c = &c. = 1. The number will be the coenTicIeut of x'^ in

(1-a:)-". (128, 129.)
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100 The niimbor of perimitations of n tliin<j:s tjiken all to-

gether, when a of them are alike, h of them alike, c alike, &c.

a ! ^1 c! ... &c.

For, if the a things were all different, they would form a!

permutations where there is now but one. So of b, c, &c.

101 The number of combinations of n things r at a time,

in which any^ of them will always be found, is

= C(n-p, r-p).

For, if the p things be set on one side, we have to add to them
r—j) things taken from the remaining n—2) things in every

possible way.

102 Theorem: C(n-\, /— 1)+ C(;t-1, r) = C{u, >•)•

Peoof by Induction ; or as follows : Put one out of n

letters aside; there are G{u — l,r) combinations of the re-

maining 71— 1 letters r at a time. To complete the total

C(n, /•), we must place with the excluded letter all the com-

binations of the remaining n—l letters /*— 1 at a time.

103 If there be one set of P things, another of Q things,

another of ii things, and so on ; the number of combinations

formed by taking one out of each set is = FQIl ... &;c., the

product of the numbers in the several sets.

For one of the P things will form Q combinations with

the Q, things. A second of the P things will form Q more

combinations ; and so on. In all, PQ combinations of two

things. Similarly there will be PQE combinations of three

things; and so on. This principle is very important.

104 On the same principle, if p, 7, r, &c. things bo taken

out of each set respectively, the number of combinations will

be the ])roduct of the iiuniberR of the separate combinations ;

that is, = C{rp) . ('{Qr/) . C{Rr) ... Sec.
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105 The number of combinations of n things taken m at a

time, when p of the n things are alike, q of them alike, r of

them alike, &c., will be the sum of all the combinations of

each possible form of m dimensions, and this is equal to the

coefficient of x'" in the expansion of

(l^-.^' + ,T2+•••+.^'')(l+c^'+ cT'-h...+a?'')(l^-T^-.^''+•.+.^'•)••••

106 The total number of possible combinations under the

same circumstances, when the n things are taken in all ways,

1, 2, 3 ... 7i at a time,

= (p+l){g+l){r+l)...-l.

107 The number of permutations when they are taken m
at a time in all possible ways will be equal to the product of

m ! and the coefficient of x'" in the expansion of

&c.

SURDS.

108 To reduce >/2808. Decompose the number into its

prime factors by (360) ; thus,

V28iJ8 = y2\ 3M3 = 6 Vl3,

^a'" 6'" c^ = a'» b'^" c = fV' h' c' h c- = a' h" c' Vh6'

109 To briug 5^3 to an entire surd.

5y;3 = vo'. 3 = yi875,

a;» y^ z' = a;- y^ z^" = V^z^.

110 To rationnllse fractions hnvinf:; .surds in their

drnnminators.

j_^ y?. 1 ^ ^49 ^ y4o
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111 .J3^o=^^r-'<"^^'^°''
since (9- ^80) (9 + ^80) = 81 - 80, by ( 1 )

.

^^^ l+2y8-v/2 (l + 2y3)'--J 11 + 4/3

^ (1 + 2/3+^2) (11-4/3)
73

1^3
?/3-v/2 3*--i*"

Put 3* = a-, 2' = ij, and take G the L.C.M. of the deriominafors 2 and 3, tlien

„ . 1 3' + 3«2'+ 352*+ 3'2» + 3«2« + 2*
thereiore — -= z

3i-2* 3^-2'

= 3 y9 + 3 y72 + 6 + 2 yG48 + 4 y3 + 4 v/2.

114. . Here the result will be the same as in the last exainplo^^^ y3+/2
if the signs of the even terms be changed. [See 5.

115 A surd cannot bo partly rational ; that is, y/a cannot

be equal to >^''h+ c. rrovcd by squaring.

116 'J he product of two unlike squares is irrational;

^7 X y/'^ = ^/2], an iri-atioual (piantity.

117 The sum or difference of two unlike surds cannot

produce a single surd; that is, \/a-\-x/h cannot be equal

to \/c. 15y S(jnaring.

118 If " -\- \/m = J'i-^'^n; then a = h and w = n.

Theorems (115) to (118) are i)roved indirectly.

119 If ^/a+ W>= ^.c-\- s^ij,

then

By squaring and by (HH).
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120 To express in two terms \/7 + 2V6.

Let v/7 + 2v/6= ^x+^tj;

then x + y = 7 by squaring and by (118),

and X-2J = ^7'-{2^6y = a/49-24 = 5, by (119) ;

.•. ic = 6 and y = 1.

Result ye+i.

General formula for the same

—

121 \/a±^b=\/i{a-{-x/a'-b)±\/i{a-x/a'-b).

Observe that no simplification is effected unless a'— b is a
perfect square.

122 To simplify v/a+ Vb.

Assume \/a-\- Vb = x-{- \^y.

Let c = y/a^—b.

Then x must be found by trial from the cubic equation

4cr^— SccV = a,

and 7/ = cv'^—c.

No simplification is effected unless a^—h is a perfect cube.

Ex.1: V7 + 5^2 = x+y7j.

c= ^49-50= -1.

4.(;* + 3.t; = 7 ; .-. x=\, y

Result 1 + v/2.

Ex. 2: y9v/a— 11n/2 = v/-T+ v/y, two different surds.

Cubing, 9 v/3- 11 v/2 = a; v/.x' + 3.« y?/ + Sy ^x ^y^y,

.-. 9v/3 = (.T + %)ya;-) . .^^o^

liy2 = (:3x- + 2/)y2/)
' ^ ^

.-. .r = ."{ and ?/ = 2.
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123 To simplify v/(12 +4y3 + '4yr) + 2yi5).

Assume v/(12 + 4v/3 + 4v/5 + 2yi5) = ^x^ ^y-\- ^z.

Square, and equate corresponding surds.

Result v/3+yi+-/5.

124 To express \/A+ B in the form of two surds, wliere A
and B are one or both quadratic surds and n is odd. Take

(/

such that q (A^—B-) may be a perfect n^^ power, say />", by

(361). Take s and t the nearest integers to V'y (^4 + /?)''

and Vq{A--B)\ then

2Vq

Example: To reduce y89y8 + lU9y2.

Here A =89^3, B = 109^/2,

A''-B' = l; .-. p=l and q = I.

vq (A +By = 9+f \ f being a proper fraction ;

^qiA-By=l-f\' .-.8=9,1=1.

Result i(^9 + l + 2±v/9 + l-2) = y3+v/2.

BINOMIAL THEOREM.

125 (n+by =

126 General or (/•4-l)^" term,

r!

127 or ,
''[,

,

a"-n/

if n be a positive integer.

If b be negative, the signs of the even terms will be changed.
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If n be negative tlie expansion reduces to

128 {a+br^ =

129 General term,

v\

Elder's proof.—Let the expansion of (1 +.'«)", as in (125),

be called /(7i). Then it may be proved by Induction that the

equation f{'>n)Xf{n) =f{m+ n) (1)

is true when m and n are integers, and therefore universally

true ; because the form of an algebraical product is not altered

by changing the letters involved into fractional or negative

quantities. Hence

/(m+ ?i+j9+ &c.) =fim)Xf{n)Xf(p), &c.

Put 7n = 71= 2^ = &c. to Jc terms, each equal —, and the

theorem is proved for a fractional index.

Again, put —n for m in (1) ; thus, whatever n may be,

f{-^i)Xf{n)=f{0) = l,

which proves the theorem for a negative index.

130 For the greatest term in the expansion of (a-^-by, take

... -, ^ c {n^-l)b {n-l)b
r = the mtegral part of ^^

—

-—f- or ^^

f—

,

° ' a-{-b a — o

according as n is positive or negative.

But if b be greater than o, and n negative or fractional,

the terms increase without limit.

Required the 40th term (.f ( 1 —

Examples.

Hero r = 39 ; a = 1 ; b = - '- ; n= 12.

By (127), ilio term will he

_42! / _ 2..\-_ _ ^-^ iU-i^. (2.,-y« (^(3^

y!3i)!\ :W .
1-2.3 \sl ^

'
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Roqniied the Slst term of (a— .r)"*.

Here r = 30 ; h=-x\ 7i = — 4.

By (129), the term is

^ 4.5.6...80.:U.:V2.:i1 ,>. ^_ 31 .82. 33 «•'"

^~^^ 1.2. 3... 30 " ( -^^ - 1.2.3 -a" ''^ ^^

131 IleqairoJ the greatest term ia the expansion of — — when a

— = (l-|-.r)"'. Here n = ^^ a = 1, h = x in the formula

(n-l)fc _ 5x|> _ 231 .

a -6 1-H-

thert'foro r = 23, by (130), and the greatest term

_ , ,.o3 5.6.7...27 /14\'»^ 24 .25 .26 .27 lU^
~^ ^ 1.2.3... 23\17/ 1.2.3.4 \17/'

132 Find tlie fir.st negative term in the expansion of (2a + 3&)'*'.

We must take r the first integer which makes n— r-\-\ negative; there-

fore r>Jt + l = V +1 = 6| 5 therefore r = 7. The term will be

17 14 11 8 8 2. C 1"\
,

(2(7)-»(36/ by (126;

17. 14.11 . 85^2^ 1 J/_
7!

"
(2«)5'

133 Required the ooeffioient of .?;" in the expansion of i-—-^
j

.

g±M=(2.3..V(2-a.r'=C^)'(i-^)-'

the three terms last written being tliose which produce .r'*' after niultiplyii

by the factor (l-|-3a;-|- Jx*) ; for we have

33(|)%3„.x3^(^;:-)%lx35(|)^'

giving for the coeflicit nt of J'" iu the result

The coefficient of j" will in like jnanjicr be Ibi i !]

/' ".
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134 To write the coeflBcient of x^'"*^ in the expansion of (x-
^)

The general term is

(2jt + l-r)!r! x"- (2«+l-r)!r!

Equate 4n—4r+ 2 to 3m+l, thus

.
_4n—Sm+ l

Substitute this value of r in the general term; the required coefficient becomes

(2n+l)\

The value of r shows that there is no term in x^'"*^ unless ——"^."^
is an

[i(4n + Sm+ 3)]\ [i{4n-Sm + iy

ae of r sho'

integer.
**

135 An approximate value of (1+a?)", when x is small, is

l-\-7iXy by (125), neglecting x^ and higher powers of x.

136 Ex.—An approximation to \/y99 by Bin. Th. (125) is obtained from
the first two or three terms of the expansion of

(1000-1)* = 10-1 . 1000-5 = 10- 3^^ = mi- nearly.

MULTINOMIAL THEOREM.

The general term in the expansion of (a-{-hx-\-cx--\-&G.y is

j3, «(»-!) (»-2)...(p+l)
^^„ j,^,^^, ,^„«r..,..

ql rl si ...

where j;-f-r/ + r+ 5+&c. = n,

and the number of terms p, q, r, &c. corresponds to the

number of terms in the given nndtinomial.

]> is integral, fractional, or negative, according as n is one
or tlie other.

If n be an integer, (137) may bo written

138
,

]'
, ,

a' h" (••
</, . . . .r''+2''+3.,

pi (/ . r\ .V I

I neduccd fi-om Mio Tliii. Thoor.
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Kx. 1.—To write f lie enofficient of a'fec" in tlieoxpanfiinii of {n +{> -f r + i/)"

Hero put )/= 1(». ,. = 1, i>
= 'A, q=\, *-= r., s = () in (IMS).

Kesi.lt
10!

:^! 5
= 7.8.0.10.

Ex. 2.—To obtiiin till' CDcflSc-icnt of .r* in tlio cxiciusion ol

(l-2,«+ 3.i'»-4a;')'.

Here, compariiii,' with (l;{7), we liave ii = \, h = —2, c = :i, </ = — 4,

q + '2r + ;is- = 8,

1
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Employing formula (137), the remainder of the work stands as follows

:

2M-^})(-l)'"'^"^-*''(-'>"=
"

iT(-i)(-|-)(-|)l-^^=(-4)'(-)»= 15

Result 22f

139 The number of terms in the expansion of the multi-

nomial {a-\-h-{-r--\- to n terms)'' is the same as the number of

homogeneous products of n things of /' dimensions. See (97)

and (98).

The greatest coefficient in the expansion of {a-{-J>-\-<^-{-

to m terms)", n being an integer, is

Proof.—By making the denoniiuator in (138) as small as possible. The
notation is explained in (96).

LOGAEITHMS.

142 log,, ^^' = •^' signifies that a' = N, or

Def.— TJie logarithm of a nmiiber is the power to irliirJt tin

base must he raised to produce that number.

143 log.« = l, log 1 = 0.

144 log MN = log 3/4-log N.

log—- = log .1/— log N.

log (3/)" = «log3/.

log:;/ j/ = J- log J/. [li'^
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145 '"f^"' ^ n;;77/

Tliat is— 'riir lixjiirilhiii of a innnhrr In miij Imsr is niiml fo

(he loijnvitJnn- of flu' nuMibcr dlrulitl hi/ fhc /ni/(irifhiii of the

hdur, the two last named logaritlnns being taken to any tlie

same l^ase at ])leasui'e.

Pi;(iOl'.— Let, log,. u = .)' and \i)<y,.l,= i/\ ihvn a = c-'', b = r". Eliiiiiiuitc <.

c = a" = h"; .'. a = b", that is, \o<r,^a = -'

y y. e. d.

146 l<>K/.<^ = ,—^- •'>'< '•=--" ii' (1 ^5)-

147 ,og,„.v = ;2gby(l4n).

is called the modulus of the common system of logarithms

;

that is, the factor which will convert loi>arithms of nnml^ers

calculated to the base e into the corros]~)ondino; loo-nrit1ims to

the base 10. See (154).

EXPONENTIAL THEOREM.

149 *' = 1 + r.r+ '-^ + '^ + etc.,

where c = {a-])-\ ('(-\Y + \ (n-\y-Scc.

PiJOOF. n^ = fl + (a— l)j^ Ivxpand tliis Ijy JJinomial Thcoiviii, ami
collect the coedicients of .c ; thus c is obtained. A.ssnme r.,, c„ Arc, as the

coefficients of the succeeding poweis of ;r, and with this assumption write

ont the expansions of a"", a", and a'"*". Form the product of the first two
series, which product must be equivalent to the third. Therefore equate

the coefficient of .c in this product with that in the expansion of a'*". In

the identity so olitained, equate the coefficients of the successive powers of

y to determine Cj, f,, &c.
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Let e be that value of a which makes c = 1 , then

150 ,.' = i + .,.+ |l4.i_4.&c.

151 ''^^ + ^ + ^ +^ + ^^-

= '2-718281828... [See (2;»5).

Proof.—B}^ making x = 1 in (1-^0).

152 By making a; = 1 in (149) and ,t = c in (150), we obtain

a = e"" ; that is, c = log^ a. Therefore by (149)

154 \og,n = {a-l)-i(a-iy-hi(a-iy-&G.

155 l«g(l+.r)= .,.-£- + :;^_±-+&c.

156 \og{l-.v) = -.v~:^-^-'^-&c. [154
— »» 4

157 .-. l..sl±£=2J,, + :^ + 4^+&c.^-.

Put for ,r in (157); tluis,

158 l..g», = > )^ +|(!^y'+i(^f+&c.(

.

(m-\-l ,\\m-\-\' ;)\m+ l' )

Put ^ ^ for ,r in (157); thus,
2/^ + 1

^

159 lot,^ (//+ !) -loi^M*



CUNTIS ri:i> FRA < "I'lOXS. <;i

CONTINUED FRACTIONS AND CONVERGENT S.

160 'l^> liii'l foiiV('rt<( Ml ts to 3-M.i:)9 =

ill tlu" rule for II. ('. F.

;n4ir,<>
roceea hh

100000
99113
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The /i"' convergent is therefore

7» (lnqn-\-\rqn-l

The true value of the continued fraction will be expressed

by

163 p^anPn-r-^Pn^.^
(f„q»-i-\-qn->

in which ct'^ is the complete quotient or value of the continued

fraction commencing with a^.

164 Pnqn-i—Pn-iqn = ± 1 alternately, by (162).

The convergents are alternately greater and less than the

original fraction, and are always in their lowest terms.

165 The difference between F^ and the true value of the

continued fraction is

< and >
quqn+i qniqn+qn+i)

and this difference therefore diminishes as n increases.

Pkoof.—By taking tlie difference, ^« - Y"^'"^^" - (163)

Also F is nearer the true value than any otlier fraction

witli a less denominator.

166 l'\iFn+\ is greater or less than F'^ according as F„ is

greater or less than i^,,+i.

Grucral Theory of Vontlnucd Fnfrfion.s.

167 b'irst class of continued
[

Second class of contimu

d

fraction. fraction.

1/ _ ^1 ^'2 ^h

<'i
— ''•— ''.{

— &c.

ill, hi, itc. are taken as positive (piaiitities.



CONTINI'JJJ) Fh'AcriONS. {]^

'. '''

, Sec. ;ii"(' tcfiiKMl (•(nii/ioiKii Is of the coiit iiiiicd IViK'-

(ion. It' tlir compoiicnt s he iiitiiiilc in iiiiiiihrr, the coiit iiiiicil

IVactiou is said lo bo iuliniU-.

Let the successive conver<ients bo tloiiotod l)v

^'i . 1'-i
_f'\ ^1 . Pa _ ^^i ^^2 ki .

; and so oi

168 1 lit' law of formation of the convergents is

I'^or /',
I

For r,

Pn = f. P„ 1 + '^, />« .'
{ Pn = ftn pn 1" '>„ />« .'

•/« = <f„ Un - I+ f'n 7« - -1 ( V" — ^^< qn-l—f^H Hn-l

[Proved by Induction.

The relation between the successive differences of the

converg-ents is, by (108),

169 l^_lK^ h„..U„U !K_1K^\
7»+i Un qn^\ \q. v.-i

Take the — sign for 7'', and th(> + ^ov I '.

171 The odd convergents for i^, ^, ^'•\ &c., continually
Vi V.t

decrease, and the oven convero-onts, '-, ^-, S:c., continually
'/•' qi

increase. i^^'O

Every odd convn'oHMit is greater, and ovorv even con-

vergent is less, than all following convergents. (lGi>)

172 l^i.i'.—If the diffei-onco between consecutive conver-

gents diminishes without limit, the infinite contiiuied fraction

is said to l)e dcjiiilfr. if the same difference tends to a fixed

value greater than zero, the infinite continued fraction is hi-

drfinifr ; the odd convergents tending to ..nc value, and the

even converu'ents to another.
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173 F is definite if the ratio of every (|uotioiit to tlie next

component is greater than a fixed quantity.

Proof.—Apply (1(39) successively.

174 F is incommensurable when tlie romponents arc* all

proper fractions and infinite in number.

Proof.—Indirectly, and by (168).

175 if a be never less than /> + l, the convero'ents of V are

all positive proper fractions, increasing in magnitude, Pn and

(/„ also increasing with 7^. By (167; and (168).

176 If, ill this case, V be infinite, it is also definite, being

= 1, if a always =h-\-\ while h is less than 1, (175); and
being less than 1, if a is ever greater than h-{-\. By (ISO).

177 V is incommensurable when it is less than 1 , and the

components are all proper fractions and infinite in number.

180 If in the continued fraction V (167), we have a„ = h„ -\- 1

always; then, by (168),

'p,^=^ hy-\-hih.2-\-h]^h.2,b-i-{- ... to n terms, and q^z= p^^-{-\.

181 Ifj iu the continued fraction F, a,^ and h,i are constant

and equal, say, to a and h respectively ; then ^,;„ and (/„ are

respectively e(pml to the coefiicients of x!'"'^ in the expansions

/. h T a-\-hv
of -

, 2 and .,.

1 — ax— J? 1 — ^^c— hxr'

Proof.—p,i and q^ are the w*'' tei-uis of two recurring seiies. See (IGS)

and (251).

182 /''> v(»n'('i't (I Scries info a dnitiuucil Fractiini.

The series i +^ + :!l + ... +—
is ('(jual to a continued fraction 1^ 0^'^'^), with ;/ -|- 1 com-
poneiits ; th(^ first, second, and //-t-l"' coinj)on('iits being

1 ir,v u'i ,.r

u iii-{-i(.r «,,+ "" -i<^'

[Proved by Induction.
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183 Tlio scries

1 r r'- .r"-+— + -^+...+
r rr, rr^r. f'''\i'- ... ''»

is o(|ual to ;i coiitiimod fraction T (1C»7), with // + 1 coiiipo-

ncnts, the first, second, and // + !"' components beini^-

J_
l\r

!JI_1±, [Proved l)v In.lucfinn.

184 'Hie sio-n of w may be changed in eitlicr of the state-

ments in (182) or (18;3).

'

185 Also, if any of these series are convergent and iidinite,

the continued fractions become infinite.

186 To find fhr rahir of a rnntinurd fraction with

rrrnrrinii: qnitfirnf.s.

Let tlie continued fraction be

where ?/ = -- -

so tliat there are m recurring quotients. Form the |/"' con-

vergent for X, and tlie m^^' for //. 'Vhvu, by substituting the

complete quotients a„-\-i/ for a„, and a,,,.,,, -f-// for */„,,„ in (lC),s),

two equations are obtaincMl of the forms

from which, by (eliminating //, a (iii;i(lr;it ic (miumI ion foi' (h--

terminimr ;'' is obtained.

1R7 Tf !^^ ^h—

i)i' a colli iinicd I nii't ion, ;ni<

El I^

7i' (/"
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tlie correspoiKliiii^ first vi convorgents ; then '" "\ developed

by (1<J8), ]iroduces tlie continued fraction

1 hn />„_! h, b.

(In + (ln-l-\- (ln--2-\- '" + fh + «1

tlie quotients being the same but in reversed order.

INDETERMINATE EQUATIONS.

188 Given aa-\-hii = c

free from fractions, and a, /3 integral values of x and // wiiich

satisfy the equation, the complete integral solution is given by

.r= a— ht

y = fi+at

where t is any integer.

Example.—Given Src + -h/ = 1 1 '2.

Then X = 20, y = 4< are valnrs
;

x = 20-:U\

y= .l. + r,M
•

The v.alues of x and y may be exhiliited as niuler:

t = -2 -I I 2 .S -i 5 6 7

x= 26 28 20 17 14 11 8 5 2-1
7/=-G -1 -4 !) 11- 1!) 24 29 84 89

For solutions in positive integers / must lie between \" = 6j; and — t
;

tliat is, t must be 0, 1, 2, 8, 4, 5, or 6, giving 7 positive integral solutions.

189 If the equation be

(u—hjl = c

tlie solutions are given by

,v— a-\-ht
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EXAMPLK :
4c -8// = li>.

Here X = 10, //
= 7 satisfy ilie equaticjii

;

' ~ fiinii.Nli :ill tilt' solutions.
,/ = 7+ U *

The simultiinoous vahu'S of /, .r, und //
will he as follows :

—

t=-l) -i -:i --2 -I 1 -J :;

., = -5 -2 1 1- 7 10 l:{ 10 I'.'

,j = -rA -9 -5-1 3 7 11 1.-) 19

The number of positive integral solutions is infinite, ami the least positive

integral values of x and ij are given by the limiting value of /, viz.,

t>-\- and t>-\-'

that is, t mast be —1, 0, 1, 2, 3, or greater.

190 It" two values, a and /3, cannot readily be found by

inspection, as, for example, in tlie equation

17.t'+ 13// = 14900,

dlridr In/ f/ic huisf roi'ffirient, and equate the re iiiaiiiliKj frac-

tions to t, an intc/jer; thus

*+'+ if ="«+!;,
'"

4a— 2 = l-.it.

Repeat the process ; thus

4 4

Pat
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Here the number of solutions in positive integers is equal to the number of

^ X. ,
7 , 1137

integers lymg between — and -—- ;

or ~
Tq ^^^ ^^Tf ;

t^^t is, 67.

191 Otherwise.—Two values of x and y may be found in

the following manner :

—

17

33
Find the nearest converging fraction to y^. [By (160).

This is — . By (1G4) we have

17x3-13x4 = -1.

Multiply by 14900, and change the signs;

17 (-44700) + 13 (59600) = 14900

a = -44700
which shews that we may take , , ^^^^

( /5 = 59600

and the general solution may be written

x = -44700 + 13/,

y= 59600-17^.

This method has the disadvantage of producing high values of a and y8.

192 The values of x and //, in positive integers, which
satisfy the equation ax+ bi/ = c, form two Arithmetic Pro-

gressions, of which h and a are respectively the common
differences. See examples (188) and (189).

193 Abbreviation of the method in (169).

Example : ll.i;— 18;/ = 63.

Put X = 92, and divide by 9 ; then proceed as before.

194 To ohld'ni iiifriinil s(thitioN.s' nf (H-\-f)t/-\-rz = (I.

Write the equation thus

ax -{-III/ = (J— cz.

Put successive integers for ;:, and solve for .r, // in encli cnse



ItEDUGTION OF A QtlADJiATfC srUD. GO

TO Iv'KDlTCF] A QUA1>HATI(^ SLIHI) TO A

CONTINUED FRACTION.

195 EXAMI'I-K :

^29= 5+v/29-r, = 5-h
'^

,29 + 5'

y29 +5_ ^, v/29-:5^ ^ 5

4
'^^

. 4
"^^ ,'29 + 3'

5
~ ^ 5 ^^29 + 2'

v/29 +2_ .
, v/29-3_ ,

4
" 5 ~ "^

5 ^ ^V^29 + :>'

/29 +3_ g ,
v/29-5 _ 2, •—4 - ^ + "—4—- ^ + v^29+.y

^/29 + 5 = 1U+ V 29 -5 = 10 +
v/29 + 5'

Tlio (iiiotients 5, 2, 1, 1,2, 10 arc the gTcatest integers

contained in the quantities in the first cohimu. The quotients

now recur, ami the surd \/29 is equivalent to tlie continued

fraction

1_ 1_ 1_ 1 J 1_ 1_ 1 ]

5+ 2+1+1+ 2+ 10+ 2+ 1+ 1+ 2 + c^c.

The convcrgents to v/29, formed as in (IGO), will be

5 11 10 27 70 727 1524 2251 3775 9801

T' 2' 3' 5' 13' 135' 283' 418' 701' 1820'

196 Note that the last quotient 10 is the greatest antl twice

the first, that the ><i'ron(l is the first of the recurring ones, and

that the recurring quotients, excluding the last, consist of

pairs of equal terms, <[iu)tients e(|ui-distant from the first and

last being ecjual. These properties are universal. (See 204

-210).

To for)) I liiii'h ro)H'C)'i»'r)ifs rnpUllji.

197 Suppose m. the number of recurring (piotients, or any
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multiple of that number, and let the m^^' convergent to \/Q be

represented by F„,; then the 2??^"' convergent is given by the

formula F„„ = i .Jf;,+ -^^- by (203) and (210).

198 i'or example, in approximating to \/29 above, there ai-e five recurring

quotients. Take m = 2x5 = 10 ; therefore, by

i^,y = ^-——, the 10^'^ convergent.
1820

Therefore F,, =
{||^^

+ 29x^1820
) ^ 192119201

)801 ) 35675640^

the 20^'' convergent to \/29 ; and the labour of calculating the interveninf

convergents is saved.

GENERAL THEORY.

199 'J'he process of (174) may bo exhibited as follows :-

= a.

^±^ = ..+
''Q+ r„,-

200 Tl 1 1 1

v/g = f
/ ,
+ a, -h a,+ a^-irScv.

Tli(! (juotients '/,, rr,, a.^, iScc. are the integral parts oF the fi'ac-

tions on tlie left.
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201 'I''"' •'•I'intions coinicct iii^- tlic rnniiiiiiii^- (|ii;iiit it ii'S iii-c

r, r= (I. )'.,—( >:5 —

r., = ^/,. ,r ,-.= ^=:^

Tlie ?/*'' r()iivorn:(Mit to \/(? will bo

202 ^ = ^iiLZ!zL-_Lii!±l2_ [By Tndnctioii.

The tnu> value of v'^^ i^ ^^''^^^t tliis becomes wIh-ii we

substitute for (/„ the complete quoticDt ^ '

", of wliicli <i„

is only the integral part. This gives

By tlie relations (1 '.)<)) to (203) tlie following theorcius ai'*^

demonstrated :
—

204 All the (juantities (/, r, and r ai'e positive integers.

205 'I'Ik' greatest c is r.,, and c, = a^.

206 No >i or /• can be greater than 2'/,.

207 n /„ = 1, then r„ = a,.

208 I'^or all values of n groat(>r tlian 1, rt—r„ is < >•„.

209 'Hi'- number of (juotients cannot be greater than 2a'l

The last (luotient is 2(i,, and after that the terms repeat.

The first complete quoti(>nt that is repeated is ^
\ '\ and

(7o, 7-0, r., commence each cycle of re}»eated terms.
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210 I^et </,„, r,„, r,„ be the last terms of the first cycle ; then

<*»n-ij '''m-ii Cm-\ ^^^'c respcctivcly equal to rto, r.,, c-2', «,«-2j ''m-2j

c„,_2 are equal to a.^, r.^, r.^, and so on. rp^ (187).

EQUATIONS.

Special Cases in the Snlntion of Simidtaneous Equations.

211 First, witli two unknown quantities.

a^e-\-hyii = i\\ ^ _ cA—Cobi _ ^1^2— ^2^1

If the denominators vanish, w^e have

^ = '\ and X = cc, ?/ = 00
;

«2 b.,

unless at the same time the numerators vanish, for then

a._h,_c,, 0. 0.

a,
~ h ~ c./ ' '^

~
'

and the equations are not Indepmdent, one being produced by

multiplying the other by some constant.

212 Next, with three unknown quantities. See (60) for

the ecpiations.

If (l^, (L, (I,; all vanisli, divide each equation by .v, and we

have three equations for finding the two ratios -'- and •
,
two

only of which equations are necessary, any one being dedu-

cible from the otlier two if the three be consistent.

213 ^« solve simultaneous equulions bt/ huleterntnuitr

Multipliers.

Ex.—Take the equations

,/' + 2// + ;lv + lip = 27,

'5.'c + r,//+ 7,v+ //• = -l-S,

bx + 8y-\- 10,v - 2/r = 05,

7x + 6y + 5,^ + iw = 53.
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Multiply the first by A, the second by /?, the third l)y C,

leaviiiLi;- one C(inution nnnniltiplied ; and then add the results.

Thus (J+3//4-5r7-{-7)./'+ (2.l-h'")/>'4-8^'+ (;)//

+ (;5J +7/>' + l()C'-f-5) .v-[-(4J + /;-26'^-4) w

= 27-l + 18Zy+ GoO+ 5;].

To determine either of the unknowns, for instance .f,

equate the coefficients of the other three separately to zero,

and from the three equations find A, B, G. Then

^ 27J+48/y+ G50+ o:]
*

A+ W-\-hG-\r7 '

MISCELLANEOUS EQUATIONS AND SOLUTIONS.

214 ^''±1 = 0.

Divide by x^, and throw into factors, by (2) or (o). See also

(480).

215 .r'-7d-i) = i).

X = —1 is a root, by inspection; therefore ''+1 is a factor.

Divide by x-\-l, and solve the resulting (quadratic.

216 aH n; I' = !'>''>.

x*-\-lC).>- = l-j.'),/' = (')<) X 7,/',

•' + 2 -""^ 2'

.i;" = /i'' = 7.

Rrr-E.— Divide the absolute* terra (here 455) into two

factors, if possible, such that one of them, minus the scpian*

of the other, equals the coefficient of x. ^^ee (483) for i^cMicral

solution of a cubic equation.

I.
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217 .r*-i/ = 145(>0, .r-v = 8.

'*"t^^ .f = «+v and 2/ = z—v.

Eliujiiiate c, and obtain a cubic in 2, which solve as in (216).

218 .i^-/ = 3093, ci— 1/ = 3.

Divide the first equation by the second, and subtract from
tlie result the fourth power of x—y. Eliminate {x^-\-if)j and
obtain a quadratic in xij.

219 Onforming Symmetrical Expressions.

Take, for example, the equation

(y-c){z-h) = aK

'Vo form the remaining equations symmetrical with this, write
the corresponding letters in vertical columns, obser\dng the
circular order in which a is followed by h, h by c, and c by a.

So with X, ;?/, and z. Thus the equations become

0/-rj {z-h) = a\

[z-a) Gr-e) = b\

{.v-h){y-a) = c\

To solve these equations, substitute

x = h+ c,-\-x\ y = c-\-a+ y', :: = a -{-
b -\- ::'

;

and, ]nulti})lying out, and eliminating // and ;:, we obtain

^^ho{b + r)-a(lr-hr)
hc — ca— ab

niid tlicrefore, by symmetiy, the values of y and ;:, by the
niK> just given.

220 // + .^' + //- = ^r (1),

:^-^-.r-\-x.v = fr (2),

'H/+ .*//-r^ (3);

••• :5(//.r + .v.' + ,o/)-=r :l/n--\-2r',r-\-2'rlr-a'-b'-c* (4).
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Now add (1), (2), and (3), and av(> o])tain

From (4) and (5), (,r + // -|- ;:) is obtained, and then (1), (2),

and (o) are readily solved.

221 .,.-^^;/~ = «'^ (I),

jr-z^=fr (2),

z^-.n/=f- 05).

Mnltiply (2) by (:>), and subtract tlie square of (1).

Result X (3./'//^- Jf -if- ::'') = h'<--n\

X _ y ^
/A.2_ft^ (-V--/.* a'b''-r' ^

^^^'

Obtain X" by proportion as a fraction witli numerator

= x^— yz = a^.

222 .v=n,-\-bz (1),

,^ = az^c.i (2),

z = Lv-^(a/ (3).

Eliminate a between (2) and (3), and substitute tlie value of

X from equation (1).

XieSUlC -r-"—r^ '„ j: ;,-

IMAGINARY EXPRESSIONS.

223 'Hic following are conventions :

—

That v/(-'f-) is equivalent to a^^{—li); that a y,/{— \)

vanishes wlien a vanishes; that the symbol a, y(— 1) is sub-

ject to the ordinary rules of Algebra. \'(— 1) is denoted

l)y /.
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224 If a + ?'/3 = 7 -f- i^ ; then a = y and (i = B.

225 « + //3 and a — /'fS are conjugate expressions ; tlieir pro-

duct = a- 4-/3-.

226 The sum and ])roduct of two conjugate expressions are

both real, but their difference is imaginary.

227 The modulus is -\-x/a^+^^.

228 If the modulus vanishes, a and /3 must vanish.

229 If two imaginary expressions are equal, their moduli

are etiual, by (224).

230 The modulus of the product of two imaginary expres-

sions is equal to the product of their moduli.

231 Also the modulus of the quotient is equal to the

quotient of their moduli.

METHOD OF INDETERMINATE COEFFICIENTS.

232 If A + Re+ a«-+ . . . = .4'+ B'x -\- G'x'+ . -_. be an equa=.

tion which holds for all values of .^', the coefl&cients .1, B, &c.

not involving ;r, then A— A', B = B\ C = G', &c. ; that is,

the coefficients of like powers of x must be equal. Proved by

putting X = 0, and dividing by x alternately. See (234) for

an example.

233 METHOD OF PROOF BY INDUCTION.

Ex.—To prove that

5

Assume 1 + - + •» -\- ... +ir = - -"-.
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= »(» + !) (2n + l) +6 (n + 1)- ^ (m + 1) {n (2n+ l) -l-G r«-H)}
6 ' (5

^ (« + lU» + 2)(2u + 3) _ n (n'+\){ 'ln+l)
G 6

'

where n' is written for «+l

;

o

It is thns proved that i/ the formula he true for n it is also true for n + 1.

But the formula is true when n = 2 or 3, as may be shewn by actual

trial ; therefore it is true when >t= 4 ; therefore also when n = 5, and so on
;

therefore universally true.

234 Ex.—The same theorem proved by the method of In-

determiuate coefficients.

Assume

1^2^+ 3-+.. .+n^ =A + Bn +Cn^ +Du^ +&c.;

.-. 1 + 2- + 3-+. ..+»'+ (« + !)- = .-l+5(/^ + l) + (7(« + l)- + D(n+ l)''+ &c.;

therefore, by subtraction,

«H2n + l = B+ C(2n + l) + D{3n' + Sn+l),

Avriting no terms in this equation which contain higher powers of n than the

highest which occurs on the left-hand side, for the coefficients of such terms

may be shewn to be separately equal to zero.

Now equate the coefficients of like powers of n ; thus

1

, and ^ = 0;

3jD= 1,
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235 First.—When there are no repeated factors in the de-

nominator of the given fraction.

3a;—

2

Ex.—To resolve :r—, -— — into partial fractions.
{x—l){x—2){x—o)

^''^""^
(a-l)(J"-2)(«-3) " ^:il "^ ^-2 "^ x-3 '

Sx-2 = A(x-2)(!c-S)-\-B(x-S)(x-l) + C{x-l)(x-2).

Since A, B, and C do not contain x, and this equation is true for all values

of X, put x = l ; then

3-2 = ^(1-2) (1-3), from whicli A = ^.

Similarly, if x be put = 2, we have

6-2 = i? (2-3) (2-1) ;
.-. B = -4

;

and, putting a; = 3,

9-2 = 0(3-1) (3-2); .-. G = \'

H 3a; -2 ^ __1 ^ 7
®°°®

(a;-l) (a!-2) (a;-3) 2(a!-l) a;-2 2 (a;-3)'

236 Secondly.—When there is a repeated factor.

Ex.—Eesolve into partial fractions i-
—-.,„' j! -

^
(a;— 1)^(33+ 2)

. lx^-\Ox'^^x A . B C ^ D
A^«"^«

(-^=i?(.:t^ = (^^» "^
(^::ir

"^^^ "^
^rr2-

These forms are necessary and sufficient. Multiplying up, we have

7x'-lOx'+ 6x = A ix-\-2) +B (x-1) ix+ 2) + C (x-iy(x + 2) +D (x-iy
(I).

Makea; = l; .'. 7-10 + 6 = ^(1 + 2); .-. ^ = 1.

Substitute this valne of A in (1) ; thus

7x'-lOx'+ 5x-2 ^ B (x-].){.v i2) + C (x-iy(x +2)+D (x-iy.

Divide by a; — 1 ; thus

7x'-Sx + 2 = B(x + 2) + C(x-l)(x + 2)+D(x-iy (2).

Make X = 1 again, 7 -3 + 2 = J? (1 + 2) ; .-. B = 2.

Substitute this value of B in (2), and we have

7a;*-5a;-2 = G (x-l) (x + 2) +D (x-iy.

Divide by .T-l, 7a;+ 2 = G (x+ 2)+D (x-l) (3).

Put a; = 1 a thiwl time, 7 +2= C (1+2); .-. C = 3.
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Ijastl}^ make a; = —2 in (3),

-14+ 2 = X>(-2-l); .-. D = i.

1 2 3 4
Result 7 z—j. + 7 TTT H , H rii"

(a— 1)' (a;-l) «-l a;+ 2

237 Thirdly.—When there is a quadratic factor of imaginary

roots not repeated.

Ex.—Resolve ,t—tw^2-.—, ix
into partial fractions.

Here we must assume

Ax-{-B Cx+D
(a5»+l)(j!»+ a! + l) a;^+ l x' +x+l'

x-i-l and X- + X + 1 have no real factors, and are therefore retained as

denominators. The requisite form of the numerators is seen by adding

too'ether two simple fractions, such as ——- ^ r~,-° ^ x + b x+ d

Multij)l}iiig up, we have the equation

1 = (Ax + B) (x' + x + l) + {Cx+ D) (x' + l) (1).

Let a;- + l = 0; z. x^ = —I.

Substitute this value of x- in (1) repeatedly ; thus

1 = (Ax + B) X = Ax'+ Bx = -A + Bx ;

or Bx-A-l = 0.

Equate coefficients to zero ; .'. 5 = 0,

^ = -1.

Again, let ar + .r + l=0;
.-. x-=-x-l.

Substitute this value of x^ repeatedly in (1) ; thus

1 = {Cx + D) i-x) = -Cx'-Dx = Cx + C-Dx-

or (G-D)x + C-l=0.

Equate coefficients to zero ;
thus ^

' = 1,

1)= 1.

XT 1 _ = ''+1 _. ^
^^'"'^^

(..^ + l)(x^ + * + l) .tHx + 1 a-Hl

238 Fourthly.—When there is a repeated quadratic factor

of imaginary roots.

Rv —"Resolve
40.^'— 103 ^ i)artiiil fractions.
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Assume
40.7;-103 ^ Ax+ B _Cx±B _ Ex+F

(x + iy {x'-4x+ Sy (.r2_4x + 8y (.'?;--4a; + 8)- a;--'-4^ + 8

4- -^ + -^;
(.r+l)- a; + l'

40.t;-103 = {iAx + B) + {Cx+ D)ix-—ix+ 8) + iEx + F)(x--4:X+ 8y} {x + l)-

+ {G +H(x + 1)} (x'-4x+ Sy (1).

In the first place, to determine A and B, equate rt;-— 4a; + 8 to zero ; thus
a;2=4a;-8.

Substitute this value of x- repeatedly in (1), as in the previous example,
until the first power of x alone remains. The resulting equation is

40a; -103= (17.4 + 65) a? -48^ -75.

Equating coefficients, we obtain two equations

17^ +65= 40 ) f .. , A = 2

48^ + 75 = 103)' ^^«--^^«^^ B = l.

Next, to determine and D, substitute these values of A and 5 in (1)

;

the equation will then be divisible by a;^— 4a;+ 8. Divide, and the resulting

equation is

= 2x + l3+{Cx +B+(Ex + F)(x'-4x + 8)] (x + iy

+ {G+ H(x+ l)]{x'-4x +8y (2).

Equate a;'-— 4a; + 8 again to zero, and proceed exactly as before, when
finding A and B.

Next, to determine E and F, substitute the values of (7 and D, last found
in equation (2) ; divide, and proceed as before.

Lastly, G and H are determined by equating a'+ l to zero successively,

as in Example 2.

CONVERGENCY AND DIVERGENCY OF SERIES.

239 Let ai-{-a.^-\-a;i-\-&c. be a scries, and (7„, a„+^ auy two
consecutive terras. The foUowino- tests of convergency may
be applied. Tlie series will converge, if, after any fixed term

—

(i.) The terms decrease and are alternately })0sitive and
negative.

(ii.) Or if "- is always (j renter than some (piantity
(' n 1-1

greater tlian unity.
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(iii.) Or if —— i.s never less tluui tlic corrcspoiidiii^ I'atio
'''1 + 1

ill a known coiivei\u:ing series.

(iv.) Or if l-^—n) is always tjreafrr than some (juan-

tity greater than unit3^ [% - tl' and iii.

(v.) Or if l^-^—ii— l]\og)i is always i/rrdfcr tlian
V^'»j+i ^

some quantity greater than unity.

240 The conditions of divergency are obviously the converse
of rules (i.) to (v.).

241 The series ai-^a.,x-\-a.iX^-{-&c. converges, if ^^

always less than some quantity p, and x loss than
1

[By 239 (ii.)

242 To make the sum of the last series less than an assigned

(iiiantitv /s make ,v less than
,

, I' hvincr the o^reatest co-

efficient.

Grnrral Tltcnron.

243 If •/> ('") be positive for all positive intec^ral values of .r,

and continually diminish as <> increases, and if )n be any posi-

tive integer, then the two series

<^(l)+ (^(2)+ (^GJ) + ^(l)+
<li{l)-\-m(f>{m)-\-m-4>{m-)-\-m''(t>{m')-Y

arc either both coiivern-ent oi* diverofent.

244 Ajiplication of tliis theorem. To asc<'rtain whotlier the

is diverjT^ent or convero-init when p is «^i-eater than unitv.

41
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Taking m = 2, tte second series in (243) becomes

1.2,4,8,0
^ 2'^ ^ 4p ^ 8^

a geometrical progression whicli converges ; therefore the

245 I'lie series of which --:-
^,- is the general term is

?i (log ny'

convergent if j9 be greater than unity, and divergent if p be

not greater than unity. [By (243), (244).

246 The series of which the general term is

1

n\{ii)X'{n) V{n){r^'(n)}^'

where \ (n) signifies \ogn,X'^{n) signifies log {log ()i)}, and

so on, is convergent if ^ be greater than unity, and divergent

if j) be not greater than unity. [By Induction, and by (243).

247 The series ai+ cu+ SLC. is convergent if

ncu log (n) log2 {n) log''(7i) {log,^i {n)y

is always finite for a value of p greater than unity ; log'' (7;)

here signifying log (log iz), and so on.

[See Todhunter's Alr/ehra, or Boole's Finite Bijjcrences.

EXPANSION OF A FRACTION.

42.' — 10a3
248 A fractional expression such as :,

— --'.—-- may
\ — bx-\-l\x^— Q>x,

be expanded in ascending powers of x in three different ways.

First, by dividing the niiraerator by the denominator in

tlie ordinary way, or by Synthetic Division, as shewn in (28).

Secondly, l)v the metliod of Indeterminate Coefficients

(2:32).

Thirdly, by Partial Fractions and the Binomial Theorem.
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To expand by tlie method of Indeteriiiiii:ite CoefficiLiits

proceed as follows :

—

Assume ,

'^''^ ~\^'^'
. , = -1 + ^'•'- + C.>- + J).c' + E.v' + & c.

4x-lUr = .1+ llx+ Cx--\- nx''+ Ex'+ I<\r''+...

—OAx— GBx-— GC'u;*- Gi*./;'— OiiV'-...

+ ll.lj;-4-ll/^a;' + liac*+llA/'+...

- G.-Lc'- 6Bx*- G^.V-...

Et|uate cocUicients of like powers of x, thus

.1 = U,

JJ- 6A = 4, .-. J! = I
;

C- 6B + IIA =-lO, .-. C= li;

D-6C+UB-GA= 0, .-. 1)= 40;

E—6D + IIC— OB = U, .-. E=UO;
F-6E + 11D-6C= 0, .-. i''=;30-i;

The formation of the same coefficients by synthetic division is now
exhibited, in order that the connexion between tlio two processes may be

clearly seen.

The division of 4a;— lO.r l)y 1— ('..i'-f U.r-G,/' is as follows:—

+ 4-10
+ 6 24+ 84+ 240 + GGO

-11 -44-154-440-1210

+ 6 + 24+ 84+ 240 + GGo

+4+14 + 40 + 110+ 304+
^l n C D E F

If wc> stop :it the term llO.r', then the undivided remainder will lie

;i04.j;''— 'JTO/^ + CtiOi/, and the complete result will be

4.r + 14x- + 40..H110. + ^_^^^,fZ:^-

249 Here the conchidiiig fraction may be regarded as the

sum to inlinity after four terms of the series, just as the

original expression is considered to be tlie sum to inlinity of

the whole series.

250 Tf the general term be reipiired, the method of ex-

pansion by partial fractions must be adopted. See (257),

wliere tlie Lrcneral term of the foregoing series is oljtained.
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RECURRING SERIES.

a^^-\-(ii.i'-]- Uod'- -\-ayv'^-\- &c. is a recurring series if the co-

efficients are connected by the relation

251 (In = Ih «« - 1 + 7>2 «« - 2+ • •
. + Pm (in - m-

The Scale of Relation is

252 1 -PI^V -JhO^ —... —lhn^V''\

The sum of n terms of the series is equal to

253 [The first m terms

—piV (first tn— l terms + the last term)

—p^x^ (first m— 2 terms + the last 2 terms)

—IhJC^ (first m— 3 terms + the last 3 terms)

-~i>i«-i'^'""^ (first term + the last m— \ terms)

—p,nX"' (the last m terms)] -^ [l—p^.v—pocV^— ... — />,„cr"'].

254 If the series converges, and the sum to infinity is re-

quired, omit all " the last terms " from the formula.

255 Example.—Required the Scale of Relation, the general

term, and the apparent sum to infinity, of the series

4'c+ 14r+ 40,v^+ 110,ii'^+ 304^^-8o4/+ ...

.

Observe that six arbitrary terms given are sufficient to determine a Scale

of Relation of the form l—px— qx' — rx^, involving three constants p, q, r,

for, by (251), we can write three equatious to determine these constants
;

namely, 110= 40p4- 14(2+ 4r\ The solution gives

304 = llOp + 402 + 14r k p = G, 7 = - 1 1, r = 6.

854 = 304;j+110g + 40rJ

Hence the Scale of Relation is 1 — 6.« + ll.r — 6.r^.

The sum of the series without limit will be found from (254), by putting

Pi = ^, Pi = — 11» P3 =6, m = 3.

The first th ree terms = 4,c + 1 4.r + 40.i-''

— 6xthe first two terms = —24^-— 84a;*

-I- 1 l.r X the first term = + 44a;'

4«-10a:-
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^^ 4.r-10x'

1 - G.i;+ 1 Ix* -<;.(•»'

tlie meaning i)f which is tliat, if this fmction bo expiunluil in asuentling

powers of x, the first six terms will bo those given in the question.

256 To obtain more terms of the series, we may use the Scale of Relation
;

tlius the 7th term will be

(6 X 854- 1 1 X 30i + 6 X 1 10) a:^ = 2440a;^

257 To find the general term, S must be decomposed into

l)artial fractions; thus, by the method of (2'35),

4.B-10a;- _ 1 , 2 8

l-6.c+ ll.j;'-(3a;-' l-Sx 1—2x 1-a;

By the Binomial Theorem (128),

,
^, = l+3.c + 3-.r + +S''x'\

1 — Sx

r-=-r = - + 2=.c+ 2^r + + 2" * '.c",

l—zx

— =-3-3.c-3.r - -Sx".

Hence the general term involving x" is

(;3'> + 2''»'-3)x''.

And by this formula we can write the " last terms" required in (2.")3), and

so obtain the sum of any finite number of terms of the given series. Also,

by the same formula we can calculate the successive terms at the beginning

of the series. In the present case this mode will be more expeditious than

that of employing the Scale of Relation.

258 If 5 in decomposing -<S' into partial fractions for the sake

of obtaining the general term, a quadratic factor ^vitli ima-

ginary roots sliould occur as a denominator, tlie same method

must be pursued, for the imaginary quantities will disappear

in the final result. In this case, however, it is more con-

venient to employ a general formula. Sup[)ose the fraction

which gives rise to the imaginary roots to be

L-\-Mx _ L-\-Mx
<i+b,r+ x"-

~ {p—r){q-x)'

p and q being the imaginary roots of ri-{-hx-{-x' = 0.

Suppose j) = (i-\-i)^,

q = a—ij^y where i = v —1.
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If, uow, the above fraction be resolved into two partial

fractions in the ordinary way, and if these fractions be ex-

panded separately by the Binomial Theorem, and that part of

tlie general term furnislied by these two expansions written

out, still retaining j) and r/, and if the imaginary values of p
and q be then substituted, it will be found that the factor will

disappear, and that the result may be enunciated as follows.

259 The coeflQcient of a;" ^ in the expansion of

L+ iU.r

will be

^g^-^[Ha«-'^-C(«,3)a"-^HC(«,o)a»-^'-...l

^^"+^^
+C(«-l,5)«"-«j8»-...}.

260 With the aid of the known expansion of sin nO in

Trigonometry, this formula for the ti^'* term may be reduced to

in wliich 6 = tan —

,

<^ = tan ^

L+ 3/a

If n be not greater than 100, sin (viO— ^) may be obtained

from the tables correct to about six places of decimals, and
accordingly the «*'' term of the expansion may be found with

corresponding accuracy. As an example, the 100*'' term in

the expansion of -— ^ .,
is readily found by this method

^ , 41824 „9
to be -^- x^.

To (/cfrrniinc whether a i>;ii'cn Scries i.s rernrri)i;ii- (tr not.

261 If certain tirst terms only of the series be given, a scale

of relation may be found which shall produce a recurring
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series whose first terms arc those given. The method is

exemplified in ('255). The innnber of niikiiowii coefficients

j), </, r, &c. to be assumed for the scale of relation must be

equal to half the number of the given terms of the series, if

that number be even. If tlie nund^er of given terras be odd,

it may he made even by })refixing zero for the first term of

the series.

262 Since this method may, however, produce zero values

for one or more of the last coefiicients in the scale of relation,

it may be advisable in practice to deteruiine a scale from the

first two terms of the series, and if that scale does not jn-oduce

the following terms, we may try a scale determined from the

first four terms, and so on until the true scale is arrived at.

If an indefinite nnmber of terms of the series be given,

we may find whether it is recurring or not by a rule of

Lagrange's.

263 Let the series be

S= A + ]Jx+ G.r -h Dx' -f- &c.

Divide unity by S as far as two terms of the quotient, wliicli

will be of the form p-\-qx, and write the remainder in the form
/S'V, S' being another indefinite series of the same form as S.

Next, divide S by S' as far as two terms of the quotient,

and write the remainder in the form S"x-.

Again, divide /S" by S'", and proceed as before, and repeat

this process until there is no remainder after one of the

divisions. The series will then be proved to be a recurring

series, and the order of the series, that is, the degree of tlie

scale of relation, will be the same as the number of divisions

which have been effected in the process.

KxAMi'LK.— To determine whether the series 1, o, (i, 10, 15, '21, 28, .'U),

45, ... is recurring or not.

Introducing x, we may write

S = l+3.r + 6.r+10.rH15.):' + 21,/' + 2,V' + :](u''+45..:\.. .

Then we .shall have ' = 1 — ;lf4-... ^vith a rcniaimler

6x' + 8.r' + 15.1!*+ 24.c'' -f- obx''+ itc.

TlH-iir..io S'= 3 + 8.j;+15.7;-4-2kr» + .'3.V + A-c.,

.s" ;; 9
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with a remainder -^ (.r + 8a;H ().)' + 10.x-'^+ &c. ...)•

Therefore we may take S" = 1 +8.1-+ 6.r + 10a*+ &c.

Lastly -^„ = 3— .13 without any remainder.

Consequently the series is a recurring series of the third order. It is, in

fact, the expansion of

SUMMATION OF SERIES BY THE METHOD OF

DIFFERENCES.

264 Rule.—Form successive series of differences until a series

of equal differences is obtained. Let a, b, c, d, &c. be the first

terms of the several series ; then the 7^^'' term of the given

series is

265 a+i.-m+ ("-^(r'^ e+ ("-^("-f-^ .l+

The sum of n terms

266 =„« +!^M4 + ^iIi=ii§^<- + &c.

Proved by Induction.

Example: a...l+ 5 + 15 + 35 + 70 + 126 +
h ...4+ 10 + 20 + 35+ 5G + ...

c ... 6 + 10 + 15 + 21+...

(Z...4+ 5+ 6 + ...

e ... 1+ 1 + ...

The lOOti' term of tlie first series

^ 1.2 ^ 1.2.3 ^ 1.2.3.4

The sum of 100 terms

,,,.,^100.09 , .100. 99. 98«j^ 100. 99. 98.97 ,, 100.99.98.97.96
== 100+ -^^4+-^-2r3-^+ 1.2.3.4

^^ 1.2.3.4T.r-
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SO

267 '^'-^ interpolate a term bclwecn two terms of u series by
the motliod of ililTtTeiices.

Ex.— Given log 71, log 72, log 73, log 74, it is required to find I<>g 7"2o4.

Form tbo scries of diBerences from the given logarithms, as in ('itJG),

log 71 log 72 log 73 log 74

a... l-8ol2".83 l-8573:i2') l-8G:i3229 1-8G02:U7

6 ... -0060742 •00r)9904 -0059088

r ... --0000838 - -0000816

(Z ... —00000-22 coii.sidered to vimish.

Log 72'o4 mnst be regarded as an interpolated term, the number of its

place being 2-54.

Therelore put 2-.'')l. for n in formula (265).

Result log 72-54 = 1-8605777.

DIRECT FACTORIAL SERIES.

268 Ex.: 5.7.9 + 7.0.11 -I-
<.i.n .1;] + 11 .1:3.15 + ..

d = common difference of factors,

m= miml)er of factors in each term,

n = number of terms,

a = first factor of first term —d.

>*'• term == (fi-\-n(/) {a+ n + i</) (^/+ ;/+ //<- I r/).

269 To find the sum of u terms.

Rule.—Fnnii the last term with the ne.rt hitjlirsf fnrtor take

thefi'i\st ti'Dii ir'ilh flie next loiiwst factor, and dlrlde Ixj {m + 1 ) '/.

Proof.—By Induction.

Thus the sum of 4 terms of the above series will be, putting d = 2, vi — 3,

^, 11.13.1 5.17-3.5.7.9
n = 4, a = 3, h = ^j^^,

.

Proved either by Induction, or by the ractliod of Indeterminate Coefficicnt.s.



90 ALGEBRA.

INVERSE FACTORIAL SERIES.

270 Ex.:
5^7^9 + 7^9_ii + 9.11,13 + 11.13.15+---

Defining d, in, oi, a as before, the

1
;}tii term =

(n-]-ud) {a+ n-\-l(I) ... {a-^n-\-m— id)

271 To find the sum of n terms. Rule.—From the first

term wanting its last factor take the last term wanting its first

factor, and divide hy (m— 1) d.

Thus the sum of 4 terms of the above series will be, putting d = 2, m = 3,

1 1

5.7 13.15
^^ = ^'" = ^^

(3-1)2 •

Proof.—By Induction, or by decomposing the terms, as in the following

example.

272 Ex.: To sum the same series by decomposing the terms into partial

fractions. Take the general term in the simple form

(r-2)r(r + 2)

Resolve this into the three fractions

Substitute 7, 9, 11, &c. successively for r, and the given series has for

its equivalent the three series

Ij 1 + 1+ 1 +i + 1 +_1_|
8 1 5 7 9 11 13 2u + 3

)

2^ C _ 2 _ 2 _ 2 _ 2 _ 2 2_ )

8 I '7 9 11 13 2» + 3 2n + 5)

+ 1
j 1 + 1 +1_+ + _i_ + _l_ +^1-1,

8l 9 11 13 2»i + 3 2u + 5 2» + 7)*

and the sum of n terms is seen, Jiy inspoction, to he

1(1_1_ 1 +_l_l=Jil 1_
]8(5 7 2« + 5 2n + 7) 4(5.7 (2»+ 5) (2« + 7} 3

'

a result ol)taiiicd at once by the rule in (271), taking -—-— for the first
•^ ^ '^ 5.7.9

term, and -t- .-- for the »i"' or last term.
(2n + 3)(2n + 5)(2n + 7)
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273 Analogous series may be reduced to tlie types in (268)
and (270), or else tlie terms may be decomposed in the manner
shewn in (272).

Ex.: -J_+_i_+__7__+_10L.+
1.2.3 2.3.4 3.4.5 -i. 5. <;

has for its general term

3»-2 __1 ,_5 4_ , .......

n(n + l)(n-\-2) ,i n + 1 n+ 2 '^ '^""^^>''

and we may proceed as in (272) to Hnd the sum of n terms.

The metliod of (272) includes the method known as "Summation by-

Subtraction," but it has the advaut;igo uf being more general and easier of

application to complex series.

COMPOSITE FACTORIAL SERIES.

274 If the two series

M N-5 i^r _l5.G .,^5.6.7 3^5.6.7.8 ,^

/I ^-3 1,.. ,3.4 .. 3.4.5 3 ,
3.4.5.0

t ,

be multiplied together, and the coefficient of .f* in the product
be equated to the coefficient of x*" in the expansion of (1 —x)'^^

we obtain as the result the sum of the composite series

5.6.7.8xl.2 + 4.5.C).7x2.3 + :K4.5.6x3.4

4! 2.11!+ 2. 3. 4. 5X4. 5+ 1. 2. 3. 4X5.

G

7! 4!

275 Generally, if the given series be

Aa+Aa.+ --+A,. ,(?„-! (I),

where (^)^ = ,. (r+ 1) (/•+ 2) ... (r+ v- 1),

and r,.= (?i— r) (//-/•+ 1) .. {n- ri-p-l)

;

the sum of n — l terms will bo

/>!7! (;,4-;,+ r/-l)!
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MISCELLANEOUS SERIES.

276 Sum of the powers of the terms of an Arithmetical

Progression.

1+2+;)+...+// =

1 +2»+y+...+«'= 5
^^^j' =s.

H o.+y+ ... + „. = "("+ 1) (2«+ l)(3»-+3» -1) ^ ^,

,

[By the method of Indeterminate Coefficients (234).

A general formula for tlie sum of tlie 7-"' powers of

1.2.3 ... n, obtained iu the same way is

>•+ !

wliere Ji, A.,, &g., are determined by i)uttiug j> = 1, 2, 3, &c.

successively in the equation

1

2 0^+ 1)!

~(;?+2)!"^r(/>)!'^r(r-l)(i>-l)!^"'"r(r-l)...(r-7>+l)

277 «"'+ (^/+ ^/)"'+ (^/+ 2^/)"'+... + (^/+ //</)"'

^ (>,+ !) ^,'"+ ,s^,,,^f'"- V/+.S,(' (m, 2i «'"-->/-

Proof.—By Binomial Theorem and (276).

278 Summation of a scries parthj Arithmetical and

pa rill/ Geometrical.

Ex.\m?lt;.—To hud the sum of the series 1 +3,i' + 5.r+ to n

terms.



Let s = l+;?.r+ 5.r' + 7.i:» +... + (2/1-1) x"-',

S.V = .i+3.r + oj;'+ ... + {2n-:i) j""' + (*Ju- 1) x",

.'. by Kiiblractioii,

6- ( 1 -.,•) = 1 + ±v + 2.r^ + 2./.» + . . . + 2.t"
-

'- (2«- 1 ) x"

1 — r""'

= l+2a^^- -^--(2H-l).r",
1

—

X

l_(2n-l).r" 2x(l-.r''-')
• '- 1-x + (I-../--

279 A general formula for tlio sum of n terms of

^- \^' + 0-ry
Obtained as in (278).

Rule.—Mi(Itij)Ji/ Inj the ratio and subtract the resulting

series.

280 r-'— = l+.r+.»"+.t'+...+cr"-'+-pi

281 Tj-^, = l+2.r+;ja-+lr''+...

, n-i ,
(n-{-\)r'*~)i.v"^'

(l-cf)-

282 (^<-l).r+(/i-2).rH('<-.'i).''^'+... + -V-H'i'""'

= (^^-i);;-"^;+->""
. B,(253).

283 i^,,^W//^--])^;/(»-])0/-2)_^^^.^.^^^,„^

Hv making 4^-=^ in (12r»). .etrrat*.
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284 The series

»-,-j
,

(n-4)(n-5) _ {n-6){n-r,){n-7)
,

^~"T""^ ;5! 4!
^*

^ , (
^y.,

0i-r-l)(n-r-2)...(n-2r-[-l)

consists of ^^ or
^^~

terms, and the sum is given by

/S' = — if 71 be of the form 6m-\-S,
n

S = if ?i be of the form 6/?i+ l,

S = if ?i be of the form 6m,
n

>S^ = — if 7i be of the form 6m±_2.
n

Proof.—By (545), putting;) = x^-y,q = xy, and applying (546).

285 The series 7i^-n («-!)'•+ Hd^l^ {n-2y

o !

takes the values 0, n\, ^n{n+ l)\

according as r is <n, =n, or =)i + l.

Proof.—By expanding (e^— 1)", in two ways: first, by tlie Exponential

Theorem and Multinomial ; secondly, by the Bin. Th., and each term of

the expansion by the Exponential. Equate the coeflicients of a;** in the two

results.

Other results are obtained by putting r = n-{-2, n-\-o, &c.

The series (285), when divided by r\, is, in fact, equal to

the coefiBicient of aj'" in the expansion of
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286 By exactly the same process we may detlucc from the

I'unctiou {t"*'— f'*}" the result tliat tlie scries

n'-n (N-'2y+
"^"~^^

(,,_.l.)'-_&c.

takes the values or 2'*.?^!, according as r is < n or = n;

this scries, divided by r
!

, being e<j[ual to the coefficient of x''

in the expansion of

f ^.3 ,-,.5 yi

POLYGONAL NUMBERS.

287 Tlie n^^' term of the r'^' order of polygonal numbers is

equal to the sum of n terms of an Aritli. Prog. Avhose first

term is unity and common difference r— 2 ; that is

= 1 {2+{n-l)(r-2)] = n+ ln {n-l){r-'2).

288 I'hc sum of It terms

__ uiu-^l) u{u-l)(n-\-l)(r-2)

2 "^ «

By resolving into two scries.

Order.
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la practice—to form, for instance, the 6*'' order of poly-

gonal numbers—write the first three terms by the formula,

and form the rest by the method of differences.

Ex.: 16 lo 28 45 66 91 120 ...

5 9 13 17 21 25 29 ...

[r-2 = 4] 4 i 4 4 4 4 ...

FIGURATE NUMBERS.

289 The n"' term of any order is the sum of n terms of the

preceding order.

The n^^ term of the r*^' order is

njn+l)_^in+r-2) = /j („ ^
,._

j )

.

[By 98.

(r-1)

290 The sum of n terms is

n{n-\-l)...{n+r-l) _ H{n,r).

Order.
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IIYPEUGEOMETKICAL SERIES.

291 ,+^_^,,. + ^(^+lMim),,.=
l.y 1. -2.7(7+])

a(a+1)(a+ 2)/3(/3+1)(^+ 2) ^, ^^,"^
1.2.;$.y(y+l)(7+ 2)

is convergent if .r is < 1

,

and divergent if x is > 1
;

(-•5'* ''•)

and if x = 1, the series is

convergent if -y— a — /3 is positive,

divergent if y— a— /3 is negative, (239 iv.)

and divergent if 7 — a— /3 is zero. (239 v.)

Let the liypergeometrical series (291) be denoted by

F{a, ft, y) ; then, the series being convergent, it is shewn by

induction that

292 ria,ft-^\,yjyi} ] concl.ulin- ^vitl.

l-/r, I-/.-,.
,

1-c^c. ... \-k,,z,..

^vlH"^c /.',, I:,, Jr., Sec with .-:,,,, are given l)y tlic foniiiilie

. _ (a+r-1)(y+)— 1-y8).r

(y+ 2>—2j(y+2>— 1)

_ ()8+ r)(y+r-a).r
(y+2;-l)(y+2r)

f'(a-f-r, /8+ r, yH-2r)

Tlie continued fi-action may be conchuhMl at nny point

with k-ir^Ur' When r is infinite, r/o^ = 1 and tlic continurfl

fraction is infinite.

o
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293 Let

"l.y ' 1.2.y(y+l) ' 1 . 2.;{.y (y+1) (7+2)
f{y) ::^ 1 + _!^ +

'^'

+ -^ /"^i 1,/ _1_.>X + '^^•
1.7 1.2.V v+1) 1.2.,{.v(v4-l (-/+2)

the result of substituting — for ic in (291), and making

/3 =:= « = X . Tlien, by last, or independently by induction,

/(y+ 1) _ 1_^ p^_ P2_ 'Pj!]_

Ay) 1+1+1+ ... + I+&C.

with j),„ = (y+m— 1) (y+/>«]

294 In this result put y = ^ and -^ for ,r, and we obtain by

Exp. Th. (150),

Or the continued fraction may be formed by ordinary division

of one series by the other.

295 ('"' is incommensurable, m and n being integers. From

the last and (17-1), by putting x = '

.

INTEREST.

If r be the Interest on £1 for 1 year,

11 the inimber of years,

/' the I'l-incipal,

A the auiouut in n. years. Then

296 At Siiuple Interest A = P{l-^)n').

297 At Compound Interest A = /*(t+r)". % (-^-i)-
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298 But if the payments of
")

.„

Interest be made 7 C A = I' h +
-j

times a year ) ^ ^^

If A be an amount due in 11 years' time, and /' the ])resent

worth of -1. Theu

299 At Simple Interest 7* = -j-^ .

By (-200).

300 At Compound Interest /' =
,

. By (297).

301 Discount = A- P.

ANNUITIES.

302 The amount of an Annu- 1

,,(,,_])
ity of £1 in n years, [ = nA~

.^
>'• ^y (82).

at Simple Interest

.

303 1 'resent value of same = '^yr—

:

,tA-hi{N-\)r n^(09,j).

304 Amount at Compound \ _ (1+r)"—

1

^ ,^-.

Interest ) "(l+r)-l
'

Present worth of same — ~
.

'

,

''

. 'b' (-J^'*^*)-

(l+r)-l

305 Amount when the pay- ^ ( j 1 _!1 Y"'_ 1

ments of Interest/ _ ___7_ iw (2:is).

are made q times -|)er C
/

i 1

'*
V' 1

'

annum J \ (/ '

~

1

Present value of same =
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306 Amount wlicn the pay- )

meuts of the Annuity f _ ( 1 -f >•)"— I

are made m times per
[

'

i ~

annum J
m \{l-{-r)'-—l}

Present value of same ^ l-(l+ r)-

m{(l-fr)i-l}

307 Amount when the In-

terest is paid q times

and the Annuity m
times per annum ... J

"^
V\ qi'

Present vahie of same

m (i+v)-

PROBABILITIES.

309 If ^11 tlie ways in which an event can happen be m
in number, all being equally likely to occur, and if in n of

these m ways the event would happen under certain restrictive

conditions ; then the probability of the restricted event hap-

pening is equal to n-^m.
Thus, if the letters of the alphabet be chosen at random,

any letter being equally likely to be taken, the probability of

a vowel being selected is equal to -i^q. The number of un-

restricted cases here is 26, and the number of restricted

ones 5.

310 Ifj however, all the m events are not equally probable,

they may be divided into grou{)s of ccpially probable cases.

The probability of the restricted event happening in each

group separately must be calculated, anel tlie siun of these

probabilities will be the total })robability of the restricted

event liappening at all.
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ExAMPLK.—Tlicro are three bags A, B, and G.

A contains 2 white and .'} black balls.

B „ 3 „ t

C „ 4 „ 5

A bapf is taken at random and a hull drawn from it. Required the pro-

bability of the ball being white.

Hero the probability of the bag A being chosen = J, and the 8ub.sc([nonfc

probability of a white ball being drawn = l-

Therefore the [jrobability of a white ball being drawn from .1

~ 3 5 15-

Similarly the probability of a white ball being drawn from B

- 1' X 3 - l'~
3 7

~
7

And the probability of a white ball being drawn from G

-1 J* - i~ 3 ^ 9 ~ 27'

Therefore the total probability of a white ball being drawn

.j2_ 1 4 ^ 401

15 7 27 945'

If a be the number of ways in wliicli an event can liappen,

and J) tlie number of ways in wliieli it can fail, then the

311 rrobabilitv of the event lia])penin2r = r.

312 l'rol)al)ihty of the event failing =

Thus Certainty = 1.

If p, p' be the respective probabilities of two iudcpcndcnt

events, then

313 rrol)al)ility (^f both liappening = pp'.

314 )} of not /yo//i happening == i—pp'.

315 )) of one happening and one faiHng

316 „ of l)o(h failing = (!—/>) (1 —/>').
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If the probability of an event happening in one trial be j>,

and the probability of its failing q, then

317 Probability of the event happening r times in n trials

= C{n, r)2fff-\

318 Probability of the event failing r times in n trials

= C {n, r) ^j" "''(/''. [By induction.

319 Probability of the event happening at lea><t r times in

n trials = the sum of t\iQ fivHt n—r-[- 1 terms in the expansion

of 0;+ ry)".

320 Probability of the event failing at least r times in n
trials = the sum of the last n— r-[-l terms in the same ex-

pansion.

321 The number of trials in which the probability of the

same event happening amounts to j/

_ iog(i-;/)

log (!-;>)'

From the equation (1 —j^)*" = 1 —])'

-

322 Dei'inition.—AVhen a sum of money is to be received if

a certain event happens, that sum multiplied into the proba-

bility of the event is termed the expectation.

Example.—If three coins be taken at random from a bag
containing one sovereign, four half-croAvns, and five shillings,

the expectation will be the sum of the expectations founded
upon each way of drawing three coins. But this is also equal

to the average value of three coins out of the ten ; that is,

-i^ths of 35 shillings, or 10s. Qd.

323 The probability that, after r chance selections of the

numbers 0, 1, 2, 3 ... 7i, the sum of the numbers drawn will

be 6', is equal to the coefficient of .t'* in the expansion of
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324 'I'lie probability of the existence of a certain cause of

an observed event out of several known causes, one of wliieli

vi^ist liave produced the event, is proportional to tlie a jn-iarl

probability of the cause existinu: multiplied by the probability

of tlie event happening from it if it does exist.

Thus, if the a priori probabilities of the causes be /',, /'.

... Sec. J and the corresponding probabilities of tlie event hap-

pening from those causes (^),, (/_, ... itc, then the probal)ility

of the ?•"' cause having produced the event is

X{1'Q)

325 If A'> P-i ••• &c. be the a jfrlori probabilities of a second

event hap])ening from the same causes respectively, then,

after the first event has happened, the probability of the

second happening is

t {PQ)

POP'
For this is the sum of such probabilities as \^''//, (i which is

the probability of the r^'' cause existing multiplied by the

probability of the second event happening from it.

Ex. 1.—Suppose there are

4 vases containing each 5 wliite and (i l)l:ick ball.s,

2 vases containing each ^ white and 5 black balls,

and 1 vaso containing '2 white and 1 black ball.

A white ball has been drawn, and the probability that it came Irani tiie group
of 2 vases is required.

Here P, = ^ ]'.. =
'f

,

P, = !

Therefore, by ('S-l), the pn)l)ability i-c(iuii-fd is

4,:.^ 2.;^ L2 427

7.11 7.8 7.3

Ex. 2.—After the white ball has been drawn and ro])laced. a ball

drawn again; required the probability of the ball being lilack.
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He-o P; = A, p; = |, p. =
|

The probability, by (325), will be

4. 5.6 2.3.5 1.2.1

7.11.11 7.8.8 7.3.3 58639

4.5 2.3 1.2 112728'

7.11 7.8 773

I£ the probability of the second ball being white is required, QiQ^Qi
must be employed instead of P{P'.P'z.

326 The probability of one event at least happening out of

a number of events whose respective probabilities are a, h, c,

&G., is P1-P2+P3-P4+&C.

where P^ is the probability of 1 event happening,

and so on. For, by (316), the probability is

l-(l-a) (l-h) (l-c) ... = y.a-^ah+ ^ahc-, ...

327 The probability of tlie occurrence of r assigned events

and no more out of 01 events is

where Q„. is the probability of the r assigned events ; Q.,.+i the

probability of r+ l events including the r assigned events.

For ii a, h, c ... be the probabilities of the r events, and
a, 1/, c ... the probabilities of the excluded events, the re-

quired probability will be

ahc ... {l-a'){l-h'){l-c') ...

= ahc ... {l-1.a-{-'^aU-:ia'l/c'-\-...).

328 Tlu^ probability of ani/ r events hapjiening and no more

Note.—If a = h = c = &c., tlien ^Q, = C (n, r) Q,, cl'c.
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ii\i<:QLiALrrib;s.

330 ^^'+^^-+- •"^'^"
lies between the -Teatest uiul least of

/>i+ '>-.>+ ••• +^'»

the fractions i^, ^, ... -^, the (leiiominators being all of

the same sign.

PuoOF.—Let k be the greatest of the fractions, and - any other; then

ar<kbr. Substitute in this way for each a. Similarly if k be the least

frapCtion.

331 ^ > V"0.

332
«.+«.+ ...+»„ > y„,7^~^,;

71

or, Arithmetic mean > Geometric mean.

Proof.— Substitute both for the greatest iind least factors their Arith-

metic mean. Tiie product is thus increased in value. Repeat tlie process

indefinitely. The limiting value of the G. M. is the A. ]\I. of the quantities.

333 q:^' > {^l+!i)'\

excepting when m is a positive pi'opei' IVaet ion.

PlJOOK „'" + ?,'" =("t'')"'[(l+.r)'" + (l-..)"'},

diere .» = " -'. Kinploy Hin. Tli
a + b

334
":'+""'+..+":

> ^'.+".+ +"..
y\

excepting ^vhen /// is a positive proper fraction.

I"
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Otherwise.

—

The ArUhmetic mean of the m"' poivers is

greater than the m"' power of the Arithmetic mean, excepting

when m is a positive proper fraction.

Pkoof.— Similar to (332). Substitute for the greatest and least on the

left side, employing (333).

336 If -'' and m, are positive, and x and mx less than unity

;

then (l+ ciO-'"> l-mx. (125, 240)

337 K ,1^ m, and n are positive, and n greater than ra ; then,

by taking' x small enough, we can make

For X maybe diminished until l^nx is > {l—mx)'^, and this

is > (l-\-xy\ by last.

338 If ^ be positive, log {l-\-x) < os. (150)

If X be positive and > 1 , log (l+.r) > <r- ^. (155, 240)

If X be positive and < 1, ^ogj^^, > <'• (^''^^^

339 When n becomes infinite in the two expressions

1.3.5... (27Z-1)
.^^^^^

o.-^.7...(2y^ + l)

2.-4.(3 ... 2yi

'

2. 4. 6. ..2m

the first vanishes, the second becomes infinite, and their

product Ues between -J
and 1.

Sliewii by adding 1 to each factor (see 7o), and multi-

plying the result by the original fraction.

340 II' '" he > II, and ii > <(,
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341 If ", f> 1)0 |)ositiv(> quantities,

„V/' is > ('i+I'f"'.

SinulaHy a'' !,'.'> {^'+ ','+
'

f"*'

These and similar theorems may be proved hy takinf^ lou^a-

rithms of each side, and employing the Expon. Th (loH), Sec.

SCALES OF NOTATION.

342 It" iVbe a whole number of h-{- I digits, and /• the radix

of tlie scale, ^<' = JJ,,'" +I>u-xr"-^ +p„_,r"-'-+ ... -^j>ir-\-p,,,

where j^„, 2>„_i, ...2>„ are the digits.

343 Similarly a radix-fraction will be exju'essed by

where 2>i, p.,, cVe. are the digits.

ExAMi'LKS : o-12l! in the scale of 7 == 3 .

7'' + •!
.
7- + - • 7 + (J

;

•104o in the same scale = - + ^., + -,- + '*
.

7 r 7'^ 7'

344 Kx.—To transform :U2G8 from the scale of 5 to the

scale of 11.

RuLK.

—

JJii'ide sucrcssiiu-Jij hi/ tlw iinr radix.

11 3426S

11
1
1348 -<

111-40-3

1—9 Result \[)'3t, in which t stands fm- Id.
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345 Ex.—To transform -tOcl from the scale of 12 to that

of 7, e standing for 11, and f for 10.

Rule.—Multiply successively hy the neio radix.

•tOel

7

5-i657

1

6-1931

7

1-0497

7

0-2971 Result -5610

346 Ex.—In what scale docs 2f7 represent the number 475
in the scale of ten ?

Solve the equation 27-- + 10;- + 7 = 475. [178

Result >• = 13.

347 The sum of the digits of any number divided by ?'—

1

leaves the same remainder as the number itself divided by
r— 1 ; r being the radix of the scale. (401)

348 The difference between the sums of the digits in the

even and odd places divided by r-\-l leaves the same re-

mainder as the number itself when divided by r+ 1.

THEORY OF NUMBERS.

349 If ft is prime to b,
,

is in its lowest terms.
b

Proof.—Let = —
i, a fiaction in lower terms.

b 1)^

Divide a by «,, remaimler n., (juotieiit 5,,

h by 6,, remainder h., quotient 7,

;

and so on, as in liiidinii- the H. C. F. of a and a„ and of b and i, (see 30).
Let «„ and b„ be the highest eoninion factors thus determined.
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Tlu'ii, hocaiise — = ' , .-. = '•'=', (70;
6 ^, /' ''— Q\''\ "i

and so on ;
thus - = ' = • = txc ~ 7 •

T hero ft )!(.' u and b arc C(|uimnlti|)k's of a„ and b„ ; that is, a is not prime to b

if any fraction exists in lower terms.

(t (I

h

('(jiiiimiltiples of a and />.

350 It" " is prime to A, and -^= '.-; then n' and //arc

Pkoof.—Let - reduced to its lowest terms be ^
. Then ^- = — , and,

b 1 1 '>

since p is now prime to 7, and a prime to /', it folhiws, by ;M-ft, that ^ is

neither greater nor less than ; that is, it is (.Hjual to it. Therefore, &c.

351 If '^^ is divisible by c, and a is not ; then h must be.

II T ,
(lb a

Pi;nOl'.— Let =7; •• ' =
c c l>

Hut '( is prime to c ; therefore, by last, b is a multiple of c.

352 If <^f Jind h be each of them prime to r, ah is i)rime

to r. [By (351).

353 If abed... is divisible by a prime, one at least of the

factors a, h, c, &c. must also be divisible by it.

Or, if p be prime to all but one of the factors, that factor

is divisible by j>. (:ir.l)

354 Therefore, if a" is divi.sihle by ^^ i>
cannot be jirime to

'/ ; and if j) be a prime it must divide a.

355 If " is prime to h, any power of <i is prime to any
} tower of It.

Also, if a, 0, c, &c. are prime to each otlier, the product

of any of their powers is prime to any other protluct of their

powers.
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356 No expression with integral coefficients, siicli as

A+ B,e+ Cx' -h . .
.
, can represent primes only.

Proof.—For it is divisible by x if ^1 = ; and if not, it is divisible by A,
when x=: A.

357 '^^^G nnmber of primes is infinite.

Pkoof.—Suppose if possible p to be the greatest prime. Then the pro-

duct of all primes up to p, plus unity, is either a prime, in which case it

would be a gieater prime than p, or it must be divisible by a prime ; but
no prime up to p divides it, because there is a remainder 1 in each case.

Therefore, if divisible at all, it must be by a prime greater than p. In
either case, then, a prime greater thanp exists.

358 If (I be prime to h, and the quantities a, 2a, oa, ...

(b—i) a be divided by h, the remainders will be different.

Proof.—Assume ma— nb = ma— )ib, iii and n being less than b,

"" - "~"'
Then by (350).

b m— in

359 A number can be resolved into prime factors in one
way only. [By (353).

360 To resolve 6040 into its prime factors.

Rule.— Divide hij the prime numbers snccessiveli/.

2x51 5040

2 1 504

21 252

2 1 126

7 1 63

3L9_
3 Thus 5040 = 2'. 3-..5. 7.

361 Required the least multiplier of 4704 wliicli will make
the product a perfect fourth power.

By (19G), 4704 = 2'. 3. 7-.

Then 2'. 3'. 7- x 2'. 3». 7- = 2». 8'. 7' = 84',

the indices 8, 4, 4 being the least multipli's i)f I which :ire not less than

5, 1,2 I'espcctively.

Tlius 2". 3'. 7- = 3584 is the multiplier reciuired.
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362 All mmilHTS :uv ..f one of tin- forms 2// <.|- 2//-f 1

•2n(n'2n — \

„ ,, ',\n ov:\n±\

,, ,, 1// or l//il oi- I// + 2

,, ,,
ly/ or ly/±l or 4/<—

2

,, ,,
r)/M)i- ."iz/il or r>//i-

aiul so oil.

363 AH square numbers are of tlie form .w< or .u/il-

l'i;00K.—By squarino; tlii" lonns o/t, .">» ± 1, I'tuzt-. wliii-h ciniiitrelieiHl

all numbers whatever.

364 All cube numbers are of the form "Jn or 7^'dzl-

And similarly for other powers.

365 The highest power of a prime jh which is contained in

tlu> i)roduct III ! , is the sum of the integral parts of

m m m p

1> F V

For there are ' factors in //^ ! which p will divides '., which

it will divide a second time ; and so on. The successive

divisions are eejuivalent to dividing b}'

ExAMi'LK.—The hitrliesfc power of 8 which will divide 29!. Heio the

factors 3, <3, l», 12, 15, 18, 21, 24, 27 can be divided by 'A. Their ntinilier is

'"
I" = !> (the inte,t,M-al pai-t).

Till' factors it, 18, 27 can be divided a second time. Their nmnlx'r is

"'_ = ;5 (the integral part).

One factor, 27, is divisil)le a third time. "7;^ = 1 (intei^'ral i):irt).

9-f 3+ 1 = 13; that is, 3" is the highest power of 3 which will divide 29!.

366 'I'hc [)roduct of :mv /• consecutive integers is divisiljlc

byr!.

PkooK:
«("-!) ••• (»-'•+!)

is necessarily an inteu'cr, by ('.'<;).
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367 If ^^ be a prime, every coefficient in the expansion of

{a-\-hy\ except tlie first and last, is divisible by n. By last.

368 If " l)t> a prime, the coefficient of every term in the ex-

pansion of {(i-\-h-\-c ...)", except a", &", &c., is divisible by n.

Proof.—By (367). Put /3 for (6 + c+ ...).

369 Frrmaf.s Theorem.—U p be a prime, and N prime to

p ; then iV^"^— 1 is divisible by p.

Proof : W={l + \ + ...y = N^Mp. By (368).

370 If V be any number, and if 1, r/, ^>, c, ... (p— 1) be all

the numbers less than, and prime to p ; and if n be their

number, and x any one of them ; then ,if— 1 is divisible by p.

Proof.—If x, ax, hx ... (p— l)x be divided by p, the remainders will be

all different and prime to^ [as in (358)] ; therefore the remainders will be

1, a, b, c ... (p— l) ; therefore the product

x"ahc... ip—l) = ahc ... {p— \)+Mp.

371 Wilson's Theorem.— If p be a prime, and only then,

l + (^— 1) ! is divisible by p.

Put j)— 1 for r and n in (285), and apply Fermat's Theorem

to each term.

372 If i'
be a prime = 2y« + l,then {vlf+ {-iy is divisible

hy p.

Proof.— By multiplying? together equi-di.'^tant factors of (j»— 1) ! in

Wilson's Theorem, and putting 2n + l for /).

373 \,Qt N =(('' !>''(''' '• in prime factors ; the number of in-

tegers, including 1 , which are less than u and prime to it, is

Proof. — The number of intogcrs piimo to N contained in ri" is n"-

Similiirly in //", /•'•, &c. Take the ])r()duct of those.
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Also tlio miinhcr of intcfjfors less tliaii mikI ])i-imo to

(Xx ^fxScc.) is the ])roduct of the coiTcspoiuliiig miiuhcrs

for X, ^[, &c. separately.

374 The number of divisors of N, incliidiiif^ 1 and ^V itself,

is = (y + l) (v 4-1) (/'+ !) ...• For it is equal to the number
of terms in the product

(l+./ + ...+r7'')(l+/.-h...+^")(l+r+...+'")---<-'tc.

375 The number of ways of resolving N into two factors is

half the number of its divisors (374). If the number be a

S(juare the two equal factors must, in this case, be reckoned

as two divisors.

376 If the factors of each pair are to be prime to each other,

put j;, 7, r, &c. each equal to one.

377 The sum of the divisors of ^V is

a^^-'-l h'^^'-^ c^-^'-l

a-l ' h-1 ' c-1 '"

Proof.—Bj the product in (-374), and by (85).

378 If 7^ be a prime, then the j?— 1*** power of any number
is of the form mj^ or )fij)-\-l. By Fermat's Theorem (3(30).

Ex.—The 12"* power of any number is of the form 13fM. or 12m-\-l.

379 To find all the divisors of a number ; for instance, of 50-1.

I.
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The divisors of 504 are now formed from tlie numbers iu column II., and

placed to the right of that column in the following manner :

—

Place the divisor 1 to the right of column II., and follow this rule

—

Multiply in order all the divisors which are written down by the next number

in column II., which has not already been used as a multiplier : place the first

netv divisor so obtained and all the folloiving products in order to the right of

column II.

380 >^r tlie sum of the r^^' powers of tlio first n natural

numbers is divisible by 2}i-\-l.

Proof : x {x"- V) (x"- 2") . . . (»' - »0

constitutes 2» + ] factors divisible by 2w+l, by (36G). Multiply out, re-

jecting X, which is to be less than 2ji-|-l. Thus, using (372),

x'"-S,x"'-' + S2X-"-'- ... S,,.,x-' + (-iy([ny = M(2n + l).

Put 1, 2, 3 ... («— 1) in succession for x, and the solution of the (n— 1)

equations is of the form Sr = M{2n + l).



THEORY OF EQUATIONS.

FACTOKS OF AN EQUATION.

iicncralform of a rational integral equation ofthe w^'' degree.

The left side will be designated /(,/•) in the following

summary.

401 If /(') bt-' divided by «— rt, tbe remainder will be /(")•
By assuming /(,(;) = P {x— a)-\-lL

402 If « be a root of the equation /(.i;) = 0, tlien/(rt) = 0.

403 To compute /(rt) numerically; divide f{.r) by x— a,

and the remainder will bef{a). [101

404 Ex^^MPLE.—To find the value of 4x''-2x'+ l2x'-x'' + 10 when x = 2.

4-3 + 12 +0 -1 +0 +10
8 + 10 + 4-i+ 88 + 174+ 34.8

4 + o + 22 + -lrl + 87 + 174+ 358 Thus /(2) = 358.

If a,h,c...h be the roots of the eciuation f {(r) = ;

then, by (401) and ( 1U2),

405 /Or) =7>o (.t-^/) G^-'>) O'-O ... ('^-/O.

By multiplying out the last cijuation, and equating coefficients with

cquatiou (100), cousidcriiig j'u = 1, the following results lu-o obtained :—
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406 —ih = the sum of all tlie roots of /(a?).

_ ( the sum of the products of the roots taken
^'" ~

\ two at a time.

_ ( the sum of the products of the roots taken
~~i^ ~

\ three at a time.

X 1 y _ ( the sum of the products of the roots taken
^ /ir — "^ rata time.

( — l)"j?,j = product of all the roots.

407 The number of roots of /(.^') is equal to the degree of

the equation.

408 Imaginary roots must occur in pairs of the form

a+/3v/^, a-i3\/^.

The quadratic factor corresponding to these roots will

then have real coefficients ; for it will be

x'-2ax+ a-+ii\ [405, 226

409 If /('«) be of an odd degree, it has at least one real root

of the opposite sign to p,j.

Thus a;^— 1 = lias at least one positive root.

410 If /('O ^Q of an even degi^oe, and jhi negative, there is

at least one positive and one negative root.

Thus a;'*— 1 has +1 and —I for roots.

411 If several terms at the beginning of the equation are of

one sign, and all the rest of another, there is one, and only

one, positive root.

Thus x^+ 2x*-\-Sx^ + x'^— 5x—4< = has only one positive root.

412 If all the terms are positive there is no positive root.

413 If all the terms of an even order are of one sign, and

all the rest are of another sign, there is no negative root,

414 Thus **— a;"+ «'—;« + 1 = has no negative root.
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7

415 If :>11 tlio indices are even, aiul all tlie terms of the same
sijjfii, there is no real root; and if all the indices are odd, and
all the terms of the same sign, there is no real root but zero.

Thus x*+ x^ + l = has no real root, and x'^+ x^+ x = has no real rout

but zero. In this last equation there is no absolute term, because such a
terra would involve the zero power o( x, which is even, and by hypothesis is

wanting.

DESCARTES' RULE OF SIGNS.

416 In the following theorems every two adjacent terms in

/(.r), which have the same signs, count as one " continuation

of sign"; and every two adjacent terms, with different signs,

count as one chanw of siefu.

417 /(<')' multiplied by (/. — a), has an odd number of

changes of sign thereby introduced, and one at least.

418 ./* (c) cannot have more positive roots than changes of

sign, or more negative roots than continuations of sign.

419 Wlien all the roots of f{.r) are real, the number of

positive roots is equal to the number of changes of sign in

f{.r) ; and the number of negative roots is equal to the number
of changes of sign in/(— .r).

420 Thus, it being known that the roots of the equation

a;*-10.t'' + 3o.c2-50.c + 24 =
are all real ; the number of positive roots will be equal to the number of
changes of sign, which is four. Also f(—x) =x*+lOx'^+ 3bx-+ 50x + 2i! = 0,

and since there is no change of sign, there is consequently, by the rule, no
negative root.

421 If the degree of /(./•) exceeds the number of changes of

sign in f{x) and /(—a;) together, by /t, there are at least /j.

imaginary roots.

422 If, between two terms in /(,/) of the same sign, there

be an odd number of consecutive terms wanting, then there

must be at least one more than that number of imaginary
roots ; and if the missing terms lie between terms of different
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sign, there is at least one less than the same number of

imaginary roots.

Thus, in the cubic equation x^+ 4x— 7 = 0, there must be two imaginary
roots.

And in the equation x°—l = there arc, for certain, four imaginary roots.

423 If an even number of consecutive terms be wanting in

f{x), there is at least the same number of imaginary roots.

Thus the equation x^+ 1 — has four terms absent ; and therefore four
imaginary roots at least.

THE DERIVED FUNCTIONS OF f{.v).

Rule for forming the derived functions.

424 Multiply each term hy the index of x, and reduce the

index by one; that ^s, differentiate the function with respect

to X.

Example.—Take

/ («) = x^+ a;*+ a;'- x'-x-l

f (x) = 5x'+ 4x^+ dx""- 2a; -

1

f(x) = 20x'+ 12x'+6x-2
f(x) = 60a;2+ 24« +6
f(x) = 120x+24.

f (x) = 120

/' (*)j /' ('''')y <^c. are called the first, second, &c. derived functions of/ (a;).

425 To form the equation whose roots differ from those of

f{x) by a quantity a.

Put x= y-\-a infix), and expand each term hy the Binomial
TJieorem, arranging the results in vertical columns in the foU
lowing manner

:

—
/(a+ 2/) = («+ 2/)'+(a+ 2/)H(a+ 7/)»-(a + y)=-(a + 7/)-l

a"
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('omparing this result with that seen in (421), it is seen that

426 /•("+.'/) =/(")+/'(")//

\A lA LI L±

80 tliat tlie coefficient generally of ?/'' in tlie transformed

equation is '
,

^ ^
r

427 To form tlie equation most expeditiously when a has a

miinerical value, diride f{,i') continuously hi/ x— a, and the

succcssli-e remainders ivlU furnish the coefficients.

ExAiirLE.—To expand f(y + 2) when, as in (425),

f(x) = Z'+ x'+ x'-x'-x-l.
Divide repeatedly by x— 2, as follows :

—

1 + 1 + 1 - 1 - 1-1
+ 2 + + 14 + 2G +50

1 + 3 -f 7 +
-f 2 +10 +

13 +
31 +

1 + 5 +17 + 47

+ 2 +14 + 02

+ 119

+49=/(2)

= rC2)

1 + 7+31
+ 2 +18

+ 109 = (i)

11

1 + 9
I

+49 =
+ 2

I

14

_/'(2)
|3

+ 11

1 - f(^\
|5

That these remainders

are the required eoeflicients

is seen by inspecting the

form of the equation (420)

;

for if that equation bo di-

vided by x— a =
II

repeat-

edly, these remainders aro

obviously produced when
a = 2.

Thus the equation, whoso roots are each less by 2 than the i-oots of the

proposed equation, is ?/+ll?/' + 49(/"'+109//'+ 119//+ 49 = 0.

428 To make any assigned term vanish in the transformed

equation, a must be so determined that the coeffieient of tliat

term shall vanish.

Example.—In order that there may be no term involving if in equation

(420), we musi have /*(a) = U.

Find /'(a) as in (424);

thus 120« + 24 = 0; .-. a = -\.
The equation in (424) must now be divided repeatedly by a; + | after the

manner of (427), and the resulting equation will be minus its seeoud term.
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429 Note, tliat to remove the second term of tlie equation

y(-t') = 0, tlic requisite value of a is = — ^ ^
; tliat is, the

coefficient of the second term, with the sign changed, divided hy

the coefficient of the first term, and hy the numher expressing

the degree of the equation.

430 To transform /'(''') "^^o an equation in y so that //
- <p {.<),

a given function of x, 2^ut x= (j)~'^{y), the inverse function of y.

Example.—To obtain an equation whose roots are respectively three times

the roots of the equation x^— Gx + 1 = 0. Here 2/ = 3a; ; therefore x = —,

and the equation becomes ^ — -^ + 1 = 0, or ?/— 54^ + 27 = 0.

431 To transform /(,v) = into an equation in which the

coefficient of the first term shall be unity, and the other

coefficients the least possible integers.

Example.—Take the equation

288x^+ 24>0x''-176x- 21 = 0.

Divide by the coeflacient of the first term, and reduce the fractions
;
the

5 11 7
equation becomes x^ + —• x^— — x — KB — ^'

Substitute -^ for x, and multiply by h^ ; we get

Next resolve the denominators into their prime factors,

3 57^ , life' _ yic" ^Q
'^ "^2.3^ 2.3'^^ 2^3

The smallest value must now be assigned to h, which will suffice to make
each coefficient an integer. This is easily seen by inspection to be 2'-. 3 = 12,

and the resulting equation is i/+ 10if— 88y— l26 = 0,

the roots of which are connected with the roots of the original equation by

the relation y = I2x.

EQUAL ROOTS OF AN EQUATIOli^.

By ox})audiiin^ 7X''^+ ^') i^^ powers of ;• by (i05), and also

by (1'2()), and c(iiiating the coefficients of z in the two ex-
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pansions, it is provctl tliat

tVoiii wliicli result it appears tliat, if tlie roots a, b, r, &c. arc

all uTUMiual, /'(.*') and /'(,») can liave no common measure in-

volving ,*•. If, however, there are r roots each equal t<^ d,

s roots e(|ual to h, t roots equal to r, &c., so that

f{^v) = iK{,'-ay {.v-hy {.v-i'Y ...

then

433 /(..) =^ + ;^;! + (-ia^ + *..;

and the greatest common measure <'f/((') and /'(,<) will bo

444 {.v-(iy-' {.v-hy-' {.v-cY-\..

When .v, = a, /(..), /'{,'), .•/'-'Oi') all vanish. Similarly

when .v= b, &c.

Prdctiral mctlnnl offfiH/in^' the (-([Udl nKits.

445 Lft / (.0 = A', X: a1 X\ Xl . . . X;::, where

A', = product of all the ftictors like {x— <^^,

A1= „ „ {x-a)\

Xl= „ „ (.-«)».

Find the greatest comraon measure of /(j-) and /'(f) = I'\ (.') say,

I'\(x)aud'F;Cv) = F,(x),

F^(x) And F:(x) = F3(x),

Lastly, the greatest common measure of F,„.i(x) and /''„,-i(*) = I'\,0') = 1-

Next perform the divisions

f(x) -i- F,(.r) = <p,(.r) .say,

F,(x)-^F,(') ='P,{.r),

And, iinully, 0, (.,') -4- <Pi{x) = A',,

i''«.-.C'-)=V'..C'-) = A',,.. [T. 82.

1:
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The solution of the equations Xj = 0, X, = 0, &c. will furnish all the

roots of/ (a;) ; those which occur twice being found from X.^; those which

occur three times each, from X^ ; and so on.

446 If /('^) lias all its coefficients commensurable, X^^X^^X^,

&c. have likewise their coefficients commensurable.

Hence, if only one root be repeated r times, that root must

be commensurable.

447 III all the following theorems, unless othermse stated,

/(-/•) is understood to have unity for the coefficient of its first

term.

LIMITS OF THE KOOTS.

448 If the greatest negative coefficients in /(,/') and /(— <^')

be j) and q respectively, thenp+ 1 and —(^ + 1) are limits of

the roots.

449 If x''-'' and x''-' are the highest negative terms in /(<i')

and /(— aO respectively, {l + \/p) and —{l-\-^q) are limits

of the roots.

450 If /-^ be a superior hmit to the positive roots of /(— j »

then — will be an inferior limit to the positive roots of /(-f)-

451 If each negative coefficient be divided by the sum of all

the preceding positive coefficients, the greatest of the fractions

so formed + unity will be a superior Hmit to the positive

roots.

452 Neivtons tnethod.—Viit x=h-\-i/ in /(./•) ; then, by (420),

Take // so that /•(/')' /(^O^ fW yf'W ^^^ ^11 positive;

then // is a superior limit to the positive roots.

453 According as /{a) andf{b) have the same or different

signs, the number of roots intermediate between a and b is

even or odd.



INTEGRAL BOOTS. 123

454 Rollrs Thcorrm.—Ono real root of the eriuation f (r)

lios iH'lwoeii every two adjacent real roots of /(./')•

455 ('OH. I.—/(•'•) cannot have more than one root gi-eatcr

than the greatest root in /(./); or more than one less than

llic least root in/'(,r).

456 CoR. 2.—If f(.r) has m real roots, /'•(') has at least

III — / real roots.

457 CoH. 3.—If f(u') lias /t imaginary roots, f{.r) has also

/i at least.

458 CoK. -1.—If a, /3, y ... K be the roots of /(.<) ;
then the

11 umber of changes of si^-n in the series of terms

f{^), /W, /(«, /(7).-/(-^)
is equal to tlie number of roots oif{.c).

NEWTON'S METHOD OF DIVISORS.

459 To discover the integral roots of an equation.

ExAMTLE.—To ascertain if 5 be a i-oot of 5 ) 105

«*-6x»+ 80x*-i;6.i- + 10-. = 0. 21
— 1/b

If 5 be a root it will divide 105. Add the quotient to the ^ ) —\55
next coefficient. Result, —155.

—'Si

If 5 bo a root it will divide -155. Add the quotient to _86
the next coefficient ; and so on. 5 ) 55

U
— 6If the number tried be a root, tlic divisions will be effectiblo

to the end, and the last quotient will bo -1, or —}>o, if/u he
>- n _ e

not unity. 2_Z_.
-1

460 In employing this method, limits of the roots may first

be found, and divisors chosen between those limits.

461 Also, to lessen the number of trial divisors, take any

integer m ; then any divisor a of the last term can be rejected

if a — m does not divide /(///).

In practice take /// = -f-1 and — 1

.

To find wliether any of the roots determiiK'd as above are

repeated, divide f{x) by the factors correspijndiTig to them,

and then applv tlie method of divisors to the resulting ecpiation.
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Example.—Take the equation

Putting X = 1, we find/(l) = —24. The divisors of 144 are

1, 2, 3, 4, G, 8, 9, 12, IG, 24, &c.

The values of n— m (since rii = l) are therefore

0, 1, 2, 3, 5, 7, 8, 11, 15, 23, &c.

Of these last numbers only 1, 2, 3, and 8 will divide 24. Hence 2, 3, 4, and

9 are the only divisors of 144 wliich it is of use to try. The only integral

roots of the equation will be found to be ±2 and ± 3.

462 If /('^') and F{X) have common roots, they are con-

tained in the greatest common measure of /(a:) and F{X).

463 If /('') l^as for its roots a, (p {a), h, (jt {b) amongst others ;

then the equations /(.*) = and/[(^(A')j = have the common
roots a and h.

464 But, if all the roots occur in pairs in this ^vay, these

equations coincide.

For example, suppose that each pair of roots, a and b, satisfies the equation

a+ h = 2r. We may then assume a— b = 2z. Therefore/ (2 + r) = 0. This

equation involves only even powers of z, and may be solved for z'.

465 Otherwise: Let a& = z ; then /(;«) is divisible by {x— a){x— l)

= x^ — 2rx + z. Perform the division until a remainder is obtained of the

form Px + Q, where P and Q only involve z.

The equations P= 0, Q = determine z, by (462) ; and a and I arc found

from a + b = 2r, ab = z.

EECIPROCAL EQUATIONS.

466 A reciprocal equation has its roots in pairs of the form

a, — ; also the relation between the coefficients is

Pr =Vu-r^ OY else p, = —Pn-r-

467 A reciprocal equation of an even degree, with its last

term jwsit ire, may be made to depend upon the solution of an

equation of half the same degree.
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468 KxAMiM.K : •l-,/''^-24,r''-f57r'-7o./-''-f :)7./--2-1../ + t =
is a rocii)rtic;il ('(lualioii of :iii cncii dcLi-i'd', with its last term
positive.

Any reciprocal equation w liicli is 7iot of this form may bo
reduced to it hi/ diridiiuj hi/ ,/ -f I //" the la.sf term l>e posit Ire

;

(UkI, 1/ till' lust term he neijafirc, l>i/ diriduuj hi/ ,r— 1 or r' — ],

so us to liriiiij thi' t'tjiiiition tn mi < rm. tlrr/ree. Then proceed
in tlie foHowinn' manner :

-

469 First brin<^ toovther e(|nidistant ti'rins, and diviih' the

equation by ,/'"*; tlius

By })utting ,v -\ = //, ;ind by making- repeated use of tlie

relation ,/'- -| =. i,r -\ ) "~ -> ^^'<^' eipration is reduced to

a cubic in ?/, the degree being one-half that of the original

equation.

]"*ut ;) for .r -|
, and p„, for x„^-\ .

470 Tlie relation between the successive factors of the form

j)„, may be exi)ressed by the e(juatioii

471 'I'he equation for ji,,,, in terms of ^>, is

P,u = p'-nip'" -+ \ ,, p'" '- ...

_L f_i V ^" f»/— >•— 1) ... (in — '2r-\-\) „,_..^,

I>y (^')i")), putting 7 = 1.

BINOMIAL EQUATIONS.

472 If a be a root of .r"— 1 = 0, then a"* is likewise a root

where m is any positive or negative integer.

473 If " be a root of ./" + 1 = 0, then a-'"^' is likewise a root.
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474 If ^''' ai^d ^2- be prime to each other, x'"'— l and x^—1
have no common root but unity.

Take iim— qn = 1 for an indirect proof.

475 If n be a prime number, and if a be a root of ct;"— 1 = 0,

the other roots are a, a^, a^ ... a'\

These are all roots, by (472). Prove, by (474), that no two can be equal.

476 If ^i be not a prime number, other roots besides these

may exist. The successive powers, however, of some root

will furnish all the rest.

477 If r*/'— 1 = has the index n = m2)q; m, ]}, q being
prime factors ; then the roots are the terms of the product

(l+a+ a^+ ... +a-^)(H-/3+ /3'--[- ... +/3''-^)

X(l + 7+ 7'+ - +7'"')>

where a is a root of «'"—
1,

/3 „ x^-l,

7 » »''-!'

but neither a, /3, nor 7 = 1. Proof as in (475).

478 If n = m^ and
a be a root of x""—! = 0,

(i „ x^>^-a = 0,

7 » r.--|3=0;
then the roots of x''—l = will be the terms of the product

(l+« + a^+ ... +„-^)(l+/3+ /3-^+...+r-^)
X(l + 7 + 7^"+... +7""')-

479 a^" + 1 = may be treated as a reciprocal equation, and
depressed in degree after the manner of (468).

480 The complete solution of the equation

.1 - -1 =
is obtained by De Moi\Te's Theorem. (757)

The 71 different roots are given by the formula

0? = cos ± V — 1 sill

71 n

in which r must have the successive values 0, 1, 2, 3, &c.,

concluding with ^ , if n be even ; and with -~ , if // be odd.
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7

481 Similarly the n roots of the ofiuatiuu

.r" + 1 =
are given by the formula

n u

r taking the successive values 0, 1, 2, 3, &c., up to '

~^
, if

n be even ; and up to
'

, if )i be odd.

482 'I'he number of different values of the product

is equal to the least common multiple of m and n, when m and
7/ are integers.

CUBIC EQUATIONS.

483 To solve the general cubic equation

a;^+jj.r+ qx -f /• = 0.

Remove the term j^at^ by the method of (429). Let the trans-

formed equation be .v'^-\-q,r-\-r = 0.

484 Cardan s mcfhoiL—The complete theoretical solution

of this equation by Cardan's method is as follows :

—

Put x = i/-\-:i (i.)

yH,v^+ (3v.v + 7)(y+ ,v) + r = 0.

Put Si/::+ q = 0; .'. ^ = - 3^

Substitute this value of //, and solve the resulting quadratic

in //^. The roots are equal to 1/ and .r* respectively ; and we
have, by (i.),

485 r {-iWf+j^r+i-^-vj+f;}'
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Tbe cubic must have one real root at least, lij'- (400).

Let »i be one of the three values of j ^ "^ \/ TT
"*"

'^ (
^' ^°^ " "°®

I

of the three values of j ^ \/X "^ 9" [
'

486 Let 1, n, a- be the three cube roots of unity, so that

a=-l +1- y^, and ci' = - 1- - L yZs. [472

487 Then, since Viu^ = my I, the roots of the cubic will be

m + ii, am-ta'-n, u'in-\-n)i.

Now, if in the expansion of

I 2 ^V 4 ^ 273

by the Binomial Theorem, we put

fx = the sum of the odd terms, and

V = the sum of the even terms
;

then we shall have m = /u. + y, and « = ^— v;

or else m = /u + v/ — 1, and n = fji
— y v— 1

;

according ^^ \/ 'T '^ §^ i^ ^^^^ ^^ imaginaiy.

By substituting these expressions for in and n in (487), it appears that—

488 (i-) If V" + ^ ^® positive, the roots of the cubic will be

2/^, —/i+ >'%/— 3, —fi — yv—o.
r- cj^

(ii.) If -r "^ 97 ^^ negative, the roots will be

2/1, —fx + y^S, — /J — vn/S.

,2 3

(iii.) If + t^ = 0, the roots are
4 27

2ot, —:?/!, -m;
since m is now equal to fi.

489 '/^/'^' Trigonometrical method.—The equation

.1'^ + r/.r + r =
may be solved in tlie following manner, by Trigonometry,

when -p + 77= is negative.
4 27

Assume <6' = ?; cos a. Divide the equation by n^; thus

cos'' a + -2- cos a -\ ^ = ^^

But cos« a - -? cos a - -^ = 0. By ((357)
4 4
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Equato coefficients in tlic two (M|n;itions ; the result is

n must now be found ^villl the aid of tlie Trigonometrical

tabh's.

490 The roots of the cubic will l)e

n cos a, n cos (jTr+a), n cos (^tt— a).

.2 3

491 Observe that, according as -- + ^- is positive or nega-

tive. Cardan's method or the Trigonometrical wall be practi-

cable. In the former case, there will be one real ami two

hnaginary roots ; in the latter case, three real roots.

BIQUADRATIC EQUATIONS.

492 Descartes' Solution.—To solve the equation

.v' + qA' + r.v -\- s = (i.)

the term in .r' having been removed by the method of ('t29).

Assume (.t.-+(u'+/) {.i--i\v-\-^-) = (ii.)

Multiply out, and equate coefficients witli (i.) ;
and t1ie fol-

lowing equations for determining /", g, and e are obtained

ir+/='/+ ^'% .ir-/=A Kf=''*' i'''')

493 ^.«4.2rye'+(r/-4v)e2-j- = (iv.)

494 The cubic in t? is reducible by Cardans method, when the biquadratic

hits two real and two imaginary roots. For proof, take « ± //5 and — a ± y as

the roots of (i.), since their sum mu.st bo zero. Form the sum of eucb pair

for tlio values of e [see (ii.)]. and "PP'Y t^° ^^^^^^ ^" ('i88) to the cubic in e*.

1/ the biquadratic has all its roots real, or all imaginary, the cubic will liave

all its roots real. Take n ± //3 and —a ± iy for four imaginary roots of (i.),

and form the values of e as before.

495 If' «'> f^f y' ^e the roots of tfie cubic in e', tlie roots of tlie biquadratic

will he _i(„+/5 + y), l(a+/3-y), 4(/9+ y-n), ^ (y+ a-/3).
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For proof, take w, x, y, z for the roots of the biquadratic; then, by (ii.), the

sum of each pair must give a value of e. Heuce, we have only to solve the

symmetrical equations

1/ + 2 = CI, w+ ,7;=— a,

Z -I- iC = /3, ?o + ;/ = — /j,

a- + ?/ = y, w-\-z = —y-

496 Ferraris solution.—To the left member of the equation

x^+lKv^-\-qx^-\-ra:-\-s = 0,

add the quantity ax^ + bx + —, and assume the result

= (,.+|,+,„y.

497 Expanding and equating coefficients, the following

cubic equation for determining m is obtained

8m^—4iqm^-\-{2j)r—8s)m-\-4!qs—2^^s— r = i).

Then x is given by the two quadratics

2 ,
» ,

,
2(Lv-{-b

^ + 2
'*' + '*' = ± -TvTT

498 The cubic in m is reducible by Cardan''s method ivhen the biquadratic

has two real and tioo imaginary roots. Assume a, /3, y, B for the roots of the

biquadratic ; then aft and yB are the respective products of roots of the two
quadratics above. From this find m in terms of aftyS.

499 Elders solution.—Remove the term in x^; then we

have .V'*'+ q.v"^ -\-r.v-\-s = i).

500 Assume x = i/-\-z-\-u, and it may be shewn that i/, z^^

and u^ are the roots of the equation

fA.±f-4-'^"'~^'t-^=0^ 2 ^ ^ 10 ^ (>i

501 The six values of y, z^ and //, thence obtained, are

restricted by the relation yzii. =

Thus X = //-!-;. + /< will take four different values.
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COMMENSURABLE ROOTS.

502 '1'" t'""l tlio commonsuraUlo roots of an ofiiiation.

First transform it by pultinjr •'' = 'ir
"^^^ ^^^^ equation of

tlic form .r"+/>i.r"-'+;>.>.r"--+ ... +/>„ = 0,

liaving j>o
= 1» iiii^l tlio remaining coefHcients integers. (l-Gl)

503 This ecpiation cannot have a rational fractional root,

and tlie inte<]:ral roots may be found Ijy Newton's method of

Divisors (451)).

These roots, divided each by h, will furnish the commen-

surable roots of the original equation.

504 Example.—To find the comrnensurablo roots of tlie equation

8 1 /'- 20 7x' - 9x»+ 89.r + 2,r - 8 = 0.

Dividing bj 81, and proceeding as in (431), \vc find the requisite substitu-

tion to bo a; = -^.

The transformed equation is

,/_23/-V+ 801)/- + lG2//-5832 = 0.

The roots all lie between 24 and —34, .by (451).

The method of divisors gives the integral roots

G, —4. and 3.

Therefore, dividing each by 9, we find the commensurable roots of the original

equation to be 3, — f , and |.

505 To obtain the remaining roots ; diminish the transformed equation by

the roots G, —4, and 3, in the following manner (see 427) :

—
1_23- 9 + 801 + 1G2- 5832

6— 102— GGG + 810 + 58326

-4
1-17-111 + 135 + 972

- 4+ 84 + 108-972

-21- 27+ 243

3_ 54-243

1_18- 81

The depressed equation is therefore

if - 18(/ - 81 = 0.

The roots of which arc (1+ \/2) and 9 (1— v/2) ; and, consequently, the

incommensuiable roots of the proposed equation are 1+ V'l and 1— v/2.
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INCOMMENSURABLE ROOTS.

506 Sturm's Theorem.—lff(x), freed from equal roots, bo

divided by /('>')> and the last divisor by the last remainder,

changing the sign of each remainder before dividing by it,

until a remainder independent of x is obtained, or else a re-

mainder which cannot change its sign; then /(a^), /'('<-')' ^^^

the successive remainders constitute Sturm's functions, and

are denoted by f{a-) , / (<r) , f^ {.v) , &c /« Gv) •

The operation may be exhibited as follows :

—

M^r) = q,f,{.v)-f,{.v),

507 Note.—Any constant factor of a remainder may.be
rejected, and the quotient may be set down for the corres-

ponding function.

508 An inspection of the foregoing equations shews

—

(1) That /„, (ft') cannot be zero; for, if it were, /'('^O ^^^

/i (x) would have a common factor, and therefore /(<^') would

have equal roots, by (432).

(2) Two consecutive functions, after the first, cannot

vanish together ; for this would make/*„ (x) zero.

(;3) AVhen any function, after the first, vanishes, the two

adjacent ones have contrary signs.

509 If, as X increases, f(x) passes through the value zero,

StnrrrC s Junctions lose one change of sign.

For, before ./'(-O tf^kes the value zero, /(a-) and/, {x) have contrary signs,

and afterwards tliey have the same sign; as may be shewn by making h

small, and changing its sign in the expansion off{x+ li), by (420).

510 If d-nij other of Sturm's functions vanishes, there is

neither loss nor gain in the number of changes of sign.

This will appear on inspecting the equations.

511 Ri:sui;r.— The nnmhvr of roots off(,v) hrtu'cen a and h is

equal to the difference in the number of cluoiges of sign in

Sturm's functions, when x= a and when x= b.
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512 <'"";•—Tlio total iiiiin])ci- ui" roots of /(,*) will he foiiiid

by taking a = -\- cc mid h = — cc ; tho aU^n of each fuiictioii

will then bo the same as that of its first term.

\VTien tho number of functions exceeds the degree of f{x)
by unity, the two following theorems hold :

—

513 If thr jir^t trrins hi all flii'fdnrtionii, aj'trr t lie first ^ are

/losifirc ; all flu' roots off{j) arc real.

514 If the first terms are not all positive ; then, for every

r/iiiiK/c of si(j)i, there will be a pair of imaginart/ roots.

For the proof put .r = + co and — oo, and examino the number of

changes of sign in each case, applying Descartes' rule. (-tl6).

515 If ^ (•'') ^^^ no factor in common with /(<>'), and if <p (x)

and _/"(,/') take the same sign when /(,<) = 0; then the rest of

Sturm's functions may be found from f{.f) and <p (</;), instead

of /'(./). For the reasoning in (509) and (510) will ajjply to

the new functions.

516 If Sturm's functions be formed without first removing

equal roots from /(,/'), the theorem aWII still give the number
of distinct roots, without repetitions, between assigned limits.

For if/(.r) and /, (x) be divided by their highest common factor (see 444),

and if the quotients be used instead of /(./) and/, (.r) to form Sturm's func-

tions ; then, by (olo), the theorem will ajjply to tho new set of functions,

which will dilfer only from those formed froin/(,c) and/, (./.) by the absence

of the same factor in every term of the series.

517 Example.—To find the position of the roots of the equation

x'-4x^+ x- + Gx + 2 = 0.

Sturai's functions, formed according to f(x)=x*—4a^+ x^+ Gx+ 2

the rule given above, are here calculated.

The first terms of the functions are all

positive ; therefore there is no imaginary

root.

The changes of

sign in the func-

tions, as X passes

through integral

values, are exhi-

bited in the adjoin-

ing table. There
are two changes of

sign lost while x

passes from — 1 to

0, and two more
lost while X passes

from 2 to 3. There

A(^') =
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are therefore two roots lying between and — \ ; and two roots also between
2 and 3.

These roots are all incommensurable, by (503).

518 Fourier's Theorem.—Fourier's functions are the fol-

lowing quantities f{x), f'{.v), f'i^v) /"(cv).

519 Properties of Fourier's functions.— As x increases,

Fourier's functions lose one change of sign for each root of

the equation /(.f) = 0, through which x passes, and r changes

of sign for r repeated roots.

520 If any of the other functions vanish, an even number
of changes of sign is lost.

521 Results.—The 7iumher of real roots of f{x) hetween a

and j3 cannot he more than the difference hetween the numher

of changes of sign in Fourier's functions when x = a, and the

numher of changes ivhen x = j3.

522 When that difference is odd, the number of intermediate

roots is odd, and therefore one at least.

523 When the same difference is even, the number of inter-

mediate roots is either even or zero.

524 Descartes' rule of signs follows from the above for the

signs of Fourier's functions, when x = are the signs of the

terms in /(«); and when a3 = oo, Fourier's functions are all

positive.

525 Lagrange's method of approA'wiating to the incom-

mensiirahle roots of an equation.

Let a be tlie greatest integer less than an incommen-
surable root oif{x). Diminish the roots of /(,r) by a. Take
the reciprocal of the resulting equation. Let h be the greatest

integer less than a positive root of this equation. Diminish

the roots of this equation by h, and proceed as before.

526 Let a, h, e, &c. be the quantities thus determined ; then,

an approximation to the incommensurable root oif{x) will be

the continued fraction x = a + -— -,-
h-\- f-l-
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527 AV/c/o/<'.v mcfluK/ <tf(ii>pr(uinnfti<ni.- If r, hv a ((uaiitity

a little less than one o£ the roots of the eciuatioii fU) = 0, so

that /(r, + //) = 0; tlieu c^ is a first approximation to the

value of tlie root. Also because

/(,-, + /,) =/(,.,) + /,/{,-,) +^'/"(.-,) + &c (KG),

and h is but sniall, a second approximation to the root will be

In tlie same way a third ap]:»roximation may be obtained from

Co, and so on.

528 Fourier's limitation of Newton s method.—To ensure

that Ti, ^2, Cg, &c. shall successively increase up to the value

Ti + h without passing beyond it, it is necessary for all values

of X between c^ and Ci-\-h.

(i.) Thatf{;ii) andf'{,v) should have contrary signs.

(ii.) Thatflx) and f" {x) should have the same sign.

Fia. L Fia. 2.

A proof may be obtained from the figure. Draw the curve

y=f(^x). Let OX be a root of the equation, and ON = Ci;

draw the successive ordinates and tangents NPy PQ, QBy &c.

Then OQ = c^, OS = Cg, and so on.

Fig. (2) represents Tg > OX, and the subsequent ai)proxi-

mations decreasinof towards the root.

530 Newton s Rule for Limits of the Roots.—hot the co-

ethcients of /(./) be respectively 'divided by the Binomial

coefficients, and let ^o, (T,, a, ... o„ be the quotients, so that

f{x) = ao-'j"+ uai,/;"- + ''t^"'' + ... + » ",.-!»;+«
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Lot ^Ij, ^lo, ^Ig . . . An be formed by tlic law A^ = a^— ri^_i(X^+i.

Write the first series of quantities over the second, in the fol-

loA\dng manner :

—

«0, rti, ('2, ((3 (^n-l, ««,

ylo, Ai, ^2, ylg .-l,,_i, A,,.

"Whenever two adjacent terms in the first series have the
same sign, and the two corresponding terms below them in

the second series also the same sign; let this be called a
double 2Jermanence. AVhen two adjacent terms above have
different signs, and the two below the same sign, let this be
known as a variation-permanence.

531 Rule.—The number of double 'permanences in the asso-

ciated series is a superior limit to the number of negative roots

The number of variation-permanences is a superior limit to

the number ofpositive roots.

The number of imaginary roots cannot be less than the

number of variations of sign in the second series.-

532 Sylvesters Theorem.— Let /(f+ X) be expanded by
(426) in powers of x, and let the two series be formed as in

Newton's Rule (530).

Let P (X) denote the number of double permanences.
Then P (X) ~ P [fi) is either equal to the number of roots

of /(ft'), or surpasses that number by an even integer.

Note.—The first series may be multiplied by [n_, and will

then stand thus,

/«(X), /-^X), [2/«-2(X), [l/"-^(^)-h/W-
The second series may be reduced to

On{^), r/„_,(x), r/„_,(x)...rr(x),

where G, (X) = {/'• (X)}^ - '^y^^ f-' (A) f^' (X).

533 Horner's Method.—To find the numerical values of the

roots of an equation. Take, for example, the ecpiation

x'-4t^+ x^-\-6x-\-2 = 0,

and find limits of the roots by Sturm's Method or otherwise.
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It has been shewn
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ti'ying 5 instead of 4. This gives A., with a minus sign, thereby pi-oving the

existence of a root between 24 and 2-5. The new coetficieuts are A.^, B.^, C.,, D.^.

—
Y? gives 1 for the next figure of the root.

Affix ciphers as before, and diminish the roots by 1, distinguishing the

new coefficients as A^, B^, C^, D^.

Note that at every stage of the work A and B must preserve their signs

unchanged. If a change of sign takes place it shews that too hirge a figure

has been tried.

To abridge the calculation pi'ocecd thus :—After a certain number of

figures of the root have been obtained (in this example four), instead of

adding ciphers cut ott" one digit from B^, two from C'^, and three from D^.

This amounts to the same thing as adding the ciphers, and then dividing

each number by 10000.

Continue the work with the numbers so reduced, and cut off digits in like

manner at each stage until the D and C columns have disappeared.

Aj and Bj now alone remain, and six additional figures of the root are

determined correctly by the division of A^ by By.

To find the other root which lies between 2 and 3, we proceed as follows :

—

After diminishing the roots by 2, try G for the next figure. This gives Jj
negative; 7 does the same, but 8 makes J., positive. That is to say, f{2'7)
is negative, and/ (2'8) positive. Therefore a root exists between 2*7 and
2-8, and its value may be approximated to, in the manner shewn.

Throughout this last calculation A will preserve the negative sign.

Observe also that the trial number for the next figure of the root given at

f(c)
each stagfe of the process by the formula —

, {, will in this case be always^ I y
^ /(c)' ^

too great, as in the former case it was always too small.

SYMMETEICAL FUNCTIONS OF THE HOOTS OF
AN EQUATION.

Notation.—Let a, h, c ... bo the roots of tlie equation

/(••'•) = 0.

Let .s,„ denote a'" + //" + . .
.

, tlic sum of tlie 7/^^'' powers of

the roots.

Let .s,„,p denote a"'h^'+ lr(iP-\-a'"<'''-{- ... througli all the

permutations of the roots, two at a time.

Similarly let .9,„,p ,,
denote (rh'\'''-\-a'"h^\V'-\- ... , taking all

the permutations of the roots three at a time ; and so ou.
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534 SUM>^ OF nil': /vmi7;a'.s' of tuf norrrs.

wliere m is less tliau n, the degree oiJ'{.i).

Obtained by expanding by division each term in the vahio of/'(.i) given

at (432), arranging tlie whole in powers of .r, and equating coeiricieiits in llie

result and in the value ofy^^r), found by differentiation as in (1-21).

535 If "i ^0 greater than //, tlie forimihi will be

Obtained by multii)lying /(./•) = by .'""", substituting for .i; the roots

a, h, c, &c. in succession, and adding the results.

By these formula? .<„ s.,, .«„ &c. may be calculated successively.

536 To find the sum of the negative powers of the roots, put

m equal to n—1, )i — 2, ?^— 3, &c. successively in (535), in

order to obtain s_i, s_o, s_3, &c.

537 To calculate .'?,. independently.

Rule : s,. = — r X rorjjicieut of x~'' in the e:q)amlo)i of

^'^"J n
i'i '^''•^''''ii'^''>t'J I^OlV^^iS of .V.

Proved by taking f(x) = {x~ a) (x-h)(x— c) ... , dividing by x", and

expanding the logarithm of the right side of the equation by (loO).

538 SYMMETniCAL FUNCTIONS WTUGU AJ^E

NOT POWERS OF THE BOOTS.

These are expressed in terms of the sums of ])o\vers of

the roots as under, and thence, l)y (531), in terms of the routs

explicitly,

539 'V„,,^,.,, = .V,,,*,,*,/— .V„, + /, A-,,— *•„, + ,,*,,— A',,+ ,.?,„ +2.V„, + ^ + ,
,.

The last equation may be ]iroved by mnlti})lying .<„,.,, by

."f,
; and expansions of other symmetiical functions may be

obtained in a similar way.

540 If </> ('•) be a rational integi'al function of ,r, then the

symmetrical function of the roots of ./'('), denoted by
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^ (a)-{-(j> (h) -{-<!> (() + &c., is equal to tlie coefficient of x''''^ in

the remainder obtained by dividing <{> 0*') /'('') ^7 /('*')

•

Proved by multiplying the equation (432) by yji, and by tlieorera (401).

541 To find tlie equation wliose roots are tlie squares of

tlie differences of tlie roots of a given equation.

Let F{^) be the given equation, and S,. the sum of the r*''

powers of its roots. Let/(/c) and s^ have the same meaning

with regard to the required equation.

The coefficients of the required equation can be calculated

from those of the given one as follows :

—

The coefficients of each equation may he connected tvith the

sums of the ])oivers of its roots hy (534) ; and the sums of the

poivers of the roots of the tivo equations are connected hy the

formula

542 2^, = nS,,,-2rSA._,-\-
^''('^''-^)

S,S,,_,- ... +«S,,

Rule.—2s,. is equal to the formal expansion of {S—Sf'' hy

the Binomial Theorem, with the first and last terms each mul-

tiplied hy n, and the indices all changed to siffixes. As the

equi-distant terms are equal we can divide by 2, and take half

the series.

Demonstration.—Let a, h, c ... be tbe roots of i^(a;).

Let <l>(x) = (x-ay-' + (x-hy+ (i-)

Expand each term on the right by the Bin. Theor., and add, substituting

Si, S2, &c. In the result change x into a, b, c ... successively, and add the n

equations to obtain the formula, observing tliat, by (i.),

(a) +0 (&) + ... =2.v

If r? be tlic degree of 7^ (,*•), then 'k)i(ii — l) is the degree

of /(.'). % (UG).

543 The last term of the equation 7" ('') = is equal to

n^T{a)FmF{y)...
where a, ft, y, ... are the roots of F' {•>'). Proved by shewing

that F'{a)F'{h) ... = n"F{a)F(ft) ...

544 If -^(''O ^^^s negative or imaginary roots, f(.i) must

have imaginary roots.
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545 The sum of tlic v«"' powers of tlie roots of the (|u:i(l-

ratic ecjuation .*-—/>.r+7 = 0.

,„ ., , in {ni — .*») ,„_t -

.v„, = ;>'"— ni]>"' -(/+ -j p (/-...

By (io") expaudiug the logarithm by (15G).

546 'I'he sum of tlie m^^' powers of the roots of </y*— 1 =
is n if ni be a multiple of )i, and zero if it be not.

By (537) ; expanding the logarithm by (15G).

547 If <!>{.,•) = a,-\-a,x-\-n,x-+ &c (i.):

then the sum of the selected terms

^-illbe .v= — ;a"-"'<^(a.r)+y8"-"'<^()8./0+y"""'*(r'O+ ^^'C.}

where a, /3, y, &c. are the n^^' roots of unity.

For proof, multiply (i.) by a""'", and change x into a.v; so with /?, y, &c.

and add the resulting equations.

548 To approximate to the root of an equation by means of

the sums of the powers of the roots.

By taking m large enough, the fraction tuill ^vill approx-

imate to the value of the numerically greatest root, unless

there be a modulus of imaginary roots greater than any real

root, in which case the fraction has no Umiting value.

549 Similarly tlie fraction
•^''"•^'"^•-~'^'"":.' api)roximates, as m

increases, to the grrnfr.^f product of any pair of roots, real or

imnginary ; excepting in the case in which the product of tho

pair of imaginary roots, though less tlian the product of tho

two real roots, is greater than the scpiare of the least of tliem,

for then the fraction has no limiting value.
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550 Similarly tlie fraction
'

'"
'"'^^ '"'^y '""^^ approximates,

^'m'^'m + 2 ^m + 1

as m increases, to tlie sum of tlie two numerically greatest

roots, or to the sum of the two imaginary roots with the

greatest modulus.

EXPANSION OF AN IMPLICIT FUNCTION OF .r.

Let r{A,v''+)+!f{By-]-)^...-\-fiS.r^+) = (1)

be an equation arranged in descending powers of y, the co-

efficients being functions of x, the highest powers only of x

in each coefficient being written.

It is required to obtain y in a series of descending powers
of X.

First form the fractions

a— b a— c a— d n— s ,c)\

a— y8' a— y' a— S a— a

Let — —
- t be the greatest of these algebraicalh^, or

a— n

if several are equal and greater than the rest, let it be the

last of such. Then, with tlie letters corresponding to these

equal and greatest fractions, form the equation

Au''-^ -^Ku'^i) (3).

Each value of ?/ in this equation corresponds to a value of v/,

commencing with ux^.

Next select the greatest of the fractions

/.•—

/

Ix—m I'—s /jx
r» —

v^V •

K— A K— /x K— cr

/._
^,,

Let — -— ' := t' be the last of the greatest ones. Form
K — V

the corresponding equation Kh"-\- ...-\-Nh'' = (I (5).

Tlien each value of u in this equation gives a cori'cspondiiig

value of y, commencing with »./.
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Proceed in tliis way until llie last tVactiun of tlio series (2)

is reached.

To obtain the second term in the exjjansion of //, put

,/ = .,.'(//+//,) Ill (1) 03),

cmplojnng tlie dilTerent vahies of n, and again of /' and //,
/"

and ti, &c. in succession; and in each case this substitution

will produce an equation in // and x similar to the original

equation in //.

Eepeat the foregoing process ^vith the new eqnation in y,

observing the following additional rule :

—

Wien all the values of t, t\ t", ^c. have heeu ohtained, the

negative ones only must be employed informing the equations

in n. (7).

552 To obtain y in a series of ascending powers of /.

Arrange equation (1) so that a, /3, y, &c. may be in as-

ccndliKj order of magnitude, and a, h, c, &c. the lowest powers

of .t' in the respective coefficients.

Select f, the greatest of the flections in (2), and proceed

exactly as before, with the one exception of substituting the

vford jmsitive for negative in (7).

553 Example.—Take the equation

{x^+ x') + ( 3.^^- hx^) 2/ + (- 4.7; + 7x-+ a;") >f
- >/ = 0.

It is required to expand y in ascending powers of x.

The fractions (2) are - -'^. "qZo' ~ ^E ^ '
^^' ^' ^' ^"^^ ^'

The first two being equal and gi-catest, we have t = 1.

The fractions (4) reduce to — -—
^ = i = ' •

Eqnation (3) is \+3n- 4ir = 0,

which gives ?/ = 1 and — ^, with / = 1.

Equation (5) is —4ir—u'' = 0,

and from this u = and —4*, with t' = ^.

"NVe have now to sub.stitute for ij, according to (G), cither

^(1 + y,), a:(-i + J/,), .tV, or a;*(-4^ + i/,).

Tut y = x (1 + 7/,), the tir.st of tlieso values, in the originul equation, and

arrange in ascending powers of y, thus

-4x*+ (-rjx'-{-)y,+ (-4.c'+ )yl
- 10x'y\ - bx'y\ - .c'y] = 0.

The lowest power only of x in each cocflicient is here written.
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4-5
0-4' 5'

The fractions (2) now become

4-3 4-3 _4-5
0-1' 0-2' 0-3'

1, h -h -h -h
From tlieso /= 1, and equation (3) becomes

—4— 5?t = 0; .•. « = — 4..

Hence one of the values of y^ is, as in (G), yi = x (— f+ 2/2)-

Therefore y = x {1 + «; (-f+ 2/2)} = aJ-f'»'+ ...

Thus the first two terms of one of the expansions have been obtained.

DETERMINANTS.

554 Definitions.—The determinant
b, hi

is equivalent

to a^h-i—dtbi-, ^Tifl is called a determinant of the second order.

A determinant of the third order is

a.^ a^ = rti {Ihc^

—

63^2) + a.%c^— b^c^) + a.^ {b,c., - b.,c^)

.

b, b^ 63

Ci C.2 C;

Another notation is 2 ± (lyh.^c^, or simply {a^h.yC-^.

The letters are named constituents, and the terms are

called elements. The determinant is composed of all the

elements obtained by permutations of the suffixes 1, 2, 3.

The coefficients of the constituents are determinants of

the next lower order, and are termed minors of the original

determinant. Thus, the first determinant above is the minor

of ^3 in the second determinant. It is denoted by C^. So the

minor of % is denoted by vli, and so on.

555 A determinant of the 7^*^ order may be wintten in either

of the forms below

b, b.

,. «,. ... «„

.. 6, ... b.

... «„,

... a.,.

In the latter, or double suffix notation, the first suffix indicates

the row, aud the second the column. The former notation

will be adopted in these pages.
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ft
I

a., «!

h, h., b.

A Compoiiift' ilotrrminant is one in which the

Tuimber of cohimns exceeds the innnber of rows,

and it is wntten as in the annexed example.

Its vahie is the sum of all the determinants obtained \)\ takiiif^

a number of rows in every possible way.

A Simple ih'tormlnnnt lias single terms for its constituents.

A Compound drtrrmuinut has more than one term in somo

or all of its constituents. See (')70) for an exam[)le.

For th(^ definitions of Si/mmetrical, Rcripronil, Parfial,

and Complcmciitari/ determinants; see (574), (575), and (576).

General Theory.

556 The number of constituents is n^.

Tlie number of elements in the complete determinant is [?^^.

557 The first or leading element is aih.,<\ ... /„. Any
element may be derived from the first by permutation of the

suffixes.

The sign of an element is + or — according as it has

been obtained from the diagonal element by an even or odd

number of permutations of the suffixes.

Hence the following rule for determining the sign of an

element.

RuT.E.

—

Take the suffixes in order, and put them hach to

their places in the first element. Let m he the whole number

ofplaces passed over ; then (— 1)"* "'^7/ give the sign required.

Ex.—To find the sign of the element n^h^CrJ\c.^ of tlio detei-minanfc

«4 h ^s 'h '^i

Move the .suffix 1, tlircc pliiccs 1 4 3 ''> 2

2, three places 1 2 4 3 ')

„ „ 3, one phwje 1 2 3 4 5

In all, seven places; therefore (—1)' = —1 gives the sign required.

558 n two suffixes in any element be transi)o.^ed, the sign

of the element is changed.

Half of the elements are plus, and half are minus.

559 The elements are not altered ])y changing the rows into

columns.

If two rows or columns are transposed, the sign of tho

U
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determinant is clianged. Because each element changes its

sign.

If two rows or columns are identical, the determinant

vanishes.

560 If all the constituents but one in a row or column
vanish, the determinant becomes the product of that con-

stituent and a determinant of the next lower order.

561 A cyclical interchange is effected by n— \ successive

transpositions of adjacent rows or columns, until the top row
has been brought to the bottom, or the left column to the

right side. Hence

A cyclical interchange changes the sign of a determinant

of an even order only.

The r*^ row may be brought to the top by r— 1 cyclical

interchanges.

562 If each constituent in a row or column be multiplied

by the same factor, the determinant becomes multiphed by it.

If each constituent of a row or column is the sum of m
terms, the compound determinant becomes the sum of m
simple determinants of the same order.

Also, if every constituent of the determinant consists of

m terms, the compound determinant is resolvable into the sum
of m^ simple determinants.

563 To express the minor of the r"' row and ¥^ column as

a determinant of the n— V^ order.

I*ut all the constituents in the r^^ row and /.-^^ column equal

to 0, and then make r— 1 cyclical interchanges in the rows
and L— 1 in the columns, and multiply by (_iy'-+^)(«-i).

r._. _ f_Y\(r-\*k-\){n-l)^

564 To express a determinant as a deter-

minant of a higher order.

Continue the diagonal with constituents

of " ones," and fill up with zeros on one side,

and with any quantities whatever (o, /3, y, &c.)

on the other.

1

a 1 {)

fi e a h <>'

V C h h f
h r) - /• c
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565 Tlio sura of tbe products of each constituent of a

column by tlio corresponding minor in another given cohimn

is zero. And the same is true if we read ' row' instead of

* cohimn.' Thus, referring to the determinant in (555),

Taking tlie /)''' and r/^' cohimns, Taking tho a and r rows,

For in each case we have a dotcnuinant with two columns identical.

566 I" i^ny row^ or column tlie sum of the pnxhicts of each

constituent by its minor is the determinant itself. That is,

Taking the j)^^ cohimn, Or taking the c row.

567 The hist equation may be expressed by

Also, if i'lpCq) express the determinant

' ^- r = A.
p p

a„ a then

'2{apr,^) will represent the sum of all tlu^ determinants of the

second order wdiich can be formed by taking any two columns

out of the a and r rows. The minor of {dp, (\) may be wi'itten

(Ap, Cy, and signifies the determinant obtained by suppress-

ing the two rows and two columns of Op and c,. Thus

A = S {dp, Cg) {Ap, Cq). And a similar notation when three or

more rows and columns are selected. ^

568 Analyji'is of a determinant.

Rule.—To resolve into its elements a determinant

n*^ order. Express it as the sum of n determinants

(n—iy'' order by (5G0), and repeat the process with e

the new determinants.

EXAMl'LE :

«l «J «3 "i

c, q r, c^

«/, (/j d^ ll^

Again,

of thn

of the

ach oj

= a, b, b, b,
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569 Si/nthesh of a determinant.

The process is facilitated by making use of two evident
rules. Those constituents which belong to the row and
column of a given constituent a, will be designated *' a's con-

stituents." Also, two pairs of constituents such as a^, c, and
dg, c^, forming the corners of a rectangle, will be said to be
*' conjugate" to each other.

Rule I.

—

No constituent loill he found in the same term
with one of its oion constituents.

Rule II.

—

The conjugates of any two constituents a and b

will he cuinnion to a's and Us constituents.

Ex.—To write the following terms in the form of a determinant

:

uhcd + Ifyl +fh^+ ledf+ cghp + 1 ahr+ elpr

—fhpr—ahlr—ach^— Ifhg— bdf^— efhl — cedp.

The determinant will be of the fourth order ; and since every term must
contain four constituents, the constituent 1 is supplied to make up the
number in some of the terms. Select any term, as ahcd, for the leading
diagonal.

Kow apply Rule I.,

a ia not found with e,f,f, g,p,0...(l)- c is not found with /,/, I, r, 1, 0... (^).

1) is not found with e, h, h,p,l,0 ..(2). dis not found with g, h,h,l,r,0...(-i).

Each constituent has 2 (»— 1), that is, 6 constituents belonging to it, since

n =?'4. Assuming, therefore, that the above letters are the constituents of
a, b, c, and d, and that there are no more, we supply a sixth zero constituent

in each case.

Now apply Rule II.—The constituents common
to a and b are e, p ; to a and c—-/, /; to b and c— 1, ;

to a and d—g, ; to h and d—h, li, ; to c and d-

The determinant may now be formed. Tlie diagonal
being abed,; place e, p, the eoiijugatus of a and b, either as

in the diagram or transposed.

Then /and/, the conjugates of a and c, may be written.

1 and 0, the conjugates of b and c, must be placed as indicated, becau.so

1 is one of y/s constituents, sini-e it is nt)b found in any term with /i, and
must therefore be in the second row.

Similarly tlie places of y and 0, and of Z and r, are assigned.

In the c-ase of b and d we have h, h, from wliieh to clioose the two
conjugates, but, we see that is not one of them because that would assigu
two zero constituents to b, whereas b has but one, which is already placed.

By similar reasoning the ambiguity in selecting the conjugates I, r is

removed.

The foregoing method is rigid in the case of a complete determinant

/, /•, 0.
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having different constituents. It becomes uncertain when the zero con-

Ktituonts increase in number, and when several coustitueuts are identical.

Ihit even then, in tlie majority of cases, it will soon afford a cluo to the

required arrangement.

570 I'RODUCr OF TWO DETERMINANTS OF
Tin: „"• (lUDEU.

C)
</, (I., ... a,

h, h, ... h,

L /..

{Q)

a, a> ... a„

X, X,

.U A, ... J„

/;, li ii,,

L, L, ... L,

. Ai = ay ai-\-(L,a.,-\- .

Ly r= aiXi4-^^X.+ ... +(?,.X,

Tlie values of A^, By ... L, in

tUo first column of S arc an-

nexed. For the second column
write //s in the place of as.

For the tliird columu write f's,

and so on.

For proof substitute the values of Ay, By, &c. in the determinant S, and

then resolve ,b' into the sum of a number of determinants by (oC>2), and note

the determinants which vanish through having identical columns.

Rule.—To form the determinant S, which is the product of

two determinants P and Q. First connect hij plus siijus the

constituents in the ro2VS of both the determinants F and Q.

Nou) place the first row of F upon each row of Q in turn,

and let each two constituents as thnj touch become jn-oducts.

Tliis is the first column of S.

Perform the same operation upon Q with the second rou- if

P to obtain the second column of S ; and again with the third

row of F to obtain the third column of S, and so on.

571 If the number of columns, both in F and Q., be n, and

the number of rows r, and if n be > r, then the determinant

S, found in tlie snme way from F and Q, is equal to the sum
of the C{ii, r) products of prirs of determinants obtained by

taking any r columns out of F, and the corresponding r

columns out of Q.

But if n be < r the determinant S vanishes.

For in that case, in every one of th

be two columns idcutical.

component determinants, there will
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572 The product of tlie determinants P and Q may be
formed in four ways by changing the rows into columns in

either or both P and Q.

573 Let the following system of n equations in XicV,.^ ... x^

be transformed by substituting the accompanying values of

the variables,

The ehminant of the resulting equations in ^^ ^., • • • ^» is

the determinant S in (570), and is therefore equal to the

product of the determinants P and Q. The determinant Q is

then termed the modulus of transformation.

574 A Symmetrical determinant is symmetrical about the

leading diagonal. If the E's form the r^'' row, and the K's
the k^^ row ; then B;, = K^ throughout a symmetrical deter-

minant.

The square of a determinant is a symmetrical determinant.

575 ^ Reciprocal determinant has for its constituents the

fii'st minors of the original determinant, and is equal to its

?i— l'^ power; that is,

A, ... A,

h ... 4

Proof.—^Multiply both sides

of the equation by the original

determinant (o55j. The con-

stituents on the left side all

vanish excepting the diagonal

of A's.

576 Partial and Complementary determinants.

If r rows and the same number of columns be selected

fi'om a determinant, and if the rows be brouglit to the top,

and the columns to the left side, without changing their order,

then the elements common to the selected rows and columns
form a Partial determinant of the order r, and the elements
7wt found in any of those rows and columns form the Com-
plementary determinant, its order being n— r.
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Ex.— Let the selected rows from the dctcrmiiiaTit («,''3r,(/^^J be tlio

Becond, third, and fifth ; and the selected columns bo the third, fourth, aud

fifth. The orijjinal and the transformed determinants will be

(J,
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equal. Therefore it is divisible by eacli of the factors on the left ; therefore

by their product. And the quotient is seen to be unity, for both sides of the
equation are of the same degree ; viz., ^n {n— 1). ' '

579 The product of the squares of the| _

differences of the same n quantities j
~

... S,;

Proof.—Square the determinant in (578), and
write Sf for the sum of the r"' powers of the roots.

580 With the same meaning for s-^,s.2..., the same deter-

minant taken of an order r, less than n, is equal to the sum
of the products of the squares of the differences of r of the n
quantities taken in every possible way ; that is, in C {n, r)

ways.

Ex.:

^1
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ELIMINATION.

582 Solution of 11 li)i('(ir rquntious in u rnriahlrs.

The equations and the values of the varialjles are arranged

below

:

«,.r,+ f/,.r,+ ... + r/„.r„ = ^„ .r,A = J^^, + /;, f,+ ... + /., ^„

where A is the determinant annexed, and J^, B^, «, ... a

&c. are its first minors.

/i ... /.
To find the value of one of the unknowns x^.

HuLE.

—

Multiply the equations respectively by the minors

of the r''' column, and add the results, x^ will he equal to the

fraction whose numerator is the determinant A, with its ?•'*

column replaced by Hj, ^2 ••• s„, and whose denominator is A
itself.

583 If SI, ^2 ••• ^« ^^''tl A all vanish, then x^, Xo ... x^ are in

the ratios of the minors of any row of the determinant A.

For example, in the ratios C^: Cj : C^ : ... : €„.

The eliminant of the given equations is now A = 0.

584 Orthoi^onal Transformation.

If the two sets of variables in the n equations (5y2) be

connected by the relation

.»•, + 4 + ... +.<•;= ?; + f: + ... + f;, (D.

then the changing from one set of variables to the other, by

substituting the values of the Ts in terms of the xs, in any
function of the former, or rice versa, is called orthogonal

transformation.

When equation (1) is satisfied, two results follow.

I. The determinant A = ± 1.

X
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II. Each of the constituents of A is equal to the corre-

sponding minorj or else to minus that minor according as A is

or

Proof.—Substitute the values of 4i, l^ ... 4„ in terras of x^, x^ ... a;„ in

equation (1), and equate coefficients of the squares and products of the new
variables. We get the n^ equations

a\^-V + = 1

fliCj + h^h^ + =
a.,ai + hjb^ + =

a\ + hl + = 1

a- + hl + = 1

a-,an + hA),, -f

Also A Form the square of the determinant A by the

rule (570), and these equations show that the

product is a determinant in which the only con-

stituents that do not vanish constitute a diagonal

of ' ones.' Therefore

A'^ = 1 and A = ±l.

Again, solving the first set of equations

for ai (writing a, as a-^^a^, &c.), the second

set for ao, the third for a.^, and so on, we
have, by (582), the results annexed ; which,

proves the second proposition.

aiA = ^i +^,04-/ls0+ = .4i

a^\ = AS) + AS}-\-A^ +=^^3

&c. &c.

585 Theorem.—The 7i— 2*'' power of a determinant of the

n^^ order multiphed by any constituent is equal to the corre-

sponding minor of the reciprocal determinant.

Proof.—Let p be the reciprocal determinant of A, and /3,. the minor of i?^

in p. "Write the transformed equations (582) for the xs in terms of the 1%
and solve them for l^. Then equate the coefficient of x^ in the result with its

coefficient in the original value of .^0.

Thusp^3= A (/3ia;i+...+ /3,.a;,.+ ...), and i, = &>i+ ... +Mr+ ••• ;

.-. A/3, = p&, = A"-'&, by (575); .-. /3, = A'-'^fc,.

586 To eliminate x from the two equations

«.r'" + 6.r"'-' + ca?'^-' + ... = (1),

aV+/>V-^+cV--'H-... =0 (2).

If it is desired that the equation should be homogeneous

in X and y ;
put — instead of «, and clear of fractions.

following methods will still be applicable.

The
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1. Bezant's Method.—Suppose m > n.

Rule.—Bring the (ujuatiom to the same degree by multi-

plying (2) by «"•-". Then multiply (1) by a\ and (2) by a, and

subtract.

Again, multiply (1) by a\r-\-b\ and (2) by {'i,r-\-b), and

subtract.

Again, multiply (1) by ax--\-b'x-\-c\ and (2) by {a£'-\-bx-\-c),

and subtract, and so on until n equations have been obtained.

Each null be of the degree m—l.
Write under these the m—n equations obtained by multi-

plying (2) successively by x. The eliminant of the m equations

is the result required.

Ex.—Let the equations be (
a a;'+ h ai' + c re"+ d x' + ex +f = 0,

-

=0.
( a a;"'+ 6 a;' + c re"+ fZ a

( a'x^ + h'x'+ cx +d'

The five equations obtained by the method, and their eliminant, by (583),

are, writing capital letters for the functions of a, b, c, d, e, f,

A^ B, C, D, E,

A., Bn C, D, E,

A, Z?3 G, A E,

a' b' c d'

A,x*+ B^a^+G^x^ + D,x+ E, = '

A^*+B.^+C^' +D^ + Ej -
A^x'+ B,x' + (7,a:^ + I)^^E, =
a x' + h' x^-\-c' x' + d' X =0

a x^^-b' x^-\-c x^-d' =

and

b' d'

Should the cqaations be of the same degree, the eliminant will be a sym-

metrical determinant.

587 II. Silvester's Diahjtic Method.

Rule.—Multiply equation (1) successively by x, n— l times;

and equation (2) m— l times ; and eliminate x from the m-\-n

resulting equations.

Ex.—To eliminate x from a.i "+ 6x' + c.r + tZ = I

px + qx+ r =0 I

The m + n equations and their eliminant arc?

I'X- ->t qx \- r =
'px^-\-qx--'rrx =

px^^-qx'^ + ra? =
aa?-\-b3?-\-cx +d=

oa;*+ 6«' + car+c/.c =0

and

2^ q r

<»
i> q r

p q r

a b c d

a b c d
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588 III Method of elimination by Symmetrical Functions.

Divide the two equations in (586) respectively by the

coefficients of their first terms, thus reducing them to the

forms /Gr) =.r-+ /)i^^-^+ ... -\-p^= 0,

<l>
(cv) = .v'' + </i cr'*"^ + . . . + 7n = 0.

Rule.—Let a, b, c ... represent the roots of f{x). Form
the equation <p{a) (p (b) <{> (c) . . . = 0. This will contain sym-

metrical functions only of the roots a,b,c....

Express these functions in terms of pi, p2 "-by (538), ^'c,

and the equation becomes the eliminant.

Reason of the rule.—The eliminant is the condition for a common root of

the two equations. That root must make one of the factors (a), ^ (6) ...

vanish, and therefore it makes their product vanish.

589 The ehminant expressed in terms of the roots a, b,c ...

of /(,7'), and the roots o, )3, y ... of ^ {x), will be

(,,_«) (a-^) (a-y) ... (/.-«) (6-/3) {h-y) ... &c.,

being the product of all possible differences between a root of

one equation and a root of another.

590 The eliminant is a homogeneous function of the co-

efficients of either equation, being of the n^^ degree in the

coefficients of f{x), and of the m^^^ degree in the coefficients

of .^ (a').

591 The sum of the suffixes of p and q in each term of the

eliminant = ran. Also, if p, q contain z ; if p.y, q., contain z' ;

if 2?s, qs contain :^, and so on, the eliminant will contain z"'".

Proved by the fact that p^ is a homogeneous function of r dimensions of

the roots a, b, c ..., hy (40G).

592 If the two equations involve x and y, the elimination

may be conducted with respect to x ; and y will be contained

in the coefficients p^, j^z •••i ^Iv Q2 ••• -

593 Elimination by the Method of Highest Common Faetor.

Let two algebraical equations in x and y be represented by

^ = and i? = 0.
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It is required to eliminate x.

Arrange J and Ji according to descending powers of .i\

and, having rejected any factor which is a function of // only,

proceed to find the Highest Common Factor of J and B.

The process may be exhibited as follows

:

c^A = (jxli +'"i^''i'l ''i» ^'2J Ci^ *'i a^6 the multipliers re-

c B = (hR +ro7?.> quired at each stage in order to avoid
^ _ T^ ,

"

-({ \ fractional quotients ; and these must
<^3^i — (l^^h -r r^li^ ^^ constants or functions of y only.

c^Bo = QiRs + ri j q^^ q^^ q^^ q^ are the successive quo-

tients.

r^^Bi, r.jB^, rji^, r.^ are the successive remainders ; i\, rg, rg, i\

being functions of y only.

The process terminates as soon as a remainder is obtained

which is a function of y only ; i\ is here supposed to be such

a remainder.

Now, the simi)lest factors having been taken for Ci, c-,, c^

The values of x and v/,

which satisfy simulta-

neously the equations

A= {) and B= Q, are those

obtained by the four pairs

of simultaneous equations

following

:

The final equation in y,

which gives all admissible

values, is

1^

I f it should happen that

tlio remainder i\ is zero,

th(> simultaneous equa-

we see that
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594 To find infinite values of x or y whicli satisfy the given

equations.

Put X = ~. Clear of fractions, and make 2 = 0.
z

If the two resulting equations in y have any common
roots, such roots, together with .13 = oo, satisfy simultaneously

the equations proposed.

Similarly we may put y = —.



PLANE I^IMTJOXOMETRY.

ANGULAR MKASrHK.MKXT

600 'I'Jx' ii'iit of Circular mcasui'o is a liadiari, and is tlic

aiiulr at (lie centre of a circle which subtends an arc equal to

the radius. Ileiiee

601 Cireulai- measure of an anole = ^^—

.

radius

602 Circular measure of two right angles = H'T II 50 . . . =7r.

603 'I'he unit of Centesimal measure is a Grade, and is the

oni'-liundredth part of a right angle.

604 'i'he unit of Sexagesimal measure is a Degree, and is

the one-ninetieth part of a right angle.

To change degrees into grades, or circular measure, or

vice vprni'i, employ OTie of the ihrvQ equations included in

^"^
90~100""7r'

where D, G, and G are respectively the nundjers of degrees,

grades, and radians in the angle considered.

THIGONOMETRICAL RATIOS

606 Let OA be fixed, and let the

revolving line OP describe a circle

round 0. Draw FN always perpen-
dicular to AA'. Then, in all ])osi-

tions of OP,
PN

- - = the sine of the angle AOI',

ON
z= the cosine of the angle AOP,

PN = the tangent of the angle JO/'.
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607 If P be above the line AA\ sin AOP is positive.

If P be helo2o the line AA', sin ylOP is negative.

608 It" y lies to the right of J5j5', cos AOP is positive.

If P lies to the /t// of BB\ cos ylOP is negative.

609 Note, that by the angle AOP is meant the angle through whicli

OP has revolved from OA, it-,.-; initial position ; and this angle of revolution

may have any magnitude. If the revolution takes place in the oppos'te

direction, the angle described is reckoned negative.

610 The secant of an angle is the reciprocal of its cosine,

or cos A sec A = 1.

611 The cosecant of an angle is the reciprocal of its sine,

or siu^ cosec^ = 1.

612 The cotangent of an angle is the reciprocal of its tangent,

or tan A cot ^ = 1.

Relations hctirrcn the trii>onomet7'ical functions of the

same un^le.

613 siuM+cosM = l. [1.47

614 sec'^ ^ l+tmiM.

615 cosecM = l+cotM.

616 tan A = ^i^. [606
cos^

If tail^ rrz
"

h

617 sin A =
s/(r-\-/r

cosy4 = . [606

/?io •
I

tally! . 1 ^,_
618 sin.1 = , ('()Syl=: -. [617

vlH-iair/l x/1+taii-i
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619 The Coniploment of .1 is = ^0^-A.

620 Tlie Supplement of A is = 180'-yl.

621 sin(00 -y1) = (OSy|,

taii(lM) -.l) = eot.l,

sec (1)0 —^) = c'osec A.

622 sill (18(r~^)= siiiyl,

cos (180°-^) = -cos ^,

tan (180 -.4) = -tan .4.

Ill the figure

Z QOX. = 1 80'— -•/. [607, 608

623 sin(—^) = ~sm^.
624 cos(— ^) = cos^.

By Fig., and (607), (608).

The secant, cosecant, and cotangent of 180° — ^, and of

— y/, will follow the same rule as their reciprocals, the cosine,

sine, and tangent. [610-612

625 To reduce any ratio of an angle greater than 90° to the

ratio of an angle less than 90°.

Rule.—Determine the sign of the ratio by the rules (007),

and then substitute for the given angle the acute angle formed
by its two bounding lines, produced if necessary.

Ex.—To find all the ratios of 600°.

Measuring 300° {= 660°— 360°) round
the circle from ./ to P, we find the

acute angle AOP to be 60°, and F lies

helow AA\ and to the rUjki of BB'

.

Therefore

sin 660° =r- sin 60'
2 '

cos 660° = cos 60° =
J

,

and from the sine and cosine all the remaining ratios mav l)e

found by (610-616).

Inverse Notation.—The angle whose sine is x isdenoted
by sin"' ,/•.

Y
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626 All tlie angles which have a given sine, cosine, or tan-

gent, are given by the formula

sin-^^= nir+^-iye (1),

cos-Vr =: 2mT±e (2),

U\\\\r= mr-\-6 (3).

In these formula} 6 is any angle wliich has x for its sine, cosine, or

tangent respectively, and n is any integer.

Cosec"'.T, sec"' a;, cot"' a; have similar genei'al values, by (610-612).

These formulae are verified by taking A, in Fig. 622, for 0, and making
n an odd or even integer successively.

FORMULAE INVOLVING TWO ANGLES, AND
MULTIPLE ANGLES.

627 sin {A-\-B) = sin A cos5+cos ^ sin B,

628 sill (A—B) — sin A cos^—cos^ sin B,

629 voii(A-\-B) = QosA cos^— sin A sin i^,

630 coh{A — I}) = cos ^ cos J5+ sin A sin B.

Proof.—By (700) and (701), we have

sin C = sin A cos B + cos A siu B,

and sin G = sin (A+B), by (622).

To obtain .sin {A— B) change the sign of B in (627), and employ (623),

(624), cos(^ + B) = sin {(00"-^)-^j, by (621).

Expand by (628), and use (621), (628). (624). For cos (-1-5) change the
sign of B in (629).

631 tan (.4+/?)^ ^^'"^+^^'"-;^
.

632 tan (/!-/>') =

633 cot(.l + /i) =

634:

1-1



MI'I/ni'LE AXOLES. 163

635
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654

655

656

657

658

659

660

^ ^ 1 — tan A

X /A-o A\ 1— tau^
[631, 632

siu 3A = 3sm A—4< sinM,

cos 3^ = 4 cosM — 3 cos ^

tan3^ = 3tan J— tanM
l-3tanM

By putting B = 24 in (627), (629), and (G31).

sin (A+ B) sin {A— B) = sin" 4 — sin" B
= co^-B — cosM.

cos (^+ IJ) cos (^- i^) = cos^^ - siu^ B
= cos"-B — sin" A.

From (627), &c.

661 sinY+ c<^® -9- = ± v/l + sin ^.
"^

[Proved by squaring.

662 sin— — cos— = ± \/l — sinyl.

663 sin4 = 4 {\/l + sin^->/l-sin^}.

664 ^osA^-^ { v/1 + sin ^ + yi - siu ^}

,

when -- lies between —45° and +45°.

665 In the accompanying diagram the

signs exhibited in each quadrant are the

signs to be prefixed to the two surds in

the value of sin^y according to the quad-

rant in which — lies.

For cos - change the second sign.
L

Proof.—By examining ibe cbangosof sign in (UtH) and (662) by (607).
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666 2 sin A cos B = sin (A + /i) + sin (.1 - /?).

667 2 cos^l sin /i = sin (A + 7^) - sin {A - li).

668 2 cos .1 cos /i = cos (.1 + U) + cos (J - B).

669 lAwA sin y^=z cos(.l-/;)-cos(.l + 7y).

[G27-G30

l-/y
670 sin .1 + sin B = l sin li+Z^ cos -i_

671 sni yl — sni B = 2 cos—;^— sin —-—

.

672 cos ^ + cos jK = 2 cos

—

-— cos

—

-—

.

01 o cos B — cos A = 2 sm—-— sni—-—

.

Obtained by cbaugiug A into — .-— , and B into -

~
, in (G66-669).

It is advantageous to commit tbe foregoing fonnula; to memory, in words,

thus

—

2 sin cos = sin sum + sin difference,

2 cos sin = sin sura — sin difference,

2 cos cos = cos sum + cos difference,

2 sin sin = cos difference — cos sum.

sin first + sin second = 2 sin half sum cos half difference,

sin first — sin second = 2 cos half sum sin half difference,

cos first + cos second = 2 cos half sum cos half difference,

cos second — cos first = 2 sin half sum sin half difference.

674 sin (J +6+ C)

= sin A cos B cos C+ sin B cos C cos A
-\- sin C cos A cos B — sin A sin B sin C.

675 cos(.l + 7J+C)

= cos A cos B cos C — cos A sin B sin C
— cos B sin C sin A — cos C sin A sin B.

676 Um{A + n-\-C)

_ tan A + tan B -f tan C— tan A tan B tan C
1 — tan 7^ tan C — tan C tan A — tan ^ tan li'

Prouf.— Put B + C fur L' in (G27), (02l>), and (Gol).
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If A +B+ C = 180°,

677 sill A + sill B + sill C = 4 cos— cos— cos—.

sm A + sill B — sill C = 4 siii — sin — cos—.

ABC
678 fos^ + cos7iH-cosC = 4 sill — sin — siii -+ 1.

£t Jd ^

cosyl + COS 1^ — COS C = 4 cos— cos— siii — — 1.

679 tan A + tanB + tan C = tan A tan ^ tan C\

680 cot 4+ cot I + cot^ = cot4 cot^ cot ^.

681 sin 2A + sin 2i?+ sin 2C = 4 sin ^ sin B sin C.

682 cos2^H-cos2ii + cos2C = — 4cos^ cos^ cosC— 1.

General formulae, including the foregoing, obtained by

applying (666-673).

If A+Bi-G = TT, and n be any integer,

-rto 4 ' nA . nB . nC
683 4 sm -rp sm -;j- sm -^

Ji ^ ^

/»o>i ^ ^^A nB nC
684 4 COS— COS— cos-^

cos(!^-n^)+cos(^-.ii) + cos(^-..c) + cos^|r.

liA-\-B+ C = 0,

635 4 sin '-^ sin '-^ sin^ = - sin uA - sin yi j5- sin nC.
2i 2i 2i

686 4 cos ^^4 cos^ cos^ = cos;iy/+ cos?iZ)'+cosyiO+l.
2t 2i 2t

Rule.—7/; informulce (683) ^o (686), two factors on the left

be cliaiujed hy ivriting sin for cos, or cos for sin, then, on the

right side, change the signs of those ter)ns n-hirJi <1o not run tain

the angirs of the (dtpveit factors.
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Thus, from (083), wc obtain

687 J sill - cos -— COS -
^ z ^

= _sm(^'^'^-„.l)+ sm(^"2"-„y;) + sin('^''-«c) + siM".

A Formula for the construction of Tables of sines, co-

sines, &c.

—

688 sin (?i + l)a — sin uu = sin «rt— sin (ii—l)u —A- sin 7ia,

where a = 10", and A = 2 (1 -cos a) = -0000000023504.

689 Formulae for verifying the tables

—

sin,l + sin(72° + ^)-8in(72"-yl) = sin (3G^ + ^)-sin (36"-^!),

cos yl+cos (72°+ yl) +COS (72^ + ^1) = cos (36^+ J) +cos (36^-^1),

sin (60° + ^) -sin (60°-^) = sin^.

RATIOS OF CERTAIN ANGLES.

690 sin 45° = cos 45° = -i^, tan 45° = 1.

691 sin 60^ = ^^, cos 60' =
I , tan 60° = ^'6.

Li '-t

692 -15' =^, -1-^^ =^'
tanl5° = 2-y3^
cotI5' = 2 + v/'>3'

693 sml8^ = ^^, cosl8"=^'^ + 2'^^

tan]8^ = \/^-^|^.
^ 5

«/Nj • r^- \/5-|-l r 4'? vS— \/5
694 sin54=^^^~-, cos 54 = 2^2 '

tan54^ = V'^^^-
695 By taking- tlie complements of these ani^Hcs, llie same
table i>-ives tlie ratios ol ^Jn", 75', 72", and :'<>

.
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696 Proofs.—sin 15° is obtained from sin (45°-30°), expanded by (628).

697 sin 18'' from the equation sin 2x — cos 3.i-, where x = 18°.

698 sin 54^ from sin 3.7; = 3 sin a;-4 sin^r, where x = 18°.

699 And the ratios of various angles may be obtained by taking the sum,

difference, or some multiple of the angles in the table, and making use of

known formulae. Thus

12^ = 30°-18°, 7^° = ^, &c., &c.

PROPERTIES OF THE TRIANGLE.

700 c = aQOsB-{-bcosA.

a h c
701

sin A sin B sin C

702 «' = 6'+c'—26c cos A.

703

Proof.—By Euc. 11. 12 and 13, a? = b' + c'-2c.AD.

cos A =
26c

If g= ^H-6+ g
^ ^^^ ^ denote the area ABC,

704 .u4=^^I^^i-^, ^o4 = ^^^.
[641,042, 703.0, 10, 1.

A I{k'— L\ (M— r
tan705

706

707

708

A_J {s-b){s-c)
7-V .v(.y_„) •

sin A = ^ V .V (.y— a) (s—b) {s— c).

be
[635, 704

A = ^ sin A = Vs (s-a) (s-b) (.v-c), [707, 706

= 1 \^'2b-i'''-^2(-a--^'2irb--(i'-b'-r\
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Thr Trianii/r tunI ('irrlt

Let
r = radius of inscribed circle,

r^= radius of escril)ed circle

touching tlie side a,

B = radius of circuinscribiu'

circle

709

l
b roiii h i«^., A = ^ -1- ^ + -^

.

710 r =
. n . c

cos

It
[By a = r cot - + r cot -

.

711

712

>
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SOLUTION OF TRIANGLES.

Right-angled triangles are solved

by the formula?

718 e^=rt2+6-^;

la^e siu A
,

719 h, = ecos^,

\a z=: h tau A ,

&c.

Scalene Triangles,

720 Case I.—The equation

a h

sin A siu B
[701

will determine any one of the four

quantities A, B, a, h Avhen the re-

maining three are known.

721 The Ambiguous Case.

When, in Case I., two

sides and an acute angle

opposite to one of them
are given, we have, from

the figure,

. ^ e sin A
sin C = .

'C

Then C and 180 -C arc the values of C and C, by (622).

Also h = cvo»

A

± v'a-— c- siu- A ,

because = A 1) + DC.

722 Wlicn an angle 1> is to be determined from the equation

... /, . .

.sill /; =: sin .1,

a

and ''

is u small fracLiou ; tlic fiirular measure of B may be appi-oximatcd
a

\o by putting sin (U^C) i'or sin .1, and using theorem (rOC)).
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723 ('\^i' TF.—AVluMi two sides />, r and the inclndcMl aiigl(!

./ are known, tlie tliird side a is priven by tlic formula

(r= h-+ (--'2hrvosA, [702

when logarithms are not used.

Otlierwise, eni])loy tlie followin<r formula with lo-^^ai-ithms

/j_f; i^-c , A
724 ^^»-^V-^-,TX7/*'^^>

Obtained from
('~'' = ^!°^^---^'A^, (701). and then applying
h-{-r sm/Z +smG

(670) and (07 1).

havinir l)oen found from the above eiiuation, and
2

—"trl being equal to 90'—-''-, we have

i? and G having been determined, a can be found by Case I.

726 If the logarithms of b and c are known, the trouble of taking out

log{b—c) and log(/> + c) may be avoided by employing the subsidiary angle

$ = tan"'—, and the formula
c

727 tan X(B-C) = tan (« - ^ )
cot ^

,

[C55

Or else the subsidiary angle = cos"'
'''

, and the formula

728 tan i (B- G) = tan' ^ cot
^J

.

[04:3

If a be ri(|uirod without ealcuhit iug the aiiglis />' mid /
', we may use the

formula
,1 [From the figure in 9(i0, by

(^< + (jMii
^ drawing a |)eijteiidiculnr

729 ** ~
cos ^ {u-c)

^^''^™ ^ '^ ^'^' pi'^'^i^^'ed-

730 If a be required in terms of ?», c, and A alone, and in a form adapted

to logarithmic eomputatiun, employ the subsidiary aiiglo

= sin"'
(

,'
" .COS- '

),

and the f..i-muhi a = (/- + .) cus«. [702, G37
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Case III.^—AVhen the three sides are known, tlie angles

may be found without employing logarithms, from the formula

731 co^A=!^±StzlL\ [703

'2oc

732 If logarithms are to be used, take the formulae for

sin^, cos^, or tan—-; (704) and (705).

QUADRILATERAL INSCRIBED IN A CIRCLE.

733 ,o.li = "'+'>'-/
-f . ^

2{ab-\-cd)

From AC- = a» + b''-2ab cos B = c- + (P+
2cdcosB, by (702}, and i^ +D = 180°.

734 ^\nB = -^S_
ab-\-cd

735 Q = x/{s-a)(s^b){s-c){s-d)

= area of ABCD,
and s =l{a-{-h + c-]-d).

Area = lah sin B+ ^cd sin B ; substitute sin B from last.

736 AC^= (ae+hd)i„,l+he)
_ ^,,,_ ,33

' " {ab-\-cd)

lladius of circumscribed circle

737 = -L ^\ab-\-cd) {ac-^bd) {ad-\-bc). [713, 734, 736

4^)

If AD bisect the side of the triangle ABC in D,

4A
b'-c''733 tan 51)^ =

739 cot7?^I> = 2cot^ + cotJ?.

740 AD' = i (b'+ c'+ 2bc cos A) = hAb' + c'-ia').

If ylD bisect the angle yl of a triangle ABC,

B^C^b + c,__ A
2 b-

742 tan /;;>. 1 = cot ^^^- = ^^ tan

743 JD=^cos^
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If AD III- ]H>i{H'n.licular to BC

744

745

AD hi' sin A li' sin G + c' sin 7?

//''— r'^

tan J}-tnnC
tan 7) -h tan (/

REGULAR rOLYGUN AND CIRCLE.

Radius of circumscribing circle = R.

Radius of inscribed circle = r.

Side of polyo:on = a.

Number of sides = n.

a , TT
r = — cot —

.

746 n = ^ cosec -
2 n

Area of Polygon

748 = \na- cot — = ItilV sill ^^ — nr- tan —

USE OF SUBSIDIARY ANGLES.

749 To adapt a±_h to logarithmic computation.

Take = tan"' / ; then a^h = a sec' 6.

750 i^'or a-h take ^ = tan"
h

til us

a— h
av/2 cos (0 + 45°)

COS0

751 To adapt a cos C±h sin C to logarithmic computation.

Take = tan"' ^ ; then
b

a cos C ± 6 sin = v/(a^ + i-) sin (9 ± C). [By 617

For similar instauces of the use of a subsidiary angle, see (72G) to (730).

752 To solve a quadratic equation by employing a subsidiary

angle.

If x-—22)X + i2 = l)e the equation,

[ Hy lo
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Case I.— If a be < ^r, put ^ = sin'' B ; then
P

x = 2pcos'^. and 2^5 siV
f-.

[639,640

Case II.—If q be >»", put '^., = sec-0; then

X = p (Izki tan 0), imaginary roots. [614

Case III.—If q be negative, put ^ = tan* ; then

x = Vq cot and — y^ tan—

.

[644, 645
2 2

LIMITS OF RATIOS.

753 -g-=-r = '

when 9 vanislies.

AP APFor ultimately^=4i = l- [601,606 q

. e
754 n sin— = ^ when n is infinite, gy putting -- for in last.

755 (co^~) — 1 when n is infinite..

Proof.—Put ( l-siu"— ] ^, and expand the logarithm by (156).

DE MOIVRE'S THEOREM.

756 (t'os a+/ sin a) cos /8+/ sinyS) ... &c.

= cos (a+)8+7+ ...) + « ^iu (a+^+7+ •••).

where i = V — 1. [Proved by Induction.

757 (cos 6-\-i sin ^)" = cos n6+} sin >i^.

Proof.—By Induction, or by putting a, /5, &c. each = ^ in (756).

Expansion of cosnO, tj-c, in iwwcrs sinO and cosB.

758 c'osM^ = cos"^-C^(/J, 2) cos"-'^^ sin-^

4-C(»,4)cos"-^^sin^^-ctc.

759 sin n0 = n cos""' ^ sin 6—C{n, Ji) cos"'^ sin*^+&c.

I'liOOF.— Expand (757) by Bin. Th., and o<iuatc real and imaginary

parts.
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760 Unu,e= >Hang-(-(»,:i)lM.r-g+Ac.

In series (758, 7.59), stop ut, aiul cwiliulc, all fmns willi indices grciiter

than n. Note, n is here an integer.

Let s^ = sum of the G{n, r) products of tana, tau/3, tany,

c^c. to n terms.

761 sill (a+ ^+y+c^'C.) = cosa cosyS ... (.v,-.v,+ .v,-.^c.).

762 i'Os(a-{-fi+y-\-Scc.) = cosa cos/S ... (1 -6',+.s-.U.).

Pkooi'.—By e(|u:itinf; real and imaginary jiarts in (7o6j.

Exjmnsions of the sine and cosine in powers of the angle

764 sill^=^--^+|:^-&C. (.OS^=l-^+ -[^+el'C.

(9

Proof.—Put - for 6 in (757) and n = x , employing (7'>ir) and (755).

766 e'<' = eos^+f siii^. e'' = cos 6—i sin 0. By (150)

768 c''-\-r-'" = 2 cos ^. t'''-e-" = 2/ sin ^.

770 itaii^-^—^ l+ »'tau(9 _ ,^

Expansion of ro.s-" av^(Z sin,'' 6 in cosines or sines of

midtiplcs of 0.

772 2" ' cos"^ = cos n9-\-n cos(//-2; l9

+ C'(/',2) cos (;/-!) ^4- ('(//,;{) cos (/< -(I) ^ + .Vc.

773 ^\'lleu // is even,
2"-i (-1)*" .sill" ^ =: cos n0-n cos (/<-2) ^

+ (;(//, 2) cos (n—l) e-C{n, ;{) COS {u-(\)e-\-kQ.,

774 And wlicn 7/ is odd,

2" '(_1)"2 si,i«^ = siu«^— « .sin (/I—2)^

^^(///i) sin(//- l-)^~r' (;/,;{) sin (//-(I) ^+ ,<;.'c.
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Observe that in these series the coefficients are those of the Binomial

Theorem, with this exception : If nbe even, the last term mud he divided by 2.

The series are obtained by expanding (e" ± e'")" by the Binomial Theorem,

collecting the equidistant terms in pairs, and employing (768) and (769).

Exjpansion of cosnO and sinnO in ijowers of sin 9.

775 AYheii n is even,

n 1 n' • o /J , n- (n-— 2") . 4 acos 116 = 1 — —— sm- 6 -{
^-— ^ sm*

b !

776 When n is odd.

«^-l i„.fl^(»^-l)(«-3^)=:.»,cosng = C08g n -!t^s\n'0 + y" ^>^\'' "' sia'e

b !

r j^2 2''

sin nO = n cos ) siu 6 — /^ siu '
6-\-

777 When n is even,

i Ll sm^ 0— ^ '-^——

—

^-^ ^ sin^ 0-\- &c. [

.

! / ! )

778 When n is odd,

^mnv = n sin^— ^ —^ siir6/ +—^

-i siii^
5

!

o I

- "("-!) oyin (>r-y)
,i„, g ^ ^tc.

Proof.—By (758), we may assume, when n is an even integer,

cos«^ — l+A^sin-6+ yl^siu*e+...+^^sin""^+..,.

Put d-\-x for 6, and in cos nd cos ?j.c— sin nO sin n.v substitute for cos nx and
sinn.T; their values in powers of iix from (764). Each tei-m on the right is of

the type ^^.^ (sin 6 cos a; + cos ^ sin.t)"''. Make similar substitutions for cos.«

and sina; in powers of x. Collect the two coeHicients of .r'^ in each term by
the multinomial theorem (137) and equate tlium all to the coeUicient of .t"

on the left. In this equation write cos"^ for 1 — sin" 6^ everywhere, sind then
equate the coefficients of sin'-''^ to obtain the relation between the successive

quantities A.,^ and A.^^^^ foi" the series (775).
To obtain the series (777) equate the coefficients of .i' instead of those of .c''.

When n is an odd integer, begin by assuming, by (7o9),

sin »/y = /I, sin ^ + yl, sin^G + itc.
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779 The expansions of cos nO and sin nB in powers of cos

are obtained by chanr^ing 6 into ivr— in (775) to (778).

780 Expansion of cos vO in drsrrvdlng poirrrs of cos B.

2 COS nO = (2 cos ey- n (2 cos ^)"- ^+ !!i^^ (2 cos $)" " '-

,..(.-. -l)0^-r-2)...(.-2r+l)^.,_p,„ ..._^

r\

up to the last positive power of 2 cos B.

Pkoof.—By expanding each term of the identity

log(l-z.r)+log(l-^) = log{l-.-(.r + l-z)}

by (156), equating coefficients of -", and substituting from (768).

783 sin a-\-c sin {a-\-^)-^(r sin (a+2)3)+ &c. to n terms

_ sina-rsin(a-ff)-c"sin(a+/<y8)4-^"^'si» {a-\-n-l^}
^~

l-2ccos;8+6-'

If c be < 1 and n infinite, this becomes

_ sill g-c sin (g—ffl
'°* l-2ccos)8+c^ *

785 cos a+c cos (a+^)+ c- cos (a4-2i8)+ &c. to n terms

= a similar result, changing sin into cos in the numerator.

786 Similarly when c is < 1 and n infinite.

787 Method of summation.— Substitute for tlie sinrs or

cosinrs their exponential valiirs (768). Sum the two resulting

geometrical series, and substitute the sines or cosines again for

the exponential values bij (760).

788 csin(a+ iS) + ^sin(a-h2/8)+^sin(a4-.'^/3) + &c. to

infinity = c'"'""^ sin (a+c sin /3) — sin a.

789 (' <•<)> ( a+ /3) +^ cos (a+ 2y8) + ^ cos (a+ ;?)Sl + cVc. to

infinity — c'
^'"'^ cos (a-j- r sin ^) — cos a.

Obtained by tlie rnle in (7J?7).

2 A
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790 If, in the series (783) to ( 789), /3 be changed into /> f n, the signs of

the alternate teims will thereby be changed.

Expansion of 6 in powers of tan B (Gregon/s series).

791 e = tan e-^j}^+ ^-^ -&c.

The series converges if tan 6 be not > 1.

Proof.—By expanding the logarithm of the valne of e"'* in (771) by (158).

Formulje lor the calculation of the value of w by Gregory*s

series.

792 ^ = tau-^i + tau-^i - 4tan-^i-taii-^;i^ [791

794 = 4taii^l-taii-^-iT + ^''^^^ 't^-o /U 99

Proof.—By employing the formula for tan (A±B), (631).

To prove that ir is incommensurable.

795 Convert the value of tan 6 in terms of B from (764) and (765) into

a continued fraction, thas tanO = — -77 -z- -^ . ; or this result may
1— 3— 5— 7— (EC.

may be obtained by putting id for y in (294), and by (770). Hence

6__ _ «! «: p":

tany ~ 3— 5— 7— (tc.

Put ""
for 6, and ussumc that tt, and therefore -

-, is commensurable. Let
2 4

= , VI and n being integers. J lien we shall have i = .— - — -^ ,

4 7i dn — 5)i — tn— &c.

The continued fraction is incommensurable, by (177). But unity cannot be

equal to an incommen.^niable quantity. Thcrelore t is not commensurable.

796 ^^ sin j; = nsin (a; + a), iU = 7) sin 0+ - sin 2a + -^ sin3a + tfec.

797 ^ f ^''^" ^' — " *'^" 2/' ^ — .'/
— '" sin 2// + -|j sin 4?/— ^- sin 6^ + ic,

,1-7/.
•where vx = .

1 + u

Proof.—% suhs'itnt'ing the ea-pmential values of the sine or tangent (769)

and (770), and then eliminating x.

798 ('oeniciont of a;" in the cxi.ansion of c"-^ cos 6.1; =
^

cos n^,

where a = r cos 6 and Z< = rsinO.

For proof, substitute for cos /^.r from (768); expand by (150); put

o = r cos^, h = T h'n\6 in the coellicicnt of x", and employ {1'>1).
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799 W lion e is < 1 ,
,^^-^^ = 1 + '2h cos + '2'r cos 20 + 2// cos :iO+...'^^ I— e COB 6

where l>

l+v/l_e*

For proof, put c = "
., ami 2 cos ^ = .r + - -, expiind the fraction in two

feries of powers of x by the mcbhoJ of (257), and substitute from (768).

800 siiia+siiMa4-/8) + sin(a+-i)8) + ... + siii;a+(;/-l)/3j

sin(a+^^)si.4^

sin -^

801 (•()sa+ ('()s(a+ /8)+ ('()s(a+ 2^) + ...+C'()s;a+ (/J-l,)^;

802 If the terms in tliese series liuve tlie signs + and —
alternately, change \i into /3-f-7r in tlie resnlts.

Proof.—Multiply the series by 2 sin ^ , and apply (669) and {QQQ).

803 If /3 = — in (800) and (801), each series vanishes.

804 Generally, If /3 = ^'^, and if r be an integer not a

niulti[)lc of n, the sum of tlie r^'' powers of the sines or C(^sines

in (800) or (801) is zero if r he odd; and if /• he even it is

General Theorem.— Dcnotinp^ the sniu of the scries

805 c + r,x + c,r + ...+ r,..." by F (.r)
;

then ccosa + c,eos^« + />j + ...+r„cos(a + H/3) = ^ {e''F(c'')+e-*'F(>r"')],

and

806 fsina + r,sin(«+/5) f ... +c-„sln(a \- n, I) = }-.{,''F {e'')-c-''Fie-'')]

.

Proved bv substituting for the sines and cosines their exponential values

(7Gt"'), Ac.
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Expansion of the sine and cosine in factors.

807 'f^"— 2ci?" ?/" cos n^ + y-""

= 1^-- 2.r//cos^+/] \x'--2.vijQ0^{e^^-Vf

o

to n factors, adding — to the angle successively.

j^

Proof.—By solving theqaadraticon the left, wegefcic=i/(cos?i^+ isinn0)".

The n values of .r are found by (757) and (626), and thence the factors. For

the factors of a'"±y" see (480).

808 sin ?i<^ = 2^^-^ sill <^ siu
(^<^+ ^) sin

(^^ + -^j . .

.

as far as n factors of sines.

Pboof.—By putting x= ij = \ and ^ = 2</> in the last.

809 If '^ be even,

sin nij> = 2""^ sini^ cos</»(sin'— — sin^<^j (^sin'—— sin-</)j &c.

810 If ^^ be odd, omit cos (/> and make up n factors, reckoning

two factors for each pair of terms in brackets.

Proof.—From (808), by collecting equidistant factors in pairs, and

applying (659).

811 COS n<i> = 2"-' sinU+ ^J sin U-Jr*^)... to n factors.

Proof.—Put d) + -^ for ^ in (808),
zn

812 Also, if n be odd,

cos n<l> = 2"-' cos <^ /siii'^ — sin'c^j
l*^^^^'^

~ sin'c^j ...

813 If 'i be even, omit cos (^.

PiiOOF.—As in (809).

814 n = 2-^ sin^ sin^ sin '^... sin (^i=ll^.

Proof.—Divide (8o9) by sin (p, and make ^ vanish ; then apply (754).

815 -^ = ''Sl-(-^)lS-(.01S>-(0

PnooF.-Put ^ = ^ in (SOD) and (812) ; divide by (8M-) and make n

intinite.
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817 e'-2cos^ + e'-'

Proved bv sulistitutiiiu' ..•=! + -^-, 1/ = 1 - --f"'
*^"^^ " ''o'" ^ •" (^<J").

making n intinitc, aud reducing one series of factors to 4 hiu'^ by putting

z=0.
^

De Moirrrs Proprrfi/ of the
^

Circle.— Take 7' any point, and jr

FOB = d any angle,

JWC = COD = &c. = ^"^
;

n

OP = ,T ; OB = r.

819 J
'"— 2a "r" cos w^ 4- r-"

= Plf PC- PD- ...ion factors.

By (807) and (702), since Pi?" = a-- 2.n- cos 5 + r, &c.

820 H .r = r, IV siiii|^ = PB.PC.PD ... &c.

821 Coles's properties.—If 6 = ——

,

822

v«~r' = PB.PC.PD ... &c.

.r^+r" = Pa.Ph.Pc ... &c.

ADDITIONAL FORMUL/IJ.

823 cot yl+tnii A = 2 eosot- 2 1 = sec A cosec A.

824 c<)secLM+cot2J = cot.4. sec J = 1+taii J taii^i.

826 co=*-^ = cos'—- — sill*-!-.

827

828

829

iaii.l + sec.l = taiirJ-V+^V

tan .1 +tMiiyi . 1 . ,,= tan .1 tail B.
cot .l+ cot Ji

sec"^ cosec/1 = sec.1-f cosec* ^1.
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830 n ^+1^+6 = -|,

tanB tan C+tan C Urn ^4 H-tau A tanB = l.

831 If A-{-B-\-C = Tr,

cot i^ cot C+ cot cot ^4+ cot yl cotB = l.

832 «J»"y+ ^i» T=|- tan-i-+ tan-i = -J

In a right-angled triangle ABG, G being the right angle,

833 eos2Z^ = g;. tan2B=-^.

834 tani^ =V(^6)- ii+»^ = i («+«»)•

In any triangle,

835 sini(^-J^) = 'i^cosiC.

cosi(^-i?) = ^siniC.

QQa ^inA-B _ a'-b' tan^^+tanj^ ,. c

^^^ siu^+ /i c' ' UmiA-UmiB a-b'

837 2 («'+ ^'

+

^') = ^^ ^os ^+ ^" ^^^ ^+ "^ ^^^ ^•

838 Area of triangle ABC = ^bc sin A

1 sinS sinC i / o ;o^ sin A sin iJ

839 = _2abc_ ^^g i^ ^^g iy^ ^.^^ 1 C\

840 = i {a+b-^cY tan i^ tan \B tan ^C.

With the notation of (709),

841 r = i{a+ b+ c) Um^A tan \n tan \C.

842 i^/^»' = ,''('''.
.

A = v/rr,nr,.

843 ^/cosl+^y cos/Z+ r (M)sr:= l/»* sin.l sin/isinC.
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844 R-irr = \ {a cot A-\-h cot li-\-p cot C) = sum of per-

pendiculars ou the sides from centre of circumscribing circle.

Tliis may also bo shown by applyinf:^ Enc. VI. D. to the circle described

on R as diainetcr and the quadrilateral so formed.

845 >*a n >\ = fi^^t^ <*os IA cos }yB cos 1 C.

846 r = v/(r, r..) +^ (r. r„) + v/(n. n)^_

847 1=1 + - +—. taii.M==V—

•

>•
>'a

>*6
>'c *'6''c

849 If be the centre of inscribed circle,

0^ = —
,

,

cos I A.
a-\-o-{-c

850 rt (^> cos C—c QosB) = ¥—c'.

851 /> cos7i+c cos C = c cos {B-C).

852 'f cos .1 -\-b cos 7i+c cos C = 2a sin 2^ sin C.

'1(1 sin /i sinC
853 cos ^1+ cos B+ cos C =l-\r

a+6+c

854 If s = \{a+ h + c),

1 —COS" a— COS" h— COS" c-\-'l cos a cos h cos c

= 4 sin.v sin {s— a) sin {s— h) sin (-v— c).

855 — 14-('Os-r/+ cos-/>4-<'os"^*+2 cosa cos 6 cose

= 4 cos A- COS {s—a) cos {s—h) cos (.v— c).

856 4 COS— COS— cos —

= COS .y 4- COS (.V— ^/)+ cos (.v— />)+ cos {s— c).

. . (I . h . (•

4 sni — sm — sni —

= — sin*+ sin (*—«)+ sin (*—6)+sin (*--c).

858 .. = .(i+^+^ + ...).s(i-,.!^U + ...).

Proof.—Equate cocfScients of 0^ in the expansion of ' - by ("Oi) and

(81")) or of cos^ by (7t".'>) and (SlG).
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859 Examples of the Solutions of Triangles.

Ex. 1 : Cask II. (724).—Two sides of a triangle b, c, being 900 and 700

feet, and the included angle 47° 25', to find tlie remaining angles.

tan ^^=^ =—"^ cot4=1 cot 23° 42' 30"

;

2 b+c 2 8

therefore log tan ^ (J5— C) = log cot— —log 8 ;

therefore i tan^ (J5-0) = i cot 23° 42' 30"-3 log 2,

10 being added to each side of the equation.

.-. L cot 23° 42' 30" = 10-3573942* / .-. ^ (5- 0) = 15° 53' 19-55"*

3 log 2 = -9030900 j and |(5 + C) = 66° 17' 30"

.-. itan|(B-(7) = 9-4543042 ( .-. 5 = 82° 10' 49-55"

And, by subtraction, G = 50° 24' 10-45".

Ex. 2: Case III. (732).—Given the sides a, b, c = 7, 8, 9 respectively,

to fiud the angles.
. .

A /(s-b)(s-c) _ /4.3 _ /2 .

*""-2=V sis-a) -Vl2:5-Vl0'

therefore Ltau^ = 1<^+^ (log 2-1) = 96505 15;
2

therefore U = 24° 5' 41-43".*

\B is found in a similar manner, and G = 180°— J.—^.

Ex. 3.—In a rigbt-angled triangle, given the hypotenuse c = 6953 and

a side 6 = 3, to fiud the remaining angles.

Here cos A = —^ . But, since A is nearly a right angle, it cannot be
6953

determined accurately from log cos A. Therefore take

. A ll-cosA _ /3475

''"^^V"""^ -V6953'

therefore L sin ^ = 10 + ^ (log 3475 -log 6953) = 9-8493913;

therefore ^ =W 'o9' ro-o2"*

therefore ^ = 89° 58' 31 04" and i; = 0° 1' 28-96".

* See Chambers's Mathematical Tables for a concise explanation of the

method of obtaining these figures.



SPHERICAL TRIGONOMETRY.

INTRODUCTORY THEOREMS.

870 Definitions.—Planes through the centre of a sphere

intersect the surface in ^yr^f circles; other planes intersect

it in small circh's. Unless otherwise stated, all arcs are

measured on great circles.

The poles of a great circle are the extremities of the

diameter perpendicular to its plane.

The sides a, 6, c of a spherical triangle are the arcs of

great circles BG, CA, AB on a sphere of radius unity; and

the angles .1, B, C are the angles between the tangents to the

sides at the vertices, or the angles between the planes of the

great circles. The centre of the sphere will be denoted by 0.

The ])olar triangle of a spherical triangle ABC has for its

angvdar points A\ B\ C\ the poles of the sides /?C, CA, AB
of the primitive triangle in the directions of A, B, C respec-

tively (since each great circle has two i)oles). The sides of

A'B'C are denoted by a\ h\ c.

871 The sides and angles of the

polai- triangle are respectively the

supplements of the angles and

sides of the primitive triangle
;

that is,

n'-\-A = //+/; = r'-\-(' ^ n,

Ltt EC pi'oduc-cd cut the sidi'S A'H', \,

C'A' in a, 11. 11 is tJif pole of A'C\

therefore 1!II = y. Siniilarly C'li = ^,

therefore, by adilition, a -|- CJ[=ir and GII=.A\ because A' is the pole of BC.
The polar diai.'r;im of a spherical i»nIytron is formed in the same way, and

tlie same relations subsist between the sides and au'^les of the two Hy^ure.*'.

2 u
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Rule.—Hence, any equation between the slides and angles

of a spherical triangle jyroduces a siqjplementary equation by

changing a into tt—A and A into tt— a, ^c.

872 The centre of the inscribed circle, radius r, is also the

centre of the circumscribed circle, radius R\ of the polar

triangle, and v-^ll'= ^tt.

Pkoof.—In the last figure, let be the centre of the inscribed circle of

ABC; tlun 01), the perpendicular on BC, passes through A\ the pole of BG.
Also, OD = r; therefore OA'=h'r—r. Similarly 0B'= 0G'=Itt—7-; there-

fore is the centre of the circumscribed circle of A'B'C, and r-\-B'= ^tt.

873 The sine of the arc joining a point on the circumference

of a small circle with the pole of a parallel great circle, is equal

to the ratio of the circumferences or corresponding arcs of the

two circles.

For it is equal to the radius of the small circle divided by the radius of

the sphere ; that is, by the radius of the great circle.

874 Two sides of a triangle are greater than the third.

[By XI. 20.

875 The sides of a triangle are together less than the cir-

cumference of a great circle. [By XI. 21.

876 The angles of a triangle are together greater than two
right angles.

For ir—A + TT —B + TT—C is < 27r, by (875) and the polar triangle.

877 if two sides of ajriangle are equal, the opposite angles

are equal. [By the geomctric;il proof in (89-i).

878 If two angles of a triangle are equal, the opposite sides

are equal. [By the polar triangle and (877).

879 'I'he greater angle of a triangle has the greater side

opposite to it.

PnooF.— If J? be > ^, di-aw tie arc ItD mooting AC in P, and make
Z A lil> = .1, therefore BB = AD ; but BD +nG>BC, therefore AC>BC.

880 The greater side of a triangle has the greater angle

opposite to it. [By tho jx.lar triangle and (879).
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RIGHT-ANGLED TlUAN(i LKS.

881 Napier s Rules.—Tn the triangle JBO let C be ;i li^Hit

angle, then «, QTr— 7?), (W — r), (Jtt — ./), and//, are called

the five circular jxn-/^. Taking any part for middle part,

Napier's rules are

—

I. sineofun'diUrjiarf = jn-odiirt of faiKjfiifs ifaJjdcciif jvtrfs.

II. sine of middle part = product of cosines of opposite parts.

In applying the rules we can take J, B, c instead of their

complements, and change sine into cos, or vice vers/i, for those

parts at once. Thus, taking b for the middle part,

sin b = tan a cot .7 = sin B sine.

by theTen equations in all are given

rules.

Proof.—From any point P in OA, draw
PR perpendicular to OC, and EQ to OB;
therefore I'liQ is a right aiigle ; tlierefore OB
is perpendicular to PR and Q1i\ and therefore

to PQ. Then prove ai.y (oruiuhi by proportion

from the triangles of the tetrahedron OPQR,
which are all right-angled. Other\vise, prove
by the formulas for oblique-angled triangles.

OBLIQUE-ANGLED TRIANGLES.

882 cos a = cos b cos c-fsin h sin c cos .1.

Pkook.—Draw tangents at A
to the sides c, b to meet OH, OG
in D and E. Express VE'^ by
(7<i2) applied to each of tho

triangles DAE and 1)0E, and
subtiact.

If .1/? and. I'' are both >
J,

]trodiicc them fo meet in ,1', the

pole of A, and employ the Iri-

augle A'BC.

If AB alone be > ^. pro-

duce 7>.l to meet BC.

The sup})leineutary formula, by (871), is

883 <*<>^l =r —cos /; cos r-f sill />' >in r <•<)>//.
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A /sill (.s— //) sill (.V— c884 ^m^=yjt
8ill b 8111 c

885 cos4 = J ^"if-^i"(/-^^)
.

^ ^ sill /> sill r*

oo/? i A /sill (.V— />) sill (5— r) T 1/ I / I \886 tan—-=\/ ^^ A——^

—

—-L whevQ fi = i{a-{-h-\-c).
'I ^ sill A- Sill ys— a)

Proof.—sin^— = \ (1 — cos^l). Substitute for cos /I from (872), and

throw the nnmerator of the whole expression into factors by (673). Similarly

for cos -.

The supplementary formulae are obtained in a similar way,

or by the rule in (871). They are

887 cos4 = J<^<^^{s-'iU'<^HS-C)
_

2 Y sm B t*iu C

ooo . a /— COS .S cos (^'—

^

888 sill -n- = V • /> • /.
—

2 ^ siu B sin C

ooft I t^ / — t'os 8 COS (^'— ^)889 tan = d ————^—-

—

'—
2 ^ Qos{S— B) cos(.S— C)

where S = i (A-[-B+C).

890 Let (T = \/siu.s* sin (*— //) sin (s— b) sin (a'— c)

= ^ \/l+ ^ cos a cos 6 cos c— cos' a — cos- />— cos' c.

Then the supplementary form, by (871), is

891 S = a/— cos 8' cos [S—A) cos [S—B) cos (,N— C'j

= 1^ \/ 1—2 cos^ cosii cusC— cos I — cos- Z^— cos-C.

2(r *^S
892 sin ^ — . .

—

.

sinrt= . H • /> •

sin /> sin c sm fi sm C

[By sin^ = 2 sin fy cos ^ and (884, 885), &c.

893 The following rules will produce the ten formula^

(884 to 892)—

I. Write sin before each factor In the s cahics o/sin—

,
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cos
\^ , tan ^

, sin A, and A, /// Phinr Trii/->iioinetri/ (701—

707), fo chta'ni flif corI'cf^pouding fannultn in Spherical Trijo-

iionirfri/.

11. To ohfain the svpplementarij forms of the five resultn^

transpose lanje and small letters everyivhere^ and transpose

sin and cos everywhere hut in the denominators, and write

minus before cos S.

n(\A sill A _ sin B _ sin C
sin a sin fj sin c

PuooF.—By (8S-2). Otliei-wise, in the figure of 882, draw PN perpendi-

cular to HOC, and NR, XS to UB, 00. Prove PRO and FSO right angles
hy T. 47, and therefore PN = OP sin c sin L' = OP sin ^ sin (J.

895 COS 6 cos (7 = cot a sin 6— cot A sin C
To remember tins formnla, take any four consecutive angles

and sides (as a, C, h, J), and, calling the first and fourth the

extremes, and the second and third the middle parts, employ
the following rule :

—

Rule.—Product of cosines of middle parts = cot extreme
side X sin middle side — cot extreme angle X sin middle angle.

Pkoof.— In the formula for cos a (882) substitute a similar value for

cos c, and for sin c put sin C——-

.

smA

896 NAPIER'S FonmrL.E.

(1) tan i (A -B) = ^-^-)

—

-^ cot— .

sni-o-(r<+ 6) 2

/o\ i 1 '
< I in i'O^l ((t— h)

. C
(-^ '""^^-' + ^^) =

.....i (»+/,)
*•"* 2-

(.3) (,.„i("-/')=jii^Tpqr7]y*""i7-

/ «\ A 1 / I /\ <*os i- (A — li)
, r

(4) tan.U'' + '') =—r|:i:p7j^t»»^.

Rule.— /// ///c rahic of tan
J-
(A— 13) change sin to cos /o

o&^«m tan^(A+ B). To obtain (3) «?«(/ (-4)/rc)??t (1) and (2),
transpose sides and angles, and change cot to tan.

Proof.—In the values of cos.l and cos 7^, by (883), put msina and
m sin b for sin ^ and sin B, and add the two equations. Then put

sinj4±sinZ> , . r i /.>nA r»i-T.i\m = -^
.
— , and transform by (()70-d72).

sill a ± sill 6
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897

(1)

(2)

(3)

GAUSS'S FORMULAE.

smi(.4 + 7J) _ (io^\{a-h)

cos ^6^ C0S-2C

cos^C sin^c

cosi(^+ i^) _ cosi(rt+&)

sin^C cosl^c

cosi(^-/J) _sini((<+ ^)

sill ^ C sin ^c

From any of these formulae the others may be obtained

by the following rule :
—

Rule.— Change, the sign of the letter B {large or small) on

one side of the equaJion, and ivrite sin for cos and cos for sin

on the other side.

Proof.—Take sin-^- (^ + 7?) = sin-^x4 cos }jB+ coslA sin iZ>,

substitute the s values by (88-i, 885), and reduce.

SPHERICAL TRIANGLE AND CIRCLE.

898 Let r be the radius of the in-

scribed circle of ABG ; r« the radius of

the escribed circle touching the side a,

and B, Ba the radii of the circumscribed

circles ; then

(1) tan r = tan ^A sin (v— «) = ^

—

(3)

(4)

sni a .

SIn^
sin?r^l siiioTi siiioC

2 cos ^A cos ^B cos I ^

cusS+cos (^^— yl)+ cos (S— B)-\-liic.

Pkook.— Tlio first value is found from tlie

ri^lit-auglcd triangle OAF, in which AF = s— a.

The otliei- vahies I)y (881-892).
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899 (1) i;ni r„ = tail ,\/l sin.v =
111 (.V— </)

(3) ^ -f'''[' sinM cos IB cos \C
sin A

(>) = T
i.s \A sini/i sin ^(7

oV

_(.os.S-c()s(N-.l)+ c<)s(N-yi)+t'<>'^i''>'-^-')

Proof.—From tlie right-angled triangle O'AF', in which AF'= s.

NoiK.—The first two values of tan r„ may be obtained from those of

tan r by interchanging s and s—a.

900 (1) tiiii« =

(3)

(4)

tan Tift —cos S
c()s(.S-.l) S

_ sill \<i

sin A cos yj cos ^c

_ 2 sin ^^< sin ^j sin ^c

.ill .v+ sin (,v — (i)+ sin (.v— A)+ c^'C.

Proof.—The fir.st value from the right-angled

triangle OBD, in which Z OTID = S— A. ^Tlie other

values by the formulie (887-892).

901 (1) h.nR„ = tan^n _oos(S— ^)
— cds.S

05) =.-

(1.) =

(5) =

Sin tU<

sin A sin lb sin U'

2 sin hn <*os ^b cos Ic

;in (.V — rO+ sin (.v— />)+ .^in (.v— c)

Proof.—From the right-angled triangle o7>7^ in which z O'/;/^ = tt-.S.
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SPHERICAL AREAS.

902 area of ABC = (A-^B+C-tt) r- = Er

wliere E = ^+7i+C— tt, the spherical excess.

Proof.—By adding the three lunes

ABDG, BGEA, GAFB,

and observing that ABF = CDE,

get (
A+]l+^] 27rr' = 27rr + 2ABC.
TT IT IT I

903 AREA OF SPHERICAL POLYGON,

n being the number of sides,

Area = {interior Angles— (»— 2) tt] r'

= {277— Exterior Angles} r^

= {27r— sides of Polar Diagram} r.

The last value holds for a curvilinear area in the limit.

Proof.—By joining the vertices with an interior point, and adding the

areas of the spherical triangles so formed.

904 GagnolVs Theorem.

• 1 L^ _ \/ {si" ^ ^^^ {
s— u) ^\n(s— h) sin(.y— r)y

sin c> tj — -T \ r-j \

2 cos -^a cos ^b cos ^c

Proof. -Expand sin \_\{A + B)~},{Tr-G)'] by (628), and transform by

Gauss's equations (897 i., iii.) and (669, 890).

905 LlhulUier's Theorem.

UuiE = y [tan k tan i (.s— ^0 ian I {.s^-h) tan i {s-c)}.

Proof.— Multiply numerator and denominator of the left side by

2 cos 1 (A + B-G + n) and reduce by (6G7, 668), then eliminate i {A+B)

by Gau8.s'.s foniiulio (S!i7 i., iii.) Tnuisfonii by (()72, 673), and substitute

from (886).
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Vi)\M\VA)\{()NH.

Let tlic iiuiiilx'i- of fiiccs, solid angles, and cdircs, of any

|)(.lylicdr<.n hr /•', N, and />'
; tlu-n

906 //+.S = E+'2.

Pi;,),,i.-.— Project till' |)olvhc(lron upon Jin internal splicre. Let vi =
number of sides", and s = sum of anj^les of one of tlie spherieal poIy-,'on.s so

formed. Then its area = [s— {»i— 2) tt] r. by fOn.'i). .Sum this for all the

polygons, and equate to 4n-?-*.

THE FIVE REGULAR SOLIDS.

TiOt VI he the niimher of sides in each face, ii the nninher

of ]ilane angles in each solid angle ; therefore

907 ))iF= nS = '2E.

Fi-om these equations and (OOd), Hnd I\ S, and I'J in terms of ni ajid

«, thus,

1 ^ w / 1 1_ 1\ .1 ^ »
(

1 ^_
1 _1\ 1 = 1 + ^ _ 1

F '2 V nt n 2 /
' N 2 V vi n 2 /

' E m h
-1

'

In order that F, S, and E may be positive, we must havi- + >

a rehition which admits of five solutions in whole numbers, corresponding to

the five regular solids. The values of hi, », F, S, and E for the five regular

solids are exhibited in the following table :
—
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909 If I be the angle between two adjacent faces of a

regular polyhedron,

smi/ = cos •- sill—

.

n m

Proof.—Let J*(^ = a be the edi^e, and *S'

the centre of a face, T the middle point of

PQ, the centre of the inscribed and circum-

scribed spheres, ABC the projection of PST
upon a concentiic sphere. In this splierical

triangle,

C = and B

I.

2 n rii

Also STO
Now, by (881, ii.),

cos A = sin B cos BG

;

that IS, cos — = sui— sin ^1.
n m

= PST.

Q. e. d.

If r, B be the radii of the inscribed and circumscribed

spheres of a regular polyhedron,

910 r = 4 tan ^I cot— , « = -^ tan ^I tan ^.

Proof. — In the above figure, OS = r, OP = B., PT = -[^ ; and

OS = PT cot -'^ tan J J. Also OP = PT cosec AG, and by (881, i.),

5in AG = tan BG cot A = cot }J cot ; therefc)re, &c.
n
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MISCELLANEOUS PROPOSITIONS.

920 To find the point in a given line QY, the sum of whose
distances from two fixed points <S', S' is a minimum.

Draw SYB at right angles to QY,
making r7i' = TS. Join BS\ cntting

QY in P. Then P will be the required

point.

Proof.— For, if D be any other point

on the line, SD = Dli and SP = PR.
But BD + US' is > BS'; therefore, (to.

B is called the reflection of the point i9,

and SP.S" is the path of a ray of light

reflected at the line QY.
If ^, S' and QY are not in the same plane, make SY, YB equal perpen-

diculars as before, but the last in the plane of S' and QY.
Similarly, the point Q in the given line, the diSerence of whose distances

from the fixed points 8 and B' is a maximum, is found by a like construction.

The minimum sum of distances from 8, S' is given by

(^7^+ ^-7^)-= SS"'+4^SY.S'Y'.

And the maximum difference from S and R' is given by

{SQ-R'QY= {SHy-4^SY.IVY'.

Proved by VJ. D., since SBB'S' can be inscribed in a circle.

921 Hence, to find tlic

shortest distance from P
to Q en route of the hncs

AB, BC, CD', in other

words, the path of the ray

reflected at the successive

surfaces AB, BG, CD.

Find P, , the reflection of P at

the first surface; then Pj, the

reflection of 2', at the second sur-

face ; next Pj. the reflection of P,

at the third surface ; and so on if
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there be more surfaces. Lastly, join Q with P,, the last reflection, cutting

CD in a. Join aPj, cutting BG in b. Join hP^, cutting AB in c. Join cP.

PcbaQ is the path required.

The same construction will give the path when the surfaces are not, as

in the case considered, all perpendicular to the same plane.

922 If the straight line d from the vertex of a triangle

divide the base into segments _p, q, and if h be the distance

from the point of section to the foot of the perpendicular from

the vertex on the base, then

The following cases are important :

—

(i.) When p = q, b'+c' = 2q'-^2d'

;

i.e., the sum of the squares of tiuo sides of a

triangle is equal to twice the square of half

the base, together ivith tivice the square of the

bisecting line drawn from the vertex.

(ii.) When p = 2q, 2b'-]-c' = 6q'+M\

(iii.) When the triangle is isosceles,

b'= c' = 2)q+ (P.

[II. 12, 13.

(II. 12 or 13)

923 If be the centre of an equilateral triangle ABC and

P any point in space. Then

FA'+PB'-^PC = 3 {PO'-\-OA').

Proof.— PB'+PC = 2PD' + 2BD\ (922, i.)

Also PA'+ 2PD' = 60D" + SPO\ (922, ii.)

and B0 = 20D;

therefore, &c.

CoR.—Hence, if P be any point on the

surface of a sphere, centre 0, the sum of the squares of

its distances from J, B, G is constant. And if r, the radius

of tlie sphere, be equal to OA, the sum of the same squares is

equal to Or".
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924 The sum of \\\c squares of

the sides of a (]uadrihitcral is equal

to the sum of the squares of the

diagonals plus four times the square

of the line joiuinpr the middle points

of the diagonals. (9-J2, i.)

925 Cor.—The sum of the squares

of the sides of a parallelogram is

equal to the sum of the squares of the diagonals.

926 In a given line AG, to find a point X whose distance

from a point P shall have a given

ratio to its distance in a given

direction from a line AB.

Through P draw BPC parallel to the

given direction. Produce AP, and make
CE in the given ratio to CB. Draw PX
parallel to EC, and XY to CB. There are

two solutions when CE cuts AP in two
points. [Proof.—By (VI. 2).

927 To find a point X in AC,
whose distance XY from AB parallel

to BC shall have a given ratio to its

distance XZ from BG parallel to AD.

Draw AE parallel to BC, and having to

AD the given ratio. Join BE cutting AG \n

X, the point required. [Proved by (VI. 2).

928 To find a point X on any
line, straight or curved, whose
distances XY, XZ, in given direc-

tions from two given lines AP, AB,
shall be in a given ratio.

Take P any point in the first line.

Draw PB parallel to the direction of XY,
and BC parallel to that of XZ, making
PB have to BC the given ratio. Join PC,
cutting AB in I). Draw DE parallel to

CB. Then AE produced cuts tlie line in

X, the point required, and is the locus of

such points. [Proof.—By (VI. 2).
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929 To draw a line XY through a given point P so that

the sogmeuts XP, FY, intercepted by a given circle, shall be

in a given ratio.

Divide the radius of the circle in that ratio,

and, with the parts for sides, construct a triangle

PDC upon PC as base. Produce GD to cut the

circle in X Draw XPY and GY.

Then PD+ DC = radius
;

therefore PD = DX
But CY=CX;
thereforePDisparallelto(7r(I.5, 28) ; therefore

&c., by (VI. 2).

930 From a given point P in the

side of a triangle, to draw a line PX
which shall divide the area of the tri-

angle in a given ratio.

Divide EG in D in the given ratio, and

draw AX parallel to PD. PX will be the line

required.

ABD : ADG = the given ratio (VI. 1), and

API) = XPI) (I. 37) ; therefore, &c.

931 To divide the triangle ABG in a given ratio by a line

XY drawn parallel to any given line AE.

Make BD to BG in the given ratio. Then
make PY a mean proportional to BE and BB,
and draw YX parallel to EA.

Proof.—AB divides ABG in the given ratio

(VI. 1). Now

ABE : XBY :: BE : BD, (VI. 19)

or :: ABE: ABD;

therefore XBY = ABD.

932 If the interior and exterior vertical angles at P of the

triangle APB be bisected by straight lines which cut the base

in G and D, then the circle circumscribing GPD gives the

locus of the vertices of all triangles on the base AB whose
sides AT\ PP m-o in a constant ratio.
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Proof.—
The Z CPD = i(APB + BPE)

= a right angle
;

therefore P lies on the circumference of

the circle, diameter CD (III. 31). Also

AP : PB :: AC : GB :: AD : DB
(VI. .S, and A.), a fixed ratio.

933 AD is divided harmonically in B and G ; i.e., AD : DB :: AG I GB ;

or, the ivhole line is to one extreme part as the other extreme part is to the middle

part. If we put n, b, c for tlie lengths AD, BD, OD, the proportion is

expressed algebraically hy a : h :: a— c : c— b, which is equivalent to

'+! = -a c

934 Also AP : BP = 0A: OG = OG : OB
and AP' : BP' = OA : OB, (VI. 19)

AP'-AO' : GP" : BP'-BC\ (VI. 3, <k B.)

935 If Q be the centre of the inscribed circle of the triangle

ABG, and if AQ produced meet the circumscribed circle,

radius E/\nF; and if FOG bo a diameter, and AD perpendi-

cular to BG ; then

(i.) FC=FQ= FB='lR^\n:^.

ill) Z.FAI)= FAO=},{B-C),

and /_CAG = \{B^C).

Proof of (i.)

—

Z.FQG= QGA-\-QAC.

But QAG =z QAB = BGF
; {\\\. 2\)

.-. FQG = FGQ; .-. FG = FQ.

Similarly FB = FQ.

Also Z GCF is a right angle, and

FOG = FAG = \A; (III. 21)

.-. FC = 2Esin4.

936 If -K, r be the radii of the circumscribed and inscribed

circles of the triangle AUG (see last figure), and 0, Q, the

centres; then ()Q^=IV—2Hr.

Proof.—Draw QH perpendicular to ^C ; then QII = r. By the isosceles

triangle AOF, OQ' = li'-AQ.QF (922, iii.), and QF = FG (935, i.), and

by similar triangles QFC, AQH, AQ : QII :: OF : FG ;

therefore AQ.FC = OF.QU = 2 Rr,
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The problems known as the Tangencies.

937 Given in position any three of the following nine data

—

viz., three points, three straight lines, and three circles,—it is

required to describe a circle passing through the given points

and touching the given lines or circles. The following five

principal cases occur.

938 I. Given two points A^ J9, and the straight line CD.

Analysis.—Let ABX be the required

circle, touching GD in X. Therefore

GX'=^GA.GB. (III. 36)

Hence the point X can be found, and the

centre of the circle defined by the inter-

section of the perpendicular to (yD through
X and the perpendicular bisector of AB.
There are two solutions.

Otherwise, by (926), making the ratio

one of equality, and DO the given line.

Cor.—The point X thus determined is the point in GD at

which the distance AB subtends the greatest angle. In the

solution of (941) Q is a similar point in the circumference GD.
(III. 21, & I. 16)

939 II- Given one point A and two straight lines DG, DE.
In the last figure draw AOG perpendicular to DO, the bisector of the

angle D, and make OB = OA, and this case is solved by Case I.

940 III- Given the point P, the straight line DE, and the

circle AGF.
Analysis.— Let PEF be the required

circle touching the given line in E and the

circle in F.

Through IF, the centre of the given

circle, draw AHGD perpendicular to DE.
Let K be the centre of the other circle.

Join 11K, passing through Z'', the point of

contact. Join AF, EF, and AF, cutting

the required circle in X. Then

^DHF = LKF; (1.27)

therefore UFA = KFE (the halves of equal

angles) ; therefore AF, FE are in the same

straight line. Then, because AX.AP = AF.AE, (III. 36)

and AF.AF :c= AG .AD by similar triangles, therefore ^X can bo found.

A circle must then be described through P and X to touch the given line,
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by Caso I. There are two solutions with exterior contact, as appears from

Case 1. These are indicated in the diagram. There are two more in wliich

the circle J C lies witliin the described circle. The construction is quite

analogous, C taking the place of A.

941 IV. Given two points Ay B and

the circle CD.

Draw any circle through A, B, cutting tho

required circle in C, D. Draw AB and DC,
anil lot them meet in F. Draw FQ to touch

the given circle. Then, because

FC.FD = FA . FB = FQ\ (TIL 30)

and the required circle is to pass through

A, B ; therefore a circle drawn through A, B, (^

must touch FQ. and therefore the circle CJ),

in Q (III. 37), and it can be described by Caso

I. There are two solutions corresponding to

the two tangents from F to the circle CD.

942 V. Given one point P, and two circles, centres A and B.

Analysis.—Let FFO be tho required circle touching the given ones in F
and 0. Join the centres QA, QB. Join FG, and produce it to cut tho

circles in E and //, and the lino of centres in 0. Then, by the isosceles

triangles, the four angles at F, F, G, II are all equal ;
therefore AE, BG are

parallel, and so arc .1/'', BII\ therefore AO : BO :: AF : Hit, and is a

centre of similitude for tho two circles. Again, Z IIJiK = 211 IjK, and

FAM = 2FNM (HI. 20) ; therefore FNM = IILK= IIGK (III. 21) ; there-

fore the triangles OFN, OKG are similar; therefore OF . OG = OK
.
OM

;

therefore, if OF cut the required circle in X, OX . OF = OK. ON. Thus

the point A' can be found, and tho problem is reduced to Case IV.

Two circles can be drawn througli F and X to touch tho given circles.

One is the circle FFX. The centre of the other is at tlie ]K)int where EA
and JIB meet if produced, and this circle touches the given ones in F and //.

943 An analogous construction, employing the internal centre of simili-

tude 0', determines the circle which passes through F, and touches one given

circle externally and the other internally. See (1017-1)).

The centres of similitude are tho two points which divide tho di.stanco

between the centres in the ratio of the radii. See (1037).

2d _
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944 Cor.—The tangents from to all circles which touch

the given circles, either both externally or both internally,

are equal.

For the square of tbe tangent is always equal to OK. ON" or OL . OM.

945 The solutions for the cases of three given straight lines

or three given points are to be found in Euc. IV., Props. 4, 5.

946 In the remaining cases of the tangencies, straight lines

and circles alone are given. By drawing a circle concentric

with the required one through the centre of the least given
circle, the problem can always be made to depend upon one
of the preceding cases ; the centre of the least circle becoming
one of the given points.

947 Definition.—A cenb-e of similarity of firo jjlane curves

v\s a point such that, any straight line being drawn through it

to cut the ciirccs, the segments of the line intercejited between

the ]Joint and the curves are in a constant ratio.

948 If AB, AG touch a circle at B and
C, then any straight line AEDF, cutting

the circle, is divided harmonically by
the circumference and the chord of con-

tact BG.
Proof from AE . AF = AB'. (III. 3G)

AB' = BD.DG+AD\ (923)

and BB.BC=EB. BE. (III. 35)

949 If "
5 /^j 7> in the same figure, be the

perpendiculars to the sides of ABG from
any point E on the circumference of the

circle, then /3y = a".

Prooi'.—Draw the diameter BII=d ; then EB'' = ft(l, because BEH is a
right angle. Similarly EG^ = yd. But EB . EC=ad (Yl. D.), therefore etc.

950 If EE be drawn parallel to the base

BG of a triangle, and if EB, FG intersect

in 0, then

AE : AG :: EG : OB :: FO : OG.

By VI. 2. Since each ratio = FE : BG.

Cou.—If AC = n . AE, then

BE = (n-j-l)OE.
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951 T1h> tliroc lines drawn from the ann^les of a tii;in<^^l(' to

the niiihUe jioints of tlie opposite sides, intersect in tl»e same

point, and divide each other in the ratio of two to one.

For, l>y tlio last theorem, any ono of these lines is divided by each of tho

others in tho ratio of two to ono, measuring from tho same cxlrcniity, and

nuist therefore bo intersected by them in tho same point.

This point will bo referred to as the ccntruid of the triangle.

952 The perpendiculars frora the angles upon tho opposite

Bides of a triangle intersect in the same point.

Draw BE, CF perpendicular to the sides, and let A
them intersect in O. Let AO meet IW in J>. Circles

will circumscribe AEOF and BFEC, by (III. 31) ;

therefore Z FAO = FEO = FCB
;

(III. 21)

therefore Z BDA = BFC = a right angle

;

i.e., AO \h perpendicular to BC, and therefore the

perpendicular from A on BC passes through 0.

is called the orthocentre of the triangle ABC.

CoTi.—The perpendiculars on the sides bisect the angles

of the triangle DEF, and the point is therefore the centre

of the inscribed circle of that triangle.

Proof.—From (III. 21), and the circles circumscribing OEAF and OECD.

953 If the inscrilied circle of a triangle ABC touches the

sides a, h, c in the points D, E, F ; and if tlie^ escribed circle

to the side a touches a and h, c produced in D', TJ', F' ; and if

then

BF' = nD'= CD = s-c,

and AE' = A F' = s ;

and similarly with respect to

the other segments.

Proof.—The two tangents from
any vertex tocithercirclfbeingoqual,

it folif)\vs that ll) +r= half tho

perimeter ol' A Bt\ whicli is made up
of three pairs of equal segments

;

therefore CD = s — c.

Also
AE'+ AF'= A r + Cl> + , 1 7? + Bjy

= 2--

;

therefore AE' AF' = s.
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The Nine-Point Circle.

954 The Nine-point circle is the circle described through
I), E, F, the feet of the perpendiculars on the sides of the

triangle ABG. It also passes through the middle points of

the sides of ABG and the middle points of OA, OB, OG ; in

all, through nine points.

Proof.—Let the circle

cut the sides of ABG
again in G, H, K; and
OA, OB, OG in L, M, N.
/.EMF=EDF (III. 21)
= 20DF (952, Cor.);

therefore, since OB is the

diameter of the circle cir-

cumscribing OFBD (III.

31), ill is the centre of

that circle (III. 20), and
therefore bisects OB.

Similarly OG and OA
are bisected at N and L.

Again, Z MGB = MED (III. 22) = OGD, (HI. 21), by the circle circum-
scribing OEGD. Therefore MG is parallel to OG, and therefore bisects BG.
Similarly H and K bisect GA and AB.

955 The centre of the

nine-point circle is the

middle point of OQ, the

line joining the ortho-

centre and the centre

of the circumscribing

circle of the triangle

ABG.

For the centre of the N. P.

circle is the intersection of

the perpendicular bisectors

of the chords DG, EH, FK,
and these perpendiculars

bisect OQ in the same point

N, by (VI. 2).

956 The centroid of

the triangle jUiG also lies on the line OQ and divides it in

B so that OB = 2BQ.

Pkook.—The triangles QUG, OAB are similar, and AB =: 2nG ; there-

fore A = 2GQ ; tluM-eforo Oli = 2h'(2 ; and Ali = 2ii'c; ; therefore B is the

centroid, and it divides 0(2 as stated (051).



CONSTIiUCTION OF TillANGLES. "201

957 Hence the line joining the centres of the circumscribed

and nine-point circles is divided harmonically in the I'atio of

2 : 1 by the centroid and the orthocentre of the ti-ian<^le.

These two points are therefore centres of similitude of the

circiimscri])ed and nine-point circles ; and any line drawn

through either of the points is divided by the circumferencca

in the^-atio of 2 : 1. See (1037.)

958 The lines BE, EF, FD intersect the sides of AJiC in

the radical axis of the two circles.

For, if EF meets BC in F, tlieu by the circle circumscribing FCEF,
FE . FF = FC . FB ; therefore (III. 3G) the tangents from F to the circles

are equal (985).

959 The nine-point circle touches the inscribed and escribed

circles of the triangle.

Proof.—Let be the orthocentre, and 7, Q
the centres of the inscribed and circumscribed

circles. Produce AI to bisect the arc 1>G in T.

Bisect AG in L, and join GL, cutting AT in .S'.

The N. P. circle passes through G, V, and

L (9o-i), and !» is a right angle. Therefore

GL is a diameter, and is therefore = R= QA
(957). Therefore GL and QA are parallel.

But QA = QT, therefore

A o., . ,A
GS = GT = CT sin 2Ii sin- (935, i.)

Also ST =2GS cos 6

(e being the angle GST = GTS).

N being the centre of the N. P. circle, its

radius = NG = ^R; and r being the radius of

the inscribed circle, it is required to shew that

NI = NG-r.
Now NP = SN'-{-SP-2SN. SI cos 0. (702)

Substitute SN=IR-GS;
SI = TI-ST = 21i sin4 -2GS cos ;

and GS = 2F sin'' lA, to prove the proposition.

If J be the centre of the escribed circle touching BC, and r„ its radius, it

is shewn in a similar way that NJ = NG+ r^.

To construct a triatif^lefrom certain data.

960 When amongst Wxg data we have the sum or difference

of the two sides AB, AC; or the sum of the segments of the

base made by Ad, the bisector of the exterior vertical angle;

or the difference of the segments made by AF, the bisector of
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tlie interior vertical

lead to the solution.

Make AE = AD = AC. Draw
DII parallel to AF, and suppose

EK drawn parallel to AG to meet

the base produced in K; and

complete the figure. Then BE
is the sum, and IJD is the differ-

euce of the sides.

EK is the sum of the exterior

segments of the base, and Till is

the difference of the interior seg-

ments. Z BDH = BEG = iA,

ZADG = EAG =i(B+C),
L DCB = \BFB = i (0-7)).

le ; tlie followinf]f construction will

961 When the base and the vertical angle are given ; the

locus of the vertex is the circle ABC in figure (935) ; and the

locus of the centre of the inscribed circle is tlie circle, centre

F and radius FB, When the ratio of the sides is given,

see (932).

962 To construct a triangle when its form and the distances

of its vertices from a point A' are given.

Analysis.—Let ABG be the required triangle. Oa
A'B make the triangle A'BG' similar to ABG, so that

AB : A'B :: GB : G'B. The angles ABA', GBG' will

also be equal; therefore AB : BG :: AA' : GC, which

gives GG', since the ratio AB : BG is known. Hence
the point G is found by constructing the triangle

A'CG'. Thus BG is determined, and thence the tri-

angle ABG from the known angles.

963 To find the locus

of a point P, the tan-

gent from which to a

given circle, centre A,

has a constant ratio to

its distancefrom a given

point B.

Let AK be the radius of

the circle, and jj : q the

given ratio. On A JJ take

AC, a third propoitional to

AB and AK, and make
AD:DB=]r : .j\

With ccnti-e D, aud a radius
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Cfjunl to a mean proportional betwcon />/> and DC, describe a circle. It will

bo the required locus.

Prook.—Suppose r to bo a point on the rcMpiirod locus. Join 7' witli

A, J?, C, and 7>.

Describe a circle about PBC cutting Al' in l'\ and anotlicr about AliF
cutting P77 in (1, and join AH and UF. Tlien

TK- = AF'-A A'- = J7^--7U . AC (by constr.) = A V'-TA . A F (III. Z^\)

= Ai'.vF (II. '1) = ur.rjj (HI. :3G).

Therefore, by h^'pothe.sis,

2>- : f/ = (VP . rn : PP'^ = GP : rn = A D : T)B (by constr.)
;

therefore Z Z)7V? = PGA (VL 2) = PZ''7>' (III. 22) = PC// (III. 21).

Therefore the triangles DPP, BGP are simihir; therefore DF is a mean pro-

portional to DB and DC. Hence the construction.

964 CoE.— If
l'>
= q tlie locus becomes the pcrpciulicular

bisector of BC, as is otlicr\Ndse shown in (1003).

965 To find the locus of a point P, the tangents from wliich

to two given circles shall have a given ratio. (See also 10;3(3.)

Let A, B be the centres, a, h the radii

(rt > fe), and p : q the given ratio. Take c, so

that c : h = p : q, and describe a circle with

centre -1 and radius ^l.V= va'— c'. Find the

locus of P by the last proposition, so that

the tangent from P to this circle may have

the given ratio to FB. It will be the re-

quired locus.

Proof.—By hypothesis and construction

q' FT- h- FT'+ U'

ir'-o^ + ,^- _ AF'-AX'
BF' BP"

Cor.—Hence the point can be found on any curve from

which the tangents to two circles shall have a given ratio.

966 To find the locus of the point from which the tangents

to two given circles are ecpial.

Since, in (965). wo have now p = q, and therefoi-e c = h, the construction

simplifies to the following :

Take AN= y(a--6'-), find in ^IP take AB : AN : AC. The perpen-

dicular bisector of PC is the required locus. But, if the circles inter.sect,

then their common chord is at once the line required. See Radical Axis

(985).
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CoU'niear and Concurrent systems nfj)oints and lines.

967 Definitions.—Points lying in the same straight line are

colUnear. Straight lines passing through the same point are

concurrent^ and the point is called the focus of the pencil of

lines.

Theorem.—If the sides of the triangle ABG, or the sides

produced, be cut bj any straight line in the points a, 6, o

respectively, the line is called a transversal, and the segments

of the sides are connected by the equation

968 {Ah : hC) {Ca : aB) (Be : cA) = 1.

Conversely, if this relation holds, the points a, h, c will be

collinear.

Proof.— Througli any vertex A draw AD
parallel to the opposite side BG, to meet the

transversal in D, then

Ab : bG = AD : Ca and Be, : cA = aB : AD
(VI. 4), which proves the theorem.

Note.—In the formula the segments of the

sides are estimated positive, independently of

direction, the sequence of the letters being pre-

served the better to assist the memory. A point may be supposed to travel

from A over the segments Ab, bC, &c. continuously, until it reaches A again.

969 By the aid of (701) the above relation may be put in

the form

(sinABb : sin bBC) (sin C^a : sin aAB) (sin BCc : sin cCA)= l

970 If be any focus in the plane of the triangle ABC, and

if AG, BO, CO meet the sides in a,b,c; then, as before,

{Ab : bC) {Ca : aB) {Be :cA) = l.

Conversely, if this relation holds, the lines Aa, Bh, Cc will

be concurrent.

Proof.—By the trans-

versal Bb to the triangle

AaG, we have (9G8)

{Ab : bG) {CB : Ba)
x{aO : 0.1) = 1.

And, by the transversal

Cc to the triangle AaB,

(Bc:cA)(AO: Oa)
x(aG: CB) = \.

Multiply these equations

together.
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971 Tf J>r, ca, ah, in tlic last figure, be produced to meet the

sides of .l//Oin 1\ Q, R, then eac^h of the nine lines in the

tiu-nro will be divided liannoiiically, and tlie points J\ (,', R
^vill be collinear.

Proof.— (i.) Take hP a transversal to ABC; therefore, by (^08),

{Cr : PB) (Be : cyl) (Ab : hC) = 1

;

tlu-rcforo, by (1170), CP : PB = Ca : uB.

(ii.) Take CP a transversal to Abe, therefore

(AB : Be) (cP : Pb) (bC : CA) = 1.

But, by (070), taking for focus to Abe,

(AB : Be) (ep : pb) (bC : CA) = 1

;

therefore cP : Pb = ep : pb.

(iii.) Take PC a transversal to AOe, and b a focus to AOc\ therefore, by

(0G8 & 070), (.la : aO) (OG : Cc) (cB : BA) = 1,

and (Ap : pO) (OC : Cc) (eB : I?-l) = 1

;

therefore Aa : aO = ylj) : i'O.

Thus all tlio lines are divided harmonically.

(iv.) In the equation of (070) put Ab : bC = AQ : QC the harmonic

ratio, and similarly for each ratio, and the result proves that P, Q, R aro

collinear, by (008).

Cor.—If in the same figure qr, rj), pq be joined, the three

lines will pass through P, (^, li respectively.

Proof.—Take as a focus to the triangle abc, and employ (070) and the

harmonic division of be to show that the transversal rq cuts be in P.

972 If a transversal intersects the sides AB, lUl, CD, &c.

of any polygon in the points a, h, c, &c. in order, tlien

{Aa : aB) {Bb : bC) {Cc ; cD) {Dd : (IE) ... kc = 1.

Pkoof.—Divide the polygon into triangles by lines drawn from one of the

angles, and, applying (908) to each triangle, combine the results.

973 Let any transversal cut the sides of a triangle and

tlieir three intersectors AO, HO, CO (see figure of V70) in tbe

points A', B', C, a, h' , c , respectively; then, as before,

(J7/ : IjC) {Ca : a B) {/)','
: c'A') = 1.

Phoof.—Each .'^ide forms a triangle with its intorsector and the trans-

versal. Take the four remaining linos in smvissioi for transversals to each

trianMe, applying CJOS) symmctricallv, and ciMidiinr the twelve equations.

2 E
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974 If the lines joining corresponding vertices of two tri-

angles ABC, abc are concurrent, the points of intersection

of the pairs of corresponding

sides are collinear, and con-

versely.

Proof.— Let tho concurront lines

Aa, Bh, Cc meet in 0. Take be,

ca, ah transversals respectively to

the triangles OBG, OCA, OAB, ap-

plying (9G8), and tlio product of the

three equations shows that P, E, Q
lie on a transversal to ABC. p

975 Hence it follows that, if the lines joining each pair of

corresponding vertices of any two rectilineal figures are con-

current, the pairs of corresponding sides intersect in points

which are collinear.

The figures in this case are said to be in pprspectlce^ or in,

homology, with each other. The point of concuiTcnce and
the hne of collinearity are called respectively the centre and
axis of perspective or homology. See (1083).

976 Theorem.—When three perpendiculars to the sides of a

triangle ABC, intersecting them in the points a, b, c respec-

tively, are concurrent, the following relation is satisfied ; and
converse^, if the relation be satisfied, the perpendiculars are

concurrent.

Afr-bC'+C(r-aB--\-Bc'-cA'' = 0.

Proof.—If the perpendiculars meet in 0, then Ab''— bC-= AO'-—OC-,
&c. (I. 47).

Examples.—By the application of this theorem, the concurrence of the

three perpendiculars is readily established in the following cases:

—

(1) When the perpendiculars bisect the sides of the triangle

(2) When they pass through the vertices. (By employing I. 47.)

(3) The three i-adiioflhe esci-ibed circles of a triangle at the points of

contact between the vertices are concui-rent. So also arc; the radius of the

inscribed circle at the point of contact wilh one side, and the radii of tho two
escribed circles of the remaining sides at tho points of contact beyond the

included angle.

In these cases employ the values of the segments criven in (953).

(4) The pei'j>endiculars equidistant from the vertices with three con-

current perpendiculars are also concun-cnt.

(5) When the three perpendiculars from the vertices of one triangle upon
the sides of the other are concurrent, then tho perpendiculars from the

vertices of the second triangle upon the sides of the tirst are also concurrent.

Proof.—If A, B, G and A\ If, C are corresponding vertices of the tri-

angles, join AB\ AC\ BC, BA\ CA, CR, and apply the theorem in conjuuc-

tiou witlj (I. 47).
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Trianii'lr.s' of rnnstant species ptrctimsrribrd to a trian<j;le.

977 Let J//C' be any triano-l(^, and ^ any point; and lot

circles circumscribe AOli, BOO, C(K\. The circumferences

will be the loci of the vertices of a triangle of constant form

whose sides pass through the

points ^1, //, C.

PkOOF.—Draw any line hAr fi-oni circle

to circle, and produce 1>C, cli to meet in n.

The angles AOD, COA arc supplements

of tlie angles c and b (III. 22) ; therefore

BOC is the supplement of a (I. 32) ; there-

for© a lies on the circle OUC. Also, the

angles at being constant, the angles a, b, c

are constant.

978 Tlie triano-le ahe is a maximum wlien its sides are per-

pendicular to OA, on, 00.

PuooF.—The triangle is greatest when its sides are greatest. But the

sides vary as Oa, Ob, Oc, which are greatest when they are diameters of the

circles; therefore &c., by (111.31).

979 To construct a triangle of given S])ccies and of given

limited magnitude which shall liave its sides passing through

three given points .1, B, 0.

Determine by describing circles on the sides of ABC! to contain angles

equal to the supplements of the angles of the speciticd triangle. Construct

the figure nb'O independently from the known sides of ahe, and the now
known angles ObC = 0A(\ OnC = OBC\ &c. Thus the leJigths Oa, Ob, Oc

are found, and therefore the points a, b, o, on the circles, can bo determined.

The demonstrations of the following propositions will now be obvious.

Triant^les of constant species inscribed to a trian<;^le.

980 Let ahr, in the last figure, be a fixed triangle, and O
any point. Take any point .1 on l>r, and h^t tlie circles cir-

cumscribing OAr, OAb cut the oilur sides in /?, O. Then
.47:?(J will be a triangle of constant form, and its angles will

have the values A =. Oha+ Ora, &c. (III. -Ji.)

981 The triangle ABO will evidently be a minimum wht^n

OA, 01), 00 are drawn perpendicular to the sides of ah''.

982 To construct a triangle of given form and of given

limited magnitude having its vertices u})on three fixed lines

6r, ca, ah.
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Construct the fitjure ABCO independently fi-om the known sides of ABG
and the angles at 0, which are equal to the sui)i)lenients of the given angles

a, b, c. Thus the angles OAG, &c are found, and therefore the angles ObC,

&c., equal to them (III. 21), are known. From these last angles the point

can be determined, and the lengths OA, OB, 00 being known from the inde-

pendent figure, the points A, B, C can be found.

Observe that, wherever the point may be taken, the angles AOB, BOO
COA are in all cases either the supplements of, or equal to, the angles c, a, b

respectively; while the angles aOb, bOc, cOa are in all cases equal to C zh c,

A±a, B±b.

983 Note.—In general problems, like the foregoing, wliicli

admit of different cases, it is advisable to clioose for reference

a standard figure which has all its elements of the same affec-

tion or sign. In adapting the figure to other cases, all that

is necessary is to follow the same construction, letter for

letter, observing the convention respecting positive and

negative, which applies both to the lengths of lines and to

the magnitudes of angles, as explained in (607—609).

Radical Ad is.

984 Definition.—The radical axis of two circles is that

perpendicular to the line of centres which divides tlie dis-

tance between the centres into segments, the difference of

whose squares is equal to the difference of the squares of the

radii.

Thus, A, B being the centres, a, h the radii, and IP the

the radical axis

985 It follows that, if tlie circles intersect, the radical axis

is their common chord ; and that, if they do not intersect, the

radical axis cuts the line of centres in a point the tangents

from which to the circles are equal (I. 47).

To draw the axis in this case, see (960).
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Otliorwisc: let the two circles cut tlie line of centres in C, P anrl C, 7>'

Tcsptctivcly. I)i'sciil>c any ciri-lo tliroii^Mi (' and /', and another throii},di

r' iind //, intersectiiif^ the former in IJ and /''. Tlieir coniniou chord Ij F
will cut the central axis in the required \>o\ut f.

Proof.— IC. ID = IE. 1F= IC. 11/ (111. 'M) ; therefore the tangents

from I to the circles are equal.

986 T}ii-<n'inn.—The dift'orencc of the squares of tangents

from any })oint /' to two circles is equal to twice the rectangle

under the distance between their centres and the distance of

the point from their radical axis, or

Proof.

PK' -FT' = (Ar--Br-)-(a--V) = (AC/'-mr) - (AP-FP),

by (I. 47) & (t»84). Bisect AB in C, and substitute for each ditference of

squares, by (II. 12).

987 Cor. 1.—If r be on the circle whose centre is 7?, then

PK' = 2AB.PN.

988 Coif. 2.—If two chords be drawn through P to cut the

circles in A', A", Y, >" ; tlien, by (III. 30),

7^X . PX- P Y. P Y =2AB. PN.

989 If Ji variable circle intersect two given eireU^s at con-

stant angles a and ft, it will intersect tlieir radical axis at a

constant angle ; and its radius will bear a constant ratio to

the distance of its centre from the radical axis. Or

PN : PX = rt cos a — 6 cos fi : AB.
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Proof.—In the same figure, if P be tlie centre of the variable circle, and

if PX=PY be its radius; then, by (088),

FX (XX'- YY') = 2An . TN.

But XX' = 2a cos (I and YY' = 2h cos ft ;

therefore PX : PX = a cos a— & cos ft : AB,

which is a constant ratio if the angles (i, ft are constant.

990 Also FX : PN = the cosine of the angle at which the

circle of radius PX cuts the radical axis. This angle is

therefore constant.

991 Cor,—A circle which touches two fixed circles has its

radius in a constant ratio to the distance of its centre from

their radical axis.

This follows from the proposition by making a = ft = or Ott.

If P be on the radical axis ; then (see Figs. 1 and 2 of 984)

992 (i.) The tangents from P to the two circles are equal,

or FK = FT. (986)

993 (ii-) The rectangles under the segments of chords

through P are equal, or FX . FX' = FY . FY'. (988)

994 (iii-) Therefore the four points X, X', T, Y' are con-

cychc (III. 36); and, conversely, if they are concychc, the

chords XX' J YY' intersect in the radical axis.

995 Definition.—Points which lie on the circumference of

a circle are termed coneydie.

996 (iv.) If P be the centre, and if PX= PY be the radius

of a circle intersecting the two circles in the figure at angles

a and /3; then, by (993), XX'=YY', or a cos a = Z> cos pJ

;

that is, The cosines of the angles of intersection are inversclj/

as the radii of the fixed circles.

997 The radical axes of three circles (Fig. 1046), taken two

and two together, intersect at a point called their radical centre.

PimOF.—Letyl, B, (7 b/ t'lc centres, a, h, c the radii, and X, Y, Z the points

in which the radical axes cut JJC, CA, AB. Wrire tlie equation of the defini-

tion ('J84) for each pair of circles. Add the results, and apply {iUO).

998 A circle whose centre is the radical centre of three

other circles intersects them in angles whose cosines are

inversely as their radii (996).
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Henco., if this fourtli circle cuts one of the others or-

thogonally, it cuts them all orthogonally.

999 'I'he circle whicli intersects at angles a, ft, y three fixed

circles, whose centres are .1, li, C and radii a, A, r, has its

centre at distances from the radical axes uf the iixed circles

proportional to

/> cos ft
— C cos y C cos y — (( COS a (/ COS a — h COS /3

BO '

CJi
' AB

And therefore the locus of its centre will be a straight line

passing through the radical centre and inchned to the three

radical axes at angles whose sines are projiortional to these

fractions.

Proof.—The result is obtained immediately by writing out equation ('J89)

for each p-.iir of fixed circles.

situated on a

The Method of Inversion.

1000 Definitions. — Any two points F, V
diameter of a fixed circle

whose centre is and radius

A-, so that 01\0r'= /r, are

called immerse itoints with re-

spect to the circle, and either

point is said to be the inverse

of the other. The circle and
its centre are called the circle

and centre of incersion, and.

k the constant of inversion.

1001 If every point of a plane figure be inverted Avith

respect to a circle, or every point of a figure in space witii

respect to a sphere, the resulting figure is called the inverse

or image of the original one.

Since OB : k : 0B\ therefore

1002 OP : OP' = OP' : fr = A^ : 0P'\

1003 Let D, jy, in the same figure, be a pair of inverse

points on the diameter 00'. In the perpendicular bisector of

VD\ take any point Q as the centre of a circle passing through

1), I)\ cutting the circle of inversion in R, and any straight

line through in the points P, B. Then, by (III. 3r.),

OB . OB = on . OU = OR- (1 000). Hence
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1004 (i-) i^i ^ '"ii'e inverse points; and, conversely, any
two pairs of inverse points lie on a circle.

1005 (ii-) The circle cuts orthogonally the circle of inver-

sion (III. 87) ; and, conversely, every circle cutting anotlier

orthogonally intersects each of its diameters in a pair of

inverse points.

1006 (iii-) The line IQ is the locus of a point the tangent

from which to a given circle is equal to its distance fi^om a

given point D.

1007 Def.—The line IQ, is called the axis of reflexion for

the two inverse points D, D', because there is another circle

of inversion, the reflexion of the former, to the right of 1(^,

having also D, I)' for inverse points.

1008 The straight hnes drawn, from any point P, within

or without a circle (Figs. 1 and 2), to the extremities of any
chord AB passing through the inverse point Q, make equal

angles with the diameter through FQ. Also, the four points

0, A, B, P are concyclic, and QA . QB = QO . QP.

Pkoof.— In eitlicr figure OR : OA : OQ and OR : OB : OQ (1000),

therefore, by similar triantrles, Z ORA = OAR and ORB = ORA in figure

(1) and the supplement of it in figure (2). But OAB = OBA (I. 5), there-

fore, &c.

Also, because Z ORA = ORA, the four points 0. A, B, P lie on a circle in

each case (III. 21), and therefore (^.4 . QR = QO . QR (III. 35, 3G).

1009 The inverse of a circle is a circle, and the centre of

inversion is the centre of simihtude of the two figures. See

also (1087).

PnoOF.—In the figure of (l<»lo), let be the point where the common
tangent RT of the two circles, centres A and R, cuts the central axis, and let

any other line through cut the circles in P, Q R\ Q'. Then, in the demon-

stration of (942), it is sliown that 01' OQ,' = OQ . OP = h\ a constant

quantity. Tliercfore either circle is the inverse of the other, k being the

j'adius of the circle of inversion.
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1010 'r"o luaki' tlio inversions of two o-iveii cii-clos 0(iu:il

circles.

Rule.—Take the centre of inversion so that the squares of

the taiKjeiits from it to the given circles may he irroportioual to

their radii (965).

PKOOK.-(Fig. 1013) AT : 7?7i' = OT : 07?, = 07" : P, since OT : /.: : OR.

Therefore OT^ : AT = Jc^ : lili, therefore L'A' remains constant if OT^ <x AT.

1011 lleiiec three circles may be inverted into equal circles,

for the reciuired centre of inversion is the intersection of two
circles that can be drawn by (965).

1012 The inverse of a straight line is a circle passing

through the centre of inversion.

Proof.—Draw OQ perpendicular to the

line, and take P any otlicr point on it. Let

Q\ F be the inverse points. Then OP . 0F=
OQ-OQ'; therefore, by similar triangles,

Z OFQ' = OQr, a right angle ; and OQ is

constant, therefore the locus of F is tho

circle whose diameter is OC^.

1013 Example.—The inversion ofa poly-

gon produces a figui'e bounded by circular

arcs which intersect in angles equal to tho

corresponding angles of the polygon, the

complete circles intersecting in the centre

of inversion.

l//>'

1014 If tlie extremities of a straight line V'Q' in the last

figure are the inversions of the extremities of l'(,^, tlien

pq : pq = v/(op . oq) : ^^{0P . oq').

Proof.—By similar triangles, FQ : FQ = OF : OQ' and FQ : F(2' =
OQ : OF. Compound these ratios.

1015 From the above it follows that any homogeneous
equation between the lengths of lines joining pairs of points

in space, such as ]H} . RS . TU = PR .QT . SfJ, the same
points appearing on both sides of the equation, will l)o

true for the figure obtained by joining the corresponding

pairs of inverse points.

For the ratio of each side of the equation to the corresponding side of tho

equation for the inverted points will bo the same, namely,

y'iOF.OQ.OU ...) : ^/{()F .OQ'.Oh'- ...).
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Pole and Polar.

1016 Defixitiox.—The iMar of any point P with respect

to a circle is the perpendicular to the diameter OF (Fig. 1012)

drawn through the inverse point F

.

1017 It follows that the polar of a point exterior to the

circle is the cliord of contact of the tangents fron the point;

that is, the hne joining their points of contact.

1018 Also, FQ is the polar of F with respect to the circle,

centre 0, and FQ is the polar of Q. In other words, 0iy
point P hfhig on the polar of a point Q', has its oivn polar
alivays passing through Q'.

1019 The line joining any two points P, p is the polar of

Q', the point of intersection of their polars.

Proof.—The point Q' lies on both the lines P'Q', i^'Q'y and therefore has
its polar passing through the pole of each line, by the last theorem.

1020 The polars of any two points F,p, and the line joining

the points form a self-reciprocal triangle witli respect to

the circle, the three vertices being the poles of the opposite

sides. The centre of the circle is evidently the orthocentre

of the triangle (952). The circle and its centre are called the

polar circle and j^olar centre of the triangle.

If the radii of the polar and circumscribed circles of a
triangle ABC be r and P, then

r^ = 4iIV cos A cos B cos C
Proof.—In Fig. (052), is the centre of the polar circle, and the circles

described round AB(\BOC, COA, A0J3 are all equal; because the angle
BOO is the supplement of vl ; &c. Tlierofore 27i' . OD = OB . 00 (VI. C)
and r^ = OA . OD = OA . OB . 00 -^ 2/i'. Also, OA = 2Zi' cos.l by a diameter
through B, and (III. 21).

Coa.val Circles.

1021 Definition.—A system of circles having a counnon
line of centres called the central axis, and a coninion railical

axis, is termed a coaxal system.

1022 If be tlie variable centre of one of the circles, and
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07v its rjuliuP, the whole system is included in tlie equation

()l--(>K-= ±8",

where S is a constant length.

1023 111 the first species (Fig. 1),

OP-OK' = S\

and S is the length of the tangent from I to any circle of the

system (985). Let a circle, centre I and radius B, cut the

Central axis in D, D'. When is atZ) or //, tlie circle whose
radius is OK vanishes. "When is at an infinite distance,

the circle developes into the radical axis itself and into a line

at infinity.

The points D, D' are called tlie Jimiting points.

1024 In the second species (Fig. 2),

on-- 01- = 8-,

and S is half the chord R]i common to all the circles of

the system. Tliese circles vary between the circle with
centre I and radius S, and the circle with its centre at infinity

as described above. The points 7?, R' are the common points

of all circles of this system. The two systems are therefore

distinguished as the timiting jwints sjjccies and the common
2>oints sjxjcics of coaxal cii'cles.
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1025 There is a conjugate system of circles having R, B! for

limiting points, and D, 1)' for common points, and the circles

of one species intersect all the circles of the conjugate system
of the other species orthogonally (1005).

Thus, in figures (1) and (2), Q is the centre of a circle

of the opposite species intersecting the other circles or-

thogonally.

1026 In the first species of coaxal circles, the limiting

points D, D' are inverse points for every circle of the system,

the radical axis being the axis of reflexion for the system.

Proof.—(Fig. 1) OP-P = 0K\
therefore 01) . OB' = OIP, (II. 13)

therefore D, D' are inverse points (1000).

1027 Also, the points in which any circle of the system

cuts the central axis are inverse points for the circle whose
centre is I and radius S. [Proof.— Similar to the last.

1028 Problem.—Given two circles of a coaxal system, to

describe a circle of the same system— (i.) to pass through a

given point; or (ii.) to touch a given circle ; or (iii.) to cut a

given circle orthogonally.

1029 I. If the system be of the common points species, then, since the

required circle always passes through two known points, the first and second
cases fall under the Tangencies. See (91-1).

1030 To solve the third case, describe a circle through the given common
points, and through the inverse of either of them with respect to the given
circle, which will then be cut orthogonally, by (1005).

1031 II. If the system be of the limiting points species, the problem is

solved in each case by the aid of a circle of the conjugate system. Such a
circle always passes through the known limiting points, and may be called a
conjugate circle of the limiting points system. Thus,

1032 To solve case (i.)—Draw a conjugate circle through the given point,

and the tangent to it at that point will be the radius of the required circle.

1033 To solve case (ii.)—Draw a conjugate circle through the inverse
of either limiting point with respect to the given circle, which will thus be
cut orthogonally, and the tangent to the cutting circle at either point of
intersection will be the radius of the required circle.

1034 To solve case (iii.)—Draw a conjugate circle to touch the given one,
and the common tangent of the two will be the radius of the required circle.

1035 Thus, according as we wish to make a circle of the system loncli, or
cut <iii/in</(i)i(iUi/, the given circle, wo must draw a conjugate cii'cle to ctd

orlhiHjvnalli/, ur iuuch it.
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1036 If three circles be coaxal, the squares of the tanp^cnts

drawn to any two of tlieni from a point on tlie tliii-d are in

the ratio of tlie distances of the centre of the third circle from

the centres of the other two.

PuoOF.—Let A, I), C bo tho centres of the circles ; PK, FT the tanr^onta

from a point P on tho circle, centre (,', to tho other two ; PN tho perpeu-

dicular on the radical axis. By (080),

PA"- = 2AG . PN and PT' = 2nG . PN,

thereforo PK' : PT' = AC : BG.

Centres and (Lies of similitude.

1037 Definitions.— Let 00' be the centres of sirailitudo

(Def . 1* 1-7) of the two circles in the figure below, and let any
line tlirough cut the circles in r, Q, P\ Q. Then the

constant ratio OP : OP' = OQ : OQ' is called the ratio of

similitude of the two figures ; and the constant product

OP .OQ' = OQ . OF is called the i)roduct of anti-siinilitade.

See (942), (1009), and (1043).

The corresponding points P, V or Q, Q' on the samo
straight line through are termed liomoltxjoas, and P, (/ or

Q, P are termed anti-homologous.

1038 Lt^'t any other line Opqp'q be drawn through 0.

Tlien, if any two points i', p on the one figure be joined, and

if P', j/, homologous to P,}) on the other figure, be also joined,

the lines so formed are termed liomolotjous. But if the points

Avhich are joined on the second figure are anti-liomologous to

those on the first, the two lines are termed anti-homulojous.

Thus, Pq, l/p' are anti-homologous lines.

1039 Tlie circle Avhose centre is 0, and wliose radius is

e(iual to the square root of the product of anti-similitude, is

called the circle of anti-similitude.

1040 The four pairs of homologous chords Pp and Fp'y

Qq and Q'q\ Pq and P'q, Qp and (/p of the two circles in the

figure are parallel. And in all similar and similarly situated

figures homologous lines are parallel.

Proof.—By (VI. '2) aud the dciiuitiou (917).
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1041 The four pairs of anti-liomologous cliords, Pj) and

^/'Z ' Q'l ^^^ Pp'i JPq ^^^ QP) Qp ^^^ ^^I'i of the two circles

meet on their radical axis.

Proof.— OP . OQ' = Op . Oq = ]c\

wliere k is the constant of inversion ; therefore P, -p, Q', q' are concyclic

;

therefore Pp and Q'q' meet ou the radical axis. Similarly for any other pair

of anti-homologous chords.

104:2 Cor.— From this and the preceding proposition it

follows that the tangents at homologous points are parallel

;

and that the tangents at anti-homologous points meet on the

radical axis. For these tangents are the limiting positions of

homologous or anti-homologous chords. (IIGO)

1043 Let 0, D be the inverse points of ^^^th respect to

two circles, centres A and JJ ; then the constant product of

anti-similitude

OF . OQ or OQ . OF = OA . OD or OB . OC.

JH^
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Proof.—By similar right-angled triangles,

0-1 : OT : OC and OB : OH : OD;

therefore OA . OD = Oli . OC
and also 0.1 . OG = OT = OP . 0(J,

and OB . OD = Olf' = or .OQ';

therefore OA . OB . OC . OD = OF . OQ . OL*' . OQ',

(1),

(III.:;.;)

therefore &c., by (1).

1044 The foregoing definitions and properties (10.S7 to

1U4;5), wliicli have respect to the external centre of simihtudo

0, hold good for the internal centre of simihtiide 0\ with the

usual convention of positive and negative for disitances

measured from 0' upon lines passing through it.

1045 Two circles will subtend equal angles at any point on

the circumference of the circle whose diameter is 00\ where

0, O are the centres of simihtude (Fig. 1043). This circle is

also coaxal with the given circles, and has been called the

circle of shnllitude.

Proof.—Let A, B be the centres, a, b the radii, and K any point on the

circle, diameter 00'. Then, by (D3"2),

KA : KB = AO : BO = AO' : BO' = a : h,

by the definition (O-io)
;

therefore a : KA = h : KTI ;

that is, the sines of the halves of the angles in question are equal, which

pioves the first part. Also, because the tangents from K are iu the ctnstant

ratio of the radii a, h, this circle is coaxal with the given ones, by (lUoG, 1)34).

1046 The six centres of similitude P,p, Q, q, R, r of three

circles lie three and three on four straight lines I'ijli, I'qr,

Qpr, Rpq, called axes

of simUitude.

Proof. — Taking any
three of the sets of points

named, say P, q, r, they are
shewn at once to be col-

linear by the transversal
theorem (*JGs) applied to

the triangle ABC.
For the segments of its

sides made by the points
P,

'i,
r are in the ratios of

the radii of the circles.
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1047 From tlie investigation in (0 12), it appears that one
circle touches two others in a pair of anti-homologous points,

and that the following rule obtains :

—

Rule.—The right line joining the points of contact imsses
through the external or internal centre of similitude of the tivo

circles according as the contacts are of the same or of different

kinds.

1048 Definition.—Contact of curves is either internal or external ac-

cordiug as the curvatures at the point of contact are in the same or opposite

directions.

1049 Gergo7ine''s method of descrihing the circles ichlch touch

three given circles.

Take Pqr, one of the four axes of similitude, and find its poles o, /3, y
with respect to the given circles, centres A, B, G (lOlG). From 0, the

radical centre, draw lines through a, /3, y, cutting the circles in a, a', b, b',

c, c. Then a, b, c and a', b', c will be the points of contact of two of the

requii'ed circles.

PjiOOP.

—

Analysis.—Let the circles

E, F touch the circles A, B, G in

a, b, c, a', b', c. Let be, b'c meet in

P ; ca, c'a' in ci ; and ab, a'b' in r.

Regarding E and F as touched by
A, B, G in turn, Rule (1047) shews
that Art', bb', cc' meet in 0, the centre

of similitude of jE/ and F ; and (1041)
shews that P, q, and r lie on the
radical axis of E and F.

Regarding B and G, or G and A,
or A and B, as touched hy E and F
in turn, Rule (1047) shews that P, q, r

are the centres of similitude of ]> and
G, G and A, A and B respectively;

and (1041) shews that is on the radical axis of each pair, and is therefore

the radical centre of A, B, and G.

Again, becansc the tangents to E and F, at the anti-homologous points

a, a', meet on Bqr, the radical axis of E and F (1042) ; therefore the point

of meeting is the pole of <(«,' with respect to the circle .1 (1017). Therefore
aa' ])as.ses through the pole of the line Pifr (1018). Similarly, bb' and cc'

pass through the poles of the same line J'qr with respect to J> and G. Hence
the construction.

1050 In the given configuration of the circles A, B, C, the

(leinoiistration shews that each of the three internal axes of

similitude P(/r, (,>rp, Jlju/ (Fig. 104()) is a radical axis and
connnon chord of tAvo of the eight osculating circles which
can be drawn. The external axis of similitude Vi^li is the
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radical axis of the two remaining circles which touch J, 7/,

and C eitlier all externally or all internally.

1051 Tlie radical centre of the three p^iven circles is also

tlie common internal centre of similitude of the four paii-s of

osculating circles. Therefore the central axis of each pair

passes through 0, and is peri)endicular to the radical axis.

Thus, in the figure, EF passes thi-ough 0, and is })erpen-

dicular to Pqr.

Anharmonic Ratio.

1052 Dkfixitiox.—Let a pencil of

four lines through a point be cut

by a transversal in the points A, B,

(', D. The anharmonic ratio of the

])encil is any one of the three frac-

tions

A B . CD
AD.BC or

AB.rn
AC.BI) AC. liD

1053 The relation between these three different ratios is

obtained from the equation

AB . CD-\^AD . BC = AC . BJ).

Denoting the terms on the left side by 2' and </, the three anharmonic

i-atios may be expressed by

p : q, p :p + q, q :p + q.

The ratios are therefore mutually dependent. Hence, if the identity

merely of the anharmonic ratio in any two sj'stems is to be established, it is

immaterial which of the three ratios is selected.

1054 In future, when the ratio of an anharmonic pencil {0, AHl^'D] is

mentioned, the form All. CI) : AD. I!C will be the on<? intended, wliatever

the actual order of the points ,1, 7), <\ D may be. For, it should be observed

that, by making tlie line 01> revolve about 0, the ratio takes in turn eacii of

the forms given above. This ratio is shortly expressed by the notation

{0,AI!('1J}, or simply {AUCD}.

1055 If the transversal be drawn parallel to one of the lines, for instance

(>D, the two factors containing 7) become infinite, and their ratio becomes
unity. They may therefore bo omitted. The anharmonic ratio then reduces

to AB : liC. Thus, when IJ is at infinity, we may write

{0, ^17)'rx} = .47? : BC.

1056 The anharmonic ratio

A n . CD _ sin Aon sinrO/>

AD.BC siuAOJ) y^'niBifC

2g
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and its value is therefore tlie same for all transversals of the

pencil.

Proof.—Draw 07? parallel to the transversal, and let p be the perpendi-

cular from A upon Oli. Multiply eacli foctor in the fraction by p. Then

substitute i> . AB = OA.OB sin AOB, &c. (707).

1057 The anharmonic ratio (105(3) becomes harmonic when its value is

unity. See (933). The harmonic relation there defined may also be stated

thus : four points divide a line harmonically when the jjroclud of the extreme

segments is equal to the proih(ct <
if

the ivhole line and the middle segment.

Homograpliic Systems of Points.

1058 Definition.— If x, a, h, c be the distances of one

variable point and three fixed points on a straight line from a

point on the same ; and if x, a\ b', c be the distances of

similar points on another Hne through ; then the variable

points on the two hues will form two homographic si/stems

when they are connected by the anharmonic relation

mKQ (cT'-r/) (h-c) _ (x-a) {b'-c)
J-WO»

(.i^-c) {(i-h) {.v'-c) {a-b'y

Expanding, and writing A, B, C, D for the constant coeffi-

cients, the equation becomes

1060 A.t\v'-^B.v-\-av-\-D = 0.

From which

^r>«^ C.r-\-D -, ' Bd-\-D

1062 Theorem.—Any four arbitrary points .i\, x.,, x^,a\on

one of the lines will have four corresponding points x[, x.>, x'^, x^

on the other determined by the last equation, and the tiro sets

ofpoints ivlll have equal anliarmonic ratios.

Pkoof.—This may be shown by actual substitution of the value of each x

in terms of a'', by (1 00 1), in the harmonic ratio | ^vVV^t }

•

1063 If the distances of four points on a right line from a

point upon it, in order, are a, a, /3, /3', where a, li\ a\ (5' are

the respective roots of the two quadratic equations

(Lv''-\-2lur+b = 0, aa--\-2h\v+b' = ;

the condition that the two ])airs of points may be liarmonicalh/

roii'/iujtitc is ,

1064 (ib-\-a'b = 2hh.
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PiJOoK.—The liannonic relation, by (\0o7), is

(a -a') (rJ-l'/) = (a-ly) (<t'-/5).

Multiply out, and substitute for the sums and produrta of the roots of tlio

quadratics above iu terms of their coefficients by (.Jl, ."i'i).

1065 If »,. II, bo the quadratic expressions in (10G3) for two pairs of
jioiiits, and if h represent a third pair harmonically c<iMJiiirate with », and ii.,,

then the pair of points it will also be hai-nionically conjugate with every pair

jjfiven l)y the equation u^ + \ll^ = 0, where A is any eonsiant. For the con-
dition (10G4) applied to the last equation will be identically satisfied.

Inrolufion.

1066 Defixitioxs.—Pairs of inverxi' points 77'', (.>(/, &c., on
the simie right line, form a system in involution, and the rela-

tion between them, by (1000), is

OP . OF = OQ . OQ = &e. = k\

A F Q n Q' P-

I

I ^1
[

^ ,

Tlie radius of the circle of inversion is k, and the centre

i) is called the centre of the sijstein. Inverse points are also

termed conjiujtite points.

AVhen two inverse points coincide, the point is called a
forns.

1067 The equation OP- = h^ shows that there are two foci

J ,
/>' at the distance h from the centre, and on opposite sides

of it, real or imaginary according as any two inverse points

lie on the same side or on opposite sides of the centre.

1068 If the two homogi^aphic systems of points in (1058)
be on the same line, they will constitute a system in involu-

tiun when B = C.

PiiOOF.—Equation (lOCO) maj- now be written

^.r.c' + 7/ (a- + «')+/? = 0,

a constant. Therefore — - is the distance of the origin from the ccntro
A

of inversion. Measuring from this centre, the equation becomes l^' = A',

representing a system iu involution.

1069 Any four points whaferrr of a system in involution on
a right line have their anharmouic ratio equal to that of their

four conjugates.
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Proof.—Let j:>, j/; q, i/; r, r; s, s be the distances of the pairs of inverse

points from the centre.

In the anharmonic ratio of any four of the points, for instance {]'q'i's},

substitute 2^-=h^-^]j\ q = Ic'-^q, &c., and the result is the anharmonic

ratio {p'qr's'].

1070 Any two inverse points P, F are in harmonic relation

with the foci A, B.

A F B F

Pkoof.—Let p, p be the distances of P, P' from the centre 0; then

Jc ^, o p'+ h h+p
— , thereiore -^

—

- = -—~
;

p p —Ic k—ppp = k\ therefore ^ = — , therefore --—- - -
^f ' h p) p —Ic k

that is, |f = If'
^^^'^

1071 If a system of points in involution he given, as in

(1068), by the equation

Axic^E{x^-x)-\-B = (1);

and a pair of conjugate points by the equation

a:i?-\-2hc-\-h = (2);

the necessary relation between a^ h, and h is

1072 Ah^Ba = 2Hh.

Proof.—The roots of equation (2) must be simultaneous values of x, x in

(1) ; therefore substitute in (1)

x+ x = and xx' = —

.

(51)
a Li

1073 Cor.—A system in involution may be determined from two given

pairs of corresponding points.

Let the equations for these points be

ax^+ 2]ix+ h = and aV"+ 2hx + h' = 0.

Then there are two conditions (1072),

Ab +Ba = 2Hh and xW + Ba = 2Uh',

from which A, II, B can be found,

A geometrical solution is given in (985). C, D ; C, B' ai'C, in that con-

struction, pairs of inverse points, and I is the centre of a system in involution

defined by a series of coaxal circles (1U22). Each circle intersects the

central axis in a pair of inverse points with respect to the circle whose centre

is and radius 2.

1074 The relations which have been established for a system of coUincar

points may be transferred to a system of concurrent lines by the method of

(105G), in which the distance between two points corresponds to the sine of

the angle between two lines passing through those points.
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The Method of Projection.

1075 DkI'INITIOXS.—Tlic pntjictioit of any j)(>iiil /' in Sj)aco

(Fi_i>-. of 1()7'.>) is tlio point p in wliicli ;i ri^Hit line ()l\ drawn
from a fixed point called the rcrfcr, intersects a fixed plane

called the phnie of projection.

If all the points of any fio-ure, ])lane or solid, he thus ])ro-

jected, the figure obtained is called the ^injccfiou of the

original fia'ure.

1076 Projective Propertie.'i.—The projection of a right line is

a right hne. The projections of parallel lines are parallel. The
projections of a curve, and of the tangent at any point of it , aro

another curve and the tangent at the corresponding point.

1077 The anharmonic ratio of the segments of a right lino

is not altered by projection ; for the line and its projection are

but two transversals of the same anharmonic pencil. (105G)

1078 Also, any relation between the segments of a lino

similar to that in (1015), in which each letter occurs in every

term, is a projective propertij. [Proof as in (1056).

1079 Tlieorem.—Any quadrilateral PQRS may be projected

into a parallelogram.
CONSTWrCTION.

Produce PQ, SR to
"'

meet in A, and PS,
Qlh to meet in B.

Then, with any
point for vertex,

project the quadri-

lateral upon any
plane j'xib parallel to

GAB. The projected

figure jhps will be a
parallelogram.

Proof. — The
planes OPQ, OPS in-

tersect in OA, and
they intersect the

plane of projection

which is parallel to

0-1 in the lines pq,
r$. Therefore pq and
rs are parallel to OA,
and therefore to each
other. Similorlj, j)"?,

qr are parallel to OB.
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1080 Cor. 1.—The opposite sides of the parallelogram ji^/rs meet in two

points at infinity, which are the projections of the points A, R ; and AB
itself, which is the third diagonal of the complete quadrilateral FQRS, is

projected into a line at infinity.

1081 Hence, to project any figure so that a certain line in it may pass to

infinity

—

Take the jilane of lirojcdion 'parallel to the plane which contains the

given line and the vertex.

1082 Cor. 2.—To make the projection of the quadrilateral a rectangle,

it is only necessary to make AOB a right angle.

On Perspective Draifing.

1083 Taking the parallelogram pqrs, in (1079), for the original figure,

the quadrilateral PQRS is its projection on the plane ABab. Suppose this

plane to be the plane of the paper. Let the planes OAB, pah, while

remaining parallel to each other, be turned respectively about the fixed

parallel lines AB, ah. In evei'y position of the planes, the lines Oji, Oq, Or,

Os will intersect the dotted lines in the same points P, Q, R, S. When the

planes coincide with that of the paper, pqrs becomes a ground pilan of the

parallelogram, and FQRS is the representation of it in perspective.

AB is then called the horizontal line, ah the picture line, and the plane of

both the picture plane.

1084 To find the projection of any point p in the ground

plan.
Rule.—Eraw pb to any point b in the picture line, and draw OB parallel

to pb, to meet the horizontal line in B Join Op, Bb, and they tvill intersect in

P, tJce point required.

In practice, ph is drawn perpendicular to ah, and OB therefore perpendi-

cular to AB. The point B is then called the jjoi;;/ of sight, or centre of vision,

and the station point.

1085 To find the projection of a point in the grojind plan,

not in the original plane, but at a perpendicular distance c

above it.

Rule.—Take a new picture line parallel to the former, and at a distance

above it = c coseca, ivhere a is the angle hctween the original plane a)id the

plane of p)rojccti(»i. For a plane through the given ptnnt, parallel to the

original plane, will intersect the plane of projection in the \w\\ picture line

so constructed.

Thus, every point of a figure in the ground ^dan is transferred to the

drawing.

1086 The whole theory of perspective drawing is virtually included in

the fuicgoing propositions. The original plane is conmionly horizontal, aud
the plane of pnjiction vertical. In this case, cosee n = 1, and the height of

iho. pidure line for any point is equal to the height of the jiuint itself above

the original plane.

The distance BO, when B is the point of sight, may be measured along

A B, and bj) along ah, in the opposite direction} for the lino Bb will continue

to intersect Oj^ in the point I'.
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1087 Di:riNiTioN.— In oi-tli()^n)iial ])rojectioii tlic linos of

pi-ojection are parallel to eaeh other, and |)erj)en(licular to the

plane of iirojectiou. The vertex in this case may be consi-

dered to he at infinity.

1088 The projections of pai-allel lines are jjaiallel, and the

piDJected segments are in a constant ratio to the oi-iginal

seu'nients.

1089 Areas are in a constant ratio to their projections.

For, lines parallel to the intersection of the original pinne and the plane

of projection arc unaltered in length, and lines at right angles to the former

are altered in a constant ratio. This ratio is the ratio of the areas, and is

the cosine of the angle between the two planes.

Projections of the Sphere.

1090 lu Strreograjyhic projection, the vertex is on the sur-

face of the sphere, and the diameter through the vertex is

])erpendicular to the plane of projection which passes through

the other extremity of the diameter. The projection is there-

fore the inversion of the surface of the sphere (lUl2),and the

diameter is the constant /r.

1091 Ii^ (Uohular projection, the vertex is taken at a dis-

tance from the sphere equal to the radius -i- \/2, and the

diameter thi'ough the vertex is perpendicular to the plane of

I)rojection.

1092 In Gnomon ic projection, which is used in the construc-

tion of sun-dials, the vertex is at the centre of the sphere.

1093 Mercator's projection , \\h\ch is employed in navigation,

and sometimes in maps of the world, is not a projection at

all as defined in (1075). ]\Ieridian circles of the sphere are

represented on a plane by parallel right lines at intervals

eqnal to the intervals on the equatoi-. Th(> pai'allels of lati-

tude are represented by right lines jierpendicular to the

meridians, and at increasing intervals, so as to preserve the

actual ratio between the increments of longitude and latitude

at every point.

With r for the radius of the sphere, the distance, on the chart, from the

equator of a point whose latitude is A, is = r log tau (40*^ + JX).
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Additional Theorems.

1094 The sum of the squares of the distances of any point

r from n equidistant points on a circle whose centre is and

radius 7' = n (r'^+ OP'-) .

Proof.—Sum the values of FB-, PG\ &c., given in (819), and apply (803).

This theorem is the generalization of (923).

1095 In the same figure, if P be on the circle, the sum of

the squares of the perpendiculars from P on the radii OP, 0(7,

&c., is equal to ^wr^.

PuooF.—Describe a circle upon the vaclius through P as diameter, and

apply the foregoing theorem to this circle.

1096 Cor ].—The sum of the squares of the intercepts on the radii be-

tween the perpeudiculai's and the centre is also equal to -g-ur. (I. 47)

1097 Cor. 2.—The sum of the squares of the perpendiculars from the

equidistant points on the circle to any right line passiug through the centre

is also equal to \nr'^.

Because the perpendiculars from two points on a circle to the diameters

drawn through the points are equal.

1098 Cor. 3.—The sum of the squares of the intercepts on the same

right line between the centre of the circle and the perpendiculars is also

equal to ^nr\ (I- 47)

If the radii of the inscribed and circumscribed circles of a

regular polygon of n sides be r, R, and the centre 0; then,

1099 I. The sum of the perpendiculars from any point P upon the sides

is e(]ual to 'iir.

1100 n. Ifj) be the perpendicular from upon any right line, the sum
of the j)erpendical;irs from the vertices upon the same line is equal to nj^.

1101 III. The sum of the squares of the perpendiculars from P on the

yides is = n{r-^-\OP-).

1102 IV. The sum of the squares of the perpendiculars from the vertices

upon the right line is = n (p'+ ^R').

Proof.—In theorem I., the values of the perpendiculars are given by

r—Or cos (0+ -^), with successive integers for m. Add together the u

values, and apply (803).

Similarly, to prove II. ; take for the perpendiculars the values

7> /n I

-'"" \2>-Rcos[0+-—).

To prove III. and IV., take the same expressions for the perpendiculars;

square each value; add the results, and apply (803, 804).

For additional ])ro])ositions in the subjects of this section,

see the section entitled rianc Coonlinaic Ucomctri/.
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THE SECTIONS OF THE CONE.

1150 Definitions.—A Conic Section or Conic is the curve

AP in which any plane intersects the surface of a right cone.

A right cone is the soHd generated by the revolution of

one straight line about another which it intersects in a fixed

point at a constant angle.

Let the axis of the cone, in Fif^. (1) or Fif^. (2), be in the plane of the

paper, and let the cutting plane PMXN be perpendicular to the paper. {L'ead

either the acce)ited or unaccented letters tJtrouijhout.) Let a sphere be inscribed

in the cone, touching it in the circle EQF and touching the cutting plane in

the point S, and let the cutting plane and the plane of the circle EQF inter-

sect in XM. The following theorem may be regarded as the dfifmbuj properfij

of the curve of section.

1151 Theorem.—The distance of any point P on the conic

from the point S, called the focus, is in a constant ratio to

FM, its distance from the line XM, called the directrix, or

FS : FM = FS' : PJ/' = AS : AX = e, the eccentricity.

\_See next page for the Proif.']

1152 CoK.—The conic may be generated in a plane from
either focus *S', N', and either directrix XM, X'M' , by the law
just proved.

1153 The conic is an EJIips^e, a Parabola, or an JFi/jjrrhoItt,

according as e is less than, equal to, or greater th.-m unity.

That is, according as the cutting plane emerges on both sides

of the lower cone, or is parallel to a side of the cone, or in-

tersects both the upper and lower cones.

1154 AH sections made by parallel planes are similar; for

tlie inclination of the cutting })lane determines the ratio

AI-] : AX.

1155 The limiting forms of the curve are respectively—

a

circle when e vanishes, and two coincident right lines when e

becomes infinite.

2h
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Proif ok TiiEOKKM 1151.—Join P, 8 and P, 0, cutting the ciicular s-ction

in Q, and draw FM parallel to NX.. Because all tanjjcnts from the same

point or A, to either sphere are equal, therefore HE = I'Q = I'S and

AE= AS. Now, by (VI. 2), HE : NX = AE : AX and NX = PM;
therefore PS : P^f = AS : AX, a constant ratio denoted by e and called

the eccentric ill/ of the conic.

Referring the letters either to the ellipse or the hyperbola in the

subjoined figuie, let C be the middle point of A A' and N any other point on

it. Let Djy, h'li be the two circular sections of the cone whose planes pass

through C and A^; PCP' and PN the intersections with the plane of the

conic* In the elii|)si', J!<' is the common onlimitc of the ellipse and circle
;

but, in the hyperbola, PC is to be taken equal to ihe langeut from C to the

circle DD'.

1156 The fundamental equation of the ellipse or hyperbola

is FN'' : AN. NA' = BC~ : AC.

Proof.—PiV^ = NP . NR' and PC = CD . CD' (III. 35, 36). Also, by

similar triangles (VI. :!, G), NR : CD = AN I AC and NE' : CD' = A'N : A'C.

Multiply the last e(juatiuns together.

I
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1157 Cor. 1.—P.Ylms
e(|ii;il values at two points

e(|ui- distant from AA'

.

Hence tlie curve is sym-
metrical witli respect to

.-LI and inr.

These two lines are

called the Dinjor and lui-

twr a.rcs, otherwise the

transverse and conjuijate

axes of the conic.

AVhen the axes are

equal, or BC= AG, the

ellipse becomes a circle,

and the hyperbola be-

comes reefangular or ./

equilateral.

1158 Any elHpse or hyperbola is the orthogonal projection

of a circle or rectangular hyperbola respectively.

PiioOF.—Aloiifr the ordinate NP, mcnsnrc NP' = AN . NA' ; tliercfore by
tlie tliuorem PN : P'N = PC : AC. Therefore a circle or rectangular hyper-

bola, having AA' for one axis, and having its plane inclined to that of the

conic at an angle whose cosine = PG-^AC, projects orthogonally into the

ellipse or hyperbola in question, by (108'J). See Note to (1-JOl).

1159 TTence any projective j^roperfi/ (107G-78), which is

known to belong to the circle or rectangular hyperbola, will

also be universally true for the ellipse and hyperbola respec-

tively.

THE ELLIPSE AND HYPERBOLA.

J(Hnf propcrtirs of the Ellipse and Ili/pcrhola.

Dfi'INITIons.—The tanrjeuf to a curve at a point P
110(3) is the right line PQ, drawn through an adjacent(Fi

1160 Dfi'initions.

110(3) IS the rigllU nut; / ^»', Ulcl\>ll im^-Mij^n cm cn4|<n.» iiu

point (?, in its ultimate position when Q is made to coincide

with P.
The normal is the pori)endicular to the tangent through

the point of contact.
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In (Fig. 1171), referred to rectangular axes tlirougli the

centre G (see Coordinate Geometry) ; the length CN is called

the abscissa; PN the ordinate; PT the tangent; PG the nor-

mal; NT the suhtangcnt ; and NG the sulnormal. S, 8' are

the foci; XM, X'M'the directrices; PS, PS' the focal dis-

tances, and a double ordinate through S the Latus Rectum.

The auxiliary circle (Fig. 1173) is described upon AA' as

diameter.

A diameter parallel to the tangent at the extremity of

another diameter is termed a conjugate diameter with respect

to the other.

The conjugate hyperhola has BG for its major, and AG for

its minor axis (1157).

1161 The following theorems (1162) to (1181) are deduced from the

property PS : PM = e obtained in (1151).

The propositions and demonstrations are nearly identical for the ellipse

and the hyperbola, any difference in the application being specified.

1162 CS : CA : CX, and the common ratio is e.

TJf
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1164 CS- = AC'-nr^ in tlio ellipse.

[For nS = AC, by (11G3).

CS- = AC--^BC~ ill the liyperbola.

[Oy assuming JlC. Sco (117(1).

1165 BC'=:SL.AC.
Proof.— (Figs, of 11G2) SL : SX = OS : CA, (1151, 1102)

.-. SL.AC=CS.SX=CS(CX^CS) = CA'^CS' (11G2) = 7?C^ (1104).

1166 If a right line tlirougli P, Q, two points on the conic,

meets the directrix in Z, then SZ bisects the angle QSE.

.17/

PnooF.—By similar triangles, ZP : Z(2 = MP : NQ = SP : SQ (Uol),

therefore by (VI. A.)

1167 If PZ be a tangent at P, then FSZ and FS'Z' are

right angles.

Pkoof.—Make Q coincide M'iih. P in tlic last theorem.

1168 The tangent makes equal angles with the focal dis-

tances.
Proof.—In (1100), PS : PS' = PM : P-V (1151) = PZ : PZ'; therefore,

when PQ becomes the tangent at P, Z SPZ = S'PZ\ by (1107) and (VI. 7).

1169 The tangents at the extremities of a focal chord inter-

sect in the directrix.

Proof.— (Figs, of 1100). Join ZR ; then, if ZP is a tangent, ZR is also,

for nir>7) proves h'SZ to bo a right angle.

1170 CN.CT=AC'.

PKOOF.-(Figs. 1171.) -^^' =
-pl

(VI. 3, A.) = ^^^^- (1151) = ^,

therefore

therefore

TS'+TS _ NX'+NX 2rT _ 2GX
TS'-TS~ NX'-NX' ^ 2CS '2CN'

CN.CT- CS.CX = AC^. (1102)
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1171 If ^'^-*' be the normal,

GS: PS=^ GS' : PS'=e.

Proof.—By (11 G8) and (VI. 3, A.),

GS _GS' _ GS'+GS
PS F8'

_2CS
PS'+PS 2GA

(11G2)

But, for the hyperbola, change j:)/ its to viinus.

1172 The subnormal and the abscissa are as the squares of

the axes, or A^G : NC = BC : AC\
Proof.— (Figs. 1171.) Exactly as in (1170), taking the normal instead

p.i . . ^, GG CN ,
GN_GX_CA' ....ry^

ot the tangent, we obtain -—
- = -~r, . . ^yT 7^~ T^S'^

v-'--'-"-'/'

CN^CG _ CA^^aS^ or^=i^ (11G4).
ON GA'

' ^^'^ ^<^' ^NO AG^

1173 The tangents at P and Q, the corresponding points on

the elUpse and auxihary circle, meet the axis in the same point

T. But in the hyperbola, the ordinate TQ of the circle being

drawn, the tangent at Q cuts the axis in N.

OF.—For the ellipse : Join TQ. Then CN. CT = CQ"" (11 70) ;
thcre-

>,T is a right angle (VI. 8) ; tlicrclbre QT is a tangent.
Proof.

fore C(J,T is a rigut angi

For the liyperbola : Interchange N and T.
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1174 PN : QN = liC: AC.
PuooF.—(Figs. 1 1 73). NG . NT = I'N', and CN . NT = QN\ (VI. 8)

TluTefuro NLf : NC = I'N^ : QN-; tl.crcforo, by (1172).

This proposition is equivalent to (115H), and sliows tliat an ellipse is tlio

nrt]io<,'onal projection of a circle equal to tiie auxiliary circle.

1175 ^'oiJ-—The area of the ellipse is to that of tlie auxiliaiy

circle as iy^:.10 (1089).

1176 PN' : AN.NA' = BC : AC\
Proof.—By ( 1 174), since QN^ = AN. NA' (III. 35, 3G). An indopend-

cnt proof of this theorem is given in (11-">G). The construction for JJC iu

tlie hyperbola in (llGl) is thus verified.

1177 Cii • Ct = nc\
ri:uoF.—(Figs. 1173.)

rt _ PiV. .
Cn.rt _ FN' _PN' .... o. _ FN"- .„. _ ...

CT - Wf ' CNTcT - CNTnT~W^ ^~ AN . NA' ^"^^ ^"' '^^^•

Therefore, by (1170) and (117G), ai.Ct: ACP = BC : AG^.

1178 If SY, S'Y' are the perpendiculars on tlie tangent,
then Y, Y' are points on the auxiliary circle, and

SY,SY' = BC\

Proof.—Let P.S meet SY in W. Then FS = TW (11G8). Tliereforo

S']V=AA' (11G3). ALso, .Sr= YW, and ,S(' = r.S". Therefore CY= iS W
= AC. Similarly CY" = AC. Tlierefoie 1', 1" are on the circle.

Hence ZY' is a diameter (III. 31), and tiu'refore SZ = S'Y', by similar

triiintrles ; therefore 6Y . SZ = SA . SA' (111. 3."., '.W^ = CS' ^ C.V (11. 5)
= IW- (llGi).

1179 Cuii.—If C'^ be drawn i)arallel t^) the tangent at J\

then PE= CY= AC.

1180 Tkoblem.—To draw tangents from any point to an
elhpse or hyperbola.

Construction.—(Figs, 1 181.) Describe two circles, one with centre O and
radius OS, and another with centre S' and radius = ..LI', intersecting in M,
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jr. Join MS', M'S'. These lines will intersect the curve in P, F', the

points of contact. For another method see (1204).

Pkoof.—By (11G3), PS'±PS = AA' = S'M by construction. There-

fore PS = PM, therefore Z OPS = 0PM (1. 8), therefore OP is a tangent

by (1168).

Similarly P'S = P'M\ and OP' is a tangent.

1181 The tangents OP, OP' subtend equal angles at either

focus.

Proof.—The angles OSP, OSP' are respectively equal to OMP, OM'F,
by (I. 8), as above ; and these last angles arc equal, by the triangles OS'M,

OS'M', and (I. 8). Similarly at the other focus.

Asymptotic Projyerties of the Ilyperhola.

1182 Def- — The asymptotes of the hyperbola are the

diagonals of the rectangle formed by tangents at the vertices

A, A, B, B'.

1183 If the ordinates RN, EM from any point R on an

asymptote cut the hyperbola and its conjugate in P, P', P, P*,

li
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then either of ihe following pairs of equations will define both

the branches of each curve

—

RS--p\' = r>r'= /*\--/?.v- (1),

RM--DM'= Ar'= inP-H)P {'!).

Proof.—Firstly, to prove (1): By proportion from the similar triaugles

ENC, OAC, wo have -^.^- = -^ =
cN'-XG' '

by (llTiV), since AN. NA' = CN'-AG\ By (II. 6)

Tberefuro ^~^A~f-- = 4^. ^J the theorem (G9)

;

thereforo EN'-FX' = BL'-.

Also, by (117G), applied to the conjugate hyperbola, the axe.s being now

reversed,
jyN^-BC' " liC'

"
Tn''

^^ ''°''^'''' *"^"Sles

;

therefore P'N'-BC = EN' or P'N'-EN^ = BC\

Secondly, to prove (2) : By proportion from tlie triangles EMC, OBC, we

EiP _ Af^ _ I)}iP
^""^^

CM' ~ BC ~ CM'-BC'
by (11 rC), applied to the conjugate hyperbola, for in this case we should

have BM . MB'' = C^P-BC\

Therefore ^^^,J^ = -^S 5
tl^ereforo EM'-BM' = AC\

BC x»C

Also, by (117C), since CM, D'J/ are equal to the coordinates of D',

/-(ira 7)7'' C^P
-'r = —-r = -

-,-r7j ^y similar triangles

:

DM'-AC' AC EM-' ^
°

therefore I)'M'-AC- = EM' or B'M'-EM' = AC.

1184 CoE. 1.— If the same ordinates RN, EM meet the

other asymptote in r and /•', then

FR.Rr = nC- and I)R.Dr = AC\ (II. o)

1185 ^''">IJ- 2.—As R recedes from C, /'/i' and />>/? con-

tinually diminish. Ilencc the curves continually ap})roach

the asymptote.

1186 If ^E be the directrix, CE = AC,
Proof.— CE : CO = CX : CA = CA : CS and CS - CO. (11G4)

1187 I^D is parallel to the asymptote.

7,'.V* BC' US'- PS' .,,e^. r.V ,

Therefore EN : PA" = PIT : DM; therefore, by (VI. "2).
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1188 The segments of any riglit line between the curve and

the asymptote are equal, or Qli = qr.

QTi : QU = qB, : gZ/'") Compound tlie ratios,Proof,—
and Qr : Qu = qr : qu )

' and employ (1184).

1189 Con. l.~PL = PI and QV = qV.

1190 Cor. 2.—CH = HL. Because PD is parallel to 10.

(1187)

1191 QP . Qr = PL' = RV'-QV'= Q V--R V.
Vkoof.— Qli : QU=PL: FE ) Compound theratios. Therefore, by (11 8i),

and Qr : Qu = El : Pe 3 QR . Qr = PL.P1 = PL" (1180).

1192 4PH.PK= CS\
P]iGOF.— Pn : PE = GO : On ") .-. PH. PK : PE.Pe= CC : Oo^

and PK : Pe = Go : Go) = GS^ : AEG''; tberefore, by (1184).

Joint Properties of the Ellipse and Hi/perhola resumed.

If PGP' be a diameter, and QV an ordinate parallel to the

conjugate diameter CD (Figs. 1105 and 1188).

1193 QV: PV. VP = CD' : CP\
Tliis is tlic fuiidruncntal equation of tbc conic, equation (1170) being the

most important form of it.
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Otlierwisc

:

In the ellipse, QV: (P-iV = CD-.VPK

Tutliolivpcrbola, QV' : CV'-CP-= CIX . CP^;

and Q F- : C F-+ 67'- = CD' : CP\

Proof.—{EUlps^e. Fig. 1195.)—By orthogonal projection from a circle.

If G, r, P', D, Q, V are the projections of c, p, p, d, q, v on the circle

;

qv' = pv . vp id cd- cp The proportion is therefore trae in the case of

the circle. Therefore &c., by (1088).

(Ilijperhvla. Fig. 1188)—
CTP_ _ nv^ _ PL' _ nv'^pu ^ qf' qt^
CF' ~ CV- ~ CP'~ CV'±CP' GV'-CP^ CV^+CF''

(1101)

1194 The parallelogram formed by tangents at the extremi-

ties of conjngate diameters is of constant area, and therefore,

i'i' being perpendicular to CD (Figs. 1195),

rF.CD = AC.BC.

Proof.—(Ellipse.)—By orthogonal projection from the circle (1089).

{ILiperhola. Fig. 1 1 88.)— GL.Cl = APU . PK = CO . Co (1192) ;
there-

fore, by (VI. 15), ALGl = OGo = AG.BG.

If PF intersects the axes in and G\

1195 FF.PCm = EC and FF.FG = AC\

t

1197 Con.— FG . PG = CD = FT. Ft. By (1194)
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1198 The diameter bisects all chords parallel to the tangent

at its extremity.

Proof.— {Ellipse. Fig. 1195.)—By projection from the circle (1088)

QV=VQ'. {Hyperhola.) By (1189.)

1199 CoE. 1.—The tangents at the extremities of any chord

meet on the diameter which bisects it.

Proof.—The secants drawn through the extremities of two parallel chords

meet on the diameter which bisects them (VI. 4), and the tangents are the

limiting positions of the secants when the parallel chords coincide.

1200 Cor. 2.—If the tangents from a point are equal, the

diameter through the point must be a principal axis. (I. 8)

1201 CoR. 3.—The chords joining any point Q on the curve

with the extremities of a diameter PP' , are parallel to con-

jugate diameters, and are called supplemental chords.

For the diameter bisecting PQ is parallel to FQ (VI. 2). Similarly the

diameter bisecting P'Q is parallel to PQ.

1202 Diameters are mutually conjugate ; If CD be parallel

to the tangent at P, CP will be parallel to the tangent at D.

Proof.— (EUijJse. Fig. 1205.)—By projection from the circle (1088).

]SI"OTE.—Observe that, if the ellipse in the figure with its ordinates and

tangents be turned about the axis Tt through the angle cos"^ (PC -^ AC), it

becomes the projection of the auxiliary circle with its corresponding ordinates

and tangents.

(Hi/perbola. Fig. 1188.)—By (1187, 1189) the tangents at P, D meet the

asymptotes in the same point L. Therefore they ai-e parallel to CD, CP (VI. 2.)

If QT he the tangent at Q, and QV the ordinate parallel

to the tangent at any other point P,

1203 CV.CT=CF'.

Pkoof.—CP bisects PQ (1199). Therefore PT7 is parallel to QP.

Therefore, by (VI. 2), CV : CP = CW : CE = CP :CT.
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1204: Cor.—Hence, to draw two tangents from a point T, wo may find

(T tVoni the above equation, and draw QVl^ parallel to tho tangent at 1' to

dL'tennine tho points of contact Q, (/.

Let FN, I)N be the ordinates at the extremities of con-
jugate diameters, and PT the tangent at P. Let the ordinates

at N and I\ in the clhpse, but at T and C in the hyperbohi,
meet the auxiUary circle in p and <l ; then

1205 CN= (in, en =:pN.

Proof.—(Ellipse.) Gp, Cd are parallel to the tangents at d and p (Note to

1'20"2). Therefore pCd is a right angle. Therefore pNC, CRd are equal

right-angled triangles with CN=^dli and CR= pN.

(Eijperbola.) ON . CT = AG' (1170),

and DR.CT= 2ACDT= 2CDP = AG . BG (119-i)
;

CN AG pN ...^,. . GN DR GR . . ., , . , .

• • irR=JfG = FN (^^^^^'
•

•

,^:V
= -FN= IN ^^^"^^"^ '"^"°^"^^-

But ^=^^(VL8); .-. GR = pN. Also Cp = Gd; therefore tho tri-
2)N 1

N

angles GpN, dCR are equal and similar; therefore CN= dR and dR is

parallel to pN.

1206 Cuij.— DR : (in = BC : AC.

Proof.— (Ellipse.) By (117-1). (Hijperbola.) By the similar right-angled

triangles, we have dR : fN = GR : TN = DR : PN;
therefore dR:DR= pN : PN= AG : BG (1174).

In the same figures,

1207 {Ellipse.) CX'-j- Cn' = A ("
; /> A'-'+ PS' = BCK

1209 {Uiipcrhola.) CN'-CR' = AC; DW-PX' = BC\

Proof.—Firstly, from the right-angled triangle CNp in which ^'^V = CR
(li2<.:.).

Secondly, In the ellipse, by (1174), PIi'- + PA'' : dR'+ pN' = BC- : AC^,

and dR- +pN'—A C, by ( 1 205) . For the hyperbola, take difference of squares.
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1211 {Ellip.^e.) CP'-^CD' = AC'+BC\
1212 {Ihjperhula.) CP'-CD' = AC'-BC\

Proof.— (Figs. 1205.) By (1205—1210) and (1.47), applied to tlie

triangles CNP, CRD.

The product of the focal distances is equal to the square

of the semi-conjugate diameter, or

1213 PS . PS = CD\
Proof.— (Ellipse. Fig. 1171.) 2P8 . PS' = (PS + PSy - PS'- PS"

=z4^AC'-2CS'-2CP' (922,1) = 2(AC'+ BC'-CP') (1104) = 2CI>-(1211).

(Ryperhola.)—Similarly with 2PS . PS' = Pg'+PS''-(PS'-PSy = &c.

1214 The products of the segments of intersecting chords

Q0(/, (}'0q are in the ratio of the squares of the diameters

parallel to them, or

OQ.Oq : OQ'.Oq = CD" : CD\
Proof.— (Ellipse.) By projection from the circle (1088) ;

for the propor-

tion is true for the circle, by (111. 35, 3C),

(Byperlola. Fig. 1188.) Let be any point on Q^. Draw lOi parallel

to Ee, meeting the asymptotes in I and i ;
then

OR.Or-OQ.Oci = QR.Qr (11.5) = PV (1191) (1).

„ on PL .Or PI , OR . Or _ PL' _ CD' ,,.on
^°^

OI = p¥'^^'^ 07=Pi' '-dTOi-pETPe-^C'^^^''^^-

^, . OR.Or-PU CD' _, n^ OQ.Og _ CD'
Therefore

^iToTII^O^ =^ '
''^' ^^ ^^^' 0/. OZ-i^'C"^

"W
Similarly for any other chord Q'O'/ drawn through 0.

Therefore OQ.Oq: OQ' . Oq = CD' I CD''.

1215 Cor.—The tangents from any point to the curve are

in the ratio of the diameters parallel to them.

For, when is without the curve and the chords become tangents, each

product of segments becomes the square of a tangent.

1216 If from any point Q on a tangent FT drawn to any

conic (Fig. 1220), two perpendiculars (}R, QL be drawn to the

focal distance PS and the directrix XM respectively ; then

SIl : QL = c.

Proof.—Since QU is parallel to ZS (1107), therefore, by (VI. 2),

SE : PS =QZ:PZ= QL : PM;
therefore SR : QL = PS : PM = e.

Cor.—By applying the theorem to each of the tangents from Q, a proof

of (1181) is obtained.
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1217 '^'/"' iJii'crfur Cirrlr.—The locus of the point of iiitcr-

Btcrioii, 7', of two tangents always at right angles is a circle

called the Dlnrfor Circle.

Proof.—Perpendiculars from S, S' to tlic tancfents meet them in points

y, Z, y, Z', which lie on the auxiliary circle. Therefore, by (II. 5, ('>) and

(III. 35, 3G), TC ~ AC = TZ.TZ' = SY . S'Y' = BC^. (1178)

Therefore W = A(T ± BCT; a constant value.

Note.—Theorems (1170), (1177), and (1203) may also be deduced

at once for the ellipse by orthogonal projection from the circle; and, in all

such cases, tlie anahigous projieity of the hyperbola may be obtained by a

similar projection from the rectangular hyperbola if the property has already

been demonstrated for the latter curve.

1218 n the points A, S (Fig. 1102) be fixed, while C is

moved to an infinite distance, the conic becomes a parabola.

Hence, any relation which has been established for parts of

the curve which remain finite, when AC thus becomes infinite,

qrlJJ he a property of the j^arahoht.

1219 Theorems relating to the elli])se may generally bo

ada])ted to the parabola by eliminating the (juantities which

become infinite, cmi)loying the ])rinciple thntjlulfe ililj'rreiirea

may be neglected in consideriiKj the ratios of injhiite quantities.

Example.—In (1193), when P' is at infinity, IT* becomes

in (1213) FS' becomes = 2C'P. Thus the equations become
2CP: and

Therefore QV
-pF=7t ""' '•' = 2CP-

; \rS .rV in the parabola.
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THE PARABOLA.

If 8 be the focus, XM j^j

tlie directrix, and P any point

on tlie curve, the defining -pro-

pert ij is

1220 PS = PM
and e = \. (1153)

1221 Hence

AX = AS.

1222 The Latus Rectum = 4^AS.

Pkoof.— SL = SX (1220) = 2AS.

1223 If PZ be a tangent at P, meeting the directrix in Z,

then PSZ is a right angle.

Proof.—As in (1167) ; tbeorem (1166) applying equally to the parabola.

1224: The tangent at P bisects the angles 8PM, 8ZM.

Proof.—PZ is common to the triangles PSZ, PMZ ; PS = PM and

/.PSZ = PMZ (122;J).

1225 Cor.— ST = SP = SG. (1. 20, 6)

1226 The tangents at the extremities of a focal chord PQ
intersect at right angles in the directrix.

Proof.— (i.) They intersect in the directrix, as in (1160).

(ii.) They bisect the angles SZM, SZM' (1224), and therefore include a

right angle.

1227 The curve bisects the sub-tangent. AN = AT.

Proof.— ST = SP (1225) = PM = XN, and ^IX = AS.

1228 The sub-normal is half the latus rectum. KG = 2AS.

Pkoof.—ST = SP = SG and TX = ,S'.V (1227). Subtract.
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1229 rN'= iAS.AN.
Puoor.—FN' = TX. Nd (VI. 8) = AN.2N(} (1227) = •l-.l.'^ . AN (1228).

Otherwise, by (117(;) imd (11G5) ; making .-IC infinite. See (1210).

1230 The taii.cronts at .1 and P each bisect S}f, the latter

l)isi'eting it at right angles.

Proof.—(i.) The tangent at A, by (\fl. 2), since AX = AS.

(ii.) FT bisects SM at right angles, by (I. 4), since PS = PM and

/. SPY = MPY.

1231 C.m.- SA : SY : SP. [By similar triangles.

1232 To draw tangents from a point to the parabi^la.

CoNSTKUcnoM.— Describe a circle, centre

and radius OS, cutting the diiectrix in

M, M'. Draw MQ, M'Q' parallel to the axis,

meeting the parabola in (2, Q'. Then OQ,
0(/ will be tangents.

Proof.— OS, SQ = Oif, MQ (1220);
therefore, by (I. 8), Z OQS = OQ^f, there-

fore OQ is a tangent (1221). Similarly

OQ' is a tangent.

Otherwise, by (1181). When S' moves
to infinity, the circle MM' becomes the

directrix.

1233 C.R. 1.—The triangles SQO, SOQ' are similar, and

SQ : SO : SQ'.

Proof.— z SQO = MQO = SMM' = SOQ'. (III. 20)

Similarly SQ'O = SOQ.

1234 Cor. 2.—The tangents at two points subtend equal

angles at the focus ; and they contain an angle equal to half

the exterior angle between the focal distances of the points.

Proof.— z OSQ = OSQ\ by (Cor. 1).

Also z QOQ' = SOQ + SQO = n-OSQ = '^QSQ'.

1235 Def.—Any line parallel to the axis of a parabola is

called a iViamctcr.

1236 The chord of contact QQ! of tangents from any point

O is bisected by the diameter through O.

Proof.—This proposition and the corollaries are included in (1108-1200),

by the principle iu (1218). Au independent proof is aa follows.

2 K
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The construction being as in (1232), _, (^
wo have ZM= ZM' ; therefore QV^VQ'
(VI. 2).

1237 Coi^ 1. — The tangent

liW at P is parallel to Q(2' ; and

OP = PV.
Proof.— Draw the diameter RW.

QW= WP therefore QR = RO (VI. 2).

Similarly Q'R' = R'O.

1238 Cor. 2.—Hence, tlie dia-

meter through P bisects all chords parallel to the tangent at P.

If QFbe a semi-chord parallel to the tangent at P,

1239 QV' = 4^PS.PV.

This is the fundamental equation of

the parabola, equation (1229) being the

most important form of it.

Proof.—Let QO meet the axis in T.

By similar triangles (1231),

Z. SRP = SQR = STQ = FOR
;

and ZSPJ^= OPB (1224). Therefore

PB''= PS .PO = PS .PreindQV=2PR.
Otherwise: See (1219), where th(

equation is deduced from (1193) of the

ellipse.

1240 CoE. 1.—If V he any other point, either within or

without the cm-ve, on the chord QQ' , and iw the corresponding

diameter vQ .vQ' = 4/>8 .jyv- (11. 5)

1241 CoK. 2.—The focal chord parallel to the diameter

through P, and called the parameter of that diameter, is equal

to 4>ST. For PV \n this case is equal to PS.

1242 The products of the segments of intersecting chords,

(lO<i, Q'Oq', are in the ratio of the parameters of the diameters

which bisect the chords ; or

OQ.Oq : OQ'.Oq = PS : PS.

Proof.—By (1240), the ratio is equal to 4PS .pO : 4P'/S . j^O.

CIP PS PS'
Otherwise: In the ellipse (1214), the ratio is = - „ = jy.,' ,,.',

L JJ 1 o . 1 o

when >S" is at iutinity and the carve becomes a parabola (1219).

(1213)

PS
PS'
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1243 (^oiL—The squares of tlie taiip^eiits to a parabola from
any point are as the focal distances of the points of contact.

Proof.—As ift (121o). Otherwise, by (1233) and (VI. 19).

124:4 The area of the parabola cut off by any chord Q(/ is

two-tliirds of the circumscribed parallelogram, or of the tri-

angle formed by the chord and the tangents at (j, (/.

PROor.—Througla Q, q, q', &c., adjacent points

on the curve, draw right lines parallel to tlio

diameter and tangent at P. Let the secant Qq
cut the diameter in 0. Then, when q coincides

with Q, so that Qq becomes a tangent, we have
OP =z PV (1237). Therefore the parallelogram

17y = 'lUq, by (I. 43), applied to the parallelogram

of which 0(^ is the diagonal. Similarly vq = 2iiq',

&c. Therefore the sum of all the evanescent par-

allelograms on one side of PQ is equal to twice

the corresponding sum on the other side ; and
these sums are respectively equal to the areas

PQV, PQU.—(NE\\Wii, Sect. I., Lem. II.)

Fracfical methods' ofcotisfntcrmg the Conic.

1245 To draw the Ellipse.

Fix two pins at S, S' (Fig. 11G2). Place over them a loop of thread

having a iierimeter SPS' = ,S',s"+ .Lr. A pencil point moved so as to keep

the thread stretched will describe the ellipse, by (llGo).

1246 Othprir;,f>.—(Vig. 1173.) Draw PHK parallel to QC, cutting the

axes in II, K. PK = AC and PR = EC (1174). Hence, if a ruler PHK
moves so that the points II, K slide along the axes, P will describe the ellipse.

1247 To draw the Ilijperbola.

Make the pin S' (Fig. 11G2) serve as a pivot for one end of a bar of any

convenient length. To the free end of the bar attach one end of a thread

whose length is less than that of the bar by A A' ; and laslen the other end of

the thread to the pin S. A pencil ])oinL moved so as to keep the thread

stretched, and touching the bar, will describe the hyperbola, by (11G3).

1248 Otherwise:—Lay off any scale of equal parts along both asymptotes

(Fig. 1188), starting and numbering the divisions from C, in both positive

and negative directions.

Join every pair of points L, I, the jimdiicf of whose distances from C is

the same, and a series of tangents will be formed (irj2) which will detiue

the hyperbola. See also (12b9).
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1249 To drcnv the Parahola.

Pi'oceed as in (1247), with this difference: let the end of tlie bar, before

attached to S', terminate in a " T-square," and be made to slide along the

directrix (Fig. 1220), taking the string and bar of the same length.

1250 Otherivise:—Make the same construction as in (1248), and join

every pair of points, the algebraic sum of whose distances from the zero

point of division is the same.

Peoof.—If the two equal tangents from any point T on the axis (Fig.

1239) be cut by a third tangent in the points Ji', r ; then EQ may be proved

equal to rT, by (1233), proving the triangles SBQ, SrT equal in all respects.

1251 Cor.—The triangle SRr is always similar to the isosceles triangle

SQT.

1252 To find tlte axes and centre of a given central conic.

(i.) Draw a right line through the centres of two parallel chords. This

line is a diameter, by (1198) ; and two diameters so found will intersect in

the centre of the conic.

(ii.) Describe a circle having for its diameter any diameter PP' of the

conic, and let the circle cut the curve in Q. Then PQ, P'Q are parallel to

the axes, by (1201) and (III. 31).

1253 Given two conjugate diameters, CP, CD, in

and magnitude : to construct the conic.

On CP take PZ = Glf'-^CP ; measuring

from C in the ellipse, and towards C in the

hyperbola (Fig. 1188). A circle described

through the points C, Z, and having its

centre on the tangent at P, will cut the

tangent in the points where it is intersected

by the axes.

Proof.—Analysis: Let AC, BC cut the

tangent at P in T, t. The circle whose
diameter is Tt will pass through C (III. 31),

and will make

CP. P.^= PT. Pi (III. 35, 3G) = CD' (11 97).

Hence the construction.

Circle and Radius of Curvature.

1254 Definitions.—Tlie circle wliicli lias the same tangent

with a curve at P (Fig. 1259), and which passes through

another point Q on the curve, becomes the circle of curvature

when Q ultimately coincides with F; and its radius becomes
the radius of curvature.
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1255 Otherwise.—The curie of rurratitre is the circle which
passes through three coincident points on the curve at /'.

1256 Any chord PIT of the circle of curvature is called a

elionl oj' niri'dfure at P.

1257 Tlirough Q draw PQ' parallel to Plf, meetinpr the

tangent at P in P, and the circle in Q' , and draw C^F parallel

to pp. J?Q i& called a .subtense of the arc PQ.

1258 Theorem.—Any chord of curvature PII is equal to

the nl ti unite' iml lie uf the square of the arc PQ divided by the

subtense HQ parallel to the chord : and this is also equal to

Proof.—7?Q' = RP-^RQ (III. 36). And when Q move.s up to P, RQ'

becomes PH; and RP, PQ, and QF become equal because coincidoit Uuci^.

1259 In the ellipse or hyperbola, the semi-chords of cur-

vature at P, measured along the diameter PC, the normal

FF, and the focal distance PS, are respectively equal to

err err err,
CP' PF ' AC '

the second bcimr the radius of curvature at P.

vr . cr>'

CP'
(ll'J3)

UPPkoof.— (i.) By (1258), PU = ^^
limit when T'P' becomes PI' = 2l'l'.

(ii.) By the similar triangles I'lfU, PFC (III. 31), wc Lave

PU.PF = CP . PU = 2CD\ by (i.)

(iii.) By the similar triangles PIU, PFE (I1G8), wo have

PI.PE = PU.PF = 2C'D-, by (ii.) ; and PE = AC (1179).

tho
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1260 In tlie parabola, tlio chord of curvature at P (Fig.

1250) drawTi parallel to the axis, and the one drawn through

the focus, are each equal to 4SF, the parameter of the dia-

meter at P (1241).

Proof.—By (1258). The cliord parallel to the axis =QV^-^PV= 4PS
(1239) ; and the two ehoi'ds arc equal because they make equal angles with
the diameter of the circle of curvature.

1261 Cor.—The radius of curvature of the parabola at P
(Fig. 1220) is equal to 2SP'- ^ SY.

Proof.—(Fig. 1259.) ^PU = ^PI sec IPU = 2SP BecPST (Fig. 1221).

1262 The products of the segments of intersecting chords

are as the squares of the tangents parallel to them (1214-15),

(1242-43).

1263 The common chords of a circle and conic (Fig. 12G4)

are equally inclined to the axis ; and conversely, if two chords

of a conic are equally inclined to the axis, their extremities

are concyclic.

Proof.—The products of the segments of the chords being equal (HI.

35, 36), the tangents parallel to them are equal (1262). Therefore, by (1200).

1264 The common chord of any conic and of the circle of

curvature at a point P, has the

same inclination to the axis as

the tangent at P.

Proof.—Draw any chord Qq parallel

to the tangent at P. The circle circum-

Bcribing PQq always passes through the

same pointy (1263), and does so, there-

fore, when Qq moves up to P, and the

circle becomes the circle of curvature.

1265 PrvOBLEM.

—

To find the centre of curvature at any given

^oint of a conic.

First Method.—(Fig. 1261.) Draw a chord from the point making the

same angle with the axis as the tangent. The perpendicular bisector of the

chord will meet the normal in the centre of curvature, by (1264) and (III. 3).

1266 Second Method.—Draw the normal PG and a perpendicular to it

from il, meeting either of the focal distances in Q. Then a perpendicular to

the focal distance drawn from Q will meet the normal in 0, the centre of

curvature.
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Vroov.—(Ellipse or Hyperbola.) By (1259),
the radius of curvature at V

= l^F = ^$ ^^ ^^^''^^ = TF^ ^^
^^^•'^•>

= PG sec' S'PG = PO.

For AC = PE (by 1170).

(Parabola.) By (rJOl). The radius of curvafn

= ^SP'^SY = 2SP sec -S'PG = PO.
For 2SP = PQ, because SP = SG (11-25).

Miscellaneous Theorems.

1267 lu the Parabola (Fig. 1239) let QD be drawn perpendicular to PV,

tlien QL^ = 4A.S.PV. (1231,1239)

1268 Let liPIt be any third tangent meeting the tangents OQ, OQ' in

Ji', ii''; the triangles SQO, SPR', SOQ,' are similar and similarly divided by
SR, SP, SR' (1233-4).

1269 Cor.— OR.On; = RQ.R'Q'.

1270 Also, the triangle PQQ; = 20RR'. (12-il)

With the same construction and for any conic,

1271 OQ: OQ'=^RQ.RP' : r:Q'.PR. (1215,1243)

1272 Also the angle RSR' = IQSQ'. (1181)

1273 Hence, in the Parabola, the points 0, R, S,E are concyclic, by (1234),

1274 In any conic (Figs. 1171), SP \ ST = AN : AT.

Proof— f|
=

f
^^ = "^ (69, 11G3) = |^ (1170) = j^ (09).

1275 Cor.—If the iangent PT meets the tangent at A in R, then SR
bisects the angle PST (VI. 3).

1276 In Figs. (1178), SY', S'Y both bisect the normal PO.

1277 The peipendicular from S to PG meets it in CY.

1278 If Ci) bo the radius conjugate to CP, the ptrpcndicular from D
upMii CY is equal to PC.

1279 SY and CP intersect in the directrix.

1280 If every ordinate PN of the conic (Figs. 1205) be turned round N,
in the plane of the figure, through the same angle PNP\ the locus of P' is

also a conic;, by (ll'J3). The auxiliary circle then becomes an ellipse, of

which AC and PC produced arc the equi-conjugatc diameters.

If the entire figures be tlius deformed, the points on the axis AA' remain
fixed while PN, IJR describe the same angle. Hence CP remains parallel to

PT. CP, CD are therefore still conjugate to each other.
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Hence, tlic relations in (1205-G) still subsist when CA, CB are any con-

jugate radii. Thus universally,

1281 FN: GB = DB: CN or FN. CN = DB . CB.

1282 If the tangent at P meets any pair of conjugate diameters in T, T',

then FT. FT' is constant and equal to CD\

Proof.—Let CA, CB (Figs. 1205) be the conjugate radii, the figures

being deformed through any angle. By similar triangles,

FT : CN = CD • ^'B ] '
^^^refore PT. Pr'

:
FN. CN = CD^ : DB .

CB.

Therefore FT. FT' = Clf, by (1281).

1283 If the tangent at P meets any pair of parallel tangents in T, T,
thou FT. FT = CI)\ where CB is conjugate to CF.

Peoof.—Let the parallel tangents touch in the points Q, Q'. Join PQ,
PQ', CT, Cr. Then CT, CT' are conjugate diameters (1199, 1201). There-
fore FT.FT' = CB' (1282).

1284 Cor.—ar. Q'r = CB\ where CFf is the radius parallel to QT.

1285 To draw two conjugate diameters of a conic to include a given
angle. Proceed as in (1252 ii.), making FF' in this case the chord of the
segment of a circle containing the given angle (III. 3B).

1286 The focal distance of a point P on any conic is equal to the length

QN intercepted ou the ordinate through P between the axis and the tangent
at the extremity of the latus rectum.

Proof.—(Fig. 1220). QN : NX = LS : SX = e and SF : NX = e.

1287 In the hyperbola (Fig. 1183). CO : CA = e. (11G2, 1164).

If a right Hue FKK' be drawn parallel to the asymptote CB, cutting the
one directrix XE in K and the other in K' ; then

1288 SF = PK = e. CN-AC; S'P = FK' = e.CN+AG.
Proof.—From CB = e . CN (1287) and GE = AC (1186).

1289 Cor.—Hence the hyperbola may be drawn mechanically by the
method of (1249) by merely tixing the cross-piece of the T-square at an
angle with the bar equal to JJCO.

1290 Definition.—Confocal conies are conies which have the same foci.

1291 The tangents drawn to any conic from a point T on a confocal conic
make equal angles with the tangent at T.

Proof.—(Fig. 1217.) Let T be the point on the confocal conic.

SY : SZ = S'Z' : S'Y' (1178).

Therefore ST and S'T make equal angles with the tangents TF, TQ ; and
they also make equal angles with the tangent to the confocal at T (1168),
therefore &c.

1292 In (ho construction of (1253), FZ is equal to half the chord of
cui-vature at I' di-awn thi'ough the centre C (]25;»).
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IXTRODUCTIOX.

1400 Ff()irfiou.<i.—A quantity wliicli depends for its value

upon another quantity x is called afiinctiou of </'. Thus, sin ,r,

log.v, n-^, a^-{-ax+ x' are all functions of x. The notation

y =/{,!') expresses generally that y is a function of ./. y = sin«

is a particular function.

1401 /CO is called a confinuoiis function between assigned

limits, when an indefinitely small change in the value of x

always produces an indefinitely small change in the value of

/OO-
A transcendental function is one which is not purd^-

algebraical, such as the exponential, logarithmic, and circular

functions a"", log.r, sin.'B, cos,/', &c.

If /(.c) =/(— a?), the function is called an even function.

If /(,,) — —/(— ir), it is called an odd function.

Thus, ./- and cos j- are even functions, while a;' and sin x are odd functions

of x; the latter, but not the former, being altered in value l)y changing the

sign of X.

1402 Diffrrcniinl Coefficient or Der'wnth'e.—Lct y be any

function of x denoted by /(-r), such that any change in the

value of X causes a definite change in the value of // ; then x

is called the Independent variable, and // the dependmt rarialde.

Let an indefinitely small change in x, denoted by dx, produce

a corresponding small change '/// in//; then the ratio --•
, in

the limit when both dy and dx are vanishing, is called the

dlffrre)itlal coefficient,' or derivatin', of y with respect

to X.

2 L
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1403 TiiEOEEM.—The ratio c/// : dr is definite for eacli valuo

of <?', and generally different for different values.

Pkoof.— Let an abscissa ON
(Defs. 1160) be measured from
equal to .r, and a pcrpendicalar or-

dinate NP equal to y. Then, wliat-

ever may he the form of the function

y =f(x), as X varies, the locus of

P will be some line PQTj. Let
OM = x', MQ = //' be values of x
and 7/ near to the former values.

Let the straight line QP meet the
axis in T; and when Q coincides with P, let the final direction of QP cut the

. axis in T'.

Then II or --^f^ = |^. And, ultimately, when QS and SP vanish,

they vanish in the ratio of PN : NT'. Therefore '-^ = =—, = tan PT'N, a
dx NT

definite ratio at each point of the curve, but different at different points.

1404 Let NM, the increment of x, be denoted by li ; then,

when h vanishes, ^ = /C^+ZQ -/(.Q ^ ^, ..
iLv h »/ \ /'

a new function of. a', called also the first derived function.
The process of finding its value is called differentiation.

1405 Successive differentiation.— If ^^ or/'(<6') be differ-
dcC

entiated with respect to x, the result is the second differential

coefficient oif(a'), or the second derived function ; and so on
to any number of differentiations. These successive functions
may be represented in any of the three following systems of
notation :

—

(Ijl (Pjl cJ^ (l^ iV^
d.v da'' fAr^' dd'' ^/>

'

/G^O, /"CO, /'"Ci"), /^(.^O, /"GO;
y^^ Vtx, i/s^; //la-, //«...*

The operations of differentiating a function of x once,
twice, or n times, are also indicated by prefixing the symbols

jL jH j!;;_
d (dv (dy

da?' d.i^' •" d.e^'
"'^

d,v' W7' - \dr)
'

or, more concisely, d,, d.^, ... d„^.

* See note to (1487).
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1406 It', nj'trr (liffoivutiatin^ ;i function for .r, x ])e niado

zero in the result, tlio valiio may bo indicated in any of tho

following Avoys : -j'~, f'W^ //.ro> -7— ? ^^.o-

If any other constant a be substituted for x in ?/^, the

result may bo indicated by. v/.,.^ .

1407 Infniteslmals and Differentials.— Tlio eviinescent

([uantities dx^ thj are called iujinito^linah ; and, with respect

to X and //, they are called diffcrentiah. <lr, (I'-y are the second

differentials of x and ij ; dx^, d^y tho third, and so on.

1408 The successive differentials of >j are expressed in terms

of d I' by the equations

,ty
=/' (.r) fhv ; d'\f/ =f"{.v) dv' ; &c., and d'\,/ =/"(.r) d,v\

Since /"(<r) is the coefhcient of dx in tlie value of di/, it lias

therefore been named the differential coefficient of y or /(.'0-*

For similar reasons /' {x) is called the second, and /" {x) tho

n^^ differential coefficient of f{x), &c.

1409 Two infinitesimals aro of the same order when their

ratio is neither zero nor infinity.

If dx, dij are infinitesimals of the same order, dx', dy^^, and

dxdy will bo infinitesimals of the second order with respect to

dx, dy; clx^, dx'dy, &c. ^vill be of the third order, and so on.

dx, dx^, &c. are sometimes denoted by x, x, &c.

1410 Lemma.—In estimating the ratio of two quantities, any

increment of cither which is infinitely small in eonji)arison

with the quantities may be neglected.

Hence the ratio of two infinitesimals of the same order is

not affected by adding to or subtracting from either of them

an infinitesimal of a higher order.

Example.— ^~ =^ —dx = -^, for dx is zero in comparison with
, dx ax dx

the ratio ^-[K Thus, in Fig. (1403), putting P*S = dx, QS = d>j
;
we have

dx
ultimately, by (12.'')8), QR = Jcdx^, where A- is a constant. Therefore

FN _ Wl _(hi-hd^_ chi_
.^^ ^j^^ j.^^^.^^ ^^^ ^j^^ principle just enunciated;

NT' I'S dx dx

that is, QR vanishes in eonqmrison with PS or QS even loh-n those lives them-

selves are iufinitehj small.

* The name is slightly misleading, as it seems to imply that /'(•'') is in

some sense a coefficient of /'(•'")•
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DIFFERENTIATION.

DIFFERENTIATION OF A SUM, PRODUCT, AND QUOTIENT.

Let u, V be functions of x, then

tAtn d(uv) du
,

dv
1412 -T— = V -^ +w ^—

.

d.v ax ax

1413
(/ / u \ _ ( du _ _^\ _:_ 2

</ct' \ V / \ dx dx J

Proof.— (i.) d(n + v) = (ii+ dH + v + do)— (u+ v) = du+ dy.

(ii.) d(Hv) = (u + du) (v + dv)—uv = vda+udv— diidv,

and, by (1410), dudv disappears in the ultimate ratio to dx.

,... . 1 / u\ u+ du u vdu—udv
(ill-) d [ = ; = —r— ,

\ i; / v-{-dv V {y + dv)v

therefore &c., by (1410) ; vdv vanishiBg in comparison with v^.

Hence, if u be a constant = c,

1414 !iM=o4l and ^l£) = -^^.
dx dx dx \v

/

L- dx

DIFFERENTIATION OF A FUNCTION OF A FUNCTION.

If 7/ be a function of z, and z a function of x,

1415 dy__dti_ dz_

dx dz ' dx

Proof.—Since, in all cases, the change dx causes the change dz, and the

change dz causes the change dj ; thcrefoi'e the change dx causes the change
dy in the limit.

Differentiating the above as a product, by (1412), the successive differ-

ential coefBeients of y can be formed. The first four are here subjoined for

the Rake of reference. Observe that (^j)j: = l/a^x'

1416 7A = y.z^.

1417 //.., = //..^:.H-//.^2...

1418 //:,. = //:,,-:. + ;{//..-.c^...+//.-U-

1419 uu- = Uu^l + %..4;^.c+ //.. (»5^L + A^..-...) + U^-^^'
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DIFFERENTIATION OF A COMFOSITE FUNCTION.

If n and v be explicit functions of .i', so tluit a = (^ (./•) and

^^"^^
dTv TT^T dx'

"^
(//' iLv

'

Here f77^ in tlic first term on tlio riglit is the cliangc in

F{u,v) produced by da, the change in u; and dF in the

second term is the change produced by dv, so that the total

change dF{i(j v) may be written as in (1408)

dF, + dF,= ^dii+ ^du,
die do

DIFFERENTIATION OF TEE SIMPLE FUNCTIONS.

Since -^ ^ /('^+ ^^)~/W ^hen h vanishes, we have tho
dx lb

following rule for finding its value

:

1421 Rule.—Expand f(x+h) hy some hiown theorem in

ascending poivers of h; subtract f (x) ; dliido hi/ h; and m
tlic result imt h equal to zero.

The differential coefficients which follow are obtained by

the rule and the theorems indicated.

1422 y = ^i'"- ^ = "^^""'•

PKOOF.-IIero • -^ =
1^ 1

(12o) = nx"-^-]-C(n, 2) x"-'h+... = )ix"-\ wliou h vauishcs.

1423 Cou.-

i^=«(»-l)...(M-r+l),,--'. ^=k-

1424 z/ = l<'g..'-; 7^ = ,7k^-

PKOOP.-By (145).
'"''-^-+ ;-^-'"'^-' =^ \

log. (l + {) I
-^ 7-J ^ "

It X lug, at \ X I } X

Expand the logarithm by (15-5).

,.„^ ,,
il-,/ (-1)"-'1«-1 rat« = -lin(l.i23)

1425 U...- -^= a.'\oga"~
- andr= ,.-l.
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Sonio ilifTeivniiations nro rciulorcd cnsioi' by liikinj,' tlio lo^'arithm of tlio

function. For example,

1445 y = ^/J~l. ; tbcrcforo logy = \ log i\-x-)-l log(l + x')
;

.
P

1 '''/ _ 1 -2.« 3 1x
.

tlierctoro ,-- — — y. .rr ^ 77-;

—

jT >

X, r f?!/ -2.>-(2-3'-) _ -2.rr2-x'')
thcrofore -/-=:?/ 7 =

:, r-
(Zo! 1-x* (H-a;^)»(l-x-)*

1446 2/ = (si" ^y ;
theroforo log ?/ = » log sin x

;

thereforo — V* = log sin a:+ -^ cos a;

;

(1 il 5, '24, '28)
1/

•

siu «

therefore 1/, = (sin a-)' (log siu aj+a; cot x).

Otherwise, by (1420), y, = x (sin a-)'"' cos a;+ (sin a;)' log sin x (1420)

= (siu .r)"" (.7; cot a; + log sin a;)

.

SUCCESSIVE DIFFERENTIATION.

1460 Leibnitz s Theorem.—If n be any integer,

... +C(«, »•)//(„_,),;:;,,+ ... 4-.V^«x.

PnooF.—By Induction (233). Differentiate the two consecutive terras

C («, '•) i/(,.-r)x2«+ C (?l, r+ 1) 2/(,.-r-l)x^(r.I)x,

and four terms are obtained, the second and third of which are

C{n, r) ?/(,._„, «(r.nx+C(?i, r + l) .'/(,.-.) x ^/r.i)*

= [C{ih r)-^G{n, r+l)}y(,.-r)x2(r.i)-= C{n + l, r+l) ?/ ,m-7n x 2 ..1,,^

This is the general term of the series with n increased by unity. Similarly,

by differentiating all the terms the whole series is reproduced with n in-

creased by unity.

DIFFERENTIAL COEFFICIENTS OF TUE n"' 01^DEE.

1461 (s»W «'0«x = «" siu {(LV-\-lmr). By Indnotion

1462 (cos (U')„,. = a" cos {fLv-^UTr).
^"^'^ ^^•^-'^•

1463 {('"''),.. = (i"t''-'' (1^'^G)

1464 {ff\f/)„.. = c-'-{a+ (r,.y',/,

where, in the expansion l)y the Binomial Theorem, d'^i/ is to

be rephiced l)y
//,..c.

(1100, '03)
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1465 {e"" cos 6cr)„^ = rV'^ cos (6.r+ w<^),

wliere a = r cos <^ and 6 = r siu (j).

Proof.—By luduction. Differentiating once more, we obtain

r"e'"' {a cos (bx-\-n(p) — h sin (bx + n(p)}

__ yn + igO'lcos^ cos (hx + n^) — Bm<{> sin {hx + n<}>)}

— /''len'cos (tx + n + l^).

Thus 71 is increased by one.

1466 i^'"'-'
log ^)n. = liLzJ. -^ ^^'. (1-^60), (283)

1468 (tan-i ^)nx={- 1)""' 1^-1 siu** ^ sin n0,

where ^ == cot"^ a.\

Proof.—By Induction. Differentiating again, we obtain (omitting the

coefficient)

(>i sin""' cos 9 sin nd+ n cos nd sin" 6) 6^

= w sin""^0 (sin«0 cos0+ cos?i0 sin0) (— sin-0).

Since, by (1437), 0, = -(l + x')-' = -sin^O.

Therefore (tan-^ «),,..!) « = (—1)" l«_sin""' d sin (n + l) d,

n being increased by one.

1469 (
^

,,) = (-1)'^ I^sin'^^i ^ sill (n+ 1) 6- (1-^36,

1470 (j^) =(-l)"|;^sin'^^^^cos(>i+ l)^.
\l-rct' //jj;

PuoOF.-By (14G0),
(i|^)„^= ^

(xi:.)^^" (r^O.-./
Then by (1469).

1468)

1471 Jacohi's Formula.

c/(.-a). (1-^r)"'^ = (-1)'*"' 1 • 3 ... 12/1-1) sin {n cos-\r) -h «.

Pkoof.—Let )j = l—x^; therefore

(^"- i)„. = -(2h+1) (.r7/"-i)(„.„x. Also (//"-i),. = (.'///"-•O-.x.

Expand eacli of these vahics by (1460) and eliminate (y'"^),„-2}x, the^dcriva-

tivc of lowest order. Call the result equation (1). Now assume (M7U true

for the value n. Diilerentiate and substitute the result, and also (1471) on

the right side of equation (I) to obtain a proof by Induction.
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1472 Tlii'orcm.—If y, :: are finictions of .r, and ;/ a positive

iiiri\u-('t',

~//«.r = (//^),.r-" ('/^..•)(«-l).r+^' («» i^) (//^2.r)(«- 2) .r •••+(- 1 )" //--..r-

PnooK.—By Tiulnction. DilTcrontiato for a;, substituting for z^y,,^ on tlio

rip;ht its viiluo by tlio formula itsolf.

PARTIAL DIFFERENTIATION.

1480 If '' =/X'^'» ?/) ^^"^ ^ function of two imloppiulinit vari-

ables, any difforcntiation of n with respect to x rrr/irlres tJuif ij

should be considered constant in that operation, and rice versa.

Thus, -'— or Wjx signifies that n is to be differentiated succes-

sively twice with respect to x^ y being considered constant.

1481 Tlie notation
., ^ or 7/2^3^* signifies that u is to bo

differentiated successively twice for x, y being considered

constant, and the result three times successively for y, .c being

considered constant.

1482 'I'lio order of the differentiations does not -affect tho

final result, or 7/^,^ = Vy,..

Froof.—Let u=f(xy); then y^ =fJ^:±]i:^!lzdL(j^J!l in limit. (1181)

,h>^ f (x + Ik 7/ 4- /.-) - /' (>•. 7/4. /,•)-/ f.r + /^ y)-^f(x,y) . , . .

"- =
-.ij

=• ' '—
—hir^ '" •'"''*•

Now, if Vy bad boon first formed, and then iiy^, tbe same result would liavo

been obtained. Tlio proof is easily extended. Let u^-=.v;

then v^y = v^,j = i\^ = iivis ; and so on.

THEORY OF OPERATIONS.

1483 Let the symbols <^, ^, prefixed to a quantity, «lenoto

operations upon it of the same class, such as nudtiplication or

differentiation. Then the law of the operation is said to be

distrUjutice, when
<i>(.r+//) = -i>GO+^K//);

* Sec note to (1487).

2 .M
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that is, tlie operation raay be performed upon an undivided

quantity, or it may be distributed by being performed upon
parts of the quantity separately with the same result,

1484 The law is said to be commutative when

that is, the order of operation may be changed, ^ operating

upon ^x producing the same result as ^ operating upon <^x.

1485 ^""^ denotes the repetition of the operation 4> m times,

and is equivalent to <t>* ... a? to m operations. This definition

involves the index law,

which merelv asserts, that to perform the operation n times in

succession upon x, and afterwards m times in succession upon

the result, is equivalent to performing it m-\-n times in suc-

cession upon X.

1486 The three laws of Distribution, Commutation, and the

law of Indices apply to the operation of multiplication, and

also to that of differentiation (1411, '12). Therefore any

algebraic transformation which proceeds at every step by one

or more of these laws only, has a valid result when for the

operation 'of muUijjlication that of differentiation is sub-

stituted.

1487 111 making use of this principle, the symbol of dif-

ferentiation employed is —r-, or simply r/,, prefixed to the
ux

quantity upon which the operation of differentiating with

respect to x is to be pei-formed. The repetition of the opera-

d^ d^ d^
tion is indicated by -7^, —r^, -,

'-,
^ , &c., prefixed to the

•^ dx^ rt.r dx^dif

function. An abbreviated notation is d^., d.y^^, d.^, (/o.,.,,^, &g.

Since d^Xd^ = dl in the symbolic operation of multiplication,

it will be requisite, in transferring the operation to differentia-

tion, to change all such i)idiccs to suffixes when the abbreviated

notation is being used.

Note.—The notation 17,, y^, w^^a^, cZa^rSy, &c. is an innovation. It lias, how-
ever, the recommendations of defiuiteness, simplicity, and economy of time in

•writing, and of space in printing. The expression -
.^

requires at least

fourteen distinct types, while its equivalent if;,^.;,^ requires but seven. For
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such reusous I have introduced tho shorLur notation experimonUiUy in tliuse

pages.
, , „

All such abbreviated forms ofdiffbrential coefiicienta as y'y"y"'... or y // //...,

thou<?h convenient in practice, are iucoaiplete expressions, because the inde-

pendent variable is not specified.

The operation (f^^iv^ n^d tho derived function »i^s^, would bo more
accurately represented by (./;)J and ("l)], the index a.s usual indicatinj^ tho

repetition of the operation. JJnt the former notation is simpler, and it has

the advantage of separating more clearly the inilex of dillerentiation from tho

index of involution.

In the symbols ?/' and y^ji t'lo figure 2 is an index in each case: in tho

first, it shows the degree of involution ; in tho second, the onfrr of differentia-

tion. The index is omitted when the degree or the order is unity, since wo
write )/ and //,.

The sTilUx takes precedence of the superfix. yl means the square of y,.

djc(,y*) would be written (//), in this notation.

As a concise nomenclature for all fundamental opoi-ations is of great

assistance in practice, the following is recommended : J^ or y, may be read

"V /or *," as an abbreviation of the phrase, "the ditfereutial coefficient of (/

71 )2 7S

for, or with respect to, .t." Similarly, -^, -j—, TTTl' °^ ^^^® shortened

forms j/ix, "xy, «ix3v, niay be read ''
y for two x," ''ii for xy," ^^u for two x, three

y," and so forth.

The distinction in meaning between the two forms y,,^ and y„ is obvious.

The first (in which n is numerical and ahoays an inleijer) indicates n succes-

sive diflerentiations for x; the second indicates two successive ditierentiations

for the variables x and z.

The symbols -^^ or y^, and - '{- or y^^, may be read, for shortness,

"y for X zero," "y for two x zero"; d.^^^^ (^ {xy) can be read "fZ for two x

three y of </> (xy)."

Although the notation r, is already employed in a tot.illy dilferent sense

in the Calculus of Finite Ditferences, my own experience is that tho double

signification of the symbol does not lead to any confusion: and this for the

very reason that the two meanings are so entirely distinct. Whenever tho

operation of differentiation is introduced along with the subject of Finite

Differences, the notation ^ must of course alone be employed.

Thus, in differentiation, wo liavo

1488 Tin: i.isTKir.iTivi: LAW (I_^(n-\-r) = (/_,i( + (i.r. (Mil)

1489 The COMMUTATIVE L.\w i1^{d^u) — (l^{(l^u)

or d,,u = (ly.u. (11^2)

1490 The iNi.KX LAW </>/:« =.(lT'u,

that is, ifm^d.^u = (f(,„+„).r^f- (l-^^^')
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1491 Example.—
{ch-d,y = (ch-d,) (d^-d,_,) = d^d^-dAly-d,d^+ d,d, = d,-2d,,+ d,,.

Here d^d^—dyd^ or d^y = d^^, by the commutative law. (U89)

(?A = f^2x by the index laio. (l4i»U)

Also {d.,-'ld^y-\-d.y) u = di^u— 'ld^yU+ d^yU, by the distributive law.

Therefore, finally, {d^—d^Yu = d.:,u— 2d^yU+ d2y^t.

Similarly for more complex transformations.

1492 Thus d^ may be treated aa quantitative, and operated upon as such

by the hiws of Algebra ; d" being written d,,^, and factors snch as d^dy, in

which the independent variables are different, being written d^^, &c.

EXPANSION OF EXPLICIT FUNCTIONS.

TAYLOR'S THEOREM.—EXPANSION OF f{x+ h),

1500

where 9 is some quantity between zero and unity, and n is

any integer.

Proof.— (i.) Assume f(x + ]i) = A +Bh+CP+ &G.

Differentiate both sides of this equation,—first for x, and again for /;,—and

equate coefficients in the two results.

1501 (ii.) Cox s Proof.—Lemma.—Iff(x) vanishes when a; t:= a, and also

when x—h, and if f(x) and f'(x) are continuous functions between the

same limits ; then f'(x) vanishes for some value of a; between a and h.

For /'(') must change sign somewhere between the assigned limits (see

proof of 1403), and, being continuous, it must vanish in passing from plus to

minus.

1502 Now, the expression

f(a + x)-^fia)-xf'(a)- - j^/" 00

-^'=[/(-+/0-/(«)-V''(«)— -|^/"(")}

vanishes when x = and when x=h. Therefore the differential coefficient

with respect to x vanishes for some value of x between and h by the lemma.

Let dh be this value. Differentiate, and apply the lemma to the resulting

expression, which vanishes when x = and when .e = 06h. Perform the

pame process n+l times successively, writing Oh for Odii, etc., since merely

stands for some quantity less than unity. The ivsult shews that

/""('^+-^0-4^[/(" + /O-/(")-/'/OO---|-^/"('O|

vanishes wheu x = Oh. Substituting Oh and equating to zero, the theorem

is proved.
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1503 The last term in (1500) is called the reinaiii(h>r after

'/I terms. It may be obtained in either of the sii]>ji)ined forms,

tlie first being due to Lagrangt*,

l^f-ir+0h) or |_^(l-e/' •/»(,,+ «/,).

1504 Since the coelHcient ,— ^ diminishes at last without

limit as n increases (230, ii.), it follows that Taylor's scries

is conrergcnt if f" (x) remains finite for all values of n.

1505 If in any expansion of f{x-]-h) in powers of // some
index of h be neijatice, then / (,c) ,/'(<«),/" (.v) , &g. all become
infinite.

1506 If tbe least fractional index of h lies between n and

// + 1; then /"^^ (.'•) and all the following differential coeffi-

cients become infinite.

Pkoof.—To obtain the value of /"(.'), (.lifTercntiato the expansion 7i times

successively for /(, and put /< = in the result.

MACLAURINS THEOREM.

Put 07 = in (loOO), and write d' for // ; then, with the

notation of ( 1-1-0 G),

1507 fV) =/(0)+.rr(Oj+^/'(0)+... + ^/"(^^r),

where 0, as before, lies between and 1.

Putting y =f(,r), this may also be wiitten

1508 // = //o+' 777- + T^ 777^ + 1 ,, .. T^ + ^^^•

1509 XuTE.— If any function f(x) becomes infinite with a fuiite value of

X, then fix), /"(x), &c. all become infinite. Thus, if /(.r) = sec"' (1 +.'),

f'(x) is infinite when x = (14o8). Therefore /"(O), /'"(O), &c. are all

infinite, and /(«) cannot be expanded by this theorem.

ncrnonlli's Scries.—Vnt h = -.v in (1500); thus,

1510 /(O) =nr)-.rf{.r)+ ^f'\,v)-j^f'\A')+ &c.
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1511 If 1> (// + /'•) = and <p (//) = x; tlien

Proof.—Let y = tp-' (x) = f (x) , and let 7/ + /.- =/(.c + /0 ;

therefore «' + h = (j>(y + k) = 0.

Therefore y + h =/(0) =/(.'c)-ac/"(a;) + p^/'Ca^) -&c., by (1510);

which proves the theorem.

EXPANSION OP f{x+ h, y+ h).

Let f{xfj) = u. Then, with the notation of (1405),

1512

/(c*'+/j, 7/+A-) = u+(hu,+ku,)+ ^{hhi,,-\-2hku,,-^k'u,J

1513 The general term is given by ,— {h(l^-\-kdy)"u,

where, in the expansion by the Binomial Theorem, each index

of d^ and dy is changed into a suffix; and the coefficients

d^, d.^, &c. are joined to 21 as symbols of operation (1487)

;

thus ul is to be changed into u^.

Proof.—First expand f(x + h, y + ^c) as a function of (x + h') by (1600);

thus, f(x+ k, y+ Jc) =f(x, y + k) + hf, (ic, y + k) + ^^^ h%, (x, y + k) + &c.

Next, expand each term of this series as a function of (y + k). Thus,

writing u for /(,<'//),

f(x,y +k)= u + ku, + r^k'n,, +|y^X +n-^^X +

J>fr(x,y + k)= hu, + hku,, + r^hJc'ii,,, +Xhk'u^,^+

,-^ f2. (.^, y + /'•) = rj ^^'^ir +
I

,^
1^'ku.^,^ + — — h-k-a.^^^ +

|^/3.(.^-,y +/0=^/^V + j-^/^'A-».3.. +

r^/u(A2/ +^)=^ A'«..+
i± Li

The law by which the terms of the same dimension in h and 1: are formed,

is Feen on inspect ion. They lie in successive diagonals ; and when cleared

of fractious the numerical coefficients are those of the Binomial Theorem.
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The theorem may be extended inductively to a function of

three or more variabk'S. Thus, if u =/(.'', //, ;.'), we have

1514 fU-\-h. //+A-, z+ l) = u+ (hn,,+h'n^-\-lu,)

the general term being obtaincnl as before from the expression

UL

1515 C'oR.—If 21 = f{xnz) be a function of several inde-

pendent variables, the term {hn^-\-lcii,j-\-JuS) proves, in con-

junction with (1410), that the total change in the value of ?/,

caused bv simultaneous small changes in a', ?/, z^ is equal to

the sum of the increments of u due to the increments of x, ij, z

taken separately and supt'rposrd in any order.

This is known as the principle of the siq)crpositi'on of small

quantities.

1516 To expand f{x, ?/) or f{x, y, z, ...) in powers of x, //,

t^c., put x, ?/, z each equal to zero after differentiating in

(1512) or (1514), and write x, y, ... instead of h, k, &c.

1517 Observe that any term in these series may be made
tlie last by writing x-{-dh for x, y+ dh for?/, &c., as in (1500).

sy:^ibolic form of taylor's theorem.

The expansion in (1500) is equivalent to the following

1520 /Gr+/0 = c-'ri^v).

PuooF.—By the Exponential Theorem (150), writing the indices of J, as

suffixes (1487),

e'"^'/(') = (1 + /,J, + iW,,+ .,.)/(^) =f(x)+],f,(x) + lh%(.r)+..., by (U88).

Cor.- a /(.r) =fi^v+h)-f{.v) = (e"'''-l)/(.r),

therefore A'^ (.r) = (f'"''- 1 Yf(.v) ,

and generally A"/CO = (c'"''-l)"f(.r),

the index signifying that the operation is performed n times

upon f{x).

1521 Similarly /(./+ A, //+/.•) = e'"''"'VC^^ //)•

Froof.—

= j\.e + h,y + l:), by (150) and (1512).
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1522 And, generally, with any number of variables,

Cor.—As in (1520),

1523 If u = f (/', //)
= </) (r, 0) , where x= r cos 0, //

= r sin Q ;

and if x = r cos (0+ ^), y' = r sin (0+ w) ; then f(x'y') is

expanded in powers of w by the formula

/(.»',//) = «"""'-"'''/(..•,?/).

Proof.—By (1520), r being constant,

^ (r, + 0,) = e'*"'^ ^ (r, 0) = e'^^VC^', 2/).

Now a; and y are functions of the single variable ; therefore

u, = w^«„+ My//9 = u^ (— r sin 0) +Uy (r cos 0) = xa^—yu^.

The operation d, will be transformed by the same law (1492) ; therefore

d^ = xdy— yd^; therefore

f(x\y') = e"'(-^''v-2'^'x) j(,., y) = l + w{xu,-yu^)+ h''X^''ihy-^^y''h,j+ f'h.) + &o.

1524 Examples.— The Binomial, Exponential, and Loga-

rithmic series for {l-\-xT, a'', and log(l+,^), (125, 149, 155),

are obtained immediately by Maclaurin's Theorem (1507) ; as

also the series for sin « and cos a^ (764), and tan~^a3 (791).

The mode of proceeding, which is the same in all cases, is

shewn in the following example ; the test of convergency

(1504) being applied when practicable.

1525 tail .V = .V + 1 .v' + ^ .v' +^ a^ + J$. .iH &c.
«» lO »)1.) J,r»t)«)

Obtained by Maclaurin's theorem, as follows :—Let

f (a;) = tan x = y 1 Therefore 2/,= « and z^ = 2yz
;

f ^^^ _ gp^jS^ = z ) y and ;; being used for shortness.

f (.b) = 2 sec^ X tan x = 2yz,

f" {x) = 2 (.^,+ ?/..) = 2 (.^ + 2/;;),

fix) = 2 (%;>;''+ 4//2''+V2) = Q{1yz- + yh),

f {x) = 8(2z^+ 8yV+ Zyh''+ 2y*z) = 8 (2z'+ Uy"-z"-+ 2y'z),

r'(x) = 8 (I2yz' + 22yz'+ ...) = 272yz'+ ...,

r\x) = 272z*+...&c.,

the terms omitted involving positive powers of y, which vanish when x is

zero, and which therefore need not be computed if jig term of the expansion

higher than that containing .t;^ is required.
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Hence, by making aj = 0, and tlioreforo y = and 2=1, wo obtain

/(0)=0; /C<>) = 1; /'(0)=0; /"(())=2; r(0)=0; /''(0) = 10;

r'(0)=0; r\0) = 27-Z.

Thus tlio terms up to x^ may bo written by substituting these valued in

(1507).

In a similar inainicr, may bo obtained

1526 •^^'^••'-i + 4--'' + in''' + 7!^r'''"' + ^^'

Methods iff i\i pdii.shni Inf lnd('f(nuindir Cor/licicnt.s.

1527 Rl'I'E 1.—Assume f (x) = A-f Bx+ Cx"4-&c. Diffrr-

rntiate both sides of the eqiiatlou. Then e.rpniid f'(x) hi/ smne

known theorem^ and equate coefficients in the two results to

determine A, B, C, ijv.

1528 Ex. ^.-K. = .+ ^^ + ]^^ +]^< + &o.

Obtained by Rule I. Assume

siu-'.r = A+Bx+Cx' + Dx''+ Ex'+ F.c'+

Therefore, by (1-101), (l-.«-)'^ = i?+ 2Cu; +3DxH4LV + 5F.«'+

But, by Bin. Th. (1-28), (1-..^/^ = 1 + V+ 1^ .^*+ .j^ x«+

1 13
Equate coefficients ; therefore 7? = 1 ; C = 0; D =— ;

E = 0; F=
^^ ^ ;

&c. By putting x = 0, wo seo that .1 =/(0) always. In this case

^l = sin-'0 = U.

In a similar manner, by Rnle I.,

lo^y c - I -t- ^' -1-

pj 1^ ^ (^ -r

1530 Rl'I-T' it.—Assume the series, as before, with iinhiown

coefficients. Diffierentiate successireh/ until the function re-

ap2)ears. Then equate coefficients in the two rquindcnt scries.

1531 K^-—To expand sin.^• in powers of x.

Assume sin a; = A + Bx+ Cx^-\-Dx^ + Ex*+ Fx^+

Differentiate twice, co3.-e= B+ 2Cx+ 31)..-} -\- 4Ej'-i oFx*+

-sinx = 2C+3.2Dx + 4.3/;.cH5.4Z'V+

Put x = in the first two equations; tborcforo A — 0, B=l.

Equate coefficients in the first and third series.

1 N
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Thus -2G=A, ..G=^0; -S.2D = B, --D=-^;

-4..dE = C, .•.E = 0; -6AF=D, .-. F= \,

Tlierefoi-0 sin.-c = «- .—^ + , ., o . r
— 'S:c-> as in (7G4).

1.2.3 1.2.0.4.5

1532 Rule III.

—

Differentiate the equation y = f (x) ta-icG

witJi respect tu x, and combine the results so as to form an

equation in y,j^, and j^x- ^^^^-^ assume y=A+Bx+ Cx"^+ &c.

'Differentiate tiuice, and substitute the three values of j, y^, y.^

so obtained in the former equation. Lastly, equate coefficients

in the result to determine in succession A, B, C, Si'c.

1533 Ex.—To expand siu mO and cos mO in ascending powers

of sin or cos 9.

These series ai'e given in (775-779). Tliey may be obtained by Rule III.

as follows :

—

Put a; = sinQ and y = smmd = sin (m siu"^a;).

Therefore y^ = cos (m sin'' x) (1434) (i.)

. , • \ \ in"^
, / --IN "tnx

?/2x = —sm (»i sm ' X) :, + cos {m sm x) :—^.
1 — x- (1— .r)2

Therefore, eliminating cos (^rtsin~^);), (l — x") yo,—xy^-\-in^y = (ii.)

Let y = A + A^x + A^x''+ + A„x"+ ("i-)

Differentiate twice, and pnt the values of y, y„ and ?/2^ in equation (ii.)

;

thus 0=:vr(A + A^x+ A,x^+Ay+...+A,X + )

-x{A, + 2A.,x + SA^x-+...+nA„x"-^+ )

+ (\-.-){2A,+ 2.SA,x+

+ {u-l)nA,,x"-"-+ n{n-\-l)A„,^x"-'+(n + l){)i + 2)A„^2-v"+...}.

Equating the collected coefficients of x" to zei'o, wc get the relation

A.o=
"^'""'

A (iv.)

Now, when .v = 0, y = 0; therefore ^1 = 0, by (iii.). And when x = 0,

y^ = vi, by (i.) ; and therefore A^ = vi, by diftcTeiitiating (iii.). The relation

in succession.

Cos md is obtained in a similar way.

1534 Rule IV.

—

Form the equation in y, y^, and y,,^, as in

Jiulr J II. Take the n"' derivative of this equation bij applying

Leibnitz's formula (14G0) to the terms, and an equation in
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3x0)

y(n+2)x» y(n+i)x» ^'^^^ ynx ''^ ohtn'nirtl. Piif x = ill this; and
i'mploij the rcsnltlinj formnln In riilnihttc in succession y
y.uo» 4"''- i^i Machiurins cximnsiou (loOZ).

1535 1^-x. ('""" ' = 1 + fi.r +— ,/- +
^ .7.. ^'

Obtained by Rule IV. Writing y for the function, the relation found is

(1— .S-) yix—xy^—a-y = 0.

Differentiating n times, by (14G0), we get

(1— a;') //(,.. 2)
r- C2>t+1) .«//(„. i;r — ('t- + n=) !/„x =.0.

Therefore ?/,„*2)xo = (<i*+ w") y,wroi a formula which produces the cocfli-

cients in iMaclaurin's expansion in succession when y^ and y-,r,) have been

calculated.

1536 ARBOGAST'S METHOD OF EXPAIsDlNG 4){z),

T^-hcrc ;:: = ^/ + ^^.»' + j^,.*'' + Y^j-*''+
^^'C (i.)

Let // = «/) (::). When x = 0, y = i> {") ; tlicreforc, by
Maclaiirin's tlieorem (1508),

1/ = 4>{fl)+^^\'/.rn-{- jh^Z/-2.-o4- j-V[]//.vo+ ^*^'C (ii.)

Hence, in the values of y^, y.,,, &c., at (141()), /; has to bo

put = 0.

Now, when x=0, z=a; therefore y., y.y., &c. become «|)'(^;,

<f>"{a), &c. ; and 2;.ro» ^2xo» '^u-or &c. become a^, (h, rtg, &c. Hence

1537 KxAMi'Li:.—To expand \os(a + hx + c..r + .l..:'+ &c.).

1 1 2
Here «, = ^, (/,= 2r, </, = GJ, ij,' (a) = —, <^"{i,) = --^, f (a) = ---.

It It U)

Therefore 2/^ = — , y..^, = r, H , ^j^ = ^ — .. H •

a a- a a <t «

Therefore, substituting in (ii.), we obtain as far as four terms,
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1538 Ex. 2.~To expand {a + aiX-\-a2x'^+ ...+a^x"y in powers of x.

Arbogast's metliod may be employed ; otherwise, we may proceed as

follows. Assume (a^+a^x ^-o.^x^i- ... a„x"Y = Af,+ A^x+ A^x^+

Differentiate for .r ; divide tbe equation by the result; clear of fractious,

and equate coefficients of like powers of u'.

BERNOULLI'S NUMBERS.

1539 ^ = l-|^+C.|-iJ.|+i?„|-&c.,

wliere B2, B^, &c. are known as Bernoulli's numbers. Tlieir

values, as far as B^^, are

7. _ ^'^^
-P -^ V _^G17

J. _ 4.3867

^^'^~273U'
''~ 6' ''~ 510' ''~ 798

*

They are found in succession from tlie formula

1540 nB,,_,-\- C (n, 2) n„_,+ C {n,V>) B^,_,+ ...

...+ C{n,2)B,-in+ l = 0,

tlie odd numbers 7^3, B^, &c. being all zero.

Proof.—Lot 2/= 7^- Then, by (1508),

,r" r* X*
y = y^-^y^^x-^-y-iro ,— + 2/3x0 ,-7 + 2/4-0 ,-7 + &e.

\A [1 \±

Here y,,^^{-\y'^B,,. Now 7/0 = 1 and y^ = -l, by (1587). Also

ye' = y+x. 'J'lierofure, by (14G0), differentiating n times,

e^ {y..+ '"y,.-r>. + G(n, 2) y^n-2).+ ... +ny,+ y] = y,.,.

Therefore ny^„.,^M\- G (n,2) y^„.o^M+ ...+ny^ + yo = 0.

Substitute I)„.i, Bn.2, &c., and we get the formula required.

1>3, J/5, J)j.. &c. will all be found to vanish. It may be proved, a j^riori,

that this will be the case : for

1541 e---T + l> -^7i:i-
Therefore the series (1530) wanting its second term is the expansion of the

expression on the right. But that expression is an even function of .i' (1401) ;

changing the sign of x does not alter its value. Therefore the series in ques-

tion contains no add powers of x after the first.

1542 The connexion between Bernoulli's numbers and the sums of the

powers of the natural numbers in (27G) is seen by expanding (I— <?')"' in

povvei-8 off', and each term afterwards by the Expoucntial Theorem (150).
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1543

1544
"

— 1 *> T
Pkoof. —^— = —'—-

T——: fi^d —— = 1 '
- , and by (1 539).

111 0271 — 1 —.2)1

1545 1 + :^:::+ :^ + :^ + =
, ,, ,

^4.o-i j-< 4-«
]^ 2 2;/

Proof.—In the expansion of -^ -^—p (1540) substitute 2i0 for a*, and it

becomes the expansion of cot 6 (770). Obtain a second expansion by difFer-

entiatinj? the higarithm of equation (815, sin in factors). Expand each

term of tlie result by the Binomial Theorem, and equate cocCQcicuts of like

powers of in the t\vo expansions.

STIRLING'S THEOREM.

1546 4>{.r^h)-4>{.v) = h<t>'{,v)^A,h {f (.r+//)-f Or)}

wliere .4,„= (-])"/?,„ -h [2n_ and A.„^, = 0.

Proof.—^„ .^Ij, A^, &c. are determined by expanding each function of

x + h by (1500), and then equating coeliicients of like powers of x. Thus

To obtain the gencial relation between the coefficients: put (.r) = r',

since Jp J.^, &c. are independent of the form of (p. Equation (LVIC) then

produ ces —j^— = 1 — AJi — A.Ji^—AJJ'—&.C.;

and, by (1539), we see that, for valuL;s of?! greater than zero,

A ,,. .
, = and A,,. = (- 1 )"7>\,. -^ [^.

BOOLE'S TlIEORiaL

1547 t^(.r+/0 -</»(.') = AJi {4>' (.r4-//)+f (.r)!

Proof.—A^, A.,. A^, Ac. arc found by the same method as that employed
in Stirling's Theorem.
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For the general relation between the coefficients, as before, make ^ (.<.') = e',

and equation (1547) then produces

-f~ = A,h+A,Jr + A,h' + &c. ;

and, by comparing this with (1544), we see that

A. = and ^,._i = (-l)»-'i?,„ ?^.

EXPANSION OF IMPLICIT FUNCTIONS.

1550 Definition.—An equation f{x, y) = constitutes y
an itiq^licit function of x. If y be obtained in terms of c« by
solving the equation, y becomes an explicit function of x.

1551 Lemma.— If y be a function of two independent

variables x and ,^,

Proof.—By performing the differentiations, we obtain

F'(y)yryz + F(y)y,, and F'(y) y.jj,+ F (y) y^,..,

which are evidently equal, by (1482).

LAGRANGE'S THEOREM.

1552 Given i/ = z-\-cV(f){f/), the expansion of u=f{i/) in

powers of x is

/(.'/) =/(«)+.'''^W/W+-+j^,-£^[!'^W}"/W]+

Pjioof.—Expand u as a function of (, by (1507) ; thus, with the notation

of (140G), n = nQ+ xu,o+ ,-^«2xo+ ••• + ,— ?f«xo+&c.

Here 7/^ is evidently /(;.')•

Differentiating the equation y = z-\-a'(p (y) for x and z in turn, wc havo

y^ = </' (y) + •'f (//) 'Jr and y, = l+.r^j^' (//) y,.

Therefore y,. = <!> (//) //, ; and, since v^ =/'(//) y^ and », =j"(ij) y,,

therefore also ?/> = (j) (y) x^ (i-)

The following equation may now be proved by induction, equation (i.)

being its form wlicn it, = 1.

Assume that m,,^. = f?(„_i), [{/^ (i/)}" "J ("•)

Therefore «(,..i„ = d^.._,^,ih [{V (y)}"".] (1482)

= ^.«-.).^.[{t(2/) }•'".] (15^1) ='/..[{V'0/)}"*'^'.], by (i.)
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Thus, n becomes ?i-f-l. But equation (ii.) is true when n = 1 ; for then

it is equation (i.) ; therefore it is universally true.

Now, since in equations (i.) and (ii.) the differentiations on tlie rif^ht are

all etlected with respect to z, .r may be made zero 6»;/"';/v diirerLiitiatiii^' instead

of after. But, when ./ = 0, u,=j'{u) and ^ (//) = V (-'). therefore e<iua-

tious (i.) and (ii.) give

».« = 9(-0/(--); «....= '^-.)=C{9 00}"/ CO].

1553 l'^>^- 1-—Given >/—aij + h = : to expand logy in powers of —

.

Here
>J

'= - + •^-; therefore, in Lagrange's formula,

a a

_,3 1

x = -; z = —; f(ij) = \og>j; cj> (y) = >/; and y = z+,,j\

Therefore u^ = log :: ;

»„^= J,._„, (.^''-^) = (3,^-1) (3u-2) ... (2u + l) z^\

Therefore, substituting the values of x and z, (1552) becomes

log, = ,ogA + Jll+...+ CS'-'Ho»-2)...(^" + l) ^l+
° •' *=

rt a- a 1.2 ...n tr" ct"

1554 Ex. 2.—Given the same equation : to expand y" in powers of —

.

f(y) is now y", and, proceeding as in the last example, we find

^"
f 1 _._

^' 1 ^ n(n + b)
i>* i_ ,

»('n + 7)0> + 8) h" J_
'•^ =^ r'^";?^"^ 1.2 a* a*"^ 1.2.3

nr» + 0)0> + 10)(»4-n) _^ J_ . ^.,. I

' -^ CI \ tt^ a a* a- or uT ii" a*

CAYLEY'S SERIES FOR —-.

1555

^=...-^r.^«,..+...+^lfi^[.[f;^)]"-a.+....

wliere ^l == -, ,-.

cp (U)

Proof.— Diflercntiato Lagrange's expansion (1552) for z, noting that

^ = L
. Replace x by ^. Put /' (y) = •'

^ ;
and therefore

dz l-.T<?.(i/)
^

9(^/) V'(^)

/'(r) =— -, since/ is an arbitrary function. Then make y= 0.
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LAPLACE'S THEOREM.

1556 To expand /(//) in powers of x wlien

I^ULE.— Proceed as in Lagranrje's Theorem, merel)/ suh-

st'dntlii'j F (zj for z in the formula.

1557 Ex. 3.—To expand e" in powers of x when ij = log {:: + x sin?/).

Here /(^) = e"; F{z) = logz; ^ (//) = siu 7/

;

In the value of m„^o (1552), f (z) becomes f {F(z)} = siulogz;

/(z) becomes f{F(z)} = e''"^'' = z; therefore f'(z) = 1.

Thus the expansion becomes

e" = g+ a; sinlog2+ ... + f^tZ(„_i), (sin log r)".

1558 Ex. 4.— Given sin y = x sin (y + a) : to expand y in powers of x.

Here y = sin"^ (x sin y + a), with 2 = 0.

f(y) = y; Fiz) = sm-'z; <j> (y) = sin (y + a).

(j>{z) in (1552) becomes <l>{F(z)} = sin (sin"' z + a).

f(z) becomes f [F (z)} = F (z) = sin-'z; therefore F' (z) = {l-z')-^.

Thus y = ^sin(sin-'2 + a) (l — z-)~^

+ lcK{sin'(sni-'z + a)(l-^r)-''\+ix%J,s{n'(ism-'z+ a){l-z')-^\ +

with z put =0 after differentiating. The result is, as in (796),

^ = a; sin ti+ 1-*^' sin 2a + \x^ siu oa + &c.

BURMANN'S THEOREM.

1559 To expand one function /(//) in powers of another

function ^ (ij)

.

Rule.—Put x = xp (y) in Lagrange's exjiansion, and there-

fore <^ (y) = (y-z) -^^^ (y) ; therefore

1560 /(/y) =/W+V'(//)
{f^/'(^)

},..+•••

Here 7/ = z signifies tliat after differentiating ;: is to be sub-

stituted for //.
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1561 CoH. h— Since .' = ^(.y), ij = xp-'{.r) ; therefore (15G0)

becomes, by \vritiiig ./• for ^(//),

/{,-u.o!=/«+... +
f|^{(-^])>0/)}^^+...

But since tlie variable // is changed into z after differentiating,

it is immaterial what letter is written for ;/ in the second

factor of the oreneral term.

1562 <^'^i?. 2.—If /'('/) he simply //, the equation becomes

'^-(..•)=~-+.-(:y),..+-+,T\|^{(-^y},.+

1563 Cor. 3.—If .-: = 0, so that )j = X(},{//), we obtain the

expansion of an inverse function,

1564: Ex. 5.—The scries (1528) for sin"' aj may be obtained by this

formula ; thus,

Let sin"' ^ =
'J,

therefore x = sin y = \p (>j), in (loGS) ; therefore

sin" X = X
.sin7//,!/=o 1 .2 Vsin^ ;//yo 1 .2 .3 Vsiu' /// ayo

1565 Ex. (3.-If y = ,~—-^, r,
= ^ ^^^ ''\

tlien, by Lagrange's

theorem (1552), since y = -^ + ^J'. we find

Put a; = 2 v//, thus

1566 ll^^}-::m'=r+,.r'+... + 'll^2^i'-+
\ 2 /

I

r
\

7i+ r

Change the sign of «, thu.s

1567 ('±^^M)-=i_,„+...(-,).»i£^r±

This last series, continued to — + 1 or —-— terms, according as u is even

or odd, is equal to the sum of the two scries, as appears by the Binomial
theorem.

2 o
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Also, by Lagrange's Theorem,

1568 K'i/ = iogf + (;^)'+^^.4g(f)%
or, by putting x = 2 \/t,

1569 .ogi-^4i^ = <+...+lgr+

1570 Ex. 7.—Given xy = logy ; to expand y in powers of x.

The equation can be adapted as follows

:

y = e'", therefore xi/ = xe"".

Put xy = y\ therefore y = x&\ from which, by putting z = in (15.52),

y may be expanded, and therefore y.

Ex. 8.—To expand e"" in powers of yi"-'

.

Here x = yi'\ f (jj) = y~^ = e-^\ if we take z = 0. Therefore

1571 e'"'=l + «ye^^+ a(a-26)'^' + a(a-86)^^^+

ABEL'S THEOREM.

1572 If ^ (') be a function (developable in powers of e^\ then

+
«("-'-^)'-'

^-(.,+,.i) +
J. . .w ... )

Proof.—Let (^ (//) = A,,^ A^(^'\ AJ-^ -^ A^e^'-' -\- (i.)

Put 3/ = 0, 1, 2, 3, &c. in (1571), and multiply the results respectively by

ylfl, A^^., A^e^, &c. Then the theorem is proved by equation (i.).

1573 Cor.—If ({> (,*') = x", Abel's formula gives

-\-C{n,r)a{a-rby-'{,r+rhy-'--^&c.

INDETERMINATE FORMS.

1580 Forms A, — • Rule.—7/' ^44 ^^ « fraction irhirh
if X i/- (x)

takes cither of these forms irhen x=:a: tJtoi ^-i^ — ^,)l or

^„ . , the first determinate J raction obtained hij differentiating
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the numerator and rJeuominafor simuIfdnpoiisJi/ and suhxt'ttnthig

Q. for X in the result.

1581 But at any stage of the process tlie fraction may be
reduced to its simplest form before the next differentiation.

See example (1589).

Proof.— (i.) By Taylor's theorem (1-500), since (a) = = v// (a),

(p (a + h) _ <!>(a)-\-h<p (<i±Bh) ^ tj/Ja+ Oh) _ (f>'
(a)

\P{u + l,) 4.{;) + l4''(<i + 0li) xp\a + Uh) ^//"'(u)'

wlien // vanishes.

^ ^ ^^ ^ ^^ ^ ^(a) xPia) ,p{a)'

which is of the first form, and therefore

_ f (a) _^ <t>'(a) ..,,,. _ {0 (a)Y ;^>) m, . <p (a) _ ^J^t)
-

{4.(a)Y .;<^ (.) ^
^^^'^^ - (H-n' 9(ny

^^'"'"'
^OO " 4^\'-0'

1582 Vanishing fractions in Algebra are of the indeter-

minate form just considered, and may be evaluated by the

rule, or by rejecting the vanishing factor common to the

numerator and denominator.

^ ^, a-»-a« (.r-a)(.r"-+ a.r + <r) Scr 3
Ex.—When x = a;

,
= - = ^^

;
-' = ^ - = _ a.

.c--a' (x-a){.c + a) '2<i li

1583 Form Ox x. Rule.—If (^ (x) X ;// (x) takes this form

U'hen x= a, j"^^ 1* {^) ^ ^ (=^) = i" (=') "^ Tl— '
""^"'^^^ ^"^ ^f ^^^^

form —

.

1584 Forms 0^ x", 1". Rule.—7^ {<^(x)]*^'> takes any of
these forms irJicii x = a, find the limit of the to(/arithm of the

expression. For the loga r ittun r=: xp(ji") log (pi^n), irhlrh, in eaeh

case, is of the form X oo .

1585 Form X— X. Rule.—If <{>{x)~xf.{x) takes this form,

when x=a, tee have e'''^"^-*^"^ = ^^^ = 77' ^^"^ ^f ''*'' '-"^"^ ^^

^^I's expression he found to he c, hy (1580), tlie required value

ivill he log c.

1586 Otherwise : ./,(a)-i^(a) = ./>(a) U - '^f^]-, u-/i/c/i /s of
L (p{-d))

the form oo X (1583).
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1587 Ex. L—WitL X =0, y = -^ = 1 = ^ (^^^^^ = 1-

Also, with a; = 0,

e'-l-xe' e'-e'-xe' -x 1
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JACOBIANS.

1600 I^^'t //, r, ir be n functions of n vanables a', ?/, ." {n = 3).

The fi)ll(nviii^ determinant notation is adopted :

—

II, Uy u,

'•.r '^ '*.-

u\^ u\ w.

(I (i(rtr)
•*V '^'p "^f-

//» //<• //»

</(.r//.t)

(/ [unr)

The first determinant is called the Jacohlan of ?r, r, ir with

respect to .r, //, ;:, and is also denoted by J{iirir), or simply

bv J.

1601 Theokem.—
(/{.n/x) d {nrir)

Proof.—If the product of the two tletenniuants be formed by the rule in

(57U), first changing the cohiuins into rows in the second determinant (669),

the first column of the resulting determinant will be

110
= 010

1 1

u^Xu + u^y„+v,z„ = u,,^
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1604 If u, V, w, n functions of n variables x, ?/, z (n= ^), be

transformed into functions of K, v, I by the linear substitutions

X = (hi-^(hr)-^a,l^
^^^^^^^

(/(unr) _ ^^ (J (urir)

z = (\$+ c/T) + (',C
^ or J = MJ,

where M is the determinant (ai^h.,r.^) called the modal us of

transformation (573).

Pkoof. / = Uz ^ly ":
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Pkook.—/ is of tlie third degree, and therefore J,, .7^, J, are of the second

degree, and they vanish because u, v, w vanish, by (1G07). Hence n, i\ w,

Jt, «7y, /, form six equations of the form (;r, //, i-)' = 0.

tl

1609 T^ " variables a?, y, « (7?-= 3) are connected with n

otlier variiibU'S I, »;, l^ by as many equations ?(= 0, t'= 0, 7('= ;

d.y (hi fh (Jiiirn') . fl(Krii')

J^ tq Tie

dx dij dz

li'd^T^

iI^iyjQ ' (({^rf/z
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The theorem may be extended to any quautic, the quan-

tities on the right remaining unaltered. Thus, in a ternary

quantic u of the n^^' degree,

1624 ^Tit^-\-yify-\-^if= = »itf', and generally

1625 {.r(h+i/d,-]-zd,Yu = n {n-l) ... {n-r-^l) u.

Definitions.

1626 The Elhninant of n quantics in n variables is the

function of the coefficients obtained by putting all the quantics

equal to zero and eliminating the variables (583, 586).

1627 The Discriminant of a quantic is the eliminant of its

first derivatives with respect to each of the variables (Ex.

1631).

1628 An Invariant is a function of the coefficients of an

equation whose value is not altered by linear transformation

of the equation, excepting that the function is multiplied by

the modulus of transformation (Ex. 1632).

1629 A Covariant is a quantic derived from another quautic,

and such that, when both are subjected to the same linear

transformation, the resulting quantics are connected by the

same process of derivation (Ex. 1634).

1630 A Hessian is the Jacobian of the first derivatives of a

function.

Thus, the Hessian of a ternary quantic u, whose first

derivatives are li^, n.

d{u^u„uj)

d {wyz)

U,r. u.

(I.,. U,„ II.,,

1631 Ex.—Take the binary cubic u = ax^+ Sbx^y + dcxy^+ dy\ Its first

derivatives are

u^ = Sax^+ 6bxy+ Scy'

,

u,j = Sbx^ + 6cxy + ody'.

Therefore (1627) the discriminant of m
is tlie annexed determinant, by (587).

1632 The determinant is also an invariant of u, by (1G38) ; that is, if u

bo transfDrmed into v by putting x = nl^fii) and // = n'£-|-/3'»/; and, if a

corresponding (h;terniinant be formed with tlie cocilicients of r, the new
determinant will be equal to the original one multiplied by (u/3'— a'/3)\

3a 66 3c
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1633 Again, «2, = GtUJ+ G&//, Wjy = Ccc + O'/y, u^,^ = 6bx + 6ci/.

Therefore, by (1630), the Hessian of w is

v.^n,^-nl^ = (ax + hii)(cx + dij) - {h.c + r//)»

= {ac-lr) x-+(ad-bc) x >/ + (h<J- r) if.

1634 Anil this is also a corariant ; for, if u bo transformed into v, as

bftcut.', then the result of transforming the Ilessiiin bj the same equations

will be found to be equal to V2zCiy— i%. See (lL'io2).

1635 If a quantic, 7( =/(.?•,//,:: ...), involving n variables

can be expressed as a function oF the second degree in

Xi, X., ... A",,.!, where the latter ai-e linear functions of the

variables, the discriminant vanishes.

PuooK.—Let u = (f>X\ + \//X,A'j + x-^'A^s + «^c.,

where A', = a,a; + h^H + c^z + &c.

The derivatives u„ u^, &c. must contain one of the fjiotors XjX, ... X,,., in

every term, and therefore must have, for common roots, the roots of the

simultaneous equations X, = U, X.^ — 0, ... X,,., = ; u-l equations being

required to determine the ratios of the n variables. Therefore the dis-

criminant of a, whicli (lGl2") is the eliminaut of the equations Hr = 0, n^ = 0,

&c., vanishes, by (oS8).

1636 <^^<"^- 1-—If '^ binary quantic contains a square factor,

the discriminant vanishes ; and conversely.

Thus, in E.xample (1G31), if u has a factor of the form {Ax + J)i,')'-, the

deterniinaut there written vanishes.

1637 Cor. 2.—If any quadric is resolvable into two factors,

the discriminant vanishes.

An independent proof is as follows:

—

Let M = Xy be the quadric, where

X= {ax + by + cz+...), Y= (ax + h'y + c'z+...).

The derivatives u^, u^, u. are each of the form i>X-\-qY, and therefore have

for common roots the roots of the simultiineous equations X = 0, F=0.
Therefore the eliminant of u^ = U, u^ = 0, &c. vanishes (IG27).

1638 The discriminant of a binary quantic is an invariant.

Pkoof.—A square factor remains a square factor after linciir (ransforma-

tion. Hence, by (1G3G), if the discriminant vanishes, the discriminant of

the transformed equation vanishes, and must thenforo contain the former

discriminant as a/«r/or (see 1G28). Thus the determinant in (1G31) is an

invariant of the quantic ii.

The discriminant of the ternary quadric

1639 u = aa^'-\-bf/'-{-rz'-]-'2fyz+2gz.r-^ 2hxy
2 p
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is the eliminant of the equations
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Proof.—Let the linear substitutiims (1(528) be

x = ai-\-l'>i, y = a'i+ h'tj (i.)

Solve for I and »?. Find l^, £^, Vx, '/.,. ""f^ substitiitn in tlie two equations

d, = d.l^^d,,,,^;
'

,l, = d.E, + d„„r.

The result is

(/, = {aJ^ + h(-.J.)]^M; -d,= {a'dr, + h'(-dt)}^M (ii),

where M = ah'— a'h, tlie modulus of i ransformation. Etjuations (i.) and (ii.)

are parallel, and show tiiat the operations d^ and —d^ can be transformed in

the same way as the (juanlilies x and // ; that is, if 9 (a;, ?/) becomes v/* (I, n),

then f(d^, — (/,) becomes v/- (</,, , — Jf ) -f- J/", where 71 is the degree of the

quantic 0. But ^ (d^, — c7,) (.c, //) is a function of the coefficients only of

the quantic 0, since the order of differentiation of each term is the same as the

degree of the term ; therefore the function is an invariant, by definition (1628).

1649 Example.—Let {x, y) — ax*+bx^i/ + ex!i^+fy*. The quantic must

first be completed; thus, f (xy) = ax*+ bx^y + cx-y^-\-exy'^+fy\ {c = 0) ; then

<p (d^, -J,) f (x, y) = (uti,,— 5t?3j,z+ cc/2y2x— «^!,ax+/(?4x) 9 (a;, y)

= a.2if-h.Ge+ cAc-e.{Jb+f.2~ki = 4:(l-2af-dhe + c").

Therefore 12af-Sbe-\-c- is an invariant of ^, and = {\2AF-^BE + C^)-i-M*,

where A, B, C, E, F are the coefficients of any equation obtained from ^ by a

linear transformation.

But if the degree of the quantic be odd, these results vanish identically.

1650 Similarly, if (p(,r,y), ^P {x, ij) are two qualities of tho

same degree, the functions

<t>{fI,,-(L.)rl^{.v,i/) and rp{d,,-(l.,)<t>i.r,,,)

are both invariants.

1651 Eyi.—Uc(> = ax'+ 2bxy + cy' and 4. = ax--^2b'xy + cy' ; then

{ad..^— 2bdr^ + cd.i^) (ax''+ 2b'xy + c'y^) = ac+ca'-2bb', an invariant.

1652 A Hessian is a covariant of the original quMitic.

Proof.—Let a ternary quantic u be transformed by the linear substitu-

tions in (1604) ; so that u = (p (x, y, z) = ^ (£, »j, ;). The Hessians ol tiio

two functions are ^11"^'>3) and 'l^W'il (1^30). Kow
d (xyz) d (i»/;')

d(n^u^u^) ^ ^^d{ n^ u^ u.
) ^ ^^

djj^.n^ ^ ^^,
djn, 11^ »,)

d{inO
'

d[-rj,) ' c/(^<;0
'

'/'•'y^')

The second transformation is .seen at once from the form of the determi-

nant by merely transposing rows and ci)lumns; the first and third are by

theorem (l()04j. Theret'ore, by definition (itJ2'J), the llessiau of tt is a

covariant.

1653 Coij^rcdicnts.—Variables are cogredient when they are

subjected to the same linear transformation ; thus, .r, ;/ are
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cogredient witli x', y' wlicn

y — ('i+ <h ^ y — ^'^ + ^h

,r = a^^-hrj \ ^^^ a'= ai'-\-hr)'
| _

1654 Emancnts.—If iu any quantic 2i = (p {x, ij), we change

X into x-\-px' , and y into y-\-py', where x
,
y' are cogredient

Tvith X, y; then, by (1512),

<l>(.r-\-p.v',y+py')

= n-\-p (x'd,-[-y'dy) u-\-iy (.rV/,+//V/,)- m+ &c.,

and the coefficients of p, p^, p^, ... are called the first, second,

third, ... emanents of u.

1655 The emanents, of the typical form {x d^-[-y'dyY u, are

all covariants of the quantic u.

Proof.—If, in (.r, y), we first make the substitutions wliich lead to the

emanent, and afterwards make the cogredient substitutions, we change

X into x-\-px', and this into a$+ J»;+ |0 (a£'+ 6»?').

And if the order of these operations be reversed, we change

cc into al-^-hri, and this into ail-\-pt)+l> {r)-\-prjf).

The two results are identical, and it follows that, if ^ {x, y) be transformed

by the same operations in reversed order, the coefficients of the powers of p

in the two expansions will be equal, since p is indeterminate. Therefore, by
the definition (ltJ21>), each emanent is a covariant.

loOO For definitions of contrngredieiits and cotitravariants, see (1813-4).

Fur other theorems on invariants, see (179-i), and the Article on Invari-

ants in Section XII.

IMPLICIT FUNCTIONS.

IMPLICIT FUNCTIONS OF ONE INDEPENDENT VARIABLE.

If y and z be functions of <t, the successive application of

formula (1420) gives, for the first, second, and third deriva-

tives of the function ^ (//, ::) with the notation of (1405),

1700 4,A!iz) = ^:,!i,+ j>..z...

1701 <t>: (!>^^ = 'k,,.vl+--i4'...'ir~.+<t>u^:+<t',ir,. + 't'.~u-
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1702 K d/^) = *.,//^+;?^..//;~.+'?</»...//x-;+<^:..4

By iii:ikiii<j^ ;. = ,r in tlic last tlifcc formnlji}, and (-(.nsc-

finoiitly •.',.= I, ::.,^=0, or else by tlilTcrciitiating independently,

we obtain

1703 <f>J.n,) = <l>„,/,,.
+ cf>_,..

1704 <P:.r (>,/) = (^,,/y:.+2(^,„,//,.+(^,,.+(^,//,...

1705 K (,'//) = (^,,//^+;?(^,,...//:.+i?<^,.,.//.+<^3x.

1706 In these formnlff! tlie notation
<f>^

is used where the difforentiation

is partial, while ^^(.r, y) is used to denote the complete derivative of (}>(x,y)

with respect to x. Each successive partial derivative of the function ^((/, z)

(1700) is itself treated as a function ol' ij and z, and differentiated as such by
formula (14-20).

Thus, the differentiation of the product cp^y^ in (170(1) produces

The function <p^ involves y and z by implication. If it should not in fact

contain z, lor instance, then the partial derivative 0„, vanishes. On the other

hand, y^, y,^, &c. are independent of z; and z^, Zjj., &c. are independent of?/,

DERIVED EQUATIONS.

1707 If ^ (•''7/) = 0, its successive derivatives are also zero,

and the expansions (1708-5) are then called i\\Q firt^t, second^

and third derived equations of tlie primitive equation ^(.r//) = 0.

In this case, those equations give, by eliminating //j.,

1708 !hi = — i^', ^JJL= 2j>..„ j>.,. (f).,
— <!>:, <f>;

— <^,y (t>i
_

1710 Similarly, by eliminating ij^ and >/.,,., equation (1705)
SN'ould give y^^ in terms of the partial derivatives of ^ (.^7/).

See the note following (1732).

1711 Jf 4>{'n/) = i) niHl i^=0; p{=:-hr.
di dd' </)^

1712 and ^ ^ H,,4.-<I>:A.^

Proof.—Bj (1708), ^, = 0. Therefore (1704) and (J70o) give these

values of t/o, and y^,.
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1713 If
</'a-

f^Tid (\>y botli vanisli, 7/.^ in (1708) is indeterminate.

In tins cape it has two values given by the second derived

equation (170 I), which becomes a quadratic in y^.

1714 If
<\>-i.ri fl>.r,n and (poy also vanish, proceed to the third

derived equation (1705), which now becomes a cubic in y^,

giving three values, and so on.

1715 Generally, when all the partial derivatives of (j> {,r, y) of

orders less than n vanish for certain values x= a, y = h, we
have, by (1512), <}>{a, h) being zero,

i>
{a + h, h + Jc) = — (/<4+ K)"'^ (A'i/).a,i+ terms of

higher orders which may be neglected in the limit, {x, y are

here put = a,h after differentiation.) Now, with the notation

of 1406), H..a-\-Hv.b = 0;

therefore JL = -t^ = ']!.;

the values of which are therefore given by the equation

1716 ihcl+ kd,Y<l>{.r,y),^,,= 0.

1717 If Vjc becomes indeterminate through x and y vanish-

ing, observe that -^ — ^L in this case, and that the value of
° dx X

the latter fraction may often be more readily determined by

algebraic methods.

If X and y in the function (j) [x, y) are connected by the

equation \p (x, y) = 0, y is thereby made an impHcit function

of X, and we have

1718 M-,!/) = '^^^!^^-

1719 K {>', .'/) = { i<i>,„t-'i'^M *

+

iK'i'-<i--^<i>.) r,

Phoof.— (i.) Differentiate both f and \p for x, by (1703), and eliminate y^.

(ii.) Differentiate also, by (1704), and eliminate ?/, and y^x-

If ?/,?/, z are functions of x, then, as in (1700),

1720 <t>r (^y^) = <^. »/.,.+(^,.v.,.+(^.r...
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1721 <t>.r ('///-) = <!>:,. »/;+(^,,//;+<^,.4

+ Cf),, U.,,+ <l>„ //,.,+ </). ^ir .

1722 To obtain <p^{i'ir:) and fj.^ (.''.V"-) , iiiako //=,/• in tlio

abovo cMjnations,

Let U= (p (.?', //, ;:, I) be a function of four variables con-

nected by three equations u = 0, v = 0, iv = 0, so tliat one of

tlie variables, ^, may be considered independent.

1723 ^^^e have, by differentiating for ^,

X . 1 ./ ,/f I - .
I s I where J — .

1 ^VOA '^''' — — 'f ^'"'"'^ 1 ^/ _ _ (Ufn'i(') _1_ .

^^'^^ ^ - 715;^ ./ ' ^//
~

r/ (.f..) ./
'

(li (/{•n/i) J '

Observe that V^ stands for tlie complete and
</)f

for the

'partial derivative of the function U

.

Proof.— (i.) U^ is found by taking the eliminant of the four equntions,

separating the determinant into two terms by means of the element f^—U^,

and employing the notation in (IGOO).

(ii.) Xf, i/t, and z> are found by solving the last three of the same equa-

tions, by (582).

IMPLICIT FUNCTIONS OF TWO INDEPENDENT VARIABLES.

1725 If the equation <p {.v, y, z) = alone be given, y may
be considered an imj)licit function of .r. and ;:. Since .r and z

are independent, we may make z constant and differentiate

for /'; thus, for a variation in x only, tlie ecjuations (1703-5)

are produced again with ^ (Xyy,z) in the ])lace of <p (.'',//).

1726 It" ' he made constant, z must replace x in those ecpia-

tions as the independent variable.

Again, by differentiating the equation <p{ryz) = first for

:r, making z constant, and the result for z, making x constant,
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vre obtain

1727 (/>.,.,+ (^,,.//.-+(^,.-//.,.4-f>.//.//.+<^.//.,-. = 0.

From tills and the values of y^ and //,, by (1708),

1728 f/ = ^"'' ^" ^'' "^ ^"' ^" ^''~ ^ ''" "^
^~ ^

'' ^' ^'"

^_^^
"^

1729 If 3S, Ih - i^^ tlie function <^(,f, //, 2) be connected by the

relation i/- (,r, //, ::) = 0, // may be taken as a function of two
independent variables x and ;?. A¥e may therefore make z

constant, and the values of f^ {.r, y, z) and «^2.r (^\ Ih ^') are

identical with those in (1718, '19) if x, y, z be substituted for

a?, y in each function.

1730 By changing x into ;: the same formula give the

values of ^, (,2", y, z) and ^o. (-f, 7/, ,;•).

1731 On the same hypothesis, if the value of <^^ {x, y, ,?), in

forming which z has been made constant, be now differen-

tiated for z while x is made constant, each partial derivative

^j., xpy, &G. in (1718) must be differentiated as containing x, y,

and z, of which three variables x is now constant and y is a

function of z.

The result is

1732 f.(.r,,v,=:) = {(<l>..,<!,-^...,4'M-{hA,-^:,A,HAl

In a particular instance it is generally easier to apply such rules for

differentiating directly to the example proposed, than to deduce the result in

a functional form for the purpose of substituting in it the values of the partial

derivatives.

1734 Example.—Let <p (x, ?/, z) = Ix + ;»// +• uz and \p (.»•, y, z) = x- + 7/ + z^

= 1, X and z being the independent variables ; <p^ (;<•, y, z) and <p_^ (.c, y, z) are

required. Differentiating 0, considering z constant,

4>x (x, y, 2) = l+ m -•- = l—m— ; since -~ = —
,
=

;

dx y dx V'y y

, , y — xijr tr + x"^

02X (.r, y, -) = -VI -^—^ = -m ^,— ;

a result which is otherwise obtained from formula (1719) by substituting the

values <p^ = Z, </>y = '"> ^s = « ; <p2x = ?»2j/ = ^2: = ;

^P.
= 2x, ^, = 22/, >P.

= 2z; ,/.^ = ^,, = ;/.,, = 2.

Again, to find ^^. (x, y, z), differcutiato for z, considering x constant iu

the function

-JL—l-m—
; thus —-^ = +?» --j-= — w-r-, since —= - = .

ax y dxdz y y^ dz \p^ y



nn-i.K'iT FrxrrioxFf. 297

1735 T^ct U= <p (;v, ?/, ^, ^, ij) be a function of five variables

coiniectetl by three equations vt= 0, v = Oy w= 0; so that two

of the variables ^, »? may be considered independent, ]^^aking

?} constant, the e([uations in (172:3), and llie values obtained

for
[/f,

X(,
//f, r^ff, hold p^ood in the ])resent case for the varia-

tions due to a variation in S, observing that
<f>,

a, i\ ir now
stand for functions of rj as well as of ^.

1736 The corresponding values of Z7,, .r^, y^, z^ arc obtained

by changing ^ into rj.

IMPLICIT FUNCTIONS OF n INDEPENDENT VARIABLES.

1737 The same metliod is applicable to the general case of

a function of n variables connected by r e(piations «= 0, r= 0,

w= 0...&c.
The equations constitute cuiij n — r of the variables wo

please, indeprndcnf : let these be ^,r),l.... The remaining r

variables will be dependent: let these be u:,ij, ::...; and let

the function be U=(l>{riy,z ... ^, tj, 2^ ...).

For a variation in ^ onhj^ there will be the derivative of the

function U, and r derived equations as under.

1738 (^.,,r.+(^,;/.+f,-, + ... + ^. = L^^,

U^.V^-\-Uj,?/^+ U^Z^. -f ... + ;/,== 0,

«'x.*'f+ ^^.'A+i'.—f + ... + 7V = 0,

&c.,

involving the r implicit functions x^, v/^, z^, &c. The solution

of the r equations, as in (1724), gives

-\MOQ (ft' (/(unr...) 1 (/// (/(unc...) 1 n

1740 where J = -ri f • Also -rp — -r-^—g- -r-

The last value being found (wactly as in (172:3).

1741 With ^ re])laced ])y »j we have in like manner the

values of x^, i/^, ,v^, U^ ; and similarly with each of the inde-

pendent variables in turn.

1742 If there be n variables and but one equation

^ ('j .'/,
-

. . .) = 0, there will be ?? — 1 independent and one depen-
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dent variable. Let // be flependent. Then for a variation in

X only of tlie remaining variables, the equations (1 703-5)

apply' to the present case, </> standing for (^ {x,y,« ...). If x

be replaced by each of the remaining independents in turn,

there will be, in all, n—1 sets of derived equations.

CHAXGE OF THE INDEPENDENT VARIABLE.

If
II
be any function of x, and if tlie independent variable

ic be changed to i, and if t be afterwards put equal to y, the

following formulas of substitution are obtained, in whichi p = t/j,:

1760 !k = 2lL = l.
(Lv a\ .Vy

differentiating these fractions, we get
J'

oV
^^ ^ -^ " ^ ~ ^ ^

'*

1766 =
^"^'''Z^''''' =Pir+inhr

'^;

j.^^: Ex.—If X = r cos 6 and y = r sin B ; then

1 7AQ ^ _ ^'^^ ^<^^ ^+^' <'o^ ^ f/'V _ r-H-2>-^— rr..^

^ '^° f/r
~

>', cos e-r sin ^ ' iLv'
~

{r, cos ^- >• .sin df
'

'^'I'roof.—Wiitiiig for t iu (17C0) and (17G2), we have to tiud ,)•„ y,,

aJi« 2/29 ; thus,

Xg = r^ cos fl— r sin ; X2e = »";« cos — 2i\ sin — r cos ;

7jg = 7-^ sin + r cos ; yie= ''•« sin + 2/-^ cos 6— r siu 0.

Substituting tliese Viilues, the above results are obtained.

'", l^o cliange tlie variable from x to / in ('/ + />.') '\v„.r> where
"(r/'-^'/A/-) = ('\ employ the formtda

1770 {a-^hrr,/„, = h^{d,-7T^\) K->7=2) ... (^/ -1)//..

i^'' Which, multiplication by ^7^ by the index law signifies the

repetition of the operation d, (1102).
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Pk(K)K.— <M('i+ '/J')''y„,} = {n (" + t.r)""'/;//,„+ (a + ij;)".V(...i;r} -P.-

Nuw hj', = r' = a + l>.r,. Substitute this, and iluiioto (n + hj-)"i/„, by U,,

thcreforo </, ( T.) = « ?/,.+
J

f/',. . i, or T,,
. , = /. ('/. -n) f^,..

Thorefoi-e L\ = i (</,-«-!) U ,d ?;„., = Z, (,/,_„_ -J) r„ 2, &c.,

and finally T, = ^ (,/,-!) ir,.

13ut r, = ((Z.+ //J-) .V, = hx^ii', = hij,.

Thercfdi-o Un = h" (J,- IT^) (J,-TT^) . . . (<?, - 1 ) lu-

1771 ^'<^Ti.— ('/+.'')".'/"..• "^^^^ '^'"y^ix '»i'L' transformed l)y tlio

Bamo fonuula by putting /^= 1.

1772 Ijf^fc F £.-/•'('> //)> wliere x, u aro connected witli ^, ij

by tlic c(jnations ?/ = 0, r = 0. It is reciuired to cliaiige the

independent variables <r, y to ^, rj in the functions F^. and F,,.

1773 Kn>K.—To find the value of F^

—

Difforrntiate V, u, v,

cflc/i- M"//7i respect io x, considerinfj ^, tj functions of the inde-

pendent variables x, y ; and form the (diminant of the residtiiKj

equations; thus,

Siruilarly, to find Vy.

I'i
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1780 Given V = f{x,y,z) and ^,v,l known functions of

X, y, z; \% F„ V^ are expressed in terms of F,, Fj„ T", by

the formult^

dV^ ddVO ^j dV^ di^VQ .J dV _ d{^V) ^j
di d{,v,/z) ' ' dr) d[A'f/z)

'*'
dC d [.vt/z)

Proof.—Differentiate V as a function of ( T^s +V^y]^+ V^i^^ = V
f, t], ^ with respect to independent variables

a', y, z. The annexed equations are the result.

Solve these by (582) with the notation of (1600).

1781 Griven V = f{x, y, z), wliere x, y, z are involved witli

^, rj, I in three equations ?i = 0, -y^O, w= 0, it is required

to change the variables to ^, rj, ^ in F^j F'^,, and F,.

Applying Rule (1773) to the case of three variables, we have

n
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1784 1 X = 1 r Sin COS f + F, ^ - F^—r-^.

«MrtK T 1' • n • ,
, I' COS sill </> , -,r COSA

1786 F.= F.cosO-IV"';;'.

1787 T; = F.siu cos </)+];.sin sin Y'+F cos 0.

1788 V, = V^ )• cos cos ^ + F,, r cos sin if>
— F, r sin 0.

1789 1^# = - ^"x r sin sin + F^ r sin cos 0.

1790 To find V^ directly; solve the equations ii, v, ?v, in (1783), for r, 0,

and f; the sulution in this case being practicable ; thus,

Find r„ 0^, ^^ from these, and substitute in F^ = F,)-^+ T',0^+ V^'P^. Simi-

larly, Fj, and F.. Also F,. = F^.i;,+ Fyy,+ F^v Similarly, F, and \\.

1791 To obtain F^^, substitute the value of F^ in the place of F, in tho

Viiluu of I'j,, in (1785), and, in difi'erentiating Vr, F^, F^, consider each of

these quantities a function of r, 0, and (p.

To change the variables to r, 0, and (j>, in V.^-\-Voy-{- ['^,

the equations (178;3) still subsisting. Result

—

1792 V2.-^V,,+ V,,

= V,,.-^l T;+-V(r>'ot6>+i;,+ T;,cosec^6').
r >•"

Proof.—Put r sin = p, so that x = p cos ^> and jj = p sin 0,

therefore, by (1770), 1'^+ F,, = Fv + ^ i;+ -\ F,, (i.)-

Also, since « = r cos and p = >• sin 0, wo have, by the same formula,

]:,.+ ]\= V,r+~V,+ \ F., (ii.)-

J.
^.-

Add together (i.) and (ii.), and eliminate F„ by (177(;), which gives

T • fl , T COS0

r

If r l)r a function of ii vnrial.U'S ./', //, :: ... connected by

the single relation, d--\-tf-\-z'-\- ...= >*'" (!•)•

1793 »;,•+ 1'.,+ 1'..+^^- = ''-+^ »V.
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— , by differeutiating (i.),
r

therefore V-,, = V„ - + \\ '-—^ = V,r ^- + F,

.

„ ,

.

Similarly F,, = F,. l^ + F. (i- - -^ )
, &c.

Thus, by addition,

T2,+ F,,+ &c. = T,. -, +^(^7 ^8
—

j
- F,,+ -^T,,

LINEAR TRANSFORMATIOK

1794 If I^ = /('^» i/j '^)5 and if the equations u, v, w in

(1781) take the forms

y = a,i-\-b,7]+ c,C
[

, then j Srj = B,.v+B,,/-}- B,z,

by (582), A being the determinant {(h^'2<^z)i and J^ the minor
of ^1, &c.

1795 The operations d^, dy, d^ will now be transformed by
the first set of equations below ; and d^, d^, d^ by the second

set.

d, = {AM,+B,d,+C.Ak) - A
[

, r/, = h,d^^h,d,-^h,d^ .

d, = {A,d,+B,d^+t\d,) - A^ d, = c,d^^c,d,+c,dj

Proof.—By c^^ = d^^^+ d^ij^ + J^C^ and d^ = d^x^+ d^y^+ d,z^; and the

values of s„ Xt, &c., from the preceding equations.

1797 From^ (1705), V^ = a,V^+ aJ\+ a,V,. Operating
again upon V^, we have

and by substituting the value of V^, and similarh; with j'a,,,

Vi^, we obtain the formula^,

1798

V,, = b; V,^-\-l/; V,^-\-lK^ V,,-\-2bA]\,+2hA y..r^'2bA F,.,
[

.
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ORTHOGONAL TllAN.SFORMATION".

1799 If the traiisfoi-mntion is oi'tliOLr<)n:il (-^S-l), wo liuvo

and sinco, by (582, 584), A=l, J^^a^, etc.; (Mjuatioiis

(1701) now become

1800 ^r=a,^-^b,r}+r,C-

And equations (1705) become

1802 (i,=:a,d,^-h,(l,^^c,(l;

The double relations between x.

equations of (1800-1), and the similar relations in (1802-8)

between dj.dy(L and d^d^J^, are indicated by a single diagram

in eacli case; thus,

1804 i V I fh (fn (k

\(f;\ dc = (i\d ^-\-<i.d„-\-(i(1.^

'aI; V, f/„ == h,d,-\-h.M„-^h,d, >.

., d^

)

d- = (\ </, -h (', </,+ r, d, J

?/, z and ^, 7?, t, in the six

tt'
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1810 When Y=f{d\ y, z) is orthogonally transformed,

n.+ T^2.+ F,,= V,,-\-V,,^V,,.

Proof.—By adding together equations (1708), and by the rehations

Oi + hi + c'l = 1, (fee, and aia„ + hih„ + c^Ci = 0, <fec.,

established in (584).

1811 If two functions u, v be subjected to the same ortho-

gonal transformation, so that

u= (t>{.v,f/,^) = ^{^,y],0 and v = r}^{.r,i/,-) = ^{tv^Q'^

then (^ {d^, d^, d^) v = ^ {d^, d^, d^) v.

1812 Ex.—Let ^^ = ax'' + hf + cz^ + 2fyz + 2gzx + 21ixij = ^

= aV -^h'n'-^ cC+ 2/v^+ Ig'Kl+ lliiri = *,

and let v = .(;' +/ + 2= = ;H»r + ^'= 4/ and ^.

Then (f7„ cZ^,, cZJ v = ar,^ +?^i',j, +ci-,, +2/^^, +2r/y,, +2/(V^y
,

and $ ((7^, (Z^, cZ^) v = a'v^^ + Z/'ug^+ c'v^^+ 2/'t?^^+ 25r'v^j+ 2/i'i)^^.

But t'oj. = 2, and v,,, = 0, &c. Hence the theorem gives a-\-'b-)rC

= a'+ i'+ c'; in other words, a-\-h + c is an invariant.

1813 Contrnfiredicnt.— AVhen the transformation is not

orthogonal, (1795) shows that d^. is not transformed by the

same, but by a reciprocal substitution, in which %, &i, c^ are

replaced by the corresponding minors A-^, B^, Oj. In this case

d^, dy, dg are said to be contragredicnt to a', ^, z.

1814 Contravariant.—If, in (1G29), the quantics are sub-

jected to a reciprocal transformation instead of the same, we
obtain the definition of a contravariant.

1815 AVhen ;<; is a function of two independent variables x

and 2/, the following notation is often used

:

dz _ dz _ dp _(Px
Tv^^'' Ty-'^' d.v- da}

dp ^ (hi ^ dz ^ ^^
f!l^fll = t,

dif d.v d.vdij ' djf dif'

Lot (/) (-/', ?/, z) = 0. It is required to change the inde-

pendent variables from .r, y to z, y. The formulas of trans-

= r
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1833 Rule II.

—

Otherwise <|> (x) is a maximum or minimum

ivlien an odd number of consecutive derivatives of </> (x) vanish,

and- the next is minus or plus respectively.

Pj^OOF.— (i.) The tangent to the curve in the last figure becomes parallel

to the X axis at the points A, B, C, B, E as x increases ; therefore, by (U03),

tan 6, which is equal to /(.!•), vanishes at those points, while its sign changes

in the manner described.

(ii.) Let /"(,«) be the first derivative of /(.?') which does not vanish when

a; = a, n being even; therefore, by (1500), /(a ±70 = f{a)+ ^-^f'{a^Hh).

The last term retains the sign of /"(a), when 7; is small enontrh, whether h

be positive or negative, since n is even. Therefore f {x) diiiiini.shes for any

small variation of a; from the value a if /"(a) be negative, but increases if

/"(a) be positive. Hence the rule.

1834 Note.— Before applying the rule for discovering a

maximum or minimum, Ave may evidently

—

(i.) reject any constant factor of the function ;

(ii.) raise it to any constant poioer,paying attention to sign;

(iii.) tahe its reciprocal ; maximum becoming minimum, and

vice versa ;

(iv.) tahe the logarithm of a positive function.

1835 Ex. 1.—Let <p {x) = x'-7x*-d5x+ l,

therefore f Oe) = T.^^- 28a;»- 35 = 7 (x'-5) (,r^+ 1)

.

Also (j)"(x) = 7(6x^— l2x^). Therefore a; = V5 makes ^'(.v) vanish, and

f"(x) positive; and therefore makes (p(x) a minimum.

1836 Ex. 2.—Let <i>(x) = (x-2y'(x-2y\ Here

f (ao = u(,x-^y'(x-2y'+u(x-sy\x-2y'={x-sy\x-2y\2r>x-6i),

and we know, by (444) or by (14G0), that, when x = S, the first thirteen

derivatives of ^ (c) vanish ; and 13 is an odd number. Therefore (x) is

either a maximum or minimum when « = 3.

To determine which, examine the change of sign in (^'(x). Now (,r— 3)"

changes from negative to positive as a: increases from a value a little less

than 3 to a value a little greater, while the other factors of <p' (x) remain

positive. Therefore, by the rule, cp (a;) is a minimum when a- = 3.

Again, as x passes through the vakie 2, 0' (x) does not change sign, 10

being even. Therefore x — 2 gives no maximum or mininuim value ot [x).

Lastly, as x passes through the value -*.- the signs of the three factors

in <p'(x) change from (-) (+ )(— ) to (— )( + )( + ); that is, (/.'(•«') changes

from + to — ; and, consequently, f (a;) is a maximum.

1837 Ex. 3.—Let ^ (,r, y) = x*+ 2x-y-i/ = 0. To find limiting values

ofy.



^r.\xl^^.\ Axn mimma. 307

Here y i.s <,nvon only as nn implicit fuiicLion of x. niUi'ieutiiiLiiig, in

order to employ ronnulto (17uH, 1711),

f, = •l-.c» + Iry, if-^ = 1 '2x- + •!//, 0, = 2.r- -uf ;

7/, = makes 0^=0. Solviiif,' tins eiiuatioii with f (.c, i/) = 0, wo got

a' = =fcl, // = — 1 wlieu i/r vauislu's.

0., \l-\-
And then ij..^ = — - = ^^—- = 8, positive ; therefore, when a; = ±l,

y has —1 for a minimnni value.

Similarly, hy making >/ the independent vaiiaMe, it may be shewn that,

when 2/
=

, .c has both the maxinmm and miniinum values ± v^G.

1838 A limitino- value of <^ (.*', //),

subject to tlie condition ^ (,r, //) = i) (i.),

is obtained from tlic equation ^,i//,, = ^,^x//, (ii.)

Simultaneous values of x and //, found by solving equa-

tions (i.) and (ii.), correspond to a ni ixiuium or minimum
value of (p.

Proof.—By (1718), (j> being virtually a function of x only ; and, by (1832),

<t>r(-v'j) =

1839 Ex.-Let f{x,y)=X!, and 4^ (x, y) = 2x' -,•>, + y' = (i.)

Kipiation (ii.) becomes // (:>//"— .') =x (G-r"— ?/).

Solving thi.s with (i.), we Hnd //* = 2x^ and x' (I./-— y^).

Therefore .i;=^\'"2, y=\l''\- are values con-esponding to a, viaxinnim

value of (}). That it is a uiaxiinum, anil nut a ii-iiiimum, is seen by inspecting

e(piation (i.)

1840 Most geometrical problems can bo treated in this way, and the

alturuative of maximum or minimum decided by the nature of tho case.

Otherwise the sign of <p,^{xii) maybe examined by formula (1710) for tho

criterion, according to the rule.

Ma.i'imn and Minima raJue.s of a function of two

inilcpcndrnt variohlcs.

1841 Rl'LE I.—.1 faacfioii (j> (x, y) Is a maximum or minimnm
irlirii (p^ find <p^. hofh vanish and changr fhcir si(fns fnun jilns to

minus or from minus to plus rrsjirrflrrh/, as x aud y nicrraxr.

1842 Rri'E II.

—

Otherwise, 0, ami (j>y must ranish ; </>., ^o,.— </)';y

must ho positive, ami ^^x or ^^y ^'^''t*'^ '^'' negativefor a ma.vimum

and positive for a minimum value of <p.

Pkoof.—By (1512), writing A, B, C for i^^,, (p^^, fi,j,
we have, for small

changes h, Ic in the values of x and y,

f i-c+h, y+ k)-(l> (x, y) = %+%+ ! (A}r + 2DUc + CIc') + terms

which may be neglected, by (lilO).
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Hence, as in the proof of (1833), in order that changinc^ the sign of/; or

Tc shall not have the elYect of changing the sign of tlie right side of the equa-

tion, tlie first powers must disappear, tlierefore f^ and ^y must vanish. The
next terra may be written, by completing the square, in the form

-— \ iA—-+B\ +AG—B- i ; and, to ensure this quantity retaining its

sign for all values of the ratio h : /.-, AC—B^ must be positive. ^ will then

be a maximum or minimum according as A in the denominator is negative

or positive.

It is clear that A and B might have been transposed in the proof. Hence
B must have the same sign as A.

1843 A limiting value of <^ (.v, y, £),

subject to the condition ^ (<r, y,z) = (i.),

is ol)tainccl from tlie two equations

1844 <#>A = M, (ii-). M. = <^A' 0"-);

1846 or, as they may be written, 2j: — xi' = i-£ (iv.)

V'.r V*-/ V'.

Simultaneous values of ,t, y, ,?, found by solving equations

(i., ii., iii.), correspond to a maximum or minimum value of (p.

Proof.-—By (184-1), being considered a function of two independent

variables x and z, and, by (1729, 1730),

^^C*', ?/, 2) = gives (ii.), and (p.^sc, ij, z) = gives (iii.)

The criterion of maximum or minimum in (1842) may also be applied

without eliminating y by employing the values of (j>2x and <p-,. in (1719, '30).

1847 Ex.—Let cp {.r, //, ;:) = /-+ //-+ :-

and i^i.r,!/,::) = a:r+ hr-^cz'+ 2fi,::+ 2r,xx-\-2hvi/-l = 0..(i.)

Equations (ii.) and (iii.) licre become

r =
, 'i r = '. = i, sav, (iv.)

Therefore, by proportion (70) and by (i.), .r+ .'/'+ -" = ^''"^ = */*•

From equations (iv.) we have

a — li ]t cj
I

// l-Ti f = 0,

q t c-n

1848 o,vi-/ni + r,:: = Rx^
hx-\-hij+/z = By [ ;

gx-^fy+cz = li::)

1849 or {R- a) {R- h) (R- r) + 2l]ih

-{R-a)f-{R-h)</-{R-c) Ir = 0, or (see KUl)
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Tliis cul)ic m R is tlio climinaTit of the three equations in

(T, //,::. It is called the (h'srriiniinitiinj nihlr of the (juadric (i.),

and its roots are the I'eeiprocals of the niaxinia and niiniiiia

values of x- -\-
if- -^

::'-

.

1850 To show that the roots of the disciiminating cubic

are all real.

Let 7i'i, li, be the roots of tlic quadratic equation

1851 M'T^ ,/ \

= {j^-b){K-c)-f = o (v.)
Ji'-r

J^^ > h and r, and h and c > /?.,.

Intake R = it', in tlio cubic, and tlic result is rerrative, bcinp^ minus a

pqnare tiuantily, l)y (v.). ^lako 7i* = h'.,, and the result is j)ositive. There-

fore the cubic has real roots between each pair of the consecutive values 4-00
,

Ji'p 7?.,. —00 ; that is, three real roots, liut since the roots are in order of

magnitude, the first must be a maximum value of JJ, the third a minimum,
and the intermediate root neither a maximum nor a minimum.

M(tA''nu(i (lud Minima values of a fuuctiitn of three

or more variables.

1852 I^t^t <{> {''!/-) he a function of three variables. Let

1>±r, «/>2,/' </>2--. </>,/--> </>.-.r, fr;, bc dcuotcd bj a, h, r,f, g, h
;
and let

A, B, C, l\ (r, 11 be the corresponding minors of the deter-

minant A, as in (1G42).

1853 Rule I.

—

^(x,y,z) is a maxiimnn or minimvm wlirn

<^x) ^y> ^7. ^^^ vanish and change their signs from plus to minus

or from minus to plus respccticehj, as x, y, and z inrreasc.

Other'^'ise

—

1854 Ri'Ti: II.— TJir first dcriraflrrs of (j> nnisf rani.di ; A
and its cocfiirimt iu tin' reciprocal determinant of A nmst Iw

jwsitire ; and «/> u-ilt tie a maximum or minimum according ax

a is negatire or jiositice. Or, in the place of .1 and a, read Ji

and b or C and c.

Proof.—Punsning the method of (181-), let t, »/• C be small changes in

the values of .r, //, z. By (lolt),

fix + l, y + n, 2 +0-9 ('. 2/' 2)

= c>,+ 19, 4 ^9. + i ("i' +W + cr- +1H + 2;/;^ + 11<in) + Ac.

For constancy of sign on the right, 9^, <p,j, 9. must vanish. The quadric

may then be re-arranged as under by first completing the square of the term.s

in t. and then collecting the terms in C, V. ft»d completing the square. It

thus becomes
]

(ai,+ Jir} + g^) + ^—^^ ~^ ^—-7,— "
'2.1.1 K. Li L
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Hence, for constancy of sign for all values of E, »?, i^, it is necessary that G
and liC—F'^ should be positiVe. Tliis makes B also positive. By symmetry,

it is evident that A, B, G, BG—F", CA-G', AB-R- will all be positive.

The sign of a in tlic first factor then determines, as in (1842), whether ^ is a

maximum or a minimum.

1855 The condition may be put otherwise. Since

BG—F' = a/^ by (577), the condition that BG'—F"- must be

positive is equivalent to the condition that a and A must have

the same sign. Hence we have also the following rule :

—

1856 R-ULE III.

—

(j>^, (^y, (f>^
must vanish ; the second of the four

determinants below must he positive, and the first and third

must have the same sign : that sign being negative for a max-

imum and posltlnefor a mliilinnm value of (^ (x, y, z).

1857 4>..:

f-

>!. <l>..;,
<#>,,--
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Tlie ilctcrniinant is tho elimiuiuit of «lio four r(iii!iiiotis, l)y ^•''.^3), nn<l ig

c<|uiv:.U-iit, l)V tl.o inothod i)f (1721, Proof, i.), to A'-A/<=0, or u = A'-^ A
(Notation of'ir.lG).

To dL'tennine whether this value of ii is a nmximtim or minimnrn, either

of the conditions in (185 1, T.) may be npplicd ; and since, in this example,

«2,= )la, Uiy — '2b, Ac, tho letters a, h, c, f, <j, h may be considered identical

with those in the rule.

1862 To determine a limiting: value of </> (,r, //, ", ...), a ftnic-

tion of 111 vai'iaMcs connected by n eijuations '^i
= 0, //o = 0, ...

R^'j^E,— Axaiimn n inidetcrmlncd mnUiplu'rs Xi, X;;, ... ^n

iciih the JoUoiriiKj m liquations:—
</)x-fXi(Ui)x+ X.,(u,\+ ••• +X„(u„), = 0,

fv + Xi(ni),+ X,(n,\-h ... +A„(ii„), = 0,

mal'ing in all m-\-n eqxdfions in m + n quant if i(\'i, x,y, /, ...

and X,*, X., ... X„. The valves of x, y, z, ..., found from these

equations, correspond to a maximum or minimum value of (p.

Pkoof.—Differentiate f and ?/,. ii„_, ... «„ on the hypothesis that x, ?/, z,...

are arbitrary functions of an independent variable /. Multiply the resulting

equations, excepting the first, by A„ Aj, ... X„ in order, and add them to the value

off,. The coefficients of x,, y„ z„ ... may now be equated to zero, since the

functions of t are arbitrary, producing the equations in the rule.

1863 Ex. 1.—To find the limiting values of r^ = x* + y^ + z^ with the

conditions A.c^+ By- + Cz^ = I and lv + my-\- nz = 0.

Here m = 3, ?!- = 2 ; and, choo.sing X and /u for the multipliers, the equa-

tions in the rule become

2x + 2AXx+ nl =0 (1)-^ Multiply (1), (2)i (^) respectively by

2y + 2]i\y + fim = (2) > . x, y, z, and add; thus ^ disappears,

2z + 2C\z+ttn =0 (3)) and we obtain

a;2 + y» + 2= + (.'1.1-' + By'+ Cz') X = 0, therefore \ = -r\

Substitute this in (1), (2), (3) ; solve for a-, y, z, and substitute their values

in lx-\-vuj + nz — 0.

1864 The result is —f— + -"'--- + -^^ = 0, a quadratic in r'.

Ar'— i JJr'— 1 Lr —

i

The roots are the maximum and minimum values of the square of the

radius vector of a central section of the quadric A.v' + Hy'^A- Cz' = 1 made by

the plane Ix-\-my + nz = 0.

1865 Ex. 2.—To find the maximum value of u = (x + 1) (y + l) (^ + 1),

subject to the condition N = a'b^c*.
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This is equivalent to fiuding a maximum valua of

log (x + 1) +\og (y+l)+\og (z + 1),

subject to the condition logN = x\oga+ y log h + z\og c.

The equations in the rule become

JL+Xloga = 0; -L.+\\ogh = 0; -l--+k\ogc = 0.

By eliminating X, these are seen to be equivalent to equations (\SW)).

!Multip1yingnp and adding the equations, we find X, and thence x + \^ y+ 1,

z+l; the values of which, substituted in u, give, for its maximum value^

u = {log (Nahc) }«-=- 3 log a^ log b'' log c\

Compare (374), where a, b, c and x, y, z are integers.

Continuous Maainia and Minima.

1866 If fr ai^^^ •/>-/' "1 (18-i-)j liave a common factor, so tliat

where P and Q may also be functions of x and 7/ ; tlien tlie

equation 4< {x, y) = determines a continuous series of values

of X and y. For all these values <p is constant, but, at the same

time, it may be a maximum or a minimum ivith respect to any

other contiguous values of cp, obtained by taking x and y so

that xp (xy) shall not vanish.

1867 In this case, i>2^<p.2y
—

<t>% vanishes with ;/., so that the

criterion in Rule II. is not appUcable.

Proof.—Differentiating equation (i.), we have

^,„ = Q,^+(H, )

'

fv = QA + Q-hi

If from these values we form ^2^0^^— ^.y X ^„^, -^y will appear as a factor of

the expression.

1868 Ex.—Take z as ^ (.nj) in the equation

z"- = cr-lP + 2by(.c' + y')-;,r-y' (i.),

^' = -(77^-1) -^^ - = 2/(

The common factor equated to zero gives xr -\-
y" = b', and therefore 2 = ±a...(ii.)

Here a is a continuous niaxinmm value of 3, and —a a continuous minimum.
Equation (i.) represents, in Coordinate Geometry, the surface of an anchor

ring, the generating circle of radius a having its centre at a distance b from

the axis of revolution Z. Equations (ii.) give the loci of the highest and

lowest points of the surface.

For the application of the Differential Calculus to the

Theory of Curves, see the Sections on Coordinate Geometry.



INTECxRAL CALCULUS.

INTRODUCTION.

1900 The operations of different laf ion mid integration are

the converse of each other. Let /'(/*•) be the dm-ivative of

</)(.7;); then «/>(./) is called the integral oif(x) with respect to x.

These converse relations are expressed in the notations of the

Differential and Integral Calculus, by

!Mii =/(,,.) and by \f{,r) ,/., = ^ (.,).

1901 Theorem.—Let the curve y =f(,r) be drawn as in

(1403), and any ordinates LI, Mm, and let OL = a, OM=b;
then the area LMuil = <p(l>) — <p{a).

Proof.—Let OX be any value of x, and PN
the corresponding value of y, and let the area

ONPQ = A ; then ^1 is sunie/iniction of x. Also,

if NN'=(lx, the elemental area NN'FP = dA

= ydx in the limit ; therefore — - = y. Thus A
ax

is that function of x whose derivative for each

value of X is y or f{x) ; therefore A =
(f>
(x) + C,

where C is any constant. Consequently the area

LM)nl = <}) (i) — v> («). whatever C may be.

The demonstration assumes that there is onl}' one function f (r) corres-

ponding to a given derivative /(x). TliLs may bo formally proved.

If possible, let \l^(x) have the same derivative as <{>(-r); then, with tlio

same coordinate axes, two curves may bo drawn so that the areas detined jw

febove, Hke LMinl, shall be (j>{.r) and \p(.i-) respectively, each area vanishing

with x. If these curves do not coiiieide, tiien, lor a given value of x, they

have different ordinates, that is, f (x) and 4^'
i-^) are different, contrary to the

hypothesis. The curves must therefore coincide, that is, 9 (x) and ^ (x) aru

idtutit'al.

J\,W M
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1902 Since <p(h) — (\>{a) is the sum of all the elemental areas

like NN'P'P included between LI and Mm, that is, the sum of

the elements ydx or /(.-r) d.v taken for all values of x between

a and h, this result is ^Titten

f/(.r)rf.. = .^(6)-.^(«).

1903 The expression on the left is termed a definite integral

because the hmits a, h of the integration are assigned.*

Wlien the limits are not assigned, the integral is called inde-

finite.

1904 By taking the constant (7=:0 in (1901), we have the

area ONPQ = 4> (.r) = (/(.r) dv.
«/

Note.—In practice, the constant should always he added to

the result of an integration u'hen no limits are assigned.

MULTIPLE INTEGRALS.

1905 Let f{x, y, z) be a function of three variables ; then

r«-2 f*v2 r*^2

the notation j \ \ /(.r, ;/, z) d.v dy dz
J.ri Jyi *. zx

is used to denote the following operations.

Integrate the function for z between the limits 2= ^i, z^z^,

considering the remaining variables x and y constant. Then,

whether the limits z^, z.^ are constants or functions of x and t/,

the result will be a function of x and // only. Next, consider-

ing X constant, integrate this function for y between the limits

7/i and 7/2» which may either be constants or functions of x.

The result will now be a function of x only. Lastly, integrate

this function for x between the limits x^ and x^_.

Similarly for a function of any number of variables.

1906 The clearest view of the nature of a multiple integral

is afforded by the geometrical interpretation of a triple in-

tegral.

* Tho integral niivy be read " Sxiin a to b, j
(x) fix''; | signifying "sum."
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Taking rectangular coordinate axes, let tlie surface

z =
<i>

(,/', //) (A'ro7)i in the figure) be drawn, intersected by the

cylindrical surface y —. xp {,r} (UMNiim), and by the ])lane

x= a\ (LSmI). The'volume of the solid OLMNohan bounded

by these surfaces and the coordinate planes will be

», «. .. c (I «.

Proof.—Since tlie volume cnt off" by any plane parallel to OYZ^ and at a

distance x iVom it, varies continuously with r, it must be smue J'nnct'ioti. of x.

Let Fbe this volun:e, and let (/ T be the sniidl change in its value due to a

change dx in x. Then, in the limit, JV= I'Qqp X d.c, au element of the solid

shown by dotted lines in the figure. Therefore

^=r(2'ii'=J^ ?>0^.'/)^///, by (1002),

X being constant throughout the integration for y. The result will be a

function of a; only. Making x then vary from to x, we have, for the whole

volume,
\Jl t(..-..v).'y|.'' =

J,
!j,, [J„

.'-].'."(./..

since f (x, //) = z. With the notation e.vplained in (l'.iO:)j, the brackets aro

not required, and the integrals aro written as above.

1907 Tf the solid is bounded by two surfaces z, = (/), (.»', y), ?s = 0j («• !/)•

two cylindrical surfaces //, = \//,(.r), i/^ = \p.i(x), and two planes x = x^, «=;•'».

the volume will then be arrived at by taking the diffV-rence of two similar

integrals at each integration, and will be expressed by the integral in (I'JUS).

if any limit is a constant, the corresponding boundary of the solid

becomes a plane.
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METHODS OF INTEGRATTOX.

INTEGRATION BY SUBSTITUTION.

1908 Tlie formula is ( (^ (.r) (Lv = (
cf>

{.v) ^' dz,
«, »y UZ

wlicre z is equal to/(.T), some function cliosen so as to facili-

tate the integration.

Rule I.

—

Put x in terms of z in the given function, and
multiply the function also by x^; then integrate for z.

If the limits of the proposed integral are given by x = a,

X = b, these mast be converted into limits ofz by the equation

^ = t-'W-

The following rule presents another view of the method of

substitution, and is useful in practice.

1909 Rule II.—//"^(x) can be expressed in the form F(z)Zj;

then ^ <t>
(.r) (Lv = IV (z) zA^' =

f
^ (^) d^-

Ex. 1.—To integrate ,_,"
——• Substitute z =^ x + ^/(.r+ a") ;

tbei-efore --- = 1 -| —; = ^—
^^

;— = --—„ -,

\vw^> t " = i?
= '°«^ = '"^ f" + ^^''+'-'»-

Ex. 2. —^^'^ dx = l^i--±:^ dx = - log (x-'+ x-').
J x + x' J x'' + x-'

ov -r
y

Here z = x-'-\- x-\ F (z) = - --, z,= - (rxv-'+ 2x--).

•go r 1—

^

-^^ d^ r
3'"'— c dx

] l+rx' y{i + ax''+ c'x*)
~ ]x-' + cx ^(c-x^ + x-''+ a)

dJx-'^ + r.r)dx

1

1 , XK/(a-2c) + ^/(l + ax'+ rx*)

V{a-2c) ^^ l+cx^

_ 1

Vi2c-n)

Bj (1027) or (1026). Here k = x-'+cx

1 _,«N/(2r-rr)
or — / o ^ cos ' —;

7,

—

.

Vi2c-a) i + cx'
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In Examples (2) ami (3) the process is analytical, and leads to the dis-

covery of the particular fiuietioii ;:, wifli respect to which tlie intejrrution is

effected. U z be known, Ride 1. supplies the direct, thoujjh not always tho

simplest, method of integrating the function.

INTEGRATION \)Y PARTS.

1910 T\v differentiating 7(V with respect to ./', we obtain tlio

general formula \ i(,r(Lv = iir — \ ur.d.v.

The value of the fii-st integral is thus determined if that

of the second is known.

Rule.— Separate the quantity to he integrated into two

factor.^i. Integrate one factor, and differentiate the other with

\'esprct to X. If the integral of tlie resulting quantity is

known, or more readily ascertained than that of the original

one, the method by " Parts" is applicable.

1911 Note.— In subsequent examples, where integration by Parts ia

directed, the factor which is to be integrated will be indicated. Thus, in

example (10-">1), "By Parts |6'"'(/.c" signifies that e" is to be integrated and

sin h.c differentiated afterwards in applying the foregoing rule. The factor 1 is

more frequently integrated than any other, and this step will be denoted by \dx.

INTEGRATION BY DIVISION.

1912 A formula is

^{a+hry d.v = a ({a+ Lv"y-'+ h f.r" («+ />.<•")"-' d.r :

The expression to be integrated is thus divided into two terras,

the index p in each being diminished by unity, a step which

often facilitates integration.

Similarly, j (a+ bx"+ ex'")'' dx

= a (a+ hx" + cx'"y-^ + hx" (a+ i.c" + cj;'")''-' + ex'" (a+ hx" + cx''-y-\

1913 Ex.—To integrate \^(x' + n')dx.

By Parts | J.r,
| y (.r' + cr) dx = x ^ (.." + a') -

| -^f^^^y

By Divi.sion,
I

v/(.r' + a') dx =
j ^^^:^^^^ +

j v/(xHa')-

Therefore, by addition,

= ;iv'(i'+(i') + J.<Mog{.c+ v'(r + a')}, by (1900, Ei. 1).
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INTEGRATION BY RATIONALIZATION.

1914 In tlie following example, 6 is tlie least common de-

nominator of the fractional indices. Hence, by substituting

z = x^, and therefore x^= Oz^, we have

z^-l dx '•-'-

dz

1 \
dx.

Each term of the result is directly integrable by (1922) and

(1923). For other examples see (2110).

INTEGRATION BY PARTIAL FRACTIONS.

1915 Rational fractions can always be integrated by first

resolving them into partial fractions. The theory of such

resolutions will now be given.

1916 If </>('^0 and F{x) are rational algebraic functions of x,

<}>{x) being of lowest dimensions, and if F {x) contains the

factor {x— a) once, so that

F(a>)-(.r-«)t/,Gi') (1);

1917 «.n|« = _l_ +|gana^ = iM (,,

Proof.—Multiply equation (2) by (I), thus

(j> (x) = A4^ {x) + (x-a)x (x).

Therefore, putting x = a, (p (a) = A4^ (a). Also, by differentiating (1), and

putting x= a afterwards, F' (a) = \p (a). Therefore A = <p (a) -^ F'((i).

1918 Again, if F{x) contains the factor (x— a), n times, so

that F{d^ = (.{—«)"</» Or).

Assume ^V^ = 7 hr, + 7 T:r-i + ---H rT7~T-
F{.c} {,v~a)" id—a)" d-a xli[.r)

To determine A^, A^ ... A,,. Mulliplij hi/ (x— a)"; put

X^a and, dijD'crentiate, alternately.

1919 If ^'(^0 = ^ ^^^ ^ single pair of imaginary roots
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a±li5; tlu'H, applying (1017), lot

and the partial fractions corres[)on(ling to these roots will bo

A-ili A-^ili _'2\(,-a) + 2li§^

For practical methods of resolving a fraction into partial fractions in the

different cases which occur, see (235-238).

INTEGRATION BY INFINITE SERIES.

"When other methods are not applicable, an integral may
sometimes be evahiated by expanding the function in a con-

verging series and integrating the separate terms.

Ex.
j
- dx = logx+ ax + j-^^ + ^-^, + 3-2-3-^, + &c. (150)

STANDARD INTEGRALS.

1921 Some elementary integrals are obtained at once from

tlie known derivatives of sim})le functions. Thus the deri-

vatives (1422-;)8) furnish corresponding integrals. The fol-

lowing are in constant use :

—

1922 j.vrf..=^. }- = ''"'-'

1926 f_^ = lc„s-^or-lsi,.-.^. [.SU..1
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1928 r ,/^:'\_ ... - log {^v^V{^i'±a-)}. (1009, Ex. 1)

1929 ( -^-4^^—- = siu-^ — or - cos-' —

.

(1434)

1930 (-yf^ = ±^^{a'±.v-).

1931 ^y Parts, Division, and adding results (1913), we obtain

[ \/(cr^ ± a-) dx = U v/(ci''-± a') ± i«' log U+ V{.v^± «") } .

1932 By Parts, Division, and difference of results,

J7^^ = i.i-N/Gf'±«^) T i«^ log {.r+ v/(a'^ ±a'-)} •

1933 f v/(«'-ci-) d.v = ^a' siu-^ ^ + ict' V'(«--cr^).
-^ " [As in (1031)

1934 f /5' .,,
= i«'- «m- ^ - i.r v/(«-.ro\

J V{(r—cV-) a [As in (1032)

1935 r _^, = 1 tan-^ ± or - 1 cot"^ i- (^36)
J .r--h« « a a a

1936 r_^, = J- log ^^-;:^. [By Partial fractions

1937 f^!^, = ^log'i±i-. [ Do.

1938 1 sin -I' t?'*^ = — cos X, \ cos .v dx = sin a;.

1940 \ tana dr = — log cos .i\
j
cot a: dd' = log sin <r.

1942 \ seCcvrfcr = log tan (-4-
-J.

1 coscCcvrAr^logtan '-.

Meiiiou.— (1940, '2), substitute cos.c. (1941, '3), substitute sin .c.

1944 I «in"' <^' d.v = .V sin-^ .v+ v^(l —d") .

1945 \
cos"^ .r d.v = .r cos"^ .v — v/(l— .r")

.
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1946 \iin\-' a- ill = .r tnir' .v - ] lo- (1 +.»").

1947 \voi-' Jill = .r1j»ir'.r+
I
l()-(l+.r-).

1948 (*soc-^ .r (/.r = .r soc"' .r - loir [r+ v^^C' '- M } •

1949 \
co.scc"^^^/.r = jeosec'\r+ log [.v-^ ^'\d--—l)\ .

^Ieihod.—(104-i) to (1949), integrate by Parts,
J

.?.c.

1950 1 log .r d.V = .r log X^.V. [By Parts, J Jx

according as a is > or < h.

[Siil).s. tan o.i;, and integrate by (1035 or '37)

VARIOUS INDEFINITE IXTF.GRALS.

GENERALIZED CIRCULAR FUNCTIONS.

1954 f sill" (Lv. \ COS" dr. \ coscc" (Ia

«. « » .

Method.—When n is integral, integrJite the expansions in (772-4).

Otherwise by successive rednction, see (2uG0). For i cosec" i^.e, see (2008).

^nrw i\ n / t^nl"-^r tan"-'.r
,
tan''-^r n

1957 W«-"-^'- = ^7^r--^;^Tr+^;^r-^^^-
Phoof.—By Division; tan" .r = tan"'-x sec* x— tan""".c, tlie first term of

•which is integrable ; and so on.

1958 i-^r^—n; = ,
. V-.-i U"-'' '-'"'->'" ''-

^Method.—By substituting tan
^^
= ^^" TT \/ ( "XT ) '

Similarly with

pin .r in the place of cos-r, substitnte -if— t.

1959 ] d'l- \ d I
. \ dd\ \ djr.

*^ cos w.r Jsin;/r J cos n.f^ J siii /m
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Method.—By (809 & 812), when p and n arc integers, the first two

functions can be resolved into partial fractions as under, p being < n in the

first and < n— \ in the second. The third and fourth integrals reduce to one

or other of the former by substituting ^tt— x.

1 q63 ^^^^ = - 2'-" (-1)-' sin(2r-l)Qcosn2r-1)0
^.^^^ ^ ^ .

•*-^"*^ cos«.^ n '"^ cos.f-cos(2r-l)0 2u

1964 2^- = -^- S—'C-l)'-'^^"'^'^""^''"^ with = -^.
*-*^ * sin «,(; visin.u ''"' cos .f — cos rO 7i

The fractions in (10G3) are integrated by (1952) ; those in (19G4) by (1990).

Fonmdce of Bednction.

1965 {'^^^^civ= 2f
'^''^("-J)-^

rf..-r
'-"^^"7-^'''

rf.i-

J COS",l' .' COS"-'.l- J COS''.!-

1966 r'-:?^^ rf.r = -2
f'^'".^"-!^''-

rf.r+ ('£^(£llll£ rf...

1967 l'^i^'./.= 2f^^l^^^-^^'" ^aH-f
'^"^"7^^'"

^/^i-

J cos'\f J cos'^-\v J cos'\r

Proof. — In (1965). 2 cos.i- cos (n— 1) .t? = cos 72.^4-cos (?i— 2) .r, &c.

Similarly in (1966-8).

1969 \ siu^' X sin n.v dx

^ __ sin^.reos7i.r _j^ ^sm-^^ cos (»-l) .r r/.r.

1970 I cos'' cr sin »,r f/.r

= — '-— I eos^ \r sin (n— i) x a.r.

1971 i sin^'.r cos 7i<r (/.r

^ si"".. sin«.r _ _?>_ r
;,,,., ^, ^i^, („_i) ,. ,,,,

p-\-n i>+ « ^'

1972 1 cos'' .r cos ?*.r (Lv
»-'

^I-5llii!i^ + --ii- iVos"- .r cos (;2-l) .r (Lv.

p-\-7i />+ ;/ J

cos"

P
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PiiOOF.

—

(lOtil*). By rnrts,
^
sin )/.»• (/./. In tlio new intcf^'ial change

cos >/a; COS ./• into cos (;< — 1) .*•— sin >/./• sin .r. By sncci'ssivo reduction in

tbis way tlio integral may be found. .Similarly in (llTU-'i).

Otlierwise, expand t-in" x or cos''.e in mnlliplo angles by (772-4), and

integrate the terms by the rollowing formulie.

1973-1975
r . . . 1 /sin (/J— ;0,r sin (/>+ /i) .r\
\ sin p.r am ua' (Ij = -- -^ '-—^

.

J ' 2 \ p— n ;>+ /* /

and so with similar forms, by ((jijG-i)).

1976 \ ^111^^ I
^'^'^ lOLiud trom

J cos n.v J cos ud'

r i GOspx—&m]Kv 7
, _ o f

-"-'^"^""^ '^'^

J cos )ui J 1 + .-•"

wlicn j) and u are integers, by equating real and imaginary

parts after integTating the right side by (2023).

Proof.—Put cos.r + i sin x = z ; therefore izdx = dz. Multiplying nume-

rator and denominator of the fraction below by cosH.i;+ i sin /laj, we get

cos/ix + i' siny)j; _ j, cos (p-\- » ) x+ i sin ( p + ?i.) a; _ n ^•" '

"

.

cos nx "
1 + cos 2?iU!+ i sin ^.nx 1 -t z'"

therefore
f

"'" ^'^ + ^ ^'" ^^'^
dx = - 2/

f
'^^-^.

J cos nx J i + ^'

1978 f<:i^^P:!:^' and r!!iy^:I^' are found in the same
J sill wr J sin ;hr

way from ^—r-' '— dx = 'J —

j

—-.

Pi;ooF.—As in (107<)), by multiplying numerator and denominator of

cos W.C + 1 sin I'.r ,
• •

^
.

'— by co3«A'— I sin?ix'.

1980 |-^:21^ ,,,,1 r^iiiii^

Putting y ^ cos .7^ +
I
sin .c

^^.^ g^^j tan «x = i (1-^/"), J"i'l therefore
"^(cos «.»)

ydx = -—-•-. Hence, mulli:»lyiiig by /, we have
2-7/"

r /cos.r-si,Kr^^r J>^^

J C-'Ccos^a-) J 2-;/'

The real part and the coefficient of;' in the expansiou of the integral on

the right by (2021, '2), are the values required.
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1982 [ o "^^ , = -^/-IT^a^'' (tan,r /^). [Subs, tan a.

j a con' X + b am- X \/{i-ih) \ \J a I

19o3 7— = —c~~r-> {h \o^(a cos X -Y li &\nx)-\-ax\. [Subs, tana;
} a-^h tau X a--\-b'

"

1934
f
—^ = -TT^r-Tl tan- ^f^^+^^l [Substitute cot.

J a -\- b am- X ^/{a -\-ab) cot .c v/a

1985 ".''," dx = —- tan"' (a cos a;) ^— . [Substitute a cos a'

198d :; Ty
5- =

3 ,,T
tan - — —~. [Subs, sin a;

J l-a^cus^« a\'^(l— a-) ^(1— a') a'

1987 cos a; s^(\ — a-&m^x)dx = J sin »•/(!— a" sin" x') + —- sin'' (a sin a;).

[Substitute a sin.o

1988 sin.-B v/(l— o^sin-.r) (Z.y = — |cos.? v/(l — a-sin^f)

^-— log
j a cos x + V ( 1 — a" sin'-' x)\. [Subs." a cos «

1989 sin .T (1 — a'sin^a;)- cZ.r = — ^cosa;(l— frsiu^a;)^

+ 1(1— a') sina; v/(l— a" sin-.r) tZaj. [Subs, acosa?

1^^^
J bill .<;C't + /; COS*)

By

log { (<t cosec x-\-h cot a;)^ tan" |a;}

1 (7 — b cos a; ?>^ sin a;

sin a; (a+ 6 cos a;) (tr — b^) sin a; (a''' — b"^) {a + i cus .v)

'

1991 [
t"" •'' ^•'' = ^

J v/('t+i tau^'t) V'(fc-a

1 cos ,7' x/f?) — 0~)

- cos"' ; -.

) Vb
[Subs. COS a' ^/(h - «)

-^992 [
Via+ l^m'^x:)

j^ ^ ^^ ^^^_, ^hccx
J sin a; \/{a+ b)

— ^/a log { \/a cot a; + ^/(a cosec'a^+ 6)}.

Method.—By Division (1912), making tbe numerator rational, and in-

tegrating the two fractions by substituting cot a; and cos a; respectively.

2993 I" 'li = c f r d i' _ f '^-^

I ^

J a + -//cos.<; + cco.s2.i; r« (. J 2ccos.t; + 6^/» J 2c cos * + ^ i- v/i j

wliere m = ^\\j^—1c {a—c)\. Then integrate by (1053).

1994 f
/.'•

. ^ = f , ..^/f ,^ . (i'«3)

Method.—Sul)stituto = x— u, where tan a = .
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1995 ^
F(.\n.v..n.,),l.

^

J a cos ,r-\-b sin .v-\-c.

F bring an integral algclmiic function of sin.r and cos r,

!MKTii(in.—Subslituto = x— n as in (1991), and the resulting integral

,, ,, . f /'(sinfl, t>nsfl)(/0 [ <h (cos fi) iJd
, f sin 0»i/ Tens ^0

takes the form --^—
,.
— = ^,- rr—r, + —:

: tt,
J A cos + Ji ] AcosO + B J Acosd + n

since /contains only inteii:«"il j)o\vcrs of the sine and cosine, and may Iherc-

f .re be resoivod into the two terms as indicated.

To lind the lirst intet,n:il on tlie ri^'ht, divide by the denominator and
integnite eaeli term se|)anitely. To tind the second integral, substitute tho

denominator.

1996 r F(co^,r)(rr
_^

J (^^+ '>i t-os.r) ((t2-\-t)., COS.*) ... {a„-\-b,^ cosct')'

Avlicre F is an int(^gral function of cos x.

Mrthod.—Resolve into partial fractious. Each integral will be of the

1997
C Ac„..v + lls\n.r+ V

^^^,

J a COS d-\-o sill d-\-c

Method.—Let </»(.}•)=« cos a; + /^ sin j' + c ;
.'. <;»'(.>•) = —a sin.r+ Z> cos ar.

Assume .1 Cvis x-t- JJ .sin .J -f- C = \<p(.r)+fx<ft'(j:) + t'. Substitute the values of

<f>
(.r) and <}>'{x), and equate the coefiicients to zero to determine A, /u, r. The

integral becomes

I C ^'
v-
(•')?> (-'J 3 ^ °^^

^^J 9{x)

and the last integral is found by (1991-).

EXPONENTIAL AND LOGAIITTILMIC FUNCTIONS.

1998 * ("^F(.r) (Lv can be found at once wlien F (,r) can l)o

expressed as the sum of tiro f(ructions, one of ivhirh in tlic

dcrivatii't' of the othrr, for

j"'-!<^(.'-)+f(.'))'/..='-<;t(.').

1999 * f"-" cos" La (Lv and |
<'"'' sin" Lr(l,v are respectively =

—^—

—

c^'^cos" bd.\- -^-—:.
-

I
€'" cos" -Oddu-.

a -\-no- a-j-M 6- J
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and

g sill &.r-»& cos fta> ^,. ^j^„_, ^^, ^K^^-l)^^ f..^. ,i^.-2 j^^^.^.v^

Proof.—In either case, integrate twice by Parts, j e"^dx.

Otherwise, these integrals may be found in terms of multiple angles by

expanding sin" x and cos" x by (772-4), and integrating each term by (iyol-2).

2000 I e-^siu'^ci'cos'^crdr is found by expressing sin^d' and

cos"aj in terms of multiple angles.

Ex. : J e^ sin^a: cos" x dx. Put e'^ = z in (7G8),

(2i sin a;)"^ (2 cos ;7;)' = (z-z-'y (z + z-y

2''e^ sin* a; cos'* — e"" (sin 7x— '6 sin o.f+ sin 3.1' + 5 sin a-).

Then integrate by (1999).

2001 Theorem.—Let P, Q be functions of x ; and let

^Pdx = P^, iP^Jx = F,, ^P,Q.dx = P,,&c. Then

(pQ"(lv = P,Q'-nP,Q-'-i-n {n-l) P,Q-'- ... ±^/\+i.

Proof.—Integrate successively by Parts,
J
P dx, &c.

2002 Theokem.—Let P, Q, as before, be functions of x ; and

fP , P I\

J ^^ '"'" - (>*-lj (/.//-^ (^^-1) {n-'l) Qjr-^
i\ 1 r/Vi^/^

(/<-i)(«-2)(vi-;5)g/»>"-^ |
/i-i J g

Proof.—Integrate successively by Parts, — ^^^,„—^'"^^'^•

Examples.

2003 f.r--^(log.r)'W/.r

:^ ^(/''-^/"-V^^i^^ /''-.. .+(-1)'''^)-

Method.—By (2001). P, = •'""',

i', = -'", P, = """.
'•tc
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2004

and cacli term of tliis result can be integrated l)y (200:^).

2005 fiP^.

'*' \n-l^ {u— l)[n-'2)'^ {u-i){u--2){n—l.i)
''''

1 1 liwr .. •
+— ,

Method.—By (2002). P.r = j-", P, = wx-'"', P, = vrx"-\ etc.

The last method is not applicable when n = 1. In this

case, Avriting / for log.v,

METnOD: = —
. Expaiul the numerator by (1''0), and inte-

k)g X X log X

grate.

See also (21G1-G) for similar developments of the expo-

nential forms of the same functions.

PARTICULAR ALGEBRAIC FUNCTIONS.

n(v + ^)... 2(11-1) ,^_ X

\-x

« being even. (1018)

2008 f^^_,,^^,^^^
= -^

[Subs.
^('-^'^

log2009
J ^T"^r^V(TT7)

" V'l
'"*= y(i-*'')

oniA f
<?•'• 1 ,._ gy2 4-v/(»'-l)
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2011 = ^sm-\/(-H:^^r^'^^), aobc

V{b<r-acc) ° V{c + ex^)

2012 [ -r^ = -^ log
^(-^^'^n-^^a

^ ^S,b3.
1

2013 i(a^5lfT^, = ;^,--^^^£^- [--r^.

2014
f a^:^Ai:..') =;^-'°-f^- ^""^-'r^

2015 l^q^- = ;^[.o.^^^H6*^--iai~

[Substitute ^ n/(1 + .(")= a; s/2 in (2015 -f.)

c]^ _ 1 1.„
(2^^-11*-^.- _ 12017

f , /% ,,
= l^o,(^ff^ tan"

(2,r-lji

[Substitute a' = ,-(2.f2-l)*

2018 f n
J (l-\-x'){^/{l + x')-x'^^

tau'

[Substitute —-



,.'-1

2021

INTEGUATION OF -i-—

.

329

i-.r^ ^ i log(.,_l) + (zi)'log(.r+l)
,' .r — 1 // n

where 3 = '^-
, and Z denotes that the sum of all the terms

n
obtained by rnakiii*,^ r = 2, ^i, G ... )i — 2 successively, is to

be taken.

If ?i be odd J

2022 Ji^' = llogGr-l)

ti
>- n\ ' n 8111 rp

with r = 2, 4, 6 . . . /i — 1 successively.

If n be even.

2023 \ ^^r^' = -LtvosrI/3\og(.v—2.rco.rfi+l)
J .{'"+ 1 n

. - < • //0 4- -1 «*'— eos>'/3
-4 S sm rlB tan ^ —; ^,

n sill >'p

with r = 1, 3, 5 ... » — 1 successively.

If n be o(irf,

2024 f£^=. til^logGr+l)

- i ^ cos W)81ogGi--2.i^cos ry8+ 1) +? S sill W/8taii-^ l^^:i^l^^
/2

^
n sill rytJ

with r = 1 , 3, 5 ... » — 2 successively.

Proof.—(2021-4). Resolve -'^ - into partial fractious by the method

of (1917). We have -f-^^ = ^ = — , since a" = ^ 1. Tho diirorent
1' in) ?/<«""' 7i

values of a are the roots of x" ±1 = 0, and these are given by x = cos r/3 ±
t sin r/5, with odd or even integral values of r. (See 4-80, 481 ; 2r and '_*>•+

1

of those articles being in each case here represented by r.) The first two
terms on the right in (il021) arise from the factors .r ± 1 ; the remaining

terms from quadratic factors of the type

(y— cos rfi— i sin r/3) (a-— cos r/3 -t- ( sin r/3) = (.r— cos rp)' + piir r/3.

These last terms are integrated bv (10l^3) and (1935). Similarly for the

cases (202-2-4).

2u
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2025 If, in formulae (2021-4), + — S Q-tt - 7-/3) sin W^ be

added to the last term for the constant of integration, the

integral vanishes with x, and the last term becomes

=F — ^ sin W/3 tan ^ ^,

reading - in (2021-2), and + in (2023-4).

2026 f4^=i(«)^f^,,/.
where az" = Ihif. Then integrate by (2023-4),

202^
J ,,T+1 '

= T ^ "" ""^ *"" -TmTT'
where )3 = tt-^v?, and r = 1, 3, 5, ... successively up to n— 1

or 71— 2, according as n is even or odd.

2028
1 £

.1
^^^, ^ -^ Scos?«ry8.1og(.r--2.rcosr^+l),

with the same values of r; but when n is odd, supply the

additional term (--1)'" 2 log {x^l)^n.
Proof.—Follow the method of (2024, Proof).

Similar forms are obtainable when the denominator is x"— 1.

2029

—^ = S 008 (»—/)</). tan ^—;—-X

— .^2 sin (h— /) <^.log (ci-— 2.r cos <^+l),

where <p = Q-\-
"^ and r = 0, 2, 4, ... 2 (»-l) successively.

But if the iiiteo'i-al is to vanish with x, write tan"^—^'^

—

-
,

• /oAorA 1— .rC0S(/)
as m (2025).

Proof.—By the method of ("2024).—The faf'tors of the denominator are

given in (1^071, putting y equal to unit}-.
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J

x'" (a+ 6^" )
«

.

831

2030 r^-^^^T^' ^^- = =^ -^'
I

^"-^ (*''^+>-)

Xlog(a'-2.rcosr)8+l)--'si»(W)8+i//*7r)tair':^^^=^^ ,

with the values of /3 and /-in (2021-4).

Proof.—Differentiate the equations (2021-4) lu times w ith respect to /,

by (1427) and (1461-2). If m be negative, integrate m times witb respect

to I, and tlie same formula is obtained by (21.!>5-0).

In a similar manner, from (2027-8) and (2029), the general

terms may be found for the integrals

2032
.•;.,,,.-.±(_lV,,.^.-.;(l.,^.,).^^^

^^^^ r .r'-(lopr..-)'V^

J .r'dtl J .r-"— 2.t"cos/j^+l

INTEGRATION OF ^ .v'" {cLV-\-b.v"y^ (Lr.

2035 Hulk I.—When
"^"'

/s a positive integer, integrate
n

1

% sh6s/ i7 ;/ / /^?.v z = (a + bx") "^

.
Th us

Expand the binomial, and integrate the separate terms by (1922).

2036 But if the positive integer be 1, the integral is known
at sight, since ra then becomes = v — \.

2037 r.uLE II.—When I^+i + J^- is a negative integer,

^ n q

substitute z = (ax-' + b)". Thus

Expand and integrate as before.

2038 But, if the negative integer be -1, tlie integral is

found immediately by writing it in the form
/• "P p r V

= _—i—-(..«- + ^0^^'-

nn{pJrq)
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Examples.

2039 To find J.c*(l + «*)*cb. Here m= \, «= i, p= 2, g= 3, '-^ = 3,

a positive integer. Therefore, substituting y =. {\ -\- x^)^ , x = {tf— \f,

Xy = 6?/" (i/'— 1), and the integral becomes

the value of which can be found immediately Vjy expanding and integrating

the separate terms.

2040 [
'^-^ («+ fe-0* ^^^ = ^1 (a+ hx*)^.

For '-^^^ = 1 (2036) ; that is, m + l= n, and the factor x^ is the derivative
n

of lx\

2041
I

'^^ "^
Z'"'^' cZ.r, or

[
X-'- (l + x^f^ dx. Here m = -l,n = ^,p = 2,

q = 3, '''^^tJ: 4- J^ = _ 2, a negative integer. Therefore, substitute
n q

y = (a;-* + l)% X = (i/'-l)"', a-y = -6y^ (z/'-l)'"- Writing the integral in

the form below, and then substituting the values, we have

Sx-'(x-i+ l)^x,dy = -6^y'(y'-l)chj,

which can be integrated at once.

2042
f , t; M =[-'(" + ^-") -' dx. Here 'ii±l + ^ = - 1

;

therefore, by (2038), the integral

=
I

.«-"-' (ax~" + b)-' dx = -~ log(a.c-"-f?0-

REDUCTION OF J .r'" (a+6cr")^ dr.

When neither of the conditions in (2035, 2037) are ful-

filled, the integral may be reduced by any of the six following

rules, so as to alter the indices m and p, those indices having

any algebraic values.

2043 I. To change m and p into m-fn and p— 1.

Integrate by Parts^ Jx'^dx.

2044 n. To change m and p into m— n and p + 1.

Integrate hy Parts, Jx""' (a+ bx")'nlx.

2045 ni. To change m into m + n.

Addl to ^. Then integrate hy V<irfs, jx™dx; and al^o

by Dii'isiov ^ ajid crjunfp Ifir yrsii/ls.
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2046 IV. '/'<' rhini>j<^ 111 ////.' 111-n.

Add 1 to p, and siihfnict n from ra. Thrri integrate by

Parts, fx"'ilx; and also hi/ ])lrif<ion, and equate the results.

2047 y- '/'-' rhaiKje p Into \)-\-\.

Add 1 to p. 7'Ar/i, iufojrnf,- Inj Division, and the new

integral bij rarfs, (x''-^ (a+"bx")".

2048 VI. To change ^ into p-1.
Integrate hg Division, and the new Integral hij Parts,

J
x"-^(a+ bx")".

2049 Mnemonic Table for the same Rules.

I.

II.

III.

IV.

V.

VI.

111 + 11,
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Examples.

2056 To find
f

^'^p'^^ dx. Apply Rule I. or Formula I. ; thus

^x-'(a'-x-)hlx = -lx-\a'-x'y- + l ^x'' (ar-or)-^ dx (1927).

2057 To find
I

—-dx. Apply Rule II. or Formula II. ; thus

^x' (a'-x'yUx = a^a'-x'r'-S ^ x' (a'-x'r^ dx (1934).

2058 fcosec"'^fW. Substituting sin = a;, the integral becomes

j" siu-'»0^ dx = { .«-'" (1 -x-)-^- dx.

Apply Rule HI. ; thus, increasing j^ by 1 and integrating, first by Parts

\x'"' dx, and again by Division ;

{ x-'-(l-^)idx =
'''""}^ -'^^- + -^^ {x'-"(l-x-)-^dx,

J
i—m 1— 9/i J

[ .c-"' il-x')hlx = {x-"'(l-x')-Ux- {x'-'"(l-x"-)-idx.

Equating the results, we obtain

2059 j*-(i-«r'A. = fr^.(i--')'+ fES |-=^-a-''')-'<i-

By repeating the process, the integral is made to depend finally upon

{x-'(l-x'y^dx or [(1-xT^dx,

according as m is an odd or even integer (1927, "29).

2060 '\sm'"ddd is found in a similar manner by Rule IV. The integral

to be evaluated is ^x"' {l—x^)~' dx ; and the integral operated upon is

Ja-m-z (i_a;2)^ dx. Otherwise apply Formula IV. See also (1954).

2061 To find .,

'^
,.

. Apply Rule V. p = — r, and increasing p by
J

(y;--|- a')

1, we have, first, by Division,

[
(,r + ((-)'-'• dx = { ,r (..- + a')-" dx + a-

j
(.r + «') -'' dx.

Integrating the new form by Parts, j x (x'^ + a")-'' dx, we next obtain

Substituting this value in the previous equation, we have, finally,

2062
C d.r ^ .V ,

2r-a i d,r
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This e(|uation is i/wvu at oiiro ])y Foriimla \'. Thus /• is

clmncred into r-1, and by ropeatiii^r the process of ivduction,

the original integral is ultimately made to depend upon (1935)

for its value if r be an integer.

Another formida Un- this integral is

20^3 \ ^Tq:^. - 1.2... 0-1) W^'\, iS , /3

'•

Prook.—Write ft for a" in (10;!")), and differentiate the eqniilion /• - 1

times for /> by the principle in ('JJ.")5).

2064 To find j' (a" + .r )''%/./. Apply Rule V[. By Division, we have

The last integral, by Parts, becomes

f
,r (a-+/-)^'^-\lr = 1 .. («r + /-)''" - -^

[ (a^^'^;*"-

J 'i " J

Substituting this value in the previous equation, we obtain

2065 |(«=+..-^)'« </..• =
'•'';;+f"' + ,-;:fi

j"(«H..=)'"- rf.'-.

a result given at once by Formula VI.

If n be an odd integer, we arrive, finally, by successive

reduction in this manner, at
\
{(i'^-\-,r)^ d^v (1031).

2066 The integral j'sin'"0 cos^Oc/0 is reducible by the fore-

going Rules I. to VI., if, in applying them, n he ahrays put

equal to 2; if p be changed info p±2 iuiitead of p±l; nnd

if Division he always effected by separating the factor

cos-e = l-sin^e.

Proof. Jsin" cosPOf/fl =
J
x"'(l-a:')* "-'

(/.r, where .>• = sin fl. Thus

n = 2 always, and the index i (jJ— 1) is increased by 1 by adding 2 to p.

Thus, Kule I. gives the formida of reduction

2067

.' )u-\- 1 )n-\-\ »'
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But the integral can be found by substitution in the fol-

lowing cases :

—

If /• be a positive integer,

2068 1 cos-''^^ct^siu''crf/cr = yl—zY^^dz, where z = sin X.

2069 I siir''^\r cos^'ct'^Ai' = —
\
{\—z-Y^^fi^, where z = cosx.

If m -{-}:) = -2r,

2070 \
sin'"cr cos'\i'^/cr =

\
{l-\-z'y'''^"'(f^, where z^tarix.

FUNCTIONS OF a+ b.v±Cd'\

The seven following integrals are found either by writing

2071 a + bx+ ex' =
{
{2cx+ by+Uc-W\^ 4^c,

and substituting 2cx+ 6 ; or by writing

2072 a+ bx-cx" = {A.ac + b'-{2cx-bY] -r 4c,

and substituting 2cx— b.

om'i ( ^-^' - ^
^

2c.r+6-v/(6^-4ac)

2 - _i 2rcr+6
O^ -771 Tn '^" —771 7n>

according as // > or < 4ac (2071, 1935-6).

2074 r ^^-^^ - 1 log v/(6--+4..)+ (2..r-6)

(2072, 1937)

2075

2076 ^^r-J^ :r, = 4- ''^i"-' :7^rv
(2071-2, 1928-9)
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7

2077 f X '{n-^hr-VcA^) (iv = .lr-5
I'
,/(//H 1^/^—^^) 'In-

2078 j\/(<f+/>,r-r.r'-') dv = ^c"^
\
^/{lur-^/r-jr) fh/,

wliere y = 2cx + b. The integral^ are given at (1931-3).

2079 ^ _ O^.P-irn-^ I' 'IlL

J {(i-{-Li+i\r)" J {ir-\-luc— h')"

[By (-2071), tlio integral being reduced by (20G2-3).

2080 f /^+'"j%

I i {'2('A'+b)(Lr ( bl\ C <h'

~ 2c J {a+Lv+c.ry "^
V''' 2c/ J {a-\-Ou'-\-c.r)"'

The value of the second integral is {a-\-hx-\-rx"y-'' -r- (1—p),
unless p = l, when the value is log [a -^ bx -\- cx^) . For tho

third, see (2070).

Method.—Decompose into two fractions, making tlic numerator of the

first 2rx + b ; that is, the derivative of a+ hx + cai\

2081 I
—^^'^

'^— r/,r may be integrated as follows :

—

J (i-\-h.r--\-Cd'^

I. If /r > 4>ur, put « and jS for z±±jyi^z:^:!l^
^ ^^^^^

by Partial Fractions, the integral is resolved into

c{a-fi) U .t--a J .r-fi Sy
(1036)

II. If b' < 4rtr, put ""- = n' and ^^(''') ^' = nr, and tho

integral may be decomposed into

2082 ^ \
i*

fa-;>>0^r+</m
^^

^, _ r (^-j^^7- ^,,
^

,

the value of Avhich is found by (2080).

III. If h' = 4ar,

2083 f ~ =—V-.+ \ .>n-|>JA). (2062)
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2084 (—£JL}-—--—^

^^^^ C y-(Lr 2a ( 1 , _,/ /h\ .v )

2085
J ,+,,.-.+e..^ -T-l7(2^)^"^ \-V2;i)-2;r+^-j

REDUCTION OF J a?'" (a+ ?Ai'''+ cx^'^' dx.

Note.—In the following Fnrmulce nf Iiedudiov, for the sake of clearness,

iv"'(a + hx" + cx'-"y is denoted by (m,p), and the integral merely by j (w, p).

2086 (m^-l)Jo>^.7>) = 0^*+l,7>)

— 6mj9 I (7n-{-n,2)— l)— 2cnp I (m+2»,;>— 1) (1).

2087 h7i (;>+ !) f (m,i>) = (m-»+ l,7>+l)

2088 2c>j (;>+ l)
f
(m,7>) = (m-2>i+ l,;)+ l)

-(m-2«+ l)
j
(m-2w,;)+l)-6/i(i)+l)J (m-»i,7?)...(3).

2089 (m+//7;+ l)
J

(m, />) = (m+1, 7>)

+ a«7) i {m, j)— l)— cnp
^

(»j+ 2>j,;>— 1) (4).

2090 (m+ 2;i/>+ l)
j
0», p) = {m-^l,p)

-{-2anp \ {m,p— l)-\-bnp I {m-\-n, p— 1) (5).

2091 ^m+ ;,y>+l) f(m, />) = (»*-;*+ !, />+!)

^
^ ('>)

2092 /»'(/>+ !) |'(m,/>)=-(m-;^+ l,/>+l)

^ (0-



-REDUCTION OF f
.f'* (a+ ^f^-h wr')" ^^'*''- ^'^^

2093 rN{p-\-\)
\
{m,p) = im-'2n^\,l>-\-\)

-\-an(i>-]-\) \
[)n-'2n,i>)-{in-^nj>-n + \) \i in-'2n, p-\-l)

2094 an (/>+l) \
(m, p) = -(m+ 1, ;>+l)

2095 -V;/(/>+l) ((/>», ;>)=-(//<+ !, />+ l)

^ (!<')»

2096 «(»'+ !) f (>",/>) = (^>»+ l,7>+l)

--b{n,-^)^p+)l-]-^)\(m-\-n,p)-c(m+'2np-^'2il^l)\{)n+ '2n,p)

^
(11).

2097 c{in+ '2up-{-l) ^{m,p) = (m-2n-^l, p-\-l)

— b()u-\-)ip-)f^}) \ iin— n,p)—(i{m — 2ii-\-l)
\
{)n— 2n,p)

^_
' (1^).

Proof.—By diftereutiatiun, we have

2098

Formulw (1), (2), and (3) are obtained from this equation by altering the

indices m and p, so that each integral on the right, in turn, becomes j {))i,p).

Again, by division,

2099 J('«.i')
= a\l(in,p-l) + hj^(m + v,p-l)+cyni + 2n,p-l)...iA).

And, by changing m into hi — )i, and j) intnp + l,

2100 JO"-", i' + l) = "3 (»i-«,iO + '\l"(»'.i') + ^. ('"+". iO (.^)-

Formula! (1) to (12) may now bo found as follows:

—

(4), by eliminating j(j» + n, p— 1) between (1) and (A);

(5), by eliminating ((//I +2m, p— 1) between (1) and (A);

(6), by eliminating 3
(m-H, j)-hl) between (2) and (B)

;

(7), by eliminating J (ju + », j>) between (2) and 0');
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(8), from (4), by clianging in into rn — 2n, and p intop + 1

;

(9), from (4), by changing p into p + 1

;

(10), from (5), by clianging p into p + l;

(11), from (6), by changing on into yn+ n;

(12), from (G), by changing ?» into vi—n.

If o and /3 are real roots of the quadratic equation

a-\-bx" + c\r" = 0, then, by Partial Fractions,

2101 f
-"::;-

.„.
^ i^K4^_f£^{,

J «-f /At'"+ect-" e{a—/3) iJ cV"— a J a'—p )

and the integrals are obtained by (2021-2).

But, if the roots are imaginary,

where cos?i0 = — -—-^^—r and z = l—Y''x.
2 Viae) \a/

2103 f- f"'^^^'^ , is reduced to (2079-80) by (2097).

^^^^
J (.,^+/Ov(«V^'cr+e.t^) =~J y(-44-%+Cy)'^"^'^^

where y rrr (.i^+ /;)-i, ^r=c, B = h-2ch, C = a-hh+ch\

2105 f
^^£-=^ = --l-cos-'i±^=-i=cosh-I±$.

2106 f
^^iL__= l_sin-'l±^. [By (2181).

Method.—Substitute (.i;+ /0"\ as in (2101). Observe the cases in which

A=l.

'^^"'
J (.r+/ov(«+^>''+^'0

~
^' V u+7i//+(y)'

with tlie same values for A, B, C, and y as in (2104). The
integral is reduced by (2097).

91 OR r (^'+»') '^''
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:Mktiiod.—Substitute 1) liy puttint,' .> = p tan (0 + y), and (lotcrrninc tlio

constant y by equating to x-cru the coenicicnt of sin 2« in the denominator.

The rcsu
.. . , ,. „,,

f.
f // cos « -f iV sin ,

Iting mtcgi-al is of the (orm . ,,
—

tT"''"-

Separate this into two terms, and integrate by substituting sin in tlie first

anil COS y in the second.

2109
C__±u)jrr

wlicrc «/)(,'') mid F{,r) arc rational alo:('l)raic functions of .t,

the former being of tlie lowest dimensions.

Method.—Resolve ^,
'^

into partial fractions. The resulting integrals

are either of the form (2107), or oIfs they arise from a pair of imaginary roots

of F(x) = 0, and are of the type
f .-V^'-'l

//
'^"l! 7 _l, n ' Substitute

a-— o in this, and the integral (21U8) is obtained.

INTEGRATION BY RATIONALIZATION.

In the following articles, F denotes a rational algebraic

function. In each case, an integral involving an irrational

function of x is, by substitution, made to take the form
]' F (z) d::. This latter integral can always be found by the

method of Partial Fractions (1915).

2110 f;.'|„..,(_^:f,(5+|i;)Uc.( </..-.

Substitute v = '', where / is the least common de-

nominator of the fractional indices ; thus,

h-fjz" dz~ (b-fjz'y ' \f+gxl

the powers of z being now all integral.

2111 j>'^1..->(5^)M5$^)-.^^-('^'-
Reduce to the form of (2110) ])y substituting .r\
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2112 ^ F{^(a+ \/nLV-i-n)} ilv. Subs, ^{a-^^/mx-\-n).

2113 (V{.r, y/{hx±c.v~)\(lv. Substitute x=^-^.
J z -\-c

AncULereforc y(^x ± c.^ =^, g = _ _^^.

2114 f
^ Iv, ^{a-\-hv+c.v')} dx.

Writing Q for a-\-hx-\-cx^, F may always be reduced to

tlie form ^+^^^ , in wHcli ^, 5, 0, D are constants or
C-\-V\/ Q

rational functions of x. Eationalizing tliis fraction, it

takes tlie form L-\-M \/Q. Thus the integral becomes

\ Ldx-\-\ M\/Qdx, tlie first of wliicli two integrals is

J J
. . r MQ

rational, wliile the second is equivalent to —~z dx, wMch
is of the form in (2075). ^ ^

2115 Otherwise.— (i.) When c is positive, tlie integral may be made
rational by substituting

a— cz' dx _ 2c (hz-cz^-a)
y(^ + j., + ,.,.) ^ y, {B^ + ''

2cz-b' dz (2cz-hy ' " ' ' V2cz-h

(ii.) When c is negative, let a, /3 be the roots of the equation

a+l>x— M^=0, which are necessarily real (a, b, and c being now all

positive), so that a+ hx— cx' = c (x— a) (fi—x). The integral is now made
rational by substituting

In each case the result is of the form j F(z) dz.

2116 f
.r"'F lv\ Va-\-bA--{-c.r"} dv,

when IS

substituting x^

when
^'

is an integer, is reduced to the form (2114) by

2117

f
r [.r, y^{a^h,), , /(/+ -.r)} r/.r. Substitute r} = a + hx
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and, therefore, .r = ., ' . , V{"-\-'>-^) — —77"'-'" /\»

The form J
7^ [", ^(f/.r-//)] (/.v is obtained, Avlilch is

compreliended iu (2114).

when
^^^

is an integer, is rednced to tlic form
J

/•' (v) (h:

by substitnting ;: = /u-" + \/{a + h'\c-"), and therefore

2119 \
d"' (fi+ b.r") '' F (,r") iLr is rationahzed by snbstituting

either (<i-\-Li:"Y or (ax-"-\-hY according as or "- + ^

is integral, whether positive or negative.

2120 1 d^''-^ F [d''\ .r", {(i-^1hv")'^\ (Lr, when — is eitlicr a

positive or negative integer, is rationalized by substituting

(rt + ia,'")".

INTEGEALS REDUCIBLE TO ELLIPTIC INTEGRALS.

2121 f F{.r, ^{a-{-b.v-\-Cd''+(Lv'-\-r.r^)\ fLr.

Writing A fur the quartic, the rational function /' may

always be brought to the form \.^ y ,

and this again, by rationalizing the denominator, to the form
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M-\-N\/X, where P, Q, P\ Q\ M, N are all rational functions

of X. ^ Mdx has already been considered (1915).

(n^X(Lv = f-^ civ or f^^\ where B is rational.

By substituting^ a^ = ?l±Vi/^ and determining j; and q' so
•^ °

l + ;y

that the odd powers of // in the denominator may vanish, the

last integral is brought to the form

B being a rational function of ?/, may be expressed as the

sum of an odd and an even function; thus the integral is

equivalent to the two

91 oq
(• ?/F.(.v^)rfy r_F^{!rUhi__

^^'^'^
J y(«+6r+<-/)

"^ J V(''+*/+<-/)'

The first integral can be found by substituting \/y.

The second, by substituting f^ foi

depend upon three integrals of the forms

2124 f ,,
^";

,, ., .

fv^lES^^

The second, by substituting /., for 7/^ can be made to

J {\-^nar)Vl—M'.\—lraj

By substituting (/> = sin ^x, the above become

2125 r ,, '^^. ,^, fx/l-A:^sm^^#,
«^ Vl— ^- sm"9 •^

(• H
J (1 -{-n siir^) v^l— /r sin-<^

These are the transcendental functions known as Elliptic

Integrals. They are denoted respectively by

2126 y{.K<i>), E{k,<t>), li («,/.-,</>).
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APPHOXIMATIONS TO F{1-, ^>) AND A' (/•, ^,) IN SEKIES.

AVIuMi /• is loss lltiiii unity, llio Valiums of /''(/.-,«/>) mid

E{Ji, tp), from the oriL;-in
<s>
= <>, in converging series, aro

2127 /'(A%<^) = </>-| t.+^^.-^445^''+

2128 /<: (A-, « = </>+ J ^1^-2^. ^'+ iTi:^^
-^''-•••

+ (^^ 2.1.0.../* 2^^ '*'" '^^•'

^ ^^^
. .^ [vi being an even integer.

. sill \6 i sill 2(f) , ., ,

. sill 0(i (I sill If/)
,
15sin2<i i^jl

. _ siiw/(/> ;/ siii(;/ — 2) j> C (/?, 2) sin (»—i) </>

n n — 1 n — h

_^(;^;{)sin(»-G)<^ _^(_^).„,^.(.^^^-,^,)^^

Proof.—In each case expand by the Binomial Theorem; substitute from

(773) for the powers of siu^, and integrate the separate terms.

The values of F(l',cp) and E{Jc,(}>), between the limits

^ = 0, ^ = ^TT, are therefore

2129

2130

But series Avhich converge more rapidly aro

2131

2 Y

)
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2132

l-^/(l-A-)

0133 r ^ (-'^) ^^'^^
_, ^Yhen i^(.') can be ex-

pressed in tlie form (x ;)fi'^+-T)' ^^ integrated by

substituting x-^—.

If h is negative, and i^(r(,) of tlie form U-\-
^ )/ (^'— ^j 5

substitute x
x

2134
^(•')"'-

y(a+i»u'+cu-4-^At''+fu^'+6cr'+«a''')'"

Substitute <r+ — =

Hence -^^ = I =t- —
, ) ^Z^,

x/cf'
""

V2 V^ 2 2 y;H^ ^

and the integral takes the form

J ^ {«(:s^-;k)+Z' (;s'-2)+c;^+^/}
" 2v/^--4

where P, Q are rational functions of z. Writing Z for the

cubic in z, we see that the integral depends upon

f_il±_ and f^|±^:,
the radicals in which contain no higher power of z than the

fourth. Tlie integrals therefore fall under (2121).

2135 ( ^^•^"

Expressing F {x) as the sum of an odd and an even func-

tion, as in (2i23), the integral is divided into two; and, by

substituting .r, the first of these is reduced to the form in

(2121), and the second to the form in (2134) with a = 0.
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2136 iV
r i.v) fh'

Put .v = i/-\-a, oheino-ii root of tliooquation a+ //,»- -f nr+ (/,(''= 0;

niul, in tiie rcsulliiiu- iiitooral, siibstituto ;:i/ for the duuomiiuitor.

The form lliiallv obtained will bo

f(//+ r»>\/a+y8^V/-

wliicli falls under (i!!:^), /'and Q bein.^r ration,.! functions

of ^.

2137 r IMjLH .

Expressinir F(.r) as tlie sum of an odd and an oven func-

tion, as in ('2123), two integrals are obtained. By puttin.cr

the denominator eciual to z in the first, and equal to .cz in the

second, each is reducible to an integral of the form

which falls under (2121).

l+.f' 2 \\ :

PhOok.—Substitute cos'x in (21.38), iuul 'Jtau-'.r in (l!l:'.0).

2138
j

^ J_ ,,^
=-^2^' (72' V-

^'''''""' ''^' ^"^''

2139 f_^, = i/.-(-L,.^

2140 ,, ,, ,
i' ill- i ,./ rill ,\ l-i. ri ' '' k\

according as // is > or < 2*/.

Pkoof.—Substitute aceurdiu^jly, x = 'la siii^ ^ or .v. = b siu'^.

Pkoof.—Substitute .r = a-(a-6) 8in->, * being < a and >h.
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SUCCESSIVE INTEGRATIOX

2148 In conformity with the notation of (1487), let tlie

operation of integrating a function v, once, twice, ... n times

for X, be denoted either by

\v, \ V, ...\ V, or by rf.^-, d_.2x, ••• (^-nx^
«, X J 2.C «. nx

the notation d_^ indicating an operation which is the inverse

of 4. Similarly, since y^., y..^, y^.r, &c. denote successive

derivatives of y, so y_^, 7/_2«., y^x^ &c. may be taken to repre-

sent the successive integrals of y wdth respect to x.

2149 Since a constant is added to the result of each in-

tegration, every integral of the n*^' order of a function of a

single variable 'x must be supplemented by the quantity

^ + ?kl!_=+...+«,._.r+«,.= f 0,
\7i— l \ n— 2 Jnx

where a^, flg? (h ••• '^n are arbitrary constants.

Examples.

The six following integrals are obtained from (1922) and

(1923).

When p is any positive quantity,

When p is any positive quantity not an integer, or any

positive integer gi^eater than oi,

2151 f J- (-J)"
I
f

When 7) is a positive integer not greater than n , the fol-

lowing cases occur

—

2152 f — = ^"-"^T' log.r+f 0.

2153 f
i = tiili:(.,iog.r-uO+ f 0,

J(y'+l).i-.*'' L/^~i J(p+l)x
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2154 (• -i=^^'{f (..i..,..)-^}+r •••

lor the integral witliiu the brackets, see (21 GO).

The following foriuula is analogous to (llGl-2)

2155 tt]"..=J.tl('"-^-)+j>

SUCCESSIVE INTEGRATION OF A PRODUCT.

Leibnitz's Theorem (14(;0) and its analogue in the Integral

Calculus are briefly expressed by the two eipiations

2157 />«x(«0 = (^/r+8,-)"''is i>-«.r("'') = (^/., +8,)-" ffr
;

where D operates upon the product ur, d only upon u, and S

only upon v. Expanding the binomials, we get

2159 J)Jifr)=:i(„,i' +«W(«.i),r, + "
^J~

^/ („-:) x^:. +&C.

Proof.—The first equation is obtained in (14G0). The second follows

from the first by the operative law (1488) ; or it may be proved by Induction,

independently, as follows

—

AVritiiig it in the equivalent form

f
(uv) =

f
uv-n

f
».,+ 'iI;^

f
.a,.-&c (i.),

(,/()= pry— nv^+\ nv.^— &c (ii.),

a result which may be obtained directly by integrating; the left member suc-

cessively by Parts. Now integi-ate equation (i.) once more for .r, integrating

each term on the right as a product by formula (ii.), and eiiuatiou (i.) will

be reproduced with ('i+ I) in the place of?;.

2161 f e"''.v"'= c'''-(a-\-(i.)-\v'"-{-\ 0. Or, by expansion,

2162

]nx a" L a 1.2 a* ) ] nx

If m be au integer, tiie series tcrminuleb with (— l)*" ?i "" -i- a".

ikc u = 1 ; til
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Siniilarlj^, by cliangiug the sign of m,

2163
f e^ _ e^ ( _1_ ,

nm n(n+ l) in(m + l)
, ^^ 7 , f q

]„x a;'»
~

a" la;'»'^aa)""i'^ 1.2 aV'-^ ' ') J«x
'

Proof.—Putting u = e""", v = x"' in (2158), tLe formula becomes

J Ha:

Here e"^ is written before ^^ within the brackets, because ^ does not

operate upon e"^. Observe, also, that the index —n affects only the opera-

tive symbols d^ and ^j., but it therefore affects the results of those operations.

Thus, since d^e"^ produces ae"-^', the operation d^. is equivalent to aX, and is

retained within the brackets, while the subject e""", being only now connected

as a factor with each term in the expansion of (a+ ^a,)"", may be placed on

the left.

2164 P-."V/. = ^ f,.»-^,...->+!il^) ...»-.c.(

Proof.—Make w = l in (21G2) and (21G3).

2166 f cr''(log.r)'" = f e^^-*-"^•^^•'^ [Sabs. log...

J nx «. n.v

Hence the integral of tlie logaritlimic function may be

obtained from tliat of the equivalent exponential function

(2161).

For another method, see (2003-5).

HYPERBOLIC FUNCTIONS.

2180 DE^INlTI0^•s.—The hyperbolic cosine, sine, and tan-

gent are written and defined as follows :

—

2181 cosh .V = }j {e'--\-c-') = cos (/.r). (7G8)

2183 siub .V = I {v'— c-') = -/ «iu (/'.<).

2185 ianh.r^: '—^ =.-iii\n{h). (770)
6'' 4" <-'
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"By tlicsc equations the followinu^ relations are readily

obtained.

2187 0()>li 0=1; siiili = 0; cosli x = siiih j: = r. .

2191 eosh-.r— sin]r.r= 1.

2192 S'ii»l» ('^H-//) = siuh.i' eosh//4-cosli.r siiih//.

2193 cosh (t -f//) = ooshii' cosh ;/+siiihcf siiih//.

2194 tanh(,r4-//)-
fanh.rH-tnnh//

l-ftaiihct' taiihy*

2195 ^iii^^ -•^' = - siiili '^' cosh .i\

2196 cosh 2.1' = cosh'.r+sinh'cr.

2197 = 2cosh'-.r-l = l+ 2sinh-.r

2199 siiih ar = o siuh .1+4 siiih'' .r.

2200 coshiU = 1 cosh\t -3 cosh .r.

2201 tanh2.r = 2tanh.r

1+taulr.f

2202 tanli.J,r= —
, ,

.,
'

. ,

•

1 4". J taiili.r

2203

2208

. 1 .?' /cosh.r— 1 1 .r /coshr+l
siiih — = y ry

; cosh— = \j

2205 taidi— = W j —r = —r-j = -,
—j-T.

2 vcosh.r+l smli.r cosh.r+l

2 tanh Iv
cosh .r =

+
l+lanlr^r
l-lanlr.'„r

^iuli
I— taiilr .\.t''

INVERSE RELATIOXS.

2210 T.et u = cosh.r, /. .r = cosl|-' t( = lo^r (,/_|_ ^/„-i_l).

2211 r = sinh ,r, /. .r= sinlr^ r = h)g (r+ \/rM- I)-

l+»c^
2212 7r = ianli,r, .'. .r = tanlr^c= .lloirf _ )•



352 INTEGRAL CALCULUS.

GEOMETRICAL INTERPRETATION OF tanh /S^.

2213 2V<(^ tangent of the angle which a radius from the centre

of a rectangular hyperbola snakes with the principal axis, is

equal to the hypcrholic tangent of the included area.

Proof.—Let 6 be the angle, r the radius, and S tbe area, in the hyperbola

i>
isec20cW = ilogtan(i7r+ 0). (1942)

Therefore e^« = I±li^
; therefore tan = ^^^-^ = tanh 8. (2185)

1— tan y e -re

VALUE OF THE LOGARITHM OF AN IMAGINARY QUANTITY.

2214 log {a+ib) = ilog {a-+b')-^iimi-^^^.

Proof.- log
."t^",.,, = log J ^ ^ [ = i tan"^ A. By (771).

/
1+^-

, a -\-%b , / a

DEFINITE INTEGRALS.

SUMJklATION OP SERIES BY DEFINITE INTEGRALS.

2230 (/Gr)f/.t>= [/(.OV(«+^^^0+-.-+/(«+^*^/aO]^^^^^

where n increases and dx diminislics indefinitely, so tliat

qidx = h— a in the limit.

2231 Ex, 1.—To find the sum, when n is infinite, of the series

1 + _.l. + JL + _1_. Put >i = -^; thus,

n n+ 1 n+ 2 n + n dx

i£ + _^£_+ ^--^ + + -'- = r— = log2.
a a+ dx a+ 2dx 2a J„ x

2232 Ex. 2.—To find the sum, when n is infinite, of the series

^ + ^ + '' + + —!L- Put « = ^, then
wH 1' »i'+ 2* «"^+ 3- »-'+ 'i' f^-«

^?a>
.

da:
, .

^^'^^ = f ^''L = 5.. (1935)
l + (Jx)''^l + (2(?,ry^^ ^l + (>a/.0=' 1^+'^' 4



TnEOn TIMS RESVECTING LIMITS OF INTEQRA TION. .'5 5 ;i

THEOREMS RKSPECTIXa THE LIMITS OF
INTEGRATION.

2233
I

"^ (.,) (hv = fV (^'-'^O '''»'• [Substitute a-z.

2234 f>(,r)r/.r = 2fV(.r)r/.

or ::t'ro, according as '/>('') = i '/'("—'*') ^^^' '^^^ values of aj

between and a.

Ex.— [ smxdx = 2 ['

*'o Jo

dx = 0.

If ,/,(,r) = </)(—.r), that is, if <|.(.r) be au even function

(1401) for all values of x between and a.

2236 (""
<t>

(') ^/'^' = fVO*') '^' = T i ' ^ ('"^ ^'^'-

J -a Jo ^J-a

Ex.— „ cos .i'f/x = '^ cos .i;rfa! =
., T „cos a;(7j.

J~2 "" " ~2

If <^(,,.) = _^(_a>), that is, if </>(.r) be an odd function

for all values of ,/' between and a.

2238 r */>(•*) 'f'' = -( VW <^'^' a^^^"^
i

*'*(''') ^^''' = ^^-

J -a * •- -a

Ex.— j „ sin X d.r = — r «iii •«' '?•*' f^n^ "^ „
^'" •'' '^'' ~ ^^

J ~
i

*' "^ ~ >

Given ^/<c<^, and that x = c makes */>('•) infinite, the

value of [<p{x)dx may bo investigated by putting /t = 0,

after integrating, in the formula

2240 \ V ('*) <^''' = r "^^^ ^-''^ ^^"''+ i
*^ *^''^

^'''''

If the function rp{r) elianges sio-n on b.'ccnung iniinito, tliis

expression, when ^ is an indelinitely small (puiutity, is called

the j>ri'»c/j>a/ value of the integral.

2 z
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which is the principal value. If, however, n be made to vanish, the expres-

sion takes the indeterminate form oo — co .

2241 Given a < c < 6, the integral I ' —3^' will always be

finite in value while n is less than unity.

Ppoof.—Let ^ in (2240) be taken so near to c in value that \// {x) shall

remain finite and of the same sign for all values of x coinpi-ised between

c ± iu. Then the part of the integral in which the fraction becomes infinite,

and which is omitted in (2240), will be equal to ' '^

. „ ,
multiplied by

a constant whose value lies between the greatest and least values of ;// (x)

which occur between 4' {c— f^) and 4' (c + /")• By integration it appears that

the last integral is finite in value when « is < 1.

2242 \"f{^) d.v = {b-a)f{aJrO{h-a)},
•. a

where 6 lies between and 1 in value.

The equation expresses the fact that the area in (Fig. 1901), bounded by

the curve y =f(x), the ordinates f (a), f{h), and the base h— a\s equal to

the rectangle under I— a and some ordinate lying in value between the

greatest and least which occur in passing from /(a) to f{h).

If ^ (,T.) does not change sign while x varies from x= a to

2243 f/G^') ^W d^^^ =f{n+ e(h-a)} fV Gr) (Iv.

2244 If ^(^j ~) is ^ sj^mmetrical function of x and —

,

|->(,..,i)l^ = 2fV(,,.,i)l^.

PiJOOF.—Separiitc the integral into two parts by the formula = +
,,,.,, 1 ..,,.-. ,

Jo Jo Ji

and substitute — in the last integral.

METHODS OF EVALUATING DEFINITE INTEGRALS.

2245 Rule I.

—

fiiih^titute a new rariahle, and acljust the

li/nii ts a ceo rding ly

.

For examples, see nvmhers 2201, 2808, 2;342, 231-5, 241G, 2425, 2457,

250G, 2605, &c.



METHODS OF EVALUATISC, DEFINITE INTEGRALS. 355

22-16 Rl-hilU.—liilr./ralr //// rarl,i (lUlO), so as li> intro-

duce a kiLoivu dfjiniic inlfijiuil.

For ej:ai,i2>les, see numbers 2J^:3, 21'J0, 21:30, 2-I-5:i, 2-4Go, 2484-5,

2608-13, 2(32o, 2G25, &c.

224:7 Ivii.i: 111.

—

D ijjc rent III tc or integrate ivith respect to

i<onie tiiiantltif other than the carlable concerned; if a known
integral is thus obtained, evaluate it, and then reverse the

operation of differentiation or integration before performed

with respect to the secondari/ variable.

For examples, see nnmhers 2346-7, 2364, 2391, 2417, 2421-4, 242G, 2428,

2407-8, 2502-4, 2571, 2575-6, 2591, 2604, 2614, 2617-8, 2632, &c.

2248 IvULE IV.

—

Sntjstitute iniaginary values for constants,

and thus transform the expression into one capable of inte-

gration.

For examples, see numbers 2430, 2404, 2577, 2504, 25J8, 2603, 2606,

2615, 2641-2.

2249 'Rule V.

—

Expand the function, if possible, in a finite

or converging series, and integrate the separate terms.

For examples, see numb'^rs 2395-7, 2402-3, 2418-9, 2479, 2506, 2571,

2593, 2598, 2614, 2620, 2625, 2629, 2630-2, 2639.

2250 Rule YI.—Decompose the integral into a numbrr of

partial integrals, and change all these by some substitution

into integrals having the sa)ne limits. Bij summing the

resulting series^ a new integral is obtained which mag be a

known one.

For examples, see numbers 2341, 2356-61, 2572, 2638.

2251 Rule VII.

—

Separate the function to be iitf<-grard

into two factors, and replace one of them by its value in the

form of a definite integral taken between constant limits with

respect to some new variable. The doutde integral so obtained

may frequently be evaluated by changing the order of integra-

tion as explained in (22G1).

For examples, see numbers 2507, 2510, 2573, 2619.

2252 Rule VIII.

—

Mnltiply a known definite integral u-hich

is discontinuous between certain values of a constant which it
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contains, hy some function of that constant, sucih that the

integral of the j^t'oduct with respect to the constant is hnoiun.

A new definite integral may thus he obtained.

For exaviples, see ntnnhers 2518, 2522.

Particular artifices uot included in the foregoing rules are employed in

2293, 23U5, 2310, 2314-5, 2317, 2367-9, 2404-15, 2422, 2429, 2456, 2495,

2514, 2518, 2585, 2000, 2626, 2635, 2637.

Additional formulae for integration will be found at 2700, et seq.

DIFFERENTIATION UNDER THE SIGN OF
INTEGRATION.

Let 11 = f(x) dx, where a, b, and f{x) are iudepeudent
J a

of each other ; then

2253 ^=/W and ^ = -/{")

Proof.—Let u = (j>(b)—f{a).

Therefore % = 0' (&)=/(&) and n„ = —<j>' (a) = —f(a).

rb

Let u = f{x, c) dx. Then, when a and h are inde-
J a

pendent of c,

2255 u, = f {/(.r, c) } (Iv and n„, = f {/(.r , c) } „. d.v.

Phoof.— ^ =
j
\f{x,c + h) dx- ["/ (x, c) dx I ~ h

= --^ '^— dx (since h is constant relatively to x) = (

^•''' dx.

But if a and h also are functions of c,

225V ^=j:irq£-)j<..+.m,.)f-/(«..)S.

Proof.—The complete derivative of u with respect to c will now be
u,+ a,b^+ u^a^. But III, =f{b, c) and u„ = —f (a, c), by (2253-4).
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INTKCl RATION BY DTFFKRKNTIATTNd UNDKll THE SIGN OF
INTFCi RATION.

2258 i:x. 1.- \y'>^'-^ir = ^(c'-),,,,.h = j.,.^.-dr (2250)

by (Mr> I), a and .r boiiif,' transposed.

2259 i:^- 2.— {x"c"-^\uh.rd.t = il,Jc"ii{nh.rJx.

The last intet,M-al is given in (1999), putting n= 1.

2260 Ex. 3.-

INTEGRATION UNDER THE SIGN OF INTEGRATION.

When the liiuits are constant,

2261 ("" ^"\nv, y) dvdj, = T" r7(.r, ij) fh/flr.

That is, the order of integration may be changed.

But an exception to this rule occurs wlien, at any stage

of the integration, an infinite value is produced. The double

intesrrals above will not then have the same value.

ArrrxOxiMATE integration.

BERNOULLI'S SERIES.

2262
J/('0^/.^^=

^{/X^O-j^^/X^O+ y-^^

Proof.—Integrate successively by Parts,
J

-/.c, l.c/r, Ac. Or cliange

/'(aj) into/(j;) in (1510).

2263
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Proof.—Put/(a) for V)'(tt) iu the expansion of tlic right side of equation

(19U2), by Taylor's theorem (1500) ; viz.,

\^f{x)dx = ^(h)-<^{a) = (6-a)^'(a)+fc|I%"(a)+&c.

The following is a nearer approximation :

—

Let {h— a) = nh, where « is an integer ; then

2264 |7W civ = h {lfib)-\-if{a)^f{a+h)+,..Jrf(h-h)}

-7j!rw-r(«)}+&c.

Proof.—Expand (<?" " -^ — 1 ) -4- (e"-'' — 1) by ordinary division, and also

by (15oi)), and opciate upon J\x) with each result; thus, after multiplying

by h, we obtain, by (1520),

h{f(x)+f(x + h)+f(z + 2h) + ...+f(ix+ l^^h)}

which expression, by changing .-« into a and x + n]i, into b, is equivalent to

the above, since d_-^{f(x + nh)—f{.c)} = / (,7.) dx.

2265

Proof.— Assume a; = ce''^. Then a; is equal to the coefficient of —

in the expansion of —log f 1— — ]. Tliug

^ 2//C-- , 3-//-r' , 4V,V ,

" = ^+ 1:2+ 1:273 + 1:^:3:1.
"^-

- /Id .

Substitute d^ for .t, and therefore dj.e
•' for c in this equation, and operate

with it upon
\ f (x + h) dx, employing (1520). Finally, write f(x) for f (x).

and a An- x.

A more general result, obtained iu the same wa^-, is

i*a+nh 7,9.

2266
\

/Or) (Lv = nhf{n-h)-^rn {n^-2)^f {a-2h)
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THE INTEGRALS B (/, m) AND r(w).

EULER'S FIltST INTEGRAL h {!,,„).

Till' tlirco ])fiiici|):il fornix; arc

—

2280 I. B{l,nt)= \ \r'-\\-.ry'-'(h'=Ti{m,l). [ny(2233)

2281 II. lUl,m)=( .'!'''
/f'^'- [By substituting-^- in I.

Jo (l+.r) " -L •'

2282 111. lUl,m)=\ -4^1-1— fAl-. [By substituting!—^ in I.

Jo (1+cl') •*

"Wlieu I aud m arc positive, and / is au iutcgcr,

2283 B (/, w) = i|^.

If rti be the integer, iutercliangc / and ui. If Ijotli / and

m are integers, the forms are convertible.

Proof.—Integrate (2280) by parts, thus,

f .r'-'(l-.^0"'"''^-^'=— f
.^•'-'(l-a;)"•.

Jo m Jo

Repeat this step successively.

EULER'S SECOND INTEGRAL T{n).

n being a real and positive quant it v,

2284 y{n) = \\-\i--\Lv = \
'(logiy \Lv.

The second form being obtained by substituting c ' in the first.

2286 r(l) = l, r(2) = l.

2288 I'(7'+ l) = >'!'(") =^n{u-\) ... (n-r) V{n-r).

2290 r (>*+ l) = ! « , ^vhen n is an integer.

Proof.—By Parts, f Cx^'-'dx = ^1 + — f
r^'x^lx.

^ '

Jo "e'Jo n Jo

The fraction becomes zero at each limit, a~s appears by (1580), dilTerenfiiiiiug

the numerator and denominator, each r times, and taking r>n.
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2291 Ce-'V-'d.,=^ = f^'- (logi)""'rf.r.
Jo A, Jo \ tl /

Proof.—Substitute l-x in tlie first integral, and so reduce it to the form

(2284). In the second integral, substitute — log.t;, reducing it to the former.

When n is an integer, C2291) may be obtained by differentiating n— l

times for k the equation I e~'''^dx = —

.

AYhcn in is an indefinitely great integer,

2293 r{u)= . \;f /, ^

/^^

1 1
Proof.— log— = lim. /u (1— x*^) (1583). Give it this value in (2285),

X 1

and then substitute y = .f^ ; thup, in the limit,

r(n) =/.«-' r(l-.rM)"-'cZx = ^" ['>/-' (l-yy-'dy. Then, by (2283),

changing fi finally into /i + 1 in the fraction.

logr(l+?2) IN A CONVERGING SERIES.

2294 Let n he <1, ^ an indefinitely great integer, and

/Sf, = l+^ + J7+...-^, then

log r (!+ »).

2295 ={\ogii-S,)n+lS,n'-lS.y-\-iSy-iS,7i'-\-&c.

2296 = ilog^^^^ + (log/.-.SO n-iS,n^-iS-X-&c.
sill HIT

+ |(l-S.) + |(l-S.)+ '!tc.

2298 =i\og-^^-i log
I

+i' + 1227813«
^aiunir 1 — n

P.OOF.-By(2203), ^ d + n) =
^^^^ ^^;^;^^

^^^
^^^

,

1, when /M = CO . Whence
ii-tfi + i

iogr(i+H)=«/^.-Ki+n)-/(i+ ;^)-z(i+ ;;)-... -/(i+^j.
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Dovelopinf? the lopfarlthms by (155), the series (2295) is obtained. The next

series is deduced from thi.s by substituting

<S>*+ -i.V*+iV + i'V+ &c. = hifr«7r-lo{,'sin«7r,

a result obtained from (815) by putting = mc and expanding the logarithms

by(15(;).
The series (2207) is deduced from the preceding by adding the expression

= -J- log J-"ti' ^n^—-^^- +«!^c., from (157).
\—n 3 5

2305 B('.'") =M^.
Puoor.— Perform tlic integrations in the double integral

first for .r, by formula (2201), and then for//, by (22^1), and the result is

B (/, m) r (i-\-m). Again perform the integi-ation, first for //, by (2201), and

the result is r(/) T{m), by (2284).

Note.—The double integral may be written by the following rule :

—

Write xy for x in r(0, 'i«t^ imdtiplij hij the factors of r(»i-|-l). We

thus obtain
[ \

e-^^(.njy-'x-c-\rdxd>/,
jo J I)

which is equivalent to the integral in question.

2306 B(/, m) B(/+m, n) = B(m, «) B(/**+ «, /)

= B(>j,/)B(;i+ /,»0

2307 =%SW- f^^<-->-

2308 ('\v^-\a-.v)""'(U' = a'^"'-'B{l, w). [Substitute ^.

Jo "'

If j; and q are positive integers, i'<'/, and if m = "^^—

.

2309 rr^. ^^* = ^r-^
—

Jo l+.t' ' -7 siii>/<7r

2310 IV^ (f> = 1-7^—
Jo l—ar'' 'Iqiiuxmn

Proof.— (i.) In (2023) put / = 2p + ], » = 2-/, and take the value of tho

integral between the limits ±oo. The lirst term becomes log 1 = U ; llio

sec"ond gives tlie series

q L 2q 2q Iq ) qsmniir

by (800). The integral required is one-half of this result, by (2237).

(ii.) (2310) is deduced iu a similar manner from (2021).

3 A
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2311 ii:,/,,. = ^j^, fi_,/,.=^L-,
Jo l+.r siiu/<7r Jo 1—0,' taii/>i7r

"wliere m lias ainj value between and 1

.

^p + 1
Proof.— By substituting ;r'^ in (2309-10). Also, since w = =^ — , by

takino" the integers p and q large enough, the fraction may, in the limit, be

made equal to any quantity whatever lying between and 1 in value.

2313 r(m) r(l-»0 = .

'^

, m being <1.
siii/><7r

Proof.—Put l+m = 1 in the two values of B (/, w) (228-2) and (2305) ;

thus, r {in) r (l-»0 =
f
'^ <lr = —"—, by (2311).

Jo l + x s\n iiiTT

2314 CoE.- r(i) = v/'r.

The following is an independent proof:

r(l) =
[
e-'\c-^cU = 2 [ e-'-'dij = 2

|

er'-dz.

Now form the product of the last two integrals, and change the variables to

r, d by the equations

y = rs{nd\
^^,^^^ ^^.^^ by (1 009), cluch = 'l['^'-)-drdd = rdrJe. Hence

{r(i)}- = 4l
\

e-'" *'''dydz = 4[ \' e-'\drdd = tt;

Jo .'o Jo Jo

the limits for r and being obtained from

r^ = i/+ ::\ tan0 = ^.

(27r)"-^
2315 r(l)r(l)r(|)...r(^l) =V^

Proof.—Multiplv the left side by the same factors in reversed order, and
apply (2313) thus

-^^—, by (814).
. TT . 27r . (l!— n TT

bui sm - ...sin
n n 11

2316 -^, r(,,) r(,,-+i) ... vL+'^ = v^i^^^'.
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Pljoor.— Call tlif cxincssiuii on the Icfl '//(.r). (!liaiij^o x to ./• + r, wlicro

r is niiy iiifc^'tT, mid cliaiifrt' each (iaimiia fuiicti.'ii by ilic forinula

V(.c-\-r) = J-"" V{x) (2'JHS). The result aftor rcilucrtion is (/.(.r). II<-iico

*f>{x) = ^ (.(•-!-/•), liowi'ver great r may be. Tlii-relore </>(.r) is iinlrjimdvul of

a*. But, wlu'U x =: — , 'l'{x) takes the value in ciut-stiuu by ("iolo). There-

fore tp (x) ulwa^-s lias that valui\

The formula may also be obtained by means of (220 I).

NUMKiaCAL CALCULATION OF r(.r).

2317 All values of r(,i') may he found in terms of values

lying hetween r(0) and r(^).

"When X is > J, foi-inula (2280) reduces r(.e) to the vahie

in which x is < 1 ; and wlien x lies between 1 and ^^ formula

(2818) reduces the function to the value in which x lies

between and ^.

Values of T(,r), when x lies between and 1, can also be
made to depend upon values in which x lies between J and

J-,

by the formuh\3, . v

, !(£)
2318 rw = 2'-=VTT.!5^. r(,.') = —^^^^ f^-

Proof.—To obtain (2:U8), make n = 2 in (2:11 T.). To obtain (2310),
put i»=:|(l+,r) in (-:31o), and change x into ^-c in (2318), and then

clinunatc I" (—7— J-

Mcfhods of employing the forniuhe—
2320 (i.) When x lies between | and 1, reduce r{x) to

V{l-,v), by (2818).

2321 (ii.) When x lies between
-J

and I, reduce by (2:}K»),

the limits on the right of which will then be
I,
and

-J.

2322 (iii.) When x hes between (» and '

, rr.hicc by (2818) ;

r(^+.'') will then involve the limits .} and J, and will bo
reducible by case (ii.)

If 2x is <i, reduce r(2./) by (2818), writing 2,r for ./•. If

this gives 4,/'<^V, i-cduce again by the same formula, writing

4x for Xf and so on.
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2323 The figure exhibits tlie

curve wliose equation in rect-

angular coordinates is ?/^r(,T),

Let the unit abscissa be OA =
AB=1. Then the ordinates

AD, BG are also each — 1 by
(2286-7).

The minimum value of T(x)

is approximatelyO'8556032,cor-

responding to a?= 1 '461 6321.

The values of logr(a;) in

the table at page 30 correspond

to ordinates taken between
AI)= T{\) and BG= V{2).

INTEGRATION OF ALGEBRAIC FORMS.

2341 f/Sw^^^'^' = ^(^'^'^)-

Pr.oor.—Add together (2281) and (2282). Separate the resulting in-

tegi'al into + , and substitute — in the last part.

.r'-^(l-.r)'"-^ Bilm)
2342 y

^^'-^'-^y:
d. = 4i\^ [Substitute ^-±i^

2343 rV-Vl-.r")"'-'^Ai' = —B(L^ m\ [Substi
Jo n \n J

tute x".

2344 f'^igi^^^,/,.= -Lz,(/,,0.tS"b.^;^3f^
Jo \a.v-\-b{l—d')\ uo ^ ^

The integral is also equivalent to

Jo (a sur(M.siii-^+6cos-^)"
(19, and siniilarlv in other casi

2345
(/.V

'o {H-\-OA-y"^ nab"
[Substitute — ~.
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2346
, 1/1.. = -^^ -^/

PuooF.—Differentiato (234d) hi— 1 times for a. (2255)

Pkoof.—Substitute .); = aij in (2311), aiul tlicn difreirntiato n times for a.

2348 \ -j-

—

- = - c'osec—

,

)
z= - cot —-,

»',. l+.r' ;i « Jo 1—.* /* n

where m and n are a?i^ positive quantities, and in is < ?«.

Proof.—Change m into "^ in (2311-2), and then substitute x".

"When n is positive and greater than unity,

2350 1 -T-,— = — cosec-. \ r = — cot —

.

Jo l+.r" n n Jo 1—.*'^ m n

Pkoof.—Substitute x'" in (2311-2) and change m into —

.

2352 \ r=— COWOC—

.

1 -^^ =— col—

.

Jovl— U"
^< " J" V l+ .«

'

>' «

Proof.—Substitute —-—^ in ^2350), and
'

in (2351).

When m Hes between and 1

,

^ -I n^'t^ *^ —

'

«.o-*-ct «^ ^

Proof.—Make n = 2 and write 7)i + l for m in (231-8-9).

2356 \''!^::;±^.i.,=^^. f'l!^
Jo 1 +cr smnin Jo 1— d' tan>/<7r

where ')ii hes between and 1.

Proof.—Se2)arate (2311-2) each into two integrals by the formula

I = +
I

> ^^d substitute .f' in the last integral.

Otherwise, iu (2G01) substitute t'"^, aud change a Into Tra— jtt.
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Pjjoof.—From (2354-5) by tlie method of (235G).

2360 I —

^

(Lv = — cosec—

.

Jo l+.r" n n

2361 j _^^_^ ,/.,. = -cot _.

Proof.—In tlie same way, from (2348-9).

2363
J/ !_;> '^-|,^""l^-

Proof.—In (2601) substitute e 2« and put a = ^. In (2595) substi-

tute e « and put a = —

.

71

/»00 T
-J

(»-l)

2364
j„ f-^ = 5t^ 2;^. « l^eing an iBteger.

Proof. — By successive reduction by (2002), or by differentiating

f
„

' = —
-, w— 1 times with respect to a^. (2255)

x^+ a^ 2a
'

2365 f ^^^'-^1^^ _ 7reosoe»;7r
^gubs. V^^ (2311)

2367 ^^{fL-^,. = lo,n.

Proof.—The value when a = 1 is \ogn. The difference, when the value

is a, is dx— n '
— '-— dx,

Jo i--« Jo i--'-;'

which, by substituting .<;" in the second integral, is seen to be zero.

F(x) being any integral polynomial,

2368 1

^'

At^^^ = ^'^^ ^vliere J is eciual to tlie constant
J-:v/(l-.r-)

/ 1\-^
term in the product of F^i) and the expansion of M r, ) .
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Pkoof.—By successive redaction by (2053), we know that

i^^ = *(')^<'-">-'[7(f^, <•>•

wliere <p (r) is some inti'Sjral polynomial and A is a constant. Therefore the

inti'cral in question = Avr. To detcrmino -1 write the last equation thus,

f^(^-;;^)"'--'*«('-7)-'-'U.{'-'=)
-

Expand each binomial; perform the integrations and equide tlio coenirients

of the two logarithmic terms in the result.

F{.r) being an integral polynomial of a degree less tliaii h,

2369 f;^,.,. = |^"i-{.(,.)lo.^:}.

J,i
(.'•—</

I

»- I
J a <.'^' \X— Cl )

But El£} = fix, c) + ^--^, where f is of a dimension lower than n— l
i--c x— c

(421), and therefore d,,,.^^ , / (.r, c) = 0. Hence the integral on the right

INTEGRATION OF LOaARITHMIC AND
EXPONENTIAL FORMS.

Pkoof.— These are cases of (2202). Otherwise; to obtain the first

integral diflerentiate, and to obtain the second integrate, the equation

2391 f;,.''iog,../,,.=^,. j;;^>iog(/<+i).

Pkoof.— These are cases of (2202). Other

integral diflerentiate, and to obtain the second

j
x" (Ix = —

Y
with respect to ;< (2255 and 22<)1).

Jo /''-'•

2393 j"'.,"(log,r)",/., = (-i)»Il|+ll.

Proof.—Sec (2202). Otherwise, when » is either a positive or negative

integer, the value may bo obtained, as in (2:i01), by performing the difler-

entiation or integration tliere described, n times successively, and employing

formula) (21GG), and (21G8) in the case of integration.

Jo log.r *!+*•
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2395
<'"•-'''

rf.,. = -^«„y = - i—^rf.r.

Jo 1— cr >< ..0 c' — 1

Jo 1+.^' 2/t Jo e'+ l

Proof.—Expand by dividing by l=Fa;, and integrate by (2393) ;
thus

The first series is summed in (1545). The difFerence of the two series mul-

tiplied by 2'^""
'is equal to the first ; this gives the value of the second series.

2399

ri2££rf,.

=

r^jiKii^

=

-1-1 1 1 &c. = -^.
Jo l—t Jo ^v 2- 3- 4- b

Proof.—As in (2395-7), making n = l.

The series (2399) may also be summed by equating the coefficients of 6

in (764) and (815).

2401 fM£rf. = -l-l-i, -l-&c.=-^.
Jo 1— .1^^ tii)^ «

Proof.—The integral is half the sum of those in (2399, 2400).

Proof.—Expand the logarithms by (155) and (157) and integrate the

terms. The series in (2400-1) are reproduced.

2404 Let r ^""^^"'^'^
(Lv = <t>{(i), a being < 1.

Jo <(

Substitute \— x = i/; therefore, writing Z for log,

u( \ = C ^''^ = r ^^ "^y - C'"^1L^
"^^'^

].-al-2/ l^-'J I 1-'/

The second integral by (2399), and the third by Parts, make the right side

= _ .^l + Ja I (1 - a) - f"" ^-^—^ '?i/-
Therefore
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2405 cf>(^a)-{-<i>[^i-a) = \oira lo^- ^ I _a)- 'tt.

Again, V ('•) = r '-^^^^ '/•'•, ••• i^y -^-^3) 9 (r) = iii—^ ... (i.)

Put , - for .<: ; then

2406
^(-•'•)+^HrT:r') "

Hiog(i+.r)}"^.

Also, 9(.r) = -
[

(l+ 1+ ^ + |- +&C.)

Henco ^ (.0 + ?. (-x) = - -^ (•«'+ fr + |r +'^c.) = 7^-?. (.c'j.

Eliraiuate (-.»•) by (2 tufi) ; thus

2407 <^(;^j)+i'^(.'-0-^(.') = 4{log(H-,r)}'-

Let —^ = a;", and therefore x = tt + ~t v^^ = /' say,
x+1 2 2

.-. by (2407), !<? 05^)-'/' (/3) = ^ {^ (l+/3)r,

or |-9(l-/3)-9 03) = l(/y3r-; [v /5-^ = l-/> and l +/3=~

and by (2405) (1 -ft) + -^ (/'O = 2 (//3)^- -j^
7r=,

<p (,5) = (//3)'^- Itt' and 9(1-/5) = (//5)=- j^. tt', that is,

2408 jT'i^S^^ 'l-^ = (<«?^=-')' - W-

2409

2410 Let a be > 1, then 9 («) contains imaginary elements, but its

value is determinate. We have

^ („) =
I'

ilk:^) ,i.+
1° Ul=s) ,,. = - ^ + [

" + '^-"
.

3 R
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the integration by 2300, and l{-l) = ^i by (2214). The last integral

Substitute — =y in the last integral, and it becomes
X

]± y io y h y 6 \ a /

Hence, when a is > 1,

2411 <^ («)+</» (^)
= -^+^nog«+i(iog«)^

If a = 2, tills result becomes, by employing (2405),

2412 f

^ lo^(l-v)
rf,, ^_^ +,; ,og2.

Jo .V 4

2413 Let ^(a.)=£^logi±|(Z*.

l+.-B 1 , IX

Therefore f C^) = ^ Z (i^), cZ,^ ^:^^ ,
- -^^.„

therefore 4/ (a;) + 4/ l^^^] = T (l ^-^ — + -~] dx, therefore
\l + x/

Jf,
\ 1 — x 2x 1— »"/

2414 ^W+^([=f) = ilog.r- log l±f

.

The constant vanishes, by (2403) and (2401), putting x = 1.

Let X = —'-, and therefore x = v^2— 1 ; then, by (2414),
1 -\- X

2415 T'l^gy^ 4?- = -* {logiy-'-i)}'-

2416 f'M+iiOrf,_-,„g2.
Jo l-|-cl' o

Proof.—Substitute ^ = tan"'.r ; then, by (2233),

2417 l^^y (liffereiitiating or intooTating tlie equations (234.1)

to (2;]G3) with respect to the index w, the integrals of func-
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tioiis involving logc are produced ; thus, from {'2-\o(')), by
integrating for ))t between the limits ! and in, we have

2418 f' /i'I'Vr"'" ''•' = '<•& *"" ^- (''«>

Otlierwisc, this vesult may be nrrived at by farming the expansion of the
fraction in powcM-s of.c, and integrating the terms by (2o'J2) ; the reduction
is then efFected by 815-G.

In a similar manner, we obtain the more general formula

2419 f ^•fri";',".
'^ '''

'

=

'"S-^^^ -
Jo (l+ci' j log.f ii in-\-p n-\-'2j) m+*^p

2420
] ,, „,, (f'V = log tan —-.
Jo (l+.r") logci'

"^ 2n

Proof.—Integrate (23G0) for m from 2« to m.

2421 f' ""-''"Y^'"7^'"^''
''^''

Jo (log.r)"

= (7.H-l)log(y>+l)-(i-+l)log(r+l)+ (r-7>)|l+ log(v+lj}

Proof.—Integrate (2394) for j) between tlie limits r and j).

2422 I"
(v-.-)..-+(>--/>) ..-+(;>-,) .r- „.

Jo (log.rj-

= log{(y,+ l)0^+')(7-.)(,^_^l)('/+i)('-i^)(,.4.1)(.+ n(/.-.)}.

Pkoof.—Write (2421) symmetrically for r, ;; ; /», y and 7, r. ^Multiply

the three equations, respectively, by ry, r, j>, and add, redu<.-ing the result by

2423 r '"^^^.^+"''%/.f=:^log(l+«i).

Proof.—Differentiate for o, and resolve into two fractions. T^ffect the

integration for x, and integrate finally with respect to n.

2424

Proof.—In (2423) put a = 1, and substitute - = ij ; multijdy up by b,

and intei^rate for I between limits U and -, and intho result substitute 6y.
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2425 fV*-\/A= 1^^
Jo 1 ^ k

[Substitute lix^.

2426 f%-'-\i'^" chv = ^•^••:if;^~^^ A^"
'^ y^.

«.. Z

Proof.—Substitute Avr. Otherwise, differentiate the preceding equation
n times for I:

2427 j
^ ^^—d.i=loga-\ogb.

2428 f"'(^L^^^' _ (£=^)^')rf.. = .-6+iog*;^.

rate this for aProof.—Making ?i = 1 in (2291), [ e-"' ch = --. Integ

between limits b and a to obtain (2427) ; and integrate that equation for h

between hmits b and c to obtain (2428).

2429 r('-i:^:=ir_(^£^*)^),,,, = „_i+HogA.
Jo \ .r" .r / ® a

Proof.—Make c = a in (2428),

Otherwise.—Integiating the first term by Parts, the whole reduces to

[£:!:n£:l']- + ,,p-'-^-",,.

The indeterminate fraction is evaluated by (1580) and the integral by (2427).

2430 |--j£!:z^_(«-^V-_(«-y>-"V^,^.
Jo ( ,v^ .r- 2.V )

= \ {(r-^'^lr-4.ah-\-2lr{\oga-\ogh)].

Proof.—By two successive int(^grations by Parts, '\x''^dx, &c..

Also {'L^d. = '^'"'-[^-dr.

Substitute these values, and make e = 0. The vanishing fractions are found
by (1580), and the one resulting integral is that in (2427).

In a similar maimer tlie value of the subjoined integral may be found.
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2431

Jo i~~? .r' 1.2.6- 1.2.;t,r' S •

INTEGRATION OF CIRCULAR FORMS.

Notation.—Let a^"^ signify the continued product of n

factors in arithmetical progression, the first of which is a, and

the common difference of which is h, so that

2451 a^;^ = a{a + h){a + 2b) ... {., + 0^-1) /.}

.

Similarly, let

2452 a':l = a{a-h){a-2h)... [a-in-l) b].

These may be read, respectively, " a to n fartors, differ-

ence b"; "a to n factors, difference minus b."

2453 sin".r^Ar = \ .sin"-.r^Ar.

Proof.—By (2048) ; applying Rule VI., \vc have, by ili\ ision,

I

sin".i;tfx = I sin""^rtf«— I sin" "^i; cos"

1 1 Ti i f n-2 7 sin""'.)' cos .V
. 1 L,;„n

and by Parts, sin" ^x coa-xdx = H , sni
•^

J
71— 1 11 — I }

i'l' If*".
Tliereforc h'ui" '

.r con' x dx = sm xdx.

Jo n — l Jo

The substitution of this value in the first equation produces the formulu.

t/.r,

vdx.

If n he an iiite<^vr, with the notation of (2I")1),

ri'

'

2"'> i-i- 1*"'
7r

2454 siir"^\rr/r= -^ and sin^ "
.rf/.r = -^ ^

PnoOF.—By repeated application of formula (•21:'>3).

Wall is' s Formula.—Ji m be any positive integer, we liavc

2456
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And siucc the ratio of these limits to each otlier constantly

approaclies unity as m increases, the value of either of them
when m is infinite is -Jtt.

Ex.—With m = 4, ^v lies iu magnitude boUveen

2^4^^^8 , 2-A-.C,K7
and

Proof.—Put 2m = n, then

fin nrr „_1 fl^r

sin"'^ xdx, I sm"xdx, and sin""';

Jo Jo »^ Jo
dx

are in descending order of magnitude ; the first and second because sinx i.s

< 1 ; tlie second and third by (•24-33) ; then substitute the factorial values by
(24.54-5).

2457
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If both the indices ni-c cvon, then

2465 ^i"'-''^'' t'^*-"^-''' •'•'/•'•=
Tn;rr7^

(2i:.i)

Proof.— Ileduce hy Parts as Ix'forc. Tlic liinl intiLrnil is siii-""'''a;'/j;,

the value of which is given at ("2 -too).

2466 Sliould eitlier of the indicos bo a nco^ative integer, the

vaUie of the integral is infinite, as the foregoing reduction

shows, for the factor zero vn\\ then occur somewhere in the

denominator.

2467 * sin^j.r sin/).rr/<r =
]
cos iLV cos jhtdv = 0,

••0 *

when n and p are unequal integers.

2469 \ ^\nnr cos jhv (I, V = -^—-, or zero

^

»'o n—p-
according as the difference of the integers n and j) is odd or

cnm. [By (1973-5).

2470 1 sin-/Mv/r = I cos-na(Lv = Itt,

Jo Jo

when u is an integer.

Proof.—E.xpress in term.s of cos2iix', and then integrate.

2472 \ shi\vd,i = \ cos'\v(f.v=
\

{l—,v') ~ (h\

The following four integrals (2473-9) all vanish for in-

tegral vahies of }i and }) excepting in the cases here specified.

2474 fJsin^r sin n.vd.v = (-l)"-'\;(^/>,'-^)-;^,

wlien }) and n are both odd, and n is not greater than p.

2475 But if 7^ be even, and u odd, the value is

^ 2"-'hr-ir 7,-(p--2r'^ fr-{p—ly

.:.i-^y'^^l
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2476 Csi»" .r COS n,vd.v = (- 1

)

" C (,,,2^) ^,,

when j; and n are hoth ecen, and '?i is not greater tlianj;.

2477 But if j) be otZri and n ecoi, the value is

, i^"-^'
1 ( ;> C (/),!)(?>-:;) . C(,., 2) (/,-<.)

* ' 2"-H/)'-H- (/)-2)--«- "^ (;)—1)--«-

2478
i

Jcos'' .1' cos «.i J.i^ = C (;>,^') ^,

when 2^ and 7i are either both odd or hoth even, and ^i is not

greater than j)-

2479 rcos^is smnxdx, when j; ~ ?i is odd, takes the vakie

n\ 1 C(y>,l) C(/),2) ^., ?

the last tonn Avithin the brackets being

^v~2~/ w^^®^ P is ^^^^^ ^^^^
^'
V '"2") ^^^^^^ i'

is ^^"^^^

5—

i

71 even, or s and n odd.
/r—

1

^'"

Proof.—(For 2474 to 2470.)—Expand by (772-4), aud apjily (2467-2470)

to the separate terms.

CoROLLAEiES.

—

11 being any integer,

2480 i
"t*os" '^^ cos nddv = ^, \ cos" .f cos udd.v = -^^.

.'o
-- ••

^

2482 \ sin-"ciCOs2/?crf/.r= (
— 1)";^,

JO

Jo""
m-"^\rsin(2w+ l).rr/.r=(-l)".-^.

2484 I cos^.f cos >ia7/ci' = ^—^—J- \ cos"--.f cos nd(Li\
Jo jr-tr Jo
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2485
i*i' i> r />— 1) i' . • , fi

\ cos'\rsiiUKr(/.r = '—

?

r- ) cos'^-.r siunrd.r—-,—-,.

Jo p—tr Jo p —n

Proof.—(For either fonuuhi) I5y Piirts, j e<)S.j-(/.r ; an.l the new iiiti-gral

of highest dimensions in cos x, by l\irts, j cos'' "'a; sin a- (/j;.

2486) eos''~-cr(M)s»,rf/,r = 0. j cos" ^r sin /J.r^/.r = -—j.

Proof.—^lake p = u in (2184-5).

When k is a positive integer,

Mir

2488 ) cos'-'-^r co^n.vdv = 0,

2489 |%«os--^^r COS »u(Lv == ^^^±^ ^::^.

Proof.—The first, by putting ;) = n— 2, n— 4-, ... ?;— 2/.: successively in

(2484) and employing (248t)). The second, by putting ^i = u + 2, 7i + 4,

... n+ 2k successively and employing (2481).

When k is not an integer,

2490 ( "co.s'-'^r co.s )U(Lr = 2' -""^^ sin /.-tt /i (/i -2/, + 1 , A).

P
efficient

f;noF.—In (270G) t;.kc /('0!= """'^ a"*^ transfurm by (7t'.t^). ^The co-

mt of I vanishes by (22'jO), and the limits are changed by (22o7).

2491 \
cos".rsin>M</,r=,^ 2+^+^ + ... + - .

Proof.—By successive reduction by (1070), making vi = n, and tho

integral definite.

2492 Wlien ;) and n iire integers, one odd and the other even,

C^^ ,
(_lV("+"*'M<''' (+, with n odd,

J„ I"— y').y <^
""' with^) e\en.

Proof.-Reduce successively by (2 IS 1). The final integral, according as

J)
is odd or even, will be

rW , cos'.J^Tr (-l)*" |'4*
, Rin?.)nr (_l)i(-')

1 cos.rcosji.rcAc = - = - or I cosv.r fix = =—
.

Jo 1-n' i-" Jo '* »

3 C
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2493 ) cos^\icos)hvcLv = ^-g-^\ sm^\r cosP-".r(/cr,
•.0 I2 •- "

where n and p are any integers whatever such that p—n
is > 0.

Proof.
—"When p— n is odd, each integral vanishes, bj (2478) and (2459).

When jjj-n is even, let it =2k; then, by (2488),

(n+ 2k)ii 'T _ (n + 2/,-)_, 1, I2 IT

I cos «( •dx
V" 2"

'''''
IJ"

= (ji±^^ [^\h,^>'xcos''xdx, (by 2405).

Bat n + 2l-=]), and by (2234) the Umit may be doubled. Hence the result.

2494 \ ^cos'^'^a^ mn)Li(Lv = -—, =^.
Jo 2"{n— l)

Proof.—Tn (2707), put /.•= 1 and /(.') = a;""-. Give e'"^ its value from
(76G). The iinaginai-j term in the result vanishes, and the limits are changed,

by (2237). Finally, write x instead of 0.

2495

\ /"(eoscr) »'m~'\rdd = l.ii ... (2>? — 1) \ f{cos .v) cos rid (Lv.

Jo Jo

Proof.—Let ;: = cos.-c. By (1471), we have

f7,^_,^,(l_,Y-^=(-l)""'l-3...-(2n-l)^'- (i.)

n

Also, by integrating n titnes by Parts,

f f"{z)(\-r)"-Kh = (-1)"!' n,)d„,(l-zy'-idz

= -l.S... \-2. - i )
[' ^/(.) .7,(^) dz, by (i.)

Then substitute z = cos.i".

Othcrw!s''.—LL't f(z) = J„ + A^z + AS- + &c. = ^A^z",

••• f"i^) = ^p(l'-l) ... (r-n + l)A,z^-",

I
/(cos.r) cos7ixdx = ^Ap cos''.); cos nxdx

Jo Jo .

=— }- [7"(cos.^) sin'"J,r, by (2403).
1.0... (-/I— 1) Jo

2i96 C -•—
..

'\'', =^ (i'->''-)

.(( <r COS' .v-\-b- >^\n- ,v lab
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2497 p *;""'/;^'.
. . = -r^. : I)ilT,n.n.iM(..rJ.l.:H;)fora.

.'n {(I- i'Os-,r-\-fr Sin . I)- la h

2498 r
' ^'"''^7^('^'.

.
-, = ~,. [ DifftTontiato (2VM\) f..r h.

[A.id iuLTctlicr d'-i-lir-S)

^^^^
Jo («^ t'Os^r+/r .siir .r/ ~ iJl^i^t «+^/ />^ + ah' "^

A'/'

(2o00) and (2501) are obtaincil l)y rcpeidinp^ upon ('il'.*!*) the operations

by which that integral was it>clf obtained from (2490).

Jo .r v' (1— •") -

Proof.—Denote the intej^ral by u.

[by (2008)
</" Jo(l+.«V)v/l-..^ 2 v/(l+<r)'

2503 fii;il^,/,, = ^lo,«o+").
Jo .r(l+.r-) 2

Proof.— DinVrentiate for a. Integrate for x by partial fractions, and

then integrate for a.

2504 J>-f-'T^ = ^'"''[('+^)\' + 7:)'l-

Proof.—From (2.j";{) we ol)t;iiii

i' tiin-'.r / _ 'T loL^(l +'0

Jo a' ("'+ •'•'/'"
'-^

Integrate for a between liniit.'^ j and x ,
and in the le.sult sub.stituto hx.
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2505 1
tnn- «--tni.-'/M-

^,^. ^ ^ a

Pkoof.—Applying (2700), <p (0) liere vanishes. Also, by Parts, we have

J h_ X 2 J A «

since Ix is infinite and therefore tan"' (hx) = — in evenj element of the

integral. Hence the required value is

V ['' dx TT 1 a

Proof.— (i.) Substitute tt — a*, and the integral is reproduced, and is

thus shown to be

2506 rT4^^''.'=TJo l+ COS-.l' h

TT f^ sin?/ , 1" /. _, 1-1 A\ ''^^

z= — i— dii = (tan ' cos tt— tan cosO) = —
-,

2 ]^l + cus,-y
-^

2 ^ ^4
xpand by dividing by the denominator, and i

It by Parts. Employing (247H) we obtain the

(ii.) Otherwise, expand by dividing by the denomniator, and integrate

each term of the result by Parts. Employing (247H) we obtain the series

6 ij

ncnrt f cos.r , / tt
("^ filler ,

Ju ^d- V 2 Jo v^^'

Proof.—By the method of (22.j1), putting

1
, e-""" dii,

^x v/'tt Jo
the integral becomes

—
[ [ e-''^'cosa;(7.r(7^= —

f \ c-''^ co^xdridx (2201)

The second integral is obtained in a similar manner.

2509 \ COS ?/- (lu = ^^-^ = \ siiw/Vv.
Jo Z^ Z Jo

PitOOF.—Substitute >/, and (2507-8) arc produced.
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"Wlien n and j> are intcg^ers,

2510 r^rf,. =-i^^-i r\\'-\--sm'.,.h,h:

The integration for x in tlie double integral is given in

(2608-9), and the original integral is thu3 reduced to tho

integfral of a rational fraction.

Proof.—Bj the method of (2251), putting

[By (2201).

[By (2510).2511 )
—-T- ^^^ = - -rXi = ^

nc-in r^«^in\r , ^ f

'

f/::: tt [Bv (252510)
081).

2513 ^— !—(Li=hv^J-.

PijooF.—By (2700). Transforming the numerator by (G73), and putting

I (r + 'l)
= '^ ^ (I'— 'l) = ^'' ^'"s becomes

2514 f!iliI^!-2illA.%/,..= liog^J.

2515 p
oo.,.r-eos;M ,,,.^:.(^,_^)

p,;ooF.—Integrate (2572) for r between the liniit.s p and q.

2516 r
^"'"'''-"^^''''

rf.r = ^ orO,

If u and /y are po.>itive quantities,

l" ."^iiw/.r eosA.r ,/ , _ ""

Jo .<

according as a is > or < f>.

Pkoof.—Change by (GOO), and employ (2572).

2518
r shwusinA,,- ^,,^^^ „^ ^<_
Jo '*' •^ **

according as a or b is the least of the two numbers.
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Troof.—From (2515), exactly as in (2513).

Otherwise, as an illustration of the method in (2252), as follows. De-

noting the integral in (2516) by w, we have, (i.) when 6 is > a,

that is, ^ = r r
^^""^'""^^-^

dhdx = f ^^R^pRJ^dx. (22G1)
2 JJo X Jo x'

(ii.) When t is < o, {"ndh =C^db='^.
Jo Jo - '^

If a is a positive quantity,

2520 r!i^IJ2^\iv = ^{2-a) or 0,

according as a is or is not less tlian 2.

Proof.— sin^a; cos ax = \ sin a; {sin (1 + a) a;+ sin (1— a) a;}

;

and the result then follows from (2518), the value of the integral being in

the two cases -^—^ = and J^ — ^ (a— 1) = — (2— a).
4 4 4 4 4

2522 J^*2ilL™rrf,, = |
according as a is > or < 2.

Proof.—Denote the integral in (2520) by u ;
then, when a is > 2, the

present integral is equal to

\%,da= r J
(2- a) da + To

2, rnda = {"^(2-a)da='^-
Jo Jo 4 2

And, when a is < 2, | nda =
\ ^ (2— o) da = ^ —^

INTEGRATION OF CIRCULAR LOGARITHMIC
AND EXPONENTIAL FORMS.

2571 r£::!lf!nzi',A, = tan-^.
Jo .f tl

Pkook.—Difroroiitiato for r, and integrate by (2584).

Oihcni'iae.— Expaul since by (704), and integrate the terms by (2201).

Gregory's series (7'JIJ is the result.
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2572 ('^•,/.,=^.

Proof.— (i.) By making a = in ("2571).

(ii.) Olhencise. By the method of (22oU). First, obsorvinp that the in-

tegral is imlepeudent of r, which may be proved by substituting rx, let r = 1.

Then Jx =
\

ilv+\ dx+l iU+ &c.

Jo a; J„ X ]„ X i'n X

Now, n being an integer, the general term is either

r-'" ^J^d,. = r --^"'.'/'^.V
, by substituting x = (2,i-l) 7r + y,

^^ r---!il--J.= r sin.,/,
^ by substituting. = (2.-1).-,;

r sin .r
, f- . C 1 1,1 1 .

t
f.,. "i j„

'
Jo » Jo Ctt-j/ 7r+// Stt-i/ oTT + y ott—ij )

=
I {^myUn^dy (2910) = \\m-^dy = ~.
Jo - Jo -^ "^

Proof.— (i.) By (22;j), putting -—. = 2 [
e-^^-^ s^'ydy (2291),

i + •'
J I)

the integral takes the form

2 I [ cos /.f e "
"

'

-^
' "' y dx dy = -[

j
e "

""'y e ' "' -^ cos 7-.r J(/ dx

= ^^^\^
c'"''

*y' dy (2G14) ='";^''(2G04).

„ , , „ . r* sinaj*cns/Ar ,

(ii.) Olherxvise. By tlio mutliod of (22o2), putting ?t = dx,
Jo *

it follows from (201 G) that

^ uc-^da = C Oc-" da + r I c-^da = ^ t-*.

Therefore «"''

=

c"dadx=\ j, dx, by (2583).
•^

Jo Jo « Jo i + **

2575 r'T£^'''^=T^"

2576 r,7ff^"'=T(l-'-')-
Proof.—For (257.'>) dillcrentiate, and for (257G) integrate equation

(2573) with respect to r.
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Proof.—By (2-201), re-'-^x^-'dx = ^^.

Put /c = a + ih, and a = r cos 9, i = r sin ^ ; thus

rg-(a.ii)J-_^n-l^^_p = (cos «^-isin»)^)^^

by (757). Substitute on the left side tor e"''-^ from (767), and equate real

and imaginary parts. Otherwise, as in (2259).

2579 r~v-' "'" (A^) '/..• = ^^ '"'( ^).*^*^
'
^

Jo COS ^ ^ b' cos\ 2 /

Proof.—Make fl,= in (2577).

Sill /, N

2581 A^^V- ./.r=— ^
""

^. N ,^ sill/ »/ir
Tim) 2 -^

^ ^ cos\ 2

Proof.—Put n —. 1— »? in (2579), and employ

Vnr{l-n)
SlU?i»r SUU^TT

2583 1 e-''^ sill «».r(/cr = -TTT-TJ. \ c""" cos fearer = -:r^,
Jo a-\-b' Jo «-+6-

Proof.—Make n = 1 in (2577-8).

Othcnoise.—Directly from (1999), putting n = 1, and —a for a.

\v1ktc n is a positive integer > 1.

Proof.—In (2577), nut tan"'— = i), thus, uriting p for »i,

a

[ >r"\c^-'^mb.c<hv = ^-0'^^
cos" 6^ sin ?.f,'.

Jo
""

Multiply this equation by h"'^<lh = a" tau"-'(i fccedd.

and integrate from h = to oo , by (2579). Then the corresponding limits

in the integration for will be and }^w.
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2587 r'-.-«:>^)''''=;:r,:(f),7^-

Proof.—Put n=p— l in (2585).

2589 f.-'..-
f^ I {.V Um 6) ,lv = r(») cos" e "^^ „e.

Proof.—In (2700), let ^ (.»•) = cos (.r tan d)
;

ian-^ . _ tan*
&c. ; Ai, Jj, &c.

.-. by (7G5), A^=l, -^* = ~Y^' ^*~
172^3.4'

vanishing. Therefore

j
e-'a;"-' cos (x fan 0) dx

1 _ <L(^}±y) taa> + "
;; tan* - "4' tan" + ... = ^^ p •

1.2 1 i
j e-'x'^-'^dx

The series on the left = i (1 + t tan 0)-" + i (1 -'"^f^" S)"". which by the

values (770) and (708) reduces to cos a^ cos"^ 0. Then change a into n.

Similarly, with sine in the place of cosine.

2591 r ^"^^~^"'%
m6T(Ar = tan"^^ -tau"^-^.

Jo -Jc

Proof.—Integrate (2583) for a between a=:-a and a— (i.

2592 \ e"^"^ cosa.r sm"crr/cr,
Jo

where n is any pcsitivc integer.

See (2717-20) for the values of this integral.

2593 \ L-ZJ__sin»M'f/.j .= 4
yrx — irxcO f' — c c"'-{-'lv()S(i-\-e

'"

a being <7r.

Proof.—The function expanded by divi.sion becomes

(^"+ e-")sinm.r (e-" + e-'"+ c"" + &c.)

Multiply in an<l integrate by (2583). The result is

\{2n-\)ir-aY-\-m^ |(2»-1) 7r + a}'+ m»

But this series is also produced by dilTerciitiating the logarithm of pqu.ition

(2i:t53). Hence tiie result.

;i 1)
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2594 \ COS ))hV(Lv = —-r-;
\

:

Proof.—Change m into iO in (2503), thus

p
(,,-»x^,-<xx)(,gx_^-ex)

^^^^
^ sing _

j^^
e7rx_e-7ra! COS a+ COS y

Now change a into hm and write a instead of 6.

^^^^
Jo e--6>--

2^'
Jo ^--,,— -4e^'«+e-^'

Proof.—Make ?u = in (-iSOi), and a = in (2593).

2597 \
sm 7n.v (Iv = —

J-.

Proof.— Make ri=7r in (2593).

2598 ^—'1± = ±-^B.,.
*.'o e —c

Proof,—Expand sin'm« on the left side of (2596) by (7G4). The right

side is = — |i tan {ihn) by (770). Expand this by (2917), and equate the

coefficients of the same powers of m.

2(c'"— C""') sillrt

e-'"+2cos2«+6'-"'
2599 \ -T ^r- sin m.:p(Za?

Jo ei-'-+c-^^"-'^

2S00 f
" 4^^±^ COS „M.d. = ,2^";+'-;) cos«

Proof.—To obtain (2599), put a+ ^ir and a—W successively for a in

equation (2593), and take the ditference of the rcsufts. (2G00) is obtained

in the same way from (2594).

2601 1
4^1±^.fAi-=secw/.

Proof.—Make m = in (2600).

2602 f''sin (ri)-' f/.v = f^M).M {crY (h = :/^y



CIRCULAIt LOOARITnMIG AND EXl'ONENTIAL FOliMS. a»7

PnooK.—Bv (2125) | c'"'' d.c = ^^•By (2125) \\-"'

Put a= -c. Substitute on tho luft from (700), and equate real and

imaginary parts.

2604
Jo i!

Proof.—Denote the integral by u. Diircrcntiate (lie equation for a, and

Bubstitute — in the resulting integral to prove that -- = — 2«, and there-

fore u = Ce'-"^. AVhen a = 0, we get

re-\lv=C, .-. C = }j^/n (2-125).

2605 re-("^-)%/.r = ;A^c>--,
Jo -v/Zt

Pkoof.— Substitute x ^n:, and integrate by (2G0-i).

2606 J>-^''^'-^-":-K.'=+|)-^]'^r

2 siii\ 2

Pi;ooF.— In (2005) put /.• = cos + / sine ; substitute from (700), and

equate real and imaginai-y parts.

r" 1 2 i\ f2;j+ l)
2608 e-'^^ur"^\v(Lv = '"T ."'^

. >—rr^ -

Jo (^r+ l)(fr+ 'V-)...('' +2«+ r)

].2.l\...'2n

Jo n (^r+ 2-)(</-+ l-) ... {(r-{-2n )

2610
1'" a (i(2n-\-\)2n

'., //--U- / 'ii -4- I r I

+
a(2» + l)27i(2»-l)(2>t-2)

_^ _^

<r+ (2/i+ l)-"^(/r+ 2// + l'j(^r+ 2;*-l')

.T., ON (7 2)( 4- 1

("" o;^Y^a' + 2n-V){a--{-2n-'S') (,r+-'» + l-) .
(u'+l)
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r* „ , a (i2n{2n— \)

2611 \
^"""^ cos-'* xdx = .,

,
. . V' + r ..

. ^ -X / •>
, 7> o-A

aOn(2n-\)j2n~2)(2n-̂
, , _"J

^'-
,

•

(a=+ 27i') (tr + 2m- :^) (a- + 2n-V} '

'

'
{a' + 2h) . .

.
(a- + 2'-)

Proof of (2G08-11). —Reduce successively by (1999). The integral

part after each reduction disappears between tbe limits in the cases (2608-9),

but not in tbe cases (2t)10-l). See also (2721).

2612

J^in {a--\-l){a-+&)...((r-\-2n-[-l

)

2613

J_^. a i(r-\-2^){crJt4^)...{cr^2n)

Proof.—By successive reduction by (1999).

2614 i
^"''"' cos 2hi(Lv =^ e~''\

Jo 2a

Proof.—Denote the integral by n, then

'-h = - [^-«^x'^ 2.. sin 2hx dx = -
f^ ^ e-^^' cos 2h.c dx =-^ ,

db J„ J, a' a'

the second integration being effected by parts, j c"
""•'"

2a! dx. Therefore

log u = log C-~ ; and b = gives G = ~^~ (2-125).
a -<(>

Othenvise.—Expand the cosine by (765), and integrate the terms of tho

product by (2426). Thus the general term is

= (-1)" -'^^-'^
(— )'"

i^p-^^
. which gives the required result by (150).

2615 Tf-" •'' cosli 2hj =^ <'('')
. (2181)

,'o 2(1

Pkoof.—Change b into ih in (_2G14;.
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2617 f^•-'^r sin 'ILrdr = '^ v ''\

2618 l^'-'.r"^^ sin (2/Ar+ Inn) ,Lr =^ ^ ('>'•''')•

Proof.—To obtain (2617), put a=l in (2014), and (lUreiviitiiiie for /v.

To obtain (2018), dilVurentiate, in all, n + 1 times for b.

2619 r£2££^£r,/,, = iog„.
Jo J'

PitOOF. — By (2261) putting .- ~ c'^ Jy (22'Jl), and changing the

order of integration, the integral becomes

r r (cos x-e-"'') e-'" dy dx =
[
r (e'^^cosx-e-^"'"'') dy dx

Jo \1 + !/ '^+ ^''

2620 H"?^ (!--" <*"^ •'+"') ^^'^^ = ^^'

Jo

when a is equal to, or less than, unity ; but is equal to

27r log a, when a is greater than unity.

Proof. — (i.) a=l. By (2035), since

log 2 (1— cos x) = log 4 + 2 log sin
-J

.r.

(ii.) a < 1. By integrating (2922) from to if.

(iii.) a > 1. As in (2920), integrating from U to tt.

2622 y\og{l-nco^a)iI.v.

When ?i is less than unity, the values of tliis integral depenil

on those of (2620). See (2933).

according as a is less or greater than unity.

PnuOF.—Integrate
f

log (1— 2a cos ./r + a"') J^ by Parts, \dx, and apply

(202U). Jo

2625 \
cosr.i log(l— 2acoy.i+^/') (/.'

according as a is less or greater than unity.

r ' r
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Proof.—Substitute the value of the logarithm obtained in (2922). T
integral of every term of the resulting expansion, excepting the one in which
u= r, vanishes by (24G7).

^r«/%M T" siu ^? sill r.r r/,t' mi''''^ irfr'-'"^^^

2627
J^ i-2„cos,,^ = -2-' °' —T-'

according as a is less or greater tlian unity.

Proof.—Integrate (2625) by Parts, J cos rx dx.

2629
f cos VcVcIj? TTCf 1 . . -,

\
1—n T—2 = 1 -.5 « l^emg < 1.

Jo 1—2acosa7+a 1— «-

Proof.—The fraction = cos ra? (1+ 2a. cos a;+ 2a^ cos 2^3 + 2a' cos 3a; + ...)

-f-(l-ft2), by (2919), and the result follows as in (2G25).

Jo 1+.:^' l-2a cosCcT+tt'
"" 2(l-a-) l-ae"^'

Proof.—Expand the second factor by (2919), and integrate the terms

by (2573).

2631 r log' (l-2« cose.^+a^) r/.r ^ ^ ^^^. (i-^.e-Q.
Jo 1 -|~ t^'

Proof.—Expand the numerator by (2922), and integrate the terms by
(2573).

^
Jo (l^x%l-'la cos c.r+«0 ~ 2 (<"-«)'

Proof.—By differentiating (2G31) for c.

Othenvise.—Expand by (2921), and integrate the terms by (2574).

2633
r^'^loiifri -l-rcos,r) , 1

('"'' / _i N9
\ —^— ^ (Iv = -k ]— — (cos ^ c)-

Proof.—Put « = 1 in (1951), and take the integral between tlio limits

and ^TT, then integrate for b between limits and c; the result is

fi^ lo^d+ccos.)
j^ ^ 2 r -1 tan- Jl^ db,

Jo t^^'«^'' Jo v/i-6- V 1+6

and the integral on the right is found by substituting cua~' b.
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2634
rlog(l+0COS£)

^,,. ^ ^ ,;„-, ^
Jo COScl?

Proof.—As in (2633), by taking and tt for the limits of x.

2635 J""log sin ^-d.,- = ^ log i =f;75^ <?.'•

Proof.— I siniCtZ.tf= cosa;cZ.r (2233). Add these integrals and sub-

stitute 2,1', applying (2234) to the result.

2637 ^^ log siu ci f/.i^ = ^ log i.

Jo -^

Proof.— i?' log sin a; c?^; = (tt— .«)Mogsina; (it;, by (2233). Equate the

Jo Jo

difference of these integrals to zero.

2638 t ^v log siu^ xdcc = — ;iV log 2, 7i being an integer.
Jo

Proof.—Method of (2250),

xl sin^ xdx = xl sin^ x dx + xl sin' x dx + . . . + xl sin' x dx

Jo Jo Jt J{)!-llir

= a'Zsin'a;t?a;+ (tt + t/) Z sin" ?/ fZ?/+ ... + {(n— l)Tr + y\lshrydi/.
Jo Jo '0

Each integral reduces by (2635) and (2037) ; for example,

(ir+ y) I sin'^ ydij = 2 \ (ir+ y) I sin y dy = ^tt i ls'mydy + 2\ ylsinydy

= - 27r' log 2- tt' log 2 = - 37r2 log 2.

The result is -{1 + 3 + 5 + ... + (2?i-l)} rMog 2 = -«Vnog2.

Proof.—Develope sin mx by (764) ; integrate the tei-ms by (2396), and
sum the scries by (1539).

2640 r™rf,,= 1

Jo e^+ 1 2)11
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Proof.—Develope sin mx by (764) ; integi-ate the terms by (2398). The
1 IT

resulting series is = o

—

^ 2"-^°^^° "'^'^' ^J (2918), wliicli is equivalent to tbe

above by (769).

2641 C cos(mlog.r)-cos(nlogcy) ^ ^, _ ^ j^^ l+ >>r

Jo logcf ' ^ ° l+ zi'-^'

o^yio r^siu (m loo'cr)— sill (w loader) , ± -1 i -1
2642 1

^^ ^—

r

^^ — d.v = tan ^ m— taii ^ n.
Jo log- ci'

Proof.—Put p = im and q = in in (2394), and equate corresponding
parts. See (2214).

2643

Jo log.v Jo logci^ ''l+ n-

Proof.—Put w = in (2641) and (2042).

MISCELLANEOUS THEOREMS.

FRULLANI'S FORMULA.

2700 r J>(«-^-)-<^(M
,/^, ^ ^(0) log^+ rilM ^.r,

Jo 'V ^' J — '^'

/i being = 00 , find the last term generally = 0.

Proof.—In the integral rAi2—zA-J-dz substitute z = arc and z = h,

Jo

and equate the results thus,

I ^ Jo ^ Jo ^ Jo '^

[^lOL^0:r:lI?i^:)^,_ p 01^) ,7, = (" 9lO) d, = ^ (0) log^.
J„ X J A a! J»_ a;

' ^ " a
a 6

Then make h inliiiite. For applications see (2513) and (2505).
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+<^(0)(iog|:-«+*)-(«-6)^+jt«<^.

with h = CO .

Pkoop.- rf„
{ r^ ,;.

I
=

I
« £lHl cfa - »fi

(2i57)=r'S^<ix-f(0)Za-l('l>,
Jo

by making 6 = 1 in the proof of (2700). Integrate for a between limits

aand^tbus [' t^l^ d. . fitSM d.

Jo *-" Jo ^

and the left is = j' tiill^ilM^.- J"J*i|Hlfe

POISSON'S FORMULA.

c being < 1

.

Proof.—By Taylor's theorem (1500), and by (2919), the fraction is equal

to the product of the two expansions

2 [/ («) +/'(«) cos X+ p^ /" (a) cos 2x + ^-^ /'" (a) cos 3x + . .
.

|

and { 1 + 2c cos x + 2c^ cos 2a;+ 26^ cos 3a;+ . .
.

}

divided by (1— c^). By (2468) the integral of every term of the product

vanishes, except when it is of the form 2 I cos^ nx, and this is ^ tt, by

(2471). Hence the result. ^^

2703
r/(^^+e")+/(a+e-'-) (i_, eos .r) d.v = rr {/(«+ e)4-/(«)} •

Jo 1— 2c cos.i^+c-

2704

Jo 1— 2ccoScr+c^ ^*

Peoof.—As in (2702), adding unity to each side of (2919), and employing

(2921, 2467, 2470).

3 E
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ABEL'S FORMULA.

Given that F{;v-[-a) can be expanded in powers of e"",

then

2705 f
" P(-+MyVF (.-«,)

^j, ^ ^p( ,.^„),
Jo 1+ ''"'

Pkoof.—Assume ^(« + a) = A+A^e-"'-irA^e-''''+ A.,e-^''+ &c.,

:. F (x+ iaf) +F (x— iat) = 2A + 2AiCos at + 2A^cos2at+ &c,

Substitute and integrate by (1935) and (2573).

Ex.—Let F (.r) = — , then f ^, . f, ,
,. =

^ /_^ ,
•

KUMMER'S FORMULA.

2706
{^^

f{^^ Qos0e'') e^'^'dO = sin kn (\l-zY-'f{.vz) dz.
J-i^ Jo

Proof.—If h = .re-'(>, then ,r + h = 2.r cos Oe'^ by (766). Substitute these

values in the expansion of f (x + h) by (15U0) ; multiply by e-'''^ and in-

tegrate ; thus, after reducing by (760),

f'j(2.cos e»», ^'-<W = sin A, |.^ - fif + ^ig^ - fe.
I

Again, putting h = — xf in (1500), multiplying by f'^'^ df, and in-

tegrating, we have I (pf''~^f(x— x<f)d<p=^ the foregoing series within the
Jo

brackets. Equating the two values and changing ^ into 1 — 2, the formula

is obtained.

For an application see (2490).

2707 Wlien I' is an integer,

f^ f\2.vQ^o^ee')e''''ede = 'L^^^{\\-zf-'f{a^z)dz.
J-l^ ^l .'o

Proof.—Divide equation (2706) by sin A-tt, and evaluate the indeterminate

fraction by (1580), differentiating with respect to k.

For applications see (2490), (2494).

2708 If ^ ^e a function of x so chosen that

rV(*, Z:) ./.' = G, f Xr(.r, 0) .7.. (i.),

and if the series

Af{-r,0)+AjX.,>, l)4-^1./(.>', 2) + &c. ... = .K-r) ... (ii.),
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wliere ^ is a known function, then

^Co+J,C,+.4,a+&c. ... =-4^- (iii.)

\ Xf{,r,0)(lv

Proof.—Multiply (ii.) by X, aud integrate from a to h, employing (i.)

2709 If tlie sum of tlie series

be known, then

— Jo

- 'a

Proof.—In (2708) let X = e-^.i!^-i and f {x, k) = a;\ Then since, by

Parts, we have j e-^a;"*'^-'tic = a (a + 1) ... (ci + h—1) e-''x"-'^dx,

it follows that C/, = a (a + 1) ... (a + Z;— 1). Hence, conditions (i.) and (ii.)

being fulfilled, result (iii.) is established.

For an application see (2589).

Theokem.—Let /(<«+ /?/) = P+ iQ (i.)

2710 Then£f^rf,«?^= rrs"^''" ("•)

2711 {"^''^dady^-^'^'^dyda: (iii.)

JaJa (ly J a. J a ll<-l

Proof.—Differentiating (i.) independently for x and y,

f'(x+ ii/) = P.,+ iQ,, ifix^iy) = Py+iQy,

•• -Pa-f iQ^ = Qy-iPy, .-. P^ = Qy and Q^ = -P^.

Hence by (2261) the equalities (ii.) and (iii.) are obtained.

Ex.—Let f(x + iy) = e~'^-'>^' = e'^V (cos 2xy-isin 2xy).

Here P = e-^V cos 2xy, Q = — e'^V sin 2xy, therefore, by (iii.),

[\-^' (e^'cos 2/3 a; -e''' cos 2a x) dx = (^ e^ (e-^\in 2by— e-""' sm2ay) dy.

Put a = a = 0, 6 = co; therefore

( e-^' (e^' cos 2/3a; - 1) dx = 0, .-. e^' [ e"^' cos 2p.r dx = e"^^ f7.-».

Jn Jo •'o
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CAUCHY'S FOFtMULA.

2712 Let \
x~''F{.v^) dx = A.^,,, n being an integer, tlien

P 1

Proof.—In the integral z-'' F {z") dz =: 2A.,,„ substitute z = x——^

anditbecomes f (.«
- J-V" (,.+ -1) i^

[
(,^
- -1)' | ^^ = 2«,„ (i.)

Jo
' '

Let the integral sought be flenotcd by C^,,, then

This is proved by substituting - in the first integral. Therefore by addition

I^--^0-[(^-^)'lf-^"
-f^

Now, in the expansion of cos (2u + l) (776), put 2 cos = ^+ — and

2i;8in^ = ;i;— — , where x = e'^ by (768-9), and multiply the equation by
X

_p j /a3— — ] '
[

'-^, and integrate from x = to a; = oo . Then, by (i.) andin?
(ii.), the required result is obtained

2713 Ex.—Let F(x) = e-"^ then

r"e-"\L-. = ^-^^-^-'^-^V7r and A ^"^

Therefore

A..= \^^^.^-1. = '^^^^V^ and A=^.

FINITE VARIATION OF A PARAMETER.

2714 Theorem (2255) may be extended to the case of a

finite cluingc in tlic value of a quantity under the sign of

integration.
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Let a be independent of a and ?>, and let A be the differ-

ence caused by an increase of unity in the value of a, then

CA(J>{.v, a) ilv = A
\ VCr, a) flv.

2715 Ex.1. re-'^dx=—, .-. [ ^e—^cJx= A~-, ihatis

I?
(e-a-_l) Jx —

«(a^l)

Also, by repeating the operation,

I
A"e-'^dx = A"—, that is

Jo

2716 rV-(e- -1)^^ d.V = i7/^^^^_^ VJo a(a+l) ... (a+zj)

2717 Ex. 2.—In (2583-4) put h for a and (2a-m) for h, then

-'''' A sin (2a- m)xdx = A ,., ,

""~'"'
, (i.),

f e-^'"" A cos (2a —m)xdx = A ^-r, z^ r, (ii-)-

J^
A-+ (2a-»0-

In (ii.) let m = 2jj, an even integer, then

A'^cos (2a-2^) X = cos (2a+ 22j) a;-2p cos (2a + 2jj-2) .r+ ...

... -f cos (2a — 2^) X

= cos 2ax [cos 2^x-2p COS (2j)-2) .c + (7 (2p, 2) cos (2p-4) a;-...

. . . + cos 2j^.t]

— sin 2ax [sin 2j.).«— 2jj sin (2^j— 2 ) o-+ . .

.

... —sin 2px^,

The coefficient of cos 2ax, in which equidistant terms are equal, xh.

— (— l)^2-J'sin-^a; (773) ; while the coefficient of sin 2a« vanishes becausQ

the equidistant terms destroy each other. Therefore

A=^ cos (2a -'2p) a; = (-1)^ 2"^^ cos 2a.7; sin=^^.

Hence (ii.) becomes

2718 £e-^- COS 2a.r ^\n'^adx = ^-^ ^''
\.-^+ (2a-27>)^

^

2719 Again, in (i.) let m = 2p+ '[, an odd integer, then

A-^^i sin (2a-2p-l) X = sin (2a+ 2p + l) a7-(2jj + l) sin (2a+ 2jJ-l) x

+ C(2p+ 1, 2)sin(2a + 2i)-3)a?-...- sin (2a-2p-l) a;

= sin 2ax [cos (2p + l) s- (2p + l) cos (2j)-l)a!+ ...-cos (2^ + 1) a;]

+ cos2aa; [sin (2j; + 1) a3-(2i) + 1) sin (2p-l)a;+ ... + sin {2j} + l) x].

The coefficient of sin 2ax vanishes as before, while that of cos 2ax is

= (-l)''2-''^'sin2^*^r (774).



398 INTEGBAL CALCULUS.

Therefore equation (i.) becomes

2720

Ce-'^ cos 2a.r ^'m'^^Krdv = i^^^ A'^^'
2a-2;>-l

Jo
2-^^-*-^ A;-+(2a-2;>-l)^

To compute tlie right member of equation (2718), we have

A^^ ^ = 7c r ^

2p
,

C(2p,2) 1 -]

Jc'+ (2a+2p- 2f /r + {2a + 2^-4)- A=+ (2a- 2pf]

'

Let a= 0, then the equidistant terms are equal, and we obtain in this case

07P1 A^.
fe _ (-l)n.2...2/).2^^

Thus formula (2600) is proved.

Similarly, by making a = in (2720) after expansion, formula (2G08) is

obtained.

Let p be any integer, and let q and a be arbitrary, but

q<2p in (2722), and <2j9+ l in (2723).

2722
r cos2a^-sin^^..- , _ (-1)^ r ^,, z^^^ ^,
Jo x^^'

~
'I'n^ (r/+l) Jo z'+ i2a-2py

2723

Jo ^^ ''

(-^y r^...: (2a-2;)-l)^^
= 2^^+^r(ry+ l) Jo z'-\-{2a-2zy ^'

where A lias tlie signification in (2714).

Proof.—Employing the method of (2510), replace

q being integral or fractional ; therefore

r c_os^a.. sin^^«
^^ ^ 1 r r

2^,^ si^..,.,-.r^., J, j^^

Jo,
^'"

,

in2 + i)]oJo
by changing the order of integration. Substitute the value in (2718) for

the integral containing x, Avriting the factor z'' under the operator A, since it

is in(k'])endeut of a.

Similarly, with 2j7 + l in the place ofp, we substitute from (2720).
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It may be shown tliat, whenever a > p, formula (2722)

reduces to

2724

For a complete iuvestigation, see Caucliy's " Memoire de I'Ecole Poly-

technique," tome xvii.

2725 Ex.-Let a = 2,p = l,q = i,

r cos4aW^^^_^ = 1 A= (_2a-2)K
h ^ srmsin^

6

and A2(2a-2)*= (2a + -2)*-2 (2a)* + (2a -2)^ = r>-2.4*+ 2i

FOURIEE'S FORMULA.

2726 r~<^(.)./.. = -|<^(0),
Jo sill cl £i

when (X= CO and li is not greater than -^tt.

Pkoof.— (i.) Let <^{x) be a continuoas, finite, positive quantity, de-

creasing in value as x increases from zero to li.

(i-),

a a

— being tbe greatest multiple of — contained in h. The terms are alter-
a d'

nately positive and negative, as appears from the sign of sin ax. The fol-

lowing investigation shows that the terms decrease in value. Take two
consecutive terms

r " sin ft» ^ / X 7 r " sin aa; / ^ ,

Inn Sm .B ^ ^ ^
J (n + l)7r Sin X

a a

Substituting x— —
- in the second integral, it becomes

f a Sin ax / ,
T \ ,

-1 — r<ph+~]dx,
sin (x-\

\ a

and since f decreases as x increases, an element of this integral is less than

the corresponding element of the first integral.
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N'ow, by substituting ax-=y, we have

-.— f Or) (ii^ = (p[-]iii/ = <piO)\ --— fZ// . . . (11.),

n a

when fl is infinite, because then (p { -] = ^(0) and a sin ^ = y.
' \a I a

Hence the sum of n terms of (i.) may be replaced by 0(0) ' ^^^cZv,
Jo y

which, when n is infinite, takes the value </)(0) ^tt by (2572) ; while the sum
of the remaining terms vanishes, because (the signs alternating) that sum is

less than the ?t-|-l"' term, which itself vanishes when n is infinite.

(ii.) If ^(a;), while always decreasing, becomes negative, let (7 be a con-

stant such tihat (7+0 (») remains always positive while x varies from to h.

The theorem is true for G-\-(p (x), and also for a function constant and equal

to (7, and it is therefore true for the decreasing function whatever its sign.

If (j){x) is a function always increasing in value, —(f>{x) is a decreasing

function. The theorem applies to the last function, and therefore also to {x).

2727 CoE.—Hence tlie same integral taken between any
two limits lying between zero and -^tt, vanislies when a is

infinite.

2728 C^^^^[a:)(lv
Jo sm <r

= 7r{i^(0)+^W+<^(27r)+...+<^r«-l)^+ ^(«7r)},

when a is an indefinitely great odd integer, and mr is the

greatest multiple of ir less than h. But when a is an indefi-

nitely great even integer, the second and alternate terms of

the series have the minus sign.

P sin ax / ^ j /""'^sin a.r ^ / \ 7 ,

['' sin ax ^ , .
j

,. .

—. (x) dx — —^

f (.)) dx+\ -0 (.r) dx (1.),
I sin a; „ sin x I „ sin .1;

Jo Jo J "f

decompose the second integral into 2n others with the limits to ^tt, ^tt to tt,

TT to |7r, ... (2;) — 1) gTT to UTT ; and in these integrnls put successively x = ?/,

IT— _;/, TT+ y, 2v— y, 2w-\-y, ... mr—y. The new limits will be to \ir, \tc to

alternately, with the even terms negative, so that, by changing the signs of

the even terms, the limits for each will be to ^tt. Also, if a is an odd in-

teger, —;

—

'- is changed into — ;

—

- by each substitution, so that (i.) becomes
sm* &n\y

r"^^{0(y) +0(— !/) + 0(-+:/)+... +0("— 2/)}./.'/

Jo ^^^y
c"

,

sm ax / •. J /• \+ --. ?'(.^)(Z.c (ill.)

J,,^ sm.c

But, when a is even, the substitution of m =F ;/ for
smy

Peoof.
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rJo

whenever r is odd. The limit of the first part of (iii.) is

—
{<!> (0') + 2<p(w)+2cp (27r) + ...+2^ (n-l)7r+ ,p (nir)}, by (2726).

In the last part of (iii.) put x = nw + y, and the integral becomes

^JRm^(n^ + y)dy=^cf,(n7.), if /,-«,r is > -^, by (2725).
sin 1/

'^ ^

If h—7iir lies between -Jtr and tt, decompose the integral into two others
;

the one with limits to ^tt will converge towards ^tti^ («t), while the other

with limits ^tt to h— mr becomes, by putting y = Tr— z,

the limit by (2727). Hence the last term of (iii.) is iir(b (nir). Substi-

tuting these values, (2728) is obtained.

2a
'2729 Ex.—By (2614), [ e-^'^' cos 2hx dx =

Put & = 0, 1, 2 ... n successively, and add, after multiplying the first equa-

tion by i, thus

f,

-a2ar> (i+ cos 2ar+ cos 4^+ . . . + cos 2n«) c7a;

The left side = J
[%-.'»' ^'° (^."+ ^) "

<;., by (801),
sma;

Jo

and, if w = 00 , becomes

JL jl + e-Tr2a2_^e-4^2aS_^e-9;r2a=^_,..}, by (2728) ;

/ _1 _i -i

Put Tra = a and — = /J ; therefore
a

2730 v'a{4+<'~°'+«"*'''+<'~'°'+-}

= y/3{i+e-«'+e-«'+e-'^'+...},

with tlie condition a/3 = tt.

Jo <r -<i

when a is an infinite integer.

Proof.—The integral may be put in the form

f^ sin ax

J„ sin.T

^^° '^•'^ - (.r) c^,., where ^(x)=^<t> (.r).

3 F



402 INTEGRAL CALCULUS.

therefore, by (272G), when h is > Jtt, and by (2728), if /t is >.^7r, the value

is Itt* (0), since in (272«) <i> (ti), a> Cln), Ac. all vanish. But * (Oj = cp (0).

Hence the theorem is proved.

Wlien o and /3 are both positive,

J a .V J -a cV

PROOF.-(i.) f = f -
f"
= f^O)- '

1, (0), bj (2729).

.L Jo Jo
^ ^

(ii.)|' =1° +j[=|*(0)+f*(0),

by substituting — ;<; in the second integral.

2734 I 1 <j) {.1} cos uxdu dcV = -r-(l>{0), when a = oo .

PiiOOF. ^IIL^ — oos«.i;c?«. Substitute (his in (2731).
X

Jo

AYhen a and /3 are positive, the limit when a is infinite of

2735 I I <l>Lv) cos in COS UcvdudiV,
Jo Ja

or of I 1 <^(,r) sill /« sin //,rf/wr/cr,
.0 ».'a

is ^7r0 (/), if / lios between a and /3, :{;?(/) (/) if f = a, and xH'o

for any other vahie of t.

Pr')OF.—When a= cc) we have, by (668), and integrating with respect to «,

f rr,)oo,nxco.Mrclu= :L
f/^ sin a (.-/)

^ ^^.-^^^_^ , [^ lillWllti^ ^ (,,) cZ..

JaJfl Jo ^~^ J«
'•'"^^

= xr'^i^c.+o,.+ir'^^^^Q:-,),, (i.),

by substituting z = x— t and 2 = .r + / in the two integrals respectively.

"When a is infinite, the limit of eacli integral is known.

When a and /3 are positive and Hies bt'i\vc(Mi tlieiu in value, the

limit of (i.) is V0(O, by (2782 8) (ii.)

When a ami /3 are positive and / does not lie between them, the

value is zero, by (2732) (iii.)
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If a = Hu (i.), the first integrnl becomes = ^ir<p (i) by (2731), and

the second vanishes as before ; so that the value, in this case, is ^tt cp (t) ... (iv.)

The same demonstration applies in the case of (2736), transforming by
(6G9) instead of (GG8).

Hence, by (ii.), if t be always positive,

/100 /-tec

2737 ] \ <t>
('t^) cos fu cos iLV (In d.v =— <l){t)

/»0D /loo

= 1 \ (l){.v) iiiu til sin u.vdiidcV.
Jo Jo

2739 Ex.—Let <p (x) = e-'^^

e~"^ cos tu cos ^lxdudx = — e~"^

Jo Jo ^

Therefore-, by (2584), f^^^?^ du = ^ e""*,

which is equivalent to (2574), with t = 1.

The expressions in (2737-8) being even functions of ii, we have, supposing

t to be always positive,

I ^ (x) cos til cos uxdu dx = 7r(j)(t) = \ <p (x) sin tu sin ux du dx ... (i.)

J -00 Jo J -X J

Replacing <p (x) by <p{~x), and afterwards substituting —x, these

equations become

(p (a-) cos tu cos ux du dx = tt^ ( — ^)

J _x J -x>
f* f= —

(() (x) sin tu sin uxdu dx (ii.)

From (i ) and (ii.), by addition and subtraction, we get

2740 i
<j> (x) COS tu COS ^lxdudx = irlfp (t)+(l> (— t)],

2741 ^ (•'^) sin tu sin ux du dx = tt [^ (J)—<f> (~0]'

Whence, by addition,

2742
\ f" 4> (ciO cos u {t-x) dudx = 27r<l> (/),

the original formula of Fourier's.



404 INTEGRAL CALCULUS.

THE FUNCTION t/i(a7).

The function dj,\ogT(x) is denominated (p{x).

2743 V,(.r) = ]og^-
111 1

wlien /t is an indefinitely great integer.

Peoof.—By differentiating the logarithm of (2293).

2744 Cor. ^(l) = iog(>.-l-i.-i-...-^^,

wlien /I = CO
,

= -0-o77215,664901,532860,G0 ... (EuJcr).

All other values of ^p{x), when a? is a commensurable
quantity, may be made to depend upon the value of ;//(!).

When X is less than 1,

2745 ^ (1 -.^0- V' i-^) = ^ cot TTcr.

Proof.—Differentiate the logarithm of the equation

r (x) r (l-.r) = TT -f- sin™ (2313).

2746 .^(..•)+'A(.'-+i)+'^(^-+|)+...+V'(..-+^^)

= nxjji^nd^^nlogn.

Proof.—Differentiate the logarithm of equation (2316).

2747 '-To compute the value of ^(—) when ^ is a ^proper

fraction. ^ ^

Find ^ ( - ) from the two equations

2748 t/»(l—^)-tA(^) = 7rcotii7r, (2745)

2749
'^ ^ ^

V'(l-i^)+t/,(-^) = 2]t/,(l)-log</4-cos?^log(2vers??)

+ cH>8^1og(2vors4^)+cos^log(2vors55)+ ,^c.|.
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The last term within the brackets, when q is odd, is

(ild)j^lo,c.^2Yers(i::i5>);cos ^ '-^— log ( ^

9.
\

and when q is even, the last term is + log 2 according as _p

is even or odd.

Proof.—Equation (2743) may be written

fi being an indefinitely great integer.

-D 1
• 1 u 1 2 3

Keplace x successively by — , —

,

— ...

teger; thus 9. <1 1

q/
^

2 + 1
'

2^+

. + 1

1 ; where q is any in-

^(i i
+ '*-3^^+'*-

-±+l,. 1 +7a_ ? +ZA
g + 2 22 + 2

32+:

__1
32 + 2

2 >>

" Fl^'"'' 22-1"^'^ 32-1V 2 / 2-1

;P(1) =-1 +12- + 11-

Now, if 6 be any one of the angles ^=^, — ,
— ... ilinllzr, we shall have

(i-)

1 = cos q(p = cos 220 = cos ^q<p = &c

COS0 = cos (2+ 1)0 = cos (22 + 1)0 = cos (32+ 1)0

(ii-),

&c (iii.)>

cos0 + cos20 + cos30 + ...+cos (2— 1)0 + 1 = by (803) (iv.)

By means of the relations (ii.) and (iii.), equations (i.) may be written

cos0;p(— ]
= - 2 COS0 + cos 0^2 ^cos(2+ l)0+ cos0Zf —

,

cos 20 1//
^\=-^ cos 20 +cos20Z2 2_cos(2 + 2)0 + cos20Zf-,
q I 2 q + ^

^^ X cos 30 + COS30Z2 2_ cos(2+3)0 + cos30Zf-,
3

^
q+ oHi)

cos(2-l)0^ (^— ) =--5jCos(2-l)0 + cos(2-l)0Z2

^cos(22-l)0 + cos(2-l)0Z|-,

4/(1) = -! + 12 - h + Zf -.

Upon adding the equations, the coefficient of each logarithm vanishes, by (iv.)

The remaining terms on the right form a continuous series, and we have

cos0;/^(—)+cos 20 ;//(-)+...+ cos (2-1)0^ ('^^-)+^(l)

= —
2 { cos + 1 cos 20+ i cos 30 + in inf.

}

= 12 log (2 -2 cos 0) by (2928) (v.)
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Let — = w. Then, by giving to (p in equation (v.) its different values w,

2w, 3w ... (q— l)<*), -we obtain q — 1 linear equations in the unknown quanti-

ties \p (— ], yp [
—

)
• '^

( )• To solve these equations for \// [~j

p being an integer less than q, multiply them respectively by

C0SJ3W, COS 2p(o . . . cos {q— \)pio,

and join to their sum equation (2746), after putting x= — and n = q.

(k \
^

—
j

in the result, /.; being any integer less than q, is

cosjJw cos Ji(o + cos 2j:)<i» cos 2/iw -|- . . . + cos (q— l)p(i) cos (g— l)ku)-rl.

By expanding each tei'm by (6C8), we see by (iv.) that this coefficient

vanishes excepting for the values k = q—p and k = p, in each of which
cases it becomes = ^q. Hence, dividing by ^q, we obtain

yp(9-:P\+^ (£.\ = 2xP (I)- 2lq + cos pio I (2 -2 COS co)

+ cos2^wZ(2-2cos2w) + +cos (/?— l)27wZ {2-2 cos(g-l) w}.

The last term = cospwZ(2— 2 cos w) = the third term; the last but one
= cos 2^wZ(2— 2cos 2a^ = the second term, and so on, forming pairs of

equal terms. But, if q be even, there is the odd term

cos iqpoj log (2— 2 cos ^quj) = dh 2 log 2,

according as 2^ is even or odd.

Examples.—By (2748-9) we obtain

2750 ^(f) = ^(l)-31og2+^, 4^ (I) = ^ (I) -Slog 2- j-,

2752 ^(l) = ^(i)-Hog3+^^, ^(i) = v/^(i)-fiog3-^,

2754 ;/.(i)=;/.(l)-21og(2).

DEVELOPMEN'TS OF t/»(rf+.r).

Wlien ,1' is any integer,

2755 -/,(«+,.•) = ^(«)+ J- + -l,+-L.,+ ...+ ^

Proof.—By (2289), putting n = a + x— l and r — x—1,
r (a + x) = (a +x-1) (a+x-2) ... (a + 2)(a+ l) a r(a).

Differentiate the logarithm of this equation with respect to a.

2756 <l,(a+.v) = ^ia)+^-pf:zll +£ip^kl^
a 2a{a-\-l) .ia («+ !)(« 4- 2)

,r{,v-l)(,r-2)(,r-i\)
,
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If 33 be a positive integer, the number of terms in tliis

series is finite, and the value of ^p{a-\-x) can be found from

that of xp{a).

Hence, by this or the preceding formula, in conjunction

with (2747), the value of ^{N), when JV is any commensurable

quantity, may be found in terms of ^(1).

Proof.—Let \|/ (a+ x) = A + Prx+Cx (x-l)+Dx (x-l) (x-2) + &c.

Change a; into x + 1; then,

A4^(a + x) = ^lJ{a + x + l)-^l^(a+x) =:f?^{logr (a+ x+ l)-logV(a + x)}

= ch\og (a+ x) (2-288)=-^^,

Ax = 1, Aaj (x-l) — 2x, Ax {x-Y) {x - 2) = ox (.«— 1), &c. Therefore

— ^-B^20x^'iJ)xix-V)^^Ex{x-V){x-2)\,
a-\-x

A— = 2(7+2.3jDj; + 3.4E«(a;-l) +
,

a-\-x

A^^— = 2.3D+2.3.4.i;a-+ ,

a-\-x

A*—- = 2.3. 4^+ .

a-\-x

Put a; = in each equation to determine the coefficients A, B, G, D, &c.;

thus A = 4^(a), B = -, 2G=a'^ ^ ^ ^

a' a a + 1 a a(a+ l)

1 —1 2
2.3D = A^ — = A -

(a + 1) a{a+l){a + 2y
1 2 ^3

2 3 4^ = A'— = A = -—— —, and so on.
a a(rt+l)(a + 2) a (a + l)(a+ 2) (fl + 3)'

SUMMATION OF SERIES BY THE FUNCTION t/»(cv).

2757 Fonnulal. ^+^^+^^+ ...+^^

Proof.—Let S„ denote the «. terras of the series to be summed. We have

S„.,-8„ = f-^(^^+n+\)=^[^[-^ +n+2)-^[^ + n+ l)']{2288)

or >S«,i- — 4/ (-^+ n + 2] = S„- ^ 4/ (^ + n + l).
c \ c I c \ c I

Hence the difference is independent of n, and therefore
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2758 Ex. 1+ 1 + 1 + - + 2;;^ = ^-^"^ (^^+-^^ '^"+^)-

2759 Formula IL ^
7> + 3o

= .lFT^-|:{*(4^')-*('^>HHf^-)-^(^-)}-
Proof.—The series is equivalent to

+ r-^+,-V+...+ ,-A-- ^7^ +
, .

"',
.,

+

and the result follows by Formula I.

2760 Formula III.—
1 1

• 1 ininf.
b i+c^i+2c

i !*(¥)-*(*-!?)!

Proof.—Make n= 00 in Formula II. The last two terms become equal.

2761 Ex. 1.—In (2760) let h = c=\, then

l-i+i-l + &c. = i + i \^ (2)-4/ a)} = log 2.

For ^ (2) = 1+4/ (1), by (2755) ; r|, (f) = 2 + 4^ (l)-21og 2, by (2754-5).

2762 Ex. 2.—In (2760) let & = 1, c = 2, then

l-\+\-\+&c. = 1 + 14^ (i)-!-]' (I) = f-

2763 V'(H-«) = r"-^rf.r+V(i)-
Jo .1'— 1

Proof. 4-(l + a) -^(l) +^-^|xF^ + "%rl^.2!^^^"'^'^- ^^^ ^-^ ^^)

1_(1_9;)« a(a-l)
.
a(a-l)(a-2) 3 „

a; 1.2 1.2.0

therefore v|, (1 + a) = f
^"(l--'^')"

dx + v|/ (1).

Jo

Substitute 1 — a; in the integral.

2764 i^(l+.0-V'(l+M = r^!—4-%Ar.
,'0 .r—

1

[By (2768)
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Ex.—Put h = —a; then

;/.(! + a) _;/.(!_ a) = - +^(a)-4^(l-a) (2756) =- -TrcotTra (2745).
ex 0/

2765 Therefore --_i_- tZ» = - -tt cot Tra.

i/j(a?) AS A DEFINITE INTEGRAL INDEPENDENT OF i/r(l).

2766 ^(,.) = -j;(j_L.+i^jrf«.

Proof. v|/A^)=W«-— ^-... ^^—-with^ = oo (2743).

1,1., 1
-1 ^X+ fl.-l

But - + -^ + ...+
,

, ^ , dz,
X x + 1 X+fl— l

J^
l-z

by actual division and integration.

Also iog^ = p(^^-g)cZ. (2367).

Put 2 = i/'^ in the first integi'al, therefore

Jo 1-'/ Jo 1-2/'^

Replace i/ by z, and suppress the term common with the second integral

of (i.), and we get »//(«.) =
J

|
'-j^^ - fj-^

\
dz.

Put g'^ = u, and this becomes

But when ^ = oo the product /i(l— m^^) has — logtt for its limit (1584);

and w'^ = 1. Hence the result.

2767 ^(^*^)=ri'

1 ? da

Proof, r («) =
j

e-^z'^-'^dz; d^Y (x) =
j

e-'z'^-Hogzdz.
Jo Jo

But, by (2427), log2=[
^~"~^~°%

^«,

3 G
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C' C^ /< - " /) - at

.•.d^r(x) = i e-':f-'- dzda
J n J

= r[c-.[%----'&-rc-"+->-r'-'&] '^'

-wLich establishes the formula since

d,v{x) - r(.o = .z.iog r 0^) = ^ (x).

2768 logro.) ^£[G.-i)c-^^-^-^!=£f]^'

2769 =:fT!jl£l!_,,.+ill?£.

2770 ^(„.)=j;[^-j^,/f

Proof.—Integrate (2767) for x between the limits 1 and x, observing

that logr(l) = 0; thus

Jo ' log(l + «) > a

Subtract from this the equation obtained from it by making ;c = 2, and
multiplying the result by x—\. We thus obtain

log r (.)

= i;
[0.-1, (1+,.)- ^^""^";"""^1s^-

Substitute ^ = log (! + «), and (2768) is the result. To obtain (2769), sub-

stitute z = (l+a)-\ Lastly, (2770) is the result of ditferentiating (2768)
for X.

NUMKRICAL CALCULATION OF \ogr{.v).

2771 The second member of (2768) can be divided into two parts, one of

which appears under a finite I'onn, and the other vanishes with x. If we pnt

1 \ '-i
. , ,,_ I

1-
r = (.-i-. -,) -,.w« = ,-.£._,^,

=r
then Iogr(,«)=^ iP+Qe-i>-)d^ (i.)

If Q bo developed in ascending powers of l, the terms which contain

negative indices are -- + ^, = li .--a^-.
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Put F(x) = { {P+ Re-^^jdi

=i:[((-^)-i^)--(M)Hf ^^^•)'

and .. (..) = [^ (Q-B)e-^-^-cU - j^^ (j^" j" 1) -^' f - ("^^

Then, by (i.), log T (x) =i^(.0 + w(a;) (iv.)

F (x) can now be calculated in a finite form, and ra- (.f) will liave zero for its

limit as x increases.

First, to sbow that F (^) and w (|) cfin be exactl}^ calculated.

and, by substituting -g-^,

Again, 2;)utting' « = 1 in (iii.), we have

. -«=i:(i^4-i)-^f ^^'-'^

and, by substituting A^,

"0)=j;(^,-,\-i)-«f (vii.)

The diffex-ence of (vi.) and (vii.) gives

-r(r^-^-^)-f ^-•>'
Jo ^

since 1 — = -. = ,- 1^>-
l — e^i 1 — e--5 1-e -«

Subtract (viii.) from (v.), thus

^ (1) = ^ r(^:^^ _ ^) ^^ =
I
_ l£^ (2429).

Also, by (iv.), -F(i) + w(^) =- /r(i) = i?7r, .-. Fil) =: ilog (27r)-i...(ix.)

i-'O^) may now be found by calculating Fi.r) — F{^) as follows:

—

By (ii.), F(.)-Fii) = |^[(.-i)e-f+ (1 + |) (e-^-e-i^J |

Jo
^' ^ Jo ^

= i-a'+(^-i)loga: (2427-8),

.-. F(x) = ^\og{27r) + (x-l)\ogx-u:, by(ix.);

.-. by (iv.) logrOi;) = 1 log (2;r) 4-(a;-i) logx-x + xjr (x), (x.)
;

2772 •• r(*) = e--^-a;-r-iv/(27r)e-('-) (xi.)
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When X is very large, e^ W differs but little from unity. For vt(x) diminishes

without limit as x increases, by the value (iii.)

Replacing xsr (x) in (x.) by its value (iii.)) and observing that

log r (a; -I-]) =loga;+ logr (a:),

we get log r (.c + l) =-i-log (Stt) -|- (aj+ |) log x— x

+J„(n^^-T--2)^'^^ ("^-^

Now, by (1539),

\l-e-f i 21 k 1.2 1.2.3.4 1 ... 2;i 1 ... 2« + 2'

where ti is < 1 . Also

Jo
^"'^'

Jo '^

So that equation (xii.) produces

2773 log r (.r+ 1) = i^^^ + (.r+ i) log .v^a.^

,
^2 ^i_ I zr ^J^in + 2

This series is divergent, the terms increasing indefinitely. The comple-

mentary term, which increases with n and is very great when n is very great,

is, however, very small for considerahle values of n. For instance, when
a = 10, the values obtained for log r (11), by taking 3, 4, 5, or G terms of

the series, are respectively,

10-090820096, 16104415343, 16^104412565, 16-1041 12563.

CHANGE OF THE VARIABLES IN A DEFINITE
MULTIPLE INTEGRAL.

2774 Let ,7', ?/, ^ be connected with ^, v, I by three equations

Then, when tlie limits of the integral containing the new
variables can be assigned independently, we have
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where <l> is what F becomes when the vakies of x, y, z, in terms

of ^, 7), I, obtained by solving the equations u, v, w, are sub-

stituted.

Proof. F (x, y, z) cluhj dz =
III

f (^^ n, 1^
ff J ^^^ ^^ <^^-

To find Xt, consider rj aud ^ constant, and differentiate the three equations

ti, V, w for 4', as in (1723). To find y^, consider i^ and x constant, and differ-

entiate for r/. To find Z/-, consider x and y constant, and differentiate for ^.

We thus obtain
d (itviv) d (ttvw) d (uvw) d (uvtv)

dxdych^_ d {kyz) d inzj) d (46O ^ _ d (tnQ

dE, dt] dZ d (uvw) d {uvw) d (uviv) d. (uvtv) '

d {xyz) d {yzS) d {zkn) d {xyz)

observing' that two interchanges of columns in a determinant do not alter

its value or sign (559).

Similarly in the case of any number of independent variables.

When, however, the limits in the transformed integral

have to be discovered from the given equations, the process

is not so simple.

In the first place, we shall show how to change the order

of integration merely.

2*7*75 Taking a double integral in its most general form, we shall have

F(x,y)dydx (i.)
cb r4> (.1-) rp r* t

F(x,y)dxdy=^\

The right member will generally consist of more than one integral, and S
denotes their sum. The limits of the integration for x may be, one or both,

constants, or, one or both, functions of y. ^ is the inverse of the function \p,

and is obtained by solving the equation y = i//(.x'), so that x = ^(^). Simi-

larly with regard to (p and 4>.

An examination of the solid figure described in (1907), whose volume
this integral represents, will make the matter clearer. The integration, the

order of which has to be changed, extends over an area which is the projec-

tion of the solid upon the plane of xy, and which is bounded by the two
straight lines x = a, x = h, and the two curves y = '4^ (.^')> V = 'p(x)-

The summation of the elements PQ.qp extends from a to h, and includes

in the one integral on the left of equation (i.) the whole of the solid in

question.

But, on the right, the different integrals represent the summation of

elements like PQ^^rj), but all pai^allel to OX, between planes y = a, y = fi, &c.

drawn through points where the limits of x change their character on account

of the boundaries y = \p{x), y = cp (x) not being straight lines parallel

to OX.
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2776 Example.—Lot the figure represent the pro-

jected area on the xy plane, boanded by the curves

y = \p (x), y = (b (x), and the straiglit lines x = a, x = b.

Let y = cp (x) have a ruaxinium value when x = c.

The values of y at this point will be ^(c), and at the

points where the straight lines meet the curves the

values will be (p(a), <P\h), i// (a), v/'(fc).

According to the drawing, the right member of

equation (i.) will now stand as follows, U being written

for F{x,y),

Udyd,,
C't' {a) rb [<!> (b) Cb

Vdydx+\ Udydx
Uia)]a J* (a) J* (2/)

The four integrals represent the four areas into which the

by the dotted lines drawn parallel to the X axis. In the last

and ^iiy) are the two values of .r corresponding to one of y
the curve y = f (x) which is cut twice by any x coordinate.

divided

part of

2777 To change the order of integration in a triple integral,

from z, y, x to y, x, z, we shall have an equation of the form

F {x, y, z) dx dy dz = I.\
\

F (x, y, z) dz dx dy

ixii^i{x)}4>i(x,y) J 2^1 J ^1 U) J *i (c, a-) (ii.)

Here the most general form for the integrals whose sum is indicated b}^ 2

is that in which thf limits of y are functions of z and x, the limits of a; func-

tions of z, and the limits of z constant. Referring to the figure in (lOOG),

the total value of the integral is equivalent to the following. Every element

dxdydz of the solid described in (1907) is multiplied by F(xyz), a function

of the coordinates of the element, and the sum of the products is taken.

This process is indicated by one triple integral on the left of equation (ii )

;

the limits of the integration for z being two unrestricted curved surfaces

2 =
<^i

(x, y), z = 02 (x, y) ; the limits for ?/, two cylindrical surfaces y = 4^i{x),

y = \p2 (^) ; ^^d the limits for x, two planes x = a'j, x = x.^.

But, with the changed order of integration, several integrals may be

required. The most general form which any of them can take is that shown

on the right of equation (ii.) Solving the equation z = 0, (.'', y), let

?/, = <l>j (z, x), ?/,, = <t., (z. x) be two resulting values of y ; then the integra-

tion for y may be efiected between these limits over all parts of the solid

where tlie surface z = (pi (x, y) is cut twice by the same y coordinate.

The next integration is with respect to a;, and is limited by the cylindrical

surface, whose generating lines, parallel to OY, touch the surface z = fi{x, y).

At the ])oints of contact, x will have a maximum or minimum value for each

value of z ; therefore J^^j (a;, ;/) = 0. Eliminating y between this equation

and that of the surface, we get x = 4', (z), x = "ir^ (z) for the limits of .t.

Lastly, th.e result of the previous summations is integrated for z between

two parallel planes « = z,, z = Zj, drawn so as to include all that portion of

the solid over which the limits for x and y, already dotermiued, remain the

Bame.
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The reiuaiiiiiig integrations will take place between z = z^ and similar

successive parallel planes ; and, according to tbe portion of the solid which

any two of these planes intercept, the limits of x for that integral will be one

or other of the bounding surfaces, curved or plane, the limits of y, one or

other of the curved surfaces.

The general problem to change the variables in a multiple

integral,' and determine the limits from the given equations,

may now be solved.

2778 First, in the case of a double integral,

/•.r2 /-MS (j)

F{x,y)(Udy (m).,

to change from q^, y to S, v, having given the equations u= 0,

v = 0, involving the four variables.

To change y for rj, eliminate ^ between these equations ; thus y =f(-v, v)

and dy = /^ {x, ?/) dt]. Substituting these values, we shall have

F(x, y) dy = F{xJ(x, 7) }/„(»•, v) dn = F, (x, n) dn.

Also, if T)^ corresponds to i/^, the equations y^ = ^^ (f) and y^ =/(«, Vi) will

give
?7i
= 4'i (^')- Similarly V2 = ^2 C^)-

Hence the integral (iii.) may now be written

F, (x, v) dx fZ^ = 2 F, (X, r,) dr, dx (iv.),

J.riJ>/'i(.r) JliJ^iC,,)

the form on the right being obtained by changing tJie order of integration, as

explained in (2775).

Next, to change x for £, eliminate y between the equations « = 0, v = ;

thus, x = g{t,, v) and dx — g^ (^, >?) dt,. Substituting as before, we shall have

F,(x,rj)dx = F^{t,-n)dl

Also, ^1 cori'esponding to x^, the equations x^ = "^^ (jj) and «i = f7 (^d ^) W°'
duce ^1 = m^ (»?), and in the same way ^3 = m.^ (n)- Hence, finally,

F{x,y)dxdy = :z\ F,{^, ^) dii di (v.)

In the last transformation from x to ^, the most general form of tho

integrals which may be included under S has been chosen. When any of the

limits of* are constants, the process is simplified.

2779 Again, to change the variables from x,y,z to ^, r?,^,

in the triple integral,

F{x,y,z)dxclych (vi.),

rJ>^iU-)Jxi(.r,2/)

having given the equations u= 0, 'y = 0, iv = between the

six variables x, y, z, ^, »?, t-
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First, to cliange from z to C, eliminate ^ and n between the three

equations, and let the resulting equation be z =/(*, y, 0- From this

dz = f^(x, y, 4) dZ] therefore

F(x, y, z) dz = F{x, y,f(x, y, 0}/^ (^. V, d'C = F,{x, y, dl

Also, if ^1 corresponds to the limit z^, the equations z^ = Xi ("> !/) ^^*^

»i =/('^ 2/' ^1) give Ci = <^i (.e, 2/)- Similarly C^ = ^3(2?, ?/).

The integral (vi.) may therefore be written

F,(..,y,0fZ.^%c?^ = 2 F,(x,y,OdCdxdy
J .vi J M£) Ui(^-,y) J^i J*i(^) J*i(^,j-) (vii.),

the last form being the result of changing the order of integration, as ex-

plained in (2777). We have now to change from y to >) ; we therefore

eliminate z and ^ from the equations u, v, w, obtaining an equation of the

form y =/(f, x, j;), and proceed exactly as before. The result, as respects

the general foi'm of integral in (vii.), will be

F,(x,v,Od^dxdr, (vm.)

The order of x and t) has now to be changed by (2775). Since C is a

constant with respect to integrations for x and ?j, '^x(0' ^".(O "will also be

constants, while \^(ii,x), XjC'T, «) will be functions of the single variable x.

Suppose r] = \{ii,x) gives x = A^{i;,r]). Similarly, x = A^{!i,ri) maybe
the other limit.

At the point where x = '^i(i^) and ri = \(^,x), we shall obtain by
eliminating «, say, v = l^i(0- Similarly, from x='^i(Q and »? = A,, ( (T, :c)

suppose, we get r) = fA2(i^) for the next limit; then a general form for the

transformed integi'al will be

r^2 f/^2(^)
rA2(^,r,)

F,(x,r,,Odi:dr,dx (ix.)

J^Jmi(6")JAi(^,7,)

It now remains to change from the variable x to ^. Eliminating y and z

between the equations u, v, iv, we have a result of the form x-=f {l, v, 0-
Substituting for x and dx as before, we arrive finally at the form

F,{^,V,0<-Udr,d^ (x.)

It should be noticed that the limits x = A^ii', »;), x = Ao(C, v), in (i^-), are

not necessarily different curves. They may, in some of tlie partial integrals,

be different portions of the same curve. This was exemplified in the last

integral of (2770).

MULTIPLE INTEGRALS.

The following theorems, (2825) to (2830), which are

given for three variables only, liold good for any number.

Let X, y, z be quantities which can take any positive values
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subject to tlie condition tliat their sum is not greater tlian

unity; then

«o«r pfi--ri-^-^
I 1 m 1 n n 7 J

T(l)T{m)r{n)
"^^"^"^

JoJo Jo
-^ ^ r(/+m+«+ l)

Here x+ij+ z = I is the hmiting equation.

Proof.—Integrate for z ; then for y by (2308) ; finally for x by (2280),

and change to the gamma function by (2305).

2826 fflV>y-4--V/^/,r/^^^^g^^ ^f^
^^^

^"V

when ( — ) -}-(^) +( — j =r 1 is the hmiting equation.

Proof.—Substitute x = l—Y, y = (^-jY, z= (—)'', and apply (2825).

2827 When the hmiting equation is simply ^+ r) + ^ = A,

the value of the last integral becomes

.z^.n^n r{l)T(m)T{n) \

r(/+m+n+ l)'

2828 The value of the same integral, taken between the

limits h and h-\-dh of the sum of the variables, is

.^..«.n-i r(/) T(m) T(n) „

Proof.—Let u be the value in (2827) ; then, by Taylor's theorem, the

value required is

which reduces to the above, by (2288).

2829 j]p-^r-'^'^'y('^'+^+-) f^'^'^^f^-

- T{l+ m-\-n) X^ ^
'

3 H
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if x-\-}/-\-z = h and 11 varies from to c. In otlier words, the

variables must take all positive values allowed by tlio condi-

tion that their sum is not greater than c.

Proof.—For each value of 7t the integration with respect to x, y, z gives,

by (2828), fih) //— »
r(l)r(rn)r(n)

the variations of .r, y, z not affecting h. This expression has then to be in-

tegrated as a function of h from to c.

2830 fij>->v»-'f-/[(l)''+(iy+(-^)''( didridC

'dh,
1"P' rl '

1 '"
I " \ J«

itli the hmiting equation ( — ) +(-^) +() =^-

Proof.—From (2820) by substituting x = f-^~ Y, &c.

2831 If X, y, z he n variables, taking all positive values
subject to the restriction cX'-+ ?/-+r+ ... >1 ; then

CCC (lv(h/(h.&c. _ 7r'("+^)

But, if negative values of the variables are permitted, omit
the factor 2" in the denominator.

Proof.—In (2830) put l=im= &c.= l; a = j3 = &c.=l; ];i = q = &c.= 2;

f(^'^ ^^~7r\ )T' ''— I; ^'^^ t^iG expression on the right becomes

_ r(i»)r(i)
5).The integral is = 17 (in, \) (2280) = t\jy ' U; (2305

Hence the result. Iil(«+i)}
.

But if negative values of the variables are allowed under the same re-

striction, .i"+ij^ + ~-+ ... :^ 1, each element of the integral -will occur 2" times
for once under the first hypdtliesis. Theivt'ore the former result must bo
multiplied by 2".
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2832 If n positive variables, ,r, y, z, &c,, are limited by tbe

condition a;'^-|-?/"-^+ 2;'^-f-&c.> 1, then

<f) (
ax-\-hy-\-cz-\-kQ.) dxdy d.%

i(w-i)_i(w-l) PI

2'-^r{i(«+i)}Jo^'

wliere F = a^+ K^+ c'+ &c.

Proof.—Change the variables to £, rj, ^ by the

oi'thogonal transformation (171*9), so that

a^+ h^ + c^ + S^c. = k\ and ax+ hy+ cz + &o. = H.

The intearral then takes the form '

cp (JcO di ch] cU ,.. with k^ + >f+ T"+ &c. > 1

.

Now, integrate for >/, <r, &c., considering ^ con

stant, by adapting formula (282G). The limiting

equation is
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Here I = m = &c. = 1
; p = q = &c.= 2; a = ft = &c. = 7(1-^) ;

f (h) = _
; c = 1 : and the reductions are similar to those in (2832).

2834 If in (2832-3) negative values of tlie variables are

admitted (since the limiting equation is satisfied by such),

each element of the integral with respect to »?, t, &c. will then

occur 2''"^ times, and therefore the result in each case must

be multiplied by 2''"^, and the limits of the integration for ^

will be —1 and 1 instead of and 1.

EXPANSIONS OF FUNCTIONS IN CONVERGING
SERIES.

The expansion of a function by Maclaurin's theorem (1507)

can be at once effected if the n}^^ derivative of the function is

known, or if merely the value of the same, when the inde-

pendent variable vanishes, is known. Some ?z*^^ derivatives of

different functions, in addition to those given at (1461-71),

are therefore here collected. When the general value would

be too complicated, the value for the origin zero alone

is given.

DERIVATIVES OF THE /i*'^ ORDER.

The following is a general formula for calculating the n^^

derivative of a function of a function.

If 7/ be a function of z, and z a function of x,

w^iere r = 1, 2, 3, ... 7?. successively, and a is put =zm each

term of the expanded binomial, after differentiation.

Proof.—Assume ?/„^ = A,y:+ ~2/2z+ rf 2/3--+ ••• + ryf 2/'«-

To determine any coefficient A,., form r equations from this by making

y = z, 2^ z^, ... z'' in succession : nmltiply these r equations respectively by

yz-\ —C(r, 2) z-\ G(r, 3) z-\ ... (— l)'*^'?;-'", and add the results. All the

coefficients excepting A^ disappear. This is shown by differentiating the

equation (1 -x)'" = 1-rx + G (r, 2) z'-C (r, 3) ;»»+... d= x*-
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successively for x, and making x zero after each diflfereutiation. Thus, finally,

with a put = z, after expanding and differentiating the binonaial.

2853 Examples.—The formula may be applied to verify

equations (1416-19).

Jacobi's formula (1471) may also be obtained by it.

2854 (hrv+Dx siu-' .V

__ 1.3... (2/1-1) U n_y l.3C{n,2) ^,
""

2''{l-.if(l-j:y^ I '^n-1 2/1-1. 2/i-3

l-3-5C(^^,3) Z-^+..,±Z"L wliere Z = i=^.
2/1-1. 2/i-3. 2/1-5 ^ ^ V l-\-x

Proof. (sin-^ cb)(„,i), = \{l-x)-^- {l + x)-^n. (1434).

Expand the right member by (1460).

2855 </„;r tan-^t-. This derivative is obtained in (1468).

The following is another method, which also includes the

result in (1469).

1 t ( 1 1

.(1).

tan" ic — , , o c, I

l«-l(-l)«f 1 1 )
••• by (1425) d„^ tan- . =—

1^ I ^^^^
-^—y„ j •

Put a; = cote, therefore x±i= y(H-a;'') (cos ± z sin 0), which values

substituted in (1) convert the equation, by (767), into

(tan-^ x}„^ = (-1)"-' \n-l sin" sin nO.

2856 rf„;,{e^'°'^cos(c«'siua)} = e^«°^«cos(.^sina+n«).

Proof.—By Induction.

LAGRANGE'S METHOD.

2857 Lemma.—The ?^"' derivative of a function u=f(x)
will, by Taylor's theorem (1500), be equal to 1.2 ... % times

the coefficient of h"" in the expansion of fix-\-h) in powers of

h by any known method.
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Let u = a-\-hx-\-Ciir, and therefore ?/^ = i + 2c,c; tlien

d^_^{a-\-hx-\-cx^Y is equal to either of the following series,

with the notation of (2451-2).

2858 i(H,,n-.,,.[nS .
n^^r'cu n^:r'c^n- ].^005 1 U U^

I 1 (r) + l(r-l) j^2 + • •• + l(r,)l[r-Z,) ,^o,, + •••]'

2859 or, putting 2?i = 7?i and Aac— lr = (f,

Pkoop.—Cbangitig x into x+ /i in ?t", it becomes (7t + «^7i + c7(.')". Tlien,

by (2857), drxU" will be =
|

r times the coefficient of h^ in tlie expansion of

this trinomial. (2858) is the result, and it may be obtained by expanding
{(ic+ ttj.h) + ch^}" as a binomial, and collecting the coefficients of A'' from the

subsequent expansions. The value (2869) is found by taking

expanding, collecting coefficients of h^, and multiplying by 1.2... r, as

before.

2860 Ex.—To find d„^(a' + x-)". Applying fornuila (2859), we have
u = a^ + x^, ti^ = 2x, q= 2a, r = n. Therefore

(a'+ x'r = (2n)'.";
I
X-+ f^;'~^], aV-^

L 2)1 (2ii— l)

1 . 2 .2?i ... {2n~ 3) )

2861 rf«.t-'= e-'[a«(2.r)«+... + :^«-'-(2.r)''-^''+&<).|,

with 7- = 1, 2, 3, &c. in succession.

Proof.—By the method of (2857). Putting e<^(^*A)' = e"^ e'"^* e"''\ expnnd
the factors containing h by (150), and Irom the product of the two series

collect the coefficients of h".

ciocn 1 siu <, /o \„sin/ .,
,
mr\

,

•••+1(Tt(^^^) eo^V +—

2

j"^
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Proof.— i„^ (cos A'- +i sill ic") = (7„,,e''-^-'. Expand the right by (2861),

putting i"-'" = e'
'"-''''", since, by (760), i^"" = * sin ~ = i. Also put

^^.iin-r^l^ = eos \s^+ (iiZ^I + ^sin [a'H ^^^^"
| ,

and then equate real and imaginary parts.

2864 fh.r-^^ = i-^r [^"'+ {n+l-2'^} c^"-'^^

+ {(7(^^+ 1, 2)-2«(« + l) + 3"[e^»-''^

+ \C(n + l, 3)-2«(7(H + l,2) + 3''(» + l)-4"}e'"-^>^ + &c.]

Proof.—Let u be the function. By differentiating u it is seen that

the A's being constants. To determine their values, expand u = (e^+ 1)"*,

and also (e^+ l)"'^S by the Binomial theorem; thus

(e-+ l)«-i = e("'^ •)-+(«.+ 1) e'-+ a(n+ l,2) e^'^'^'^+C (n+ 1, 3)e(«-^)^+&c.

From the product of the two expansions the coefficients A^, A^-x, &c. may
be selected.

'-1

2865 dr,,,iim-\v = (-1) -^ \n-l or zero,

according as n is odd or even.

Proof.—By Rale IV. (ISo-i)- The first and last differential equations

(see Example 1535) are, in this case,

(l + x')y,^+ 2xy, = (i.)
; 2/(». 2)0.0+ ^ («+ 1) 2/»xo = (ii.)

;

with y^ = 1 and f/2xo = 0-

Otherwise.—BJ (1468), putting x = 0.

2867 ^.osin-^t^ = 1.3^o\.. {ii-2y or ^ero,

according as n is ocZtZ or eveii.

Proof.—By differentiating (1528).

Othenvise.—As in (2865) where equations (i.) and (ii.) will become in this

case (l-a!^)i/2^ = a:?/^ (i.) 2/(„.2)xo = ^^^2/»^o ... ..-(ii-)

2869 ^4.0 {sm-\vy = 2.2\4?.6' ... {n-2r or zero,

according as ^i- is even or odd.

Proof.—As in (2865) ;
equations (i.) and (ii.) being identical with those

in (2867).
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2871 d„,,i-o^(mHm-\i')

= (-l)f m2(wr-2-)(m---4-) ... [/>i--(7i-2)-],

or zero ; according as n is even or odd and > if even.

2873 f^?„ ,0 sin (r>i siu \r)

= (_1)"-T m(m2-l)(m2-3^) ... [m--(n-2)-],

or zero ; according as n is odd or ei-e?^ and >1 if odd.

mir

2875 f4^o eos rm COS \v)

2876 or

according as n is 0(7(? and > 1, or even and >0.

2877 «/„,o siu (»i cos-^r)

— (_l)fm2(m'— 2-)(?n^— 4-) ... [m^—in—2f] siu JmTr,

2879 or
^^^

= (— l)^'m(m2-l)(m2-3-) ... [m--{n— 2f] cos-imTr,

according as n is ei'^'^^ and > 0, or odd and > 1.

Observe that, in (2871-3), sin-^0 = 0, and in (2S75-9),

cos~^ = ^i are the only values admitted.

Pp^oof.—For (2871-9). As in (2865) ; equations (i.) and Cii.) now bo-

coming in each case

(!-»') 2/2x-a32/x+»'V = (i-) 2/(«.2);ro= («'-«i')2/r,xo (ii.)

Otherwise.—By the method of (1533).

2880 Let y = x cot ,r, then

wcos^i^ 7r = ?/oSiu— ir+...+//,^o^(^',>*)sin—2" '^+

...+//(n-l):rO>iSill^,

with integral values of r, from to n— l inclusive.
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2881 Thus, denoting y„-,Q shortly by ?/„, we find, by making
n= 1, 2, 3, &G. successively in the formula,

_ 2 _ _8_ _ 32 _ 128

Proof.—Take the nth derivative of the equation a; cos a; = y sinx by
(14G0), reducing the coefficients by (1461-2), and putting x finally = 0.

2882 The derivatives of an odd order all vanish. This may be shown
independently, as follows :

—

Let y = ^ (x), then <p (x) is an even function of x (1401) ; thei-efore

9"-'(x) = -f"^'(~x);
...

^2„U(0)=:_^^-'(0);
... f-^^(0) = 0.

2883 d„,,{{l+.v-y siu(mtau-^.r)} = (-1)"'^ m^^l or zero,

according as n is odd or eve7i.

ni n-2

2885 (l,,,{{\-\-a)')'' cos(mtan-i.:i?)} = (-1) ' m^^^l or zero,

according as n is even or odd.

Proof.—As in (2865). Equations (i.) and (ii.), both for (2883) and

(2885), are now (l+«') 2/2^-2 (m-1) xy^+m (m-1) y = (i.),

and 2/(«t2)a'0 = — {m— n) {m— n— 1) y^^ (ii.)

Formula (ii.) gives the factors in succession, starting with y^ = 0, y^ = m
in (2888) ; and with y, = 1, y^=0 in (2885).

2887 f/.xo{(l+'?")~^cos(mtan-^a7)} = (— l)'m^'^^ or zero,

according as n is eveii or odd.

Pkoof.—Change the sign of m in (2885).

Note.—In formulaa (2883-7) zero is the only admitted value of tan"' 0.

2889 '^"-(^l) = (-1)' "'^'^ ^^ '''^'

according as 7? is even or odd; by (1539).

2891 When |> is a positive integer,

or zero, according as n is > or < j;.

Peoof.—Put y = e"^ cos hx and z = x^ in (1460), employing (1465).

3 I
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MISCELLANEOUS EXPANSIONS.

Tlic following series are placed here for the sake of

reference, many of tliem being of use in evaluating definite

integrals by Rule V. (2249). Otlier series and methods of

expansion will be found in Articles (125-129), (149-159),

(248-295), (756-817), (1460), (1471-1472), (1500-1573).

For tests of convergency, see (239-247).

Numerous expansions may be obtained by differentiating

or integrating known series or their logarithms. These and

other methods are exemplified below.

2911 cot.i = l--i- + -l---^-i-
a: IT—x TT+ci" Utt— ,v

+ _i ^—+-L &c.^ 27r+.r 'dir^.v^ aTT+A-

Proof.—By differentiating the logarithm of equation (815).

2912 ^cot7r.t=i--h--i-:+ ^ ^
0? cV— i a'-\-l .r—

2

1 , 1 + 1 +&e.

Proof.—By changing x into irx in (2911).

2913 taD.r = ^-i 1__|_.^

iTT+.r- fTT— .r Itt+cI.^
&c.

Proof.—By changing x into ^t— x in (2011).

2914 cosec .r = — '

V TT— .r 77+ .J' 27r— .r

' 27r+.t' t\7r—.r tin-^-.v 47r— .r

Proof.—By adding together equations (2911, 2913), and changing x

into 53!.
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2915 -.J!— =l+ -i -^
smmiT m 1—m 1+ wi

1,1 1 ^

2—m 2-^m 3—m 3+m
Proof.—By putting x = m-n- in (2914),

2916 cot. = i_?^_^-^'-&c.
cV |_2_ L4_

[o_

For proof see (1545). The reference in that article (first edition) should

be to (1541) not (1540).

2917

\JL \Jl IA

2918 coseCci^ = i--f^i^pi^A.r

Peoof.—By (2916) and the relations

tan x=. cot »— 2 cot 2x, cosec a; = cot 4a;— cot «.

2919
-kz^ -, = l+2acos.r+2a'-cos2^^+2a'cos3<i^+&c.

1—2acoStr4-a

cos cr

^^^^
i-2acos.tM-a^

=— i-_i-^(coScr+acos2cr4-a^cos3cr+«^cos4i'+&c...)
1— a- 1—a^^

2921

—_sinf
^
_ sin^-j-a sm2.v-^a' sin3ci+a^sm4i+ &c.

1—2a cosji+a

Proof.—By (784-6) making a=l3 = x and c = a.

When a is less tlian unity and either positive or negative,
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2922
1 a^ a^
--^log(l+ 2acos.iH-«^) = ttcoscr—— cos2.:r+— cosSci— &c.

2923 tan-i_- 1— = asino? — sin2a7+--T-sin3ci'— &c.
l+«coSci' 2 ti

Proof.—Putting z = a (cos x+ i sin a;), we have

log (1 + 2) = log (1 + a cos a; 4-m sin a;)

= |log(l + 2acosa^ + a'') + aan-'
''"'"•''

(2214),
1 + a cos .«

Z^
gS jgl

and also log(l + 2) = z o
"^" "q t- + &c.

Substitute the value of z and equate real and imaginary parts.

2924 Otherwise.—Ho obtain (2922),

log (1 + 2a cos X+ a?) = log ( 1 + ae'') + log ( 1 + ae"*^)

.

Expanding by (154), the series is at once obtained by (768).

2925 Otherwise.—Integrate the equation in (786) with respect to a, after

changing a and /3 into x, and c into — a.

2926 When a is greater than unity, put

log(l-l-2acos.r+«^) = loga^-fiog (l+2«~^ coscr+w"^),

and the last term can be expanded in a converging series by

(2922).

2927
log 2 cosher = cosc^-—^cos2cr+icos3^'—Jcos4r-|-&c,

2928
log 2 sin ^x = —cos .r—^cos 2jg—^ cos 3.r—^ cos4r— &c.

2929 2'*' = sin cv—\ sin 2x-\-\ sin 3.i'—J sin 4i -f &c.

2930 i (it— .r) = sin .v-^l sin 2x-\-\ sin 3cr+i sin 4r+&c.

Proof.—(2927-30) Make a =^ ±1 in (2922-3).

2931 4^ = sin cV+i sin 3<r+i sin OcV+&c.

2932 77= 2y2(l+i"i-|4-i+-A— &c.).

Proof.—Add together (2029-30), and put ,r = .|t.

"When 71 is less than unity, and (/, = 1 + \/(l + ^r'),

2933 log(l-f w coSct) = Iog(lH-2acosjr+a-)— log(l-h«'),
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and is tlierefore equal to twice the series in (2922), minus
log (!-]-«-). But if a be greater than unity, expand, as in

(2926), by

2934 log(l + ;icos.iO

= log (l+2a~^ cos.^+a"-)+loga^—log (1+a^).

2935
(l+2« coscr)" = ^+ ^1 coScr+^2 cos2.v-\-A^ cos3.v-\-&g.,

where

A = l + C(n,2)2a'+... + C(n, 2p) C (2p, p) 0"^+ ...,

A, = 2a\n+C(n,S)Sa'-{-... + C(n, 2p + l) C (2p + l, p) a-P+ ...},

and A - ^r-^(n-r-]-l)a-rA,
(n+r+l)«

If n be a positive integer, the series terminates with the
n-\-V^' term, and the values of A and ^j are also finite.

Proof.—Differentiate the logarithm of the first equation ; multiply up
and equate coefficients of sin ra; after transforming by {GG6) ; thus ^^^1 is

obtained.

To find A and A^, expand (l + 2a cos re)" by the Binomial Theorem, and
the powers of cos a; afterwards by (772).

LEGENDRE'S FUNCTION" X^.

2936 (l-2«.r+«^)-^= l+X,«+AVr+...+XX+

with x„ = -J— 4^ {^'- 1 )^

Proof.—Expand by the Binomial Theorem, and in the numerical part
of each coefficient of a" express 1.3.5 ... 2/i — 1 as

j

2/< -^ 2"
|

/i .

Consecutive functions are connected by the relation

2937 d^x,^^ = (2;i+i) x,+^,Z„_,.

Proof.—Difierentiate the factor once under the sign of difierentiation in
the values of X„^.i and X„_i given by the formula for X„ in (2936).

A differential equation for X„ is

2938 (1-^-) d^Jin-'^xd^X^^n (w+ 1) X, = 0.
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2939 When jp is any positive integer,

1^+2^+3"+...+ (/i-l)P

_ 5ji^ n^ Bm^-^ B,n^-^ B,n^-' ^^
~'^?

|/9+ l 2 p +|2 \p-l
1
4 \p-3'^\ii |7i-5

concluding, according as n is even or odd, with

(_1) _ or (1) i„_i|2^

Pkoop. = . . Expcand the left side by division, and
e-^—

1

X e^— 1

each term subsequently by (150). Again, expand the first factor of the right

side by (150), and the second by (1539), and equate the coefficients of x" in

the two results.

See (276) for the values of the series when p is 1, 2, 3, or 4. But the

general forraula there is incorrectly printed.

Let the series (2940-4) be denoted by S^,,, S'.,,, So,,, sL+i5 as

under, n being any positive integer ; then

2940 S,,= l+±+^,+ ^,+&c.... = ^^"B^-

2941 S^^^l-±+l--±+&c. ... =^^ -'-"B,...

2942 s,„ = l+± + l, + l:+&o....= ^^^'-"B,,.

Proof.— (i.) S^n is obtained in (1545)

(ii.) 8,,-s:,, = 2l^^^

(iii.) s,„ = ^(s,„-]-s:„)

(ii.) 8,,-s:, = 2 (_4 + J^
+^"-) = ^^^- ^^'' '^'^^ ^•"••

2943 ^..^l+.p + y;:+^+&c-==- i;,.|2„-l '

ird.,,,,. cot TTj;

2944 4...1-5i.+^-,-i.+&c.=lf^
Proof.—By differentiating equation (2912) successively, and putting

iT = J in the result. To compute d„x cot ttx, see (1625).
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2945 The following values liave been calculated by formulaa

(2940-4).
77" o( TT o. TT tt'

0' '~"90' ' 945' ' 9450'

^' ""12'
'
~ 720' '

~ ^30240' ' 1209600

'

TT tt'

g, -4-j^^, "^"900' ' 161280'

TT ' _ "n" 57r^ ' GItt'

3946 T^^-(^-5)[^-(^][^-(^^
L (47r-a)-J L (47r + aj-J

0Q4.7 cosa; + cosa T o;^! ^ £!_"! H ^]^y^<
l + cosa L (TT-aj^J L (7r + a)^J L (3T-a)^J

L (37r + a)'dL (57r-aj=J

Proof,
^osa^-^o^^ = sin |(a + g)sini(a-a;) Expand the sines by
1— cosa sin^ |-a

(815) . The two n+ V^ factors of the numerator divided by the corresponding

ones of the denominator reduce to

/ 2ax + cc^ \ / 2ax—x'' \

\ 2nn-a/ \ 2u.n + al

(2n7r-a)V \ (2»7r + a)2

Similarly with (2947) employing (816).

2948 cos.+ tan|siu.= (1+-I-J (l--|-J (l+jl^J

x(l-.^)(l + ^)(l-r^)...&.,

2949 c„s.-c„t|sin.= (1-1) (1 + ^^J (1-^J
Wl+ 2^)(l_ 2^)(l+^

Proof, cos a;+ tan— sin x = SSlil^L-^. Expand the cosines by (816),
2 cos ^a

and reduce. Similarly with (2949), employing 815.
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2950 ^=4^-('^)'][^+(^:r][^+(3^)'j-

2951 ^'= [i+(;01[i+(if)1[i+(s)]-

Proof.—Change 6 into ix in (815) and (81 G).

2952
e>-2e.s.+ .

2 (1 — cos a)

OftCO fe^+ 2 cnsa+ e"'^

2953 2(1+ COS a)

= Mi^S] M^S] Ms7r:nM^n •-
Proof.—Change x into ix in (29'lG-7).

FORMULJE FOR THE EXPANSION OF FUNCTIONS
IN TRIGONOMETRICAL SERIES.

2955 When X has any value between I and —I,

*W = ij>W'^''+|C:J>('')eos'iI^rf«...(i.),

where n must have all positive integral values in succession

from 1 upwards
But, if x=l or —I, the left side becomes Z^ (/) + /(/>(— /).

Proof.—Bj (2919) we have, when h is < 1,

l—h^
l + 2/iCO3 + 2;i-cos29+ 2;i'cos3^+ &c....

l — 'J.koosd + lv

Put d = ''^^——
; multiply each side by <p (v), and integrate for v from

— Z to I; then make h = 1. The left side becomes, by substitutiing z = v — z,

n 0-h')<t,(v)dv _[•'-" jl-lr) f (z+ z) dz
^

J-^ l-2^cos^^''~''^ + /r J-^-a-(l-/0H4/isiu^g

When ^ = 1 each element of the integral vanishes, excepting for values of v

which lie near to x. Therefore the only appreciable value of the integral

arises from such elements, and in these z will have values near to zero, both

positive and negative, since x has a fixed value between I and — 1. Let these

values of z range from — /3 to a. Then between these small limits we shall

, sin' irz ttV , / , N ^ , X

have ____ = _, and ip{a: + z) = <p{x),



EXPANSIONS OF FUNCTIONS IN SFPdES. 433

and the integral takes the form

when 7; is made equal to vmity, which establishes the formula.

In the case, however, in which x = I, siu" ^^- vanishes at both limits, that

is, when z = and when 2 = — 2Z. We have therefore to integrate for a

from -/5 to 0, and also from -21 to —2l + n, a and /3 being any sra^all

quantities. The first integration gives Icp (I) as above, putting a = U. The

second integration, by substituting y = z + 2l, produces a sin\ilar form with

limits to a, and with f (ji;-2l) in the place of (j> (x) giving lij> (— 1) when

x = l. Thus the total value of the integral is Jf (l) + i<!' ( — 0- The result

is the same when x = — l.

That the right side of equation (i.) forms a converging series appears by

integrating the general terms by Parts; thus

^ (.) eos—j—^ dv = -- ) ^ (.) s:n_^—
^ _^

(v) sm ^- ^ dv,

which vanishes when n is infinite, provided f (v) is not infinite.

Hence the multiplication of such terms by h" when )b is infinite produces

no finite result when h is made = 1, although 1" is a factor of indeterminate

value.

2955« A function of the form ({>(:x) cosnx, with % infinitely

great, has been called '' a fluctuating function,'' for the reason

that between any two finite limits of the variable x, the func-

tion changes sign infinitely often, oscillating between the

values (^(03) and —<l>(x). The preceding demonstration shows

that the sum of all these values, as x varies continuously

between the assis^ned limits, is zero.

By similar reasoning, the two following equations are

obtained.

2956 If 3> ^^las any value between and Z,

.^(,,.,)=
1 j'V(.)rf.+isrfV(,Oeos!^^:ipr^rf. ... (2).

But if a;= 0, write -^ (0) on the left; and if x=l, write

If X has any value between and ?,

2957 = 1
fV(„)rf.+ l2r[V(.)cos^!:^i^)rf«...(3).

3 K



434 INTEGRAL CALCULUS.

But if ,i'=0, write ^(}>(0) on the left; and if x = l, write

im
2958 ^ (.<) = 4 fV ('•) rf"+ 1 sr cosi^ (".OS ^>(/-) rfr

This formuk is true for any vahie of x between and /,

both inclusive.

But if X be > /, write (^ (,/' ~ 2ml) instead of <^{x) on the

left, where %nl is that even multiple of I which is nearest to x

in value.

If the sign of ,/' be changed on the right, the left side of

the equation remains unaltered in every case,

2959 H^v) = |2rsm^fsm^>(r)<fo (5).

This formula holds for any value of x between and I

exclusive of those values.

If X be > I, write ±(\>{x~ 2ml) instead of (p{x) on the left,

+ or — according as x is > or < 2nil, the even multiple of I

which is nearest to x in value.

But if X be or /, or any multiple of /, the left side of this

equation vanishes.

If the sign of x be changed on the right, the left side is

numerically the same in every case, but of opposite sign.

Proof.—For (2958-9). To obtain (4) take the sum, and to obtain (5)

take the difference, of cquatJDns (2) and (o). To determine the values of

the series when x is > /, put ,e = 2ml =b '/, so that x' is < Z.

Examples.

For all values of x, from to tt inclusive,

ftrt/>/\ TT 4 ^ ,
cos elr

,
cos 5.r

, o ^ ?

2960 '^'= ^ cos.r+—;^^ + -^^:^+&c.^.

PiiOOF.—In formula (4) put <j) (x) = x and I = tt, then

f^
7 rvsinJiv , co?,nv~\'" 2 ^

V cos nv dv = h •

^r- ' = ~ "T °^ ^j

y L n W Jo n

according as n is odd or even.

Similarly, by foi-mula (5), equation (2929) is reproduced.

For lQI values of x, from — -^tt to ^tt inclusive.

on/^i 4 { . siiiJlr
,

siiio.r n )

2961 *•= —Unuv-—^j:r--}-—^, ^C.K

Pkoof.—Change ,* into Itt—x in (29G1).
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2962 ^':l^^ = ?^-l^ +^l^-&c.
2 e'^— c "^ a -\-l ir-\-z^ rr+ ir

Pkoof.— In formula (5) put 6 (.c) = ^<'-v_(,-ax
j^,^(| i — „

-^ then

2963 If i>(^') be not a continuous function between x=
and r/' = /, let the function be <p {x) from x= to x = a, and

;//(<iO from c'K = rt. to c^=/; then, in formulse (4) and (5), we
shall have (pio') or i// (.c) respectively on the left side, according

to the situation of x betAveen and a, or betvveen a and I.

But, if x = a, we must write i (</>(«) +^(«)} foi' the left

member.
Proof.—In ascertaining tlic valae of the integral in the demonstration

of (2955), we are only cjiicerned witli the form of the function cl ise to the

value of aj in question. Hence the result is not affected by the di.^continuity

unless x=a. In this case the integration for z is from — /3 to with (p (x)

for the function, and from to a with 4' G^) for the function, producing

^<p(a) + l^ (a).

2964 Hence an expression involving x in an infinite

series of sines of consecutive multiples of --^ may be found,

such that, when x lies between any of the assigned limits

(0 and a, a and h, b and c, ... h and I), the serie3 sh dl be equal

respectively to the corresponding assigned functions

provided that the integrals

\\m^^)M.) ds, j'sm'^,/;W dr., ... j'.i.i(«f)/„(.) d.

can all be determined.

2965 The same is true, reading cosim for slii' throughout,

with the additional proviso [as appears from formuLi (4)] that

the integrals

[fMdx, ^f.^dx,... U\„{,e)dx
Jo J a Jk

can also be determined.

2966 Ex. 1.—To hud in the form of a series of cosines of multiples of

X a function of « which shall be equal to the constants a, (i, or y, according

as X lies between and a, a and b, or h and vr.
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Formula (4) produces, putting l = Tr,

2 » = x 1
H 2 — cos nx < « cos ».i; (/./! + /3 cos vi.f ax + y cos /(.c Jx >

= 1 {« (a-/3) + Z.(/3-y) + -y}

2 jz = X 1
+ — S"^^^-y cos?;x- {(ct — ft) shi7ia+(fl—y)iimnh+ y sin jitt},

2967 Ex. 2.—To find a function of x having the value c, when x lies

between and a, and the value zero when x lies between a and L
By formula (4), we shall have

f '"r*^ J z' \ 7 [" ^"^^'
7 '^^ • nir(Z

cos -— (v) ax = c cos —- ctv = — sin —

,

Jo Jo
^'"" ^

since <p (v) = c from to a, and zero from a to Z.

rpi P , / N ft
, 2c C . ira TTX 1 . 27r(i '2.TZX

Ihereiore ^ (.f) = — + - j sin - cos — + -- sm cos - -

1 . oira o~X
,

n 7+ -3-sm-pcos-^+&e.J.

When x = a, the vaUie is |- [0 (a) + 0] = ^c, by the rule in (2963). This
may be verified by putting a = — ] in (2923).

2968 Ex. 3.—To find a function of .r which becomes equal to Jcx when
X lies between and |/, and equal to k (l— x) when x lies between II and /.

By formula (4),

</) {v) cos—r- tZy = liv cos (Zi-'+ A' {l — i') cos - txiJ.

Jo ^
Jo

^ Ji/
^

This reduces to ^/'
f 2 cos — -cos viTr- 1) = - i'^'^\ or 0,

TT^II- \ 2 / TT-ltr

according as n is, or is not, of the form 4?/i + 2. Also

rl nil rl l.n

f (v) dv = Jc {' V dv + k (l-v) du = '4-
;

Jo Jo Ji/'
^

(p (,() = _ -] cos —- + —r COS -— + — 2 cos -— h &1-2-^ '"'
^

-^ IF ''^^ T" "^
Fu^

'"^
"T-

^ ^^^-

3

APPROXIMATE INTEGRATION.

2991 Let
I

/(.?') ^?.c be tlie integral, and let tlie curve

7/ =_/'(.') be drawn. By sunirainp^ the areas of tlie trapezoids,

Avliose parallel sides are the )i-{-l eipiidistant ordiuates
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2/oj ?/i5 •• Vm we find, for a first approximation,

f/W ilv = tzIL (,y,^+2y,+2^,+ ...+2//,._,+//») (i.)

SIMPSON'S METHOD.

2992 If V\ be tlie ordinate intermediate between y^,
—f {a)

and y,=f[h), then, approximately,

f/(.r)rf,c = *r;^0A+4//,+;y,) (ii.)

* a ^

Proof.—Take n = ?j in formula (i.) ; write y.^ for y^, and suppose two

intermediate ordinates each equal to //j. The area thus obtained is equal to

what it would be if the bounding curve were a parabola having for ordinates

?/o' //]' Vi parallel to its axis. Otherwise by Cotes's formula (2995).

2993 A closer approximation, in terms of 2/^ + 1 equi-

distant ordinates, is given by Simpson's formula,

Proof.—We have

\
f(x)dx= \y(,v)clc+\'\f(x)dx+... + { f(x)Jx.

Jo Jo ^ — J '-^

Apply formula (ii.) to eacli integral and add tlie results, denoting by y,. the

value of y corresponding to x ^ —

.

2994 When the limits are a and b, the integral can be

changed into another having the limits and 1, by sub-

stituting X = a-\-{h— a)
II

.

COTES'S METHOD.

Let n equidistant ordinates, and the corresponding

abscissge, be
1 2 n— 1

Vo, Vi, y-i--. Vn-i, Vn and 0, -, — . .
. -^, 1.

2995 A formula for approximation mil then be

]f{d^) cLv = A,y,+A,y,-\-...+ A,i/,,+ ...+ A,?j, (iv.),

wli(
(_i)»" r' (<«•)'_",'

.= -1> \^^!^^,U: (-2460)

r
I

n— r Jo nj;— r
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Proof.—The method consists in substituting for / (.'^) the integral

function

r taking all integral values from to « inclusive. Wlieu x = r, we have

\P(^r)=yr; so that \l (x) has n+l values in conimou with /(a;). The

approximate value of the integral is therefore \p (x) dx, and nui}^ be written

tis in (iv.)
•''*

By substituting 1—x, it appears that
(«)

joOiX— r ]^)HX — {)l — r)

and therefore A^ = A„_,.. Consequently it is only necessary to calculate

half the number of coefficients in (iv.)

2996 The coefficients corresponding to the values of 7/ from 1 to 10 ai'e

as follows. Every number has been carefully verified, and two mis]>rints in

Berti-and corrected ; namely, 2089 for 2'J89 in line 8, and 89500 tor 89600 in

line 11.

11 = 1:
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2851. ^^ = ,,,= 1^, A, = A,= ^,
8DGUU- ^ ^ b'JGUO

^ ^ 224U'

. _ . _ 12i">9
, _ . _ 2S89

in A A 10067 . ,
26575 , , _ 1H175

^ _ 4 _ 5r>75 .i_^__4825 TTSO?

GAUSS'S METHOD.

2997 When f{x) is an integral algebraic function of degree

2n, or lower, Gauss's formula of approximation is

Cfi.v) = J,/(.r„)+ ...+^./W+ ...+^«/GrJ (v.),

wliere ^'o ... c^?^ ... cr,^ are the 7?-f-l roots of the equation

rPi.v) = d,,,,,.^U-+^{.r-ir-'}=0 (vi.),

and A^= r 0.-.r).. G.-.v_OGr-.v,O...G.-.g ^^^^,

Jo (.tv— ^t'o) . . . (ctv— cr,._i) (.r,— civ+i) . . . i'-Vr—^r,,)
_ _ _

^^->^

The formula is evidently applicable to a function of any

form which can be expanded in a converging algebraic series

not having a fractional index in the first 2)i terms. The result

will be the approximate value of those terms.

Proof.—Let
'•P

('-') = (.i'— .-Co)(x—a\) ... (.»— a-,,),

and let f (x) = Q-sly(x) + B (viii.),

where /(«) is of the -211^^ degree, Q of the n— V'\ and B of the n"\ since \p{x)

is of the 71+ I"' degree.

Then the method consists in choosing a function v^ (;)!) of the ?i+ 1"' degree,

so that Q 4^ (x) dx shall vanish ; and a function B of the n^^ degree, which

shall coincide with/(.7;) when x is any one of the n + 1 roots of i// {x) = 0.

(i.) To ensure that Qi/{x)dx = (). We have, by Parts, successively,

writing N for i// {x), and with the notation of (2148),

\xm=x^^\N-,l(^x^-^\N)

= x^ [ N-pxP-' [ N+p (p-l){ l^x^'-' f -v)

= &c. &c.

= X''
[
N-px''-' [

N+p (p-1) X''-' { N-...zk\ji\ ^^^N (ix.)

Now Q\P (x) is made up of terms like x^ 4> (x) with integral values of jj from

to n— 1 inclusive. Hence, if the value (vi.) be assumed for ^(x), wo



440 TXTEGnAL CALCULUS.

see, by (ix.), that (2\p (x) dx will vanish at both limits, because the factors

X and .X — 1 will appear in every term.

(ii.) Let It be the function on the right of ef|nation (v.) Then, when

X = Xr, "we see, by (vii.)* that Ay = 1, and that the other coefficients all vanish.

Hence R becomes /(.r) whenever x is a root of xp Oc) =0.

The values of the constants corresponding to the first six values of n,

according to Bertrand, are as follows. The abscissas values, only, have been

recalculated by the author.

0:

1:

= 4

X, = •2113-2487, Jc

as = -7880751;].

Ai = '5, log •6989700

w = 2: a-„ = •11270167, Ao = A, = -^?^, log = 9-44:36975
;

x^ = '5
;

X., = •88729833, A, = f,
log = 9-6478175.

71 = 3: a;.^ = •06943184, ^o = ^» = '1739274, log = 9-2403G81
;

X, = -33000948, A, — A., = ^3260726, log = 9^5133143

X, = •66999052
;

ar, = -93056816.

X, =-04691008,



CALCULUS OF VARIATIONS.

FUNCTIONS OF ONE INDEPENDENT VAEIABLE.

3028 Let ?/ rr /(.?]), and let F be a known function of x, ij,

and a certain number of tlie derivatives t/.^, 7/2^, 7/3^, &c. The
chief object of the Calculus of Variations is to find the form
of the function /(a;) which will make

Vd^ (i.)

a maximum or minimum. See (3084).

Denote //.,., ?/o.r, ^3^,., &c. by j;, q, r, &c.

For a maximum or minimum value of U, ^U must vanish.

To find S?7, let Bij be the change in y caused by a change in

the form of the function y =f(x), and let dj^, dq^ &c. be the

consequent changes in j^, q, &c-

Now, 2^ = y,^.

Therefore the new value of p, when a change takes place in

the form of the function y, is

therefore Sp = (S//)., ; that is, g {jA = '^^.

Similarly, Sq = {^p)ri

^r={Sq)^, &c (ii.)

Now m=rWdx (1488). Expand by Taylor's theorem,
.ro

rejecting the squares of ^y, Bj), Sq, &c., and we find

m = r iVJy-^VJp+V,^^...) dx,

or, denoting F„, F,„ F„ ... by N, P, Q, ...,

BU= r {my+ PSpi-Q^q-^ ...) dx. (iii.)

J .To

3 h
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Integrate eacli term after the first by Parts, observing that by

(ii.) \^2^dx = Sij, &c., and repeat the process until the final

integrals involve hjdx. Thus

Nhjdx is unaltered,

^F^pdx = ny-^PJydx,

j" Q^pdx = Q^p-QJy + \Q,Jydx,

3029 Hence, collecting the coefficients of 8//, ^p, S^, &c.,

BU= ^'\N-P,+ Q,,-Rs^„+ ...) ^i/clx

+ Sg,(il-~8, + T,,-...X-Sr/o(il-^^.+ T,.-...)o+&c. (iv.)

The terms affected by the suffixes 1 and must have x

made equal to x^ and x^ respectively after differentiation.

Observe that P^., Q^, &c. are here complete derivatives;

Vi P» ^'j ^'5 &c., which they involve, being fvmctions of x.

Equation (iv.) is written in the abbreviated form,

3030 ZU ={Khij8.v-\-Ih-H, (v.)

The condition for the vanishing of S?7, that is, for mini-

mum value of U, is

3031 K = iV-P.+Q,.~P3.+ &c. = K),

3032 and //i-//o= (vii.)

Proof,—For, if not, we must have

r
KSydx=:E,-n,

that is, the integral of an arbitrary function (since 1/ is arbitrary in form) can

be expressed in terms of the limits of ^ and its derivatives ;
which is impos-

bible. Tlierefore II,—H^ = 0. Also K = ; for, if the integral could vanish

witliout K vanishing, the/or>Ji of the fuaction ^1/ would be restricted, which is

inadmissible.
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The order ofK is twice that of the highest derivative contained in V. Let

n be the order of K, then there will be 2n constants in the solution of equa-

tion (vi.) and the same niimber of equations for determining them. For

there are 2)i terms in equation (vii.) involving o?/i, Bij^, dp^, &c. If any of

these quantities are arbitrary, their coefficients must vanish in order that

equation (vii.) may hold; and if any are not arbitrary, they will be fixed in

their values by given equations which, together with the equations furnished

by the coefficients which have to be equated to zero, will make up, in all, 2?i

equations.

PARTICULAR CASES.

3033 I-—When V does not involve x explicitly, a first

integral of the equation K = can always be found. Thus,

if, for example,

a first integral will be

+ QP.-Q.P

The order of this equation is less by one than that of (vi.)

Proof.—We have V^=Np-\-Pq+ Qr + Bs.

Substitute the value of iV from (vi.), and it will be found that each pair of

terms involving P, Q, E, &c. is an exact differential.

3034 II-—When V does not involve y, a first integral can

be found at once, for then N= 0, and therefore K= 0, and

we have -P«— Q2.c+^3a:~~<-^c. = 0;

and therefore P—Q^.-\-Roj.— &g. = A.

3035 III-—When V involves only y and p,

V=Fp-i-A, by Case I.

3036 IV.—When V involves only
i?
and q,

V = Qq+Ap+B. See also (3046).

Proof. K = —P^+Q2x = 0, giving, by integration, P = Q^+ A.

Also V, = Pq+Qr = Aq+ Q,q+ Qr.

Integrating again, we find V = Qq+ Ap + B,

a reduction from the fourth to the second order of differential equations.
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3037 Ex.—To find the bracliistoclirono, or curve of quickest descent,

from a point taken as origin to a point x^ij^, measuring the axis of y down-
wards.*

Velocity at a depth y = v^gij.

Therefore time of descent = I —-=i- dx.

Here V = J^-±^ = -^(-~- +A, by Case HI.

By reduction, y (l+j?^) = —^ = 2a, an arbitrary constant.

That is, since p = tan 6, y = 2a cos^ 9, the defining property of a cycloid

having its vertex downwards and a cusp at the origin

H,-n, reduces to -~^_^{(ph\- (p^yX) = 0.

If the extreme points are fixed, Sy^ and hj^ both vanish.

The values x^, t/i, at the lower point, determine a.

Suppose «!, but not y^, is fixed. Then h/^ is arbitrary ; therefore

its coefficient in (3) (P— Qa!+&c.)i must vanish; that is, (Vp)^ = 0, or

) — ^ C = 0, therefore «, = 0, which means that the tangent at the
l^y(l+p^)^i
lower point is horizontal, and the curve is therefoi'e a complete half cycloid.

3038 Tn the example of the brachistochrone, it is useful to notice that

—

(i.) If the extreme points are fixed, ^//„, cy^ both vanish.

(ii.) If the tangents at the extreme points have fixed directions, fj\„ ^Pi

hoth vanish.

(iii.) If the curvature at each extremity is fixed in value, ^p^, cq^, ^pi, cq^

all vanish.

(iv.) If the abscissfB x^, x-^ only have fixed values, hjf„ hji are then

arbitrary, and their coefficients in II^— I1^, must vanish.

3039 Wlien the limits x^, x^ are variable, add to the value of

Win (3029) V^dx,-VJx,.

PkoOF.—The partial increment of U, due to changes in a\ and a-^, is

^dx,+ 4^ dx, = V,dx-Y,<U,. By (2253).
dx-^ dx,

3040 Wlicn r/^1 and 7/i, o\ and t/o J^^c connected by given

equations, y^ = ^ {,,\) , i/o
= x {''o)-

EuLE.—Put

2.^1= W(^i'i)—Pi} fJr, and 8//,= IxM-^Po] ^^-^'o'

* The Calculus of Variations originated with this problem, proposed by John Bcrn.ulli

in 16i)6.
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and afterwards equate to zero the coefficients of dxi and dx^^,

because the values of the hitter are arbitrary.

Proof.—iji+ %, being a function of x^,

(2/1 + hi) + d., iVi + hi) d^-^h = ^ (•*. + ^•^•1) = ^ («i) + "P' (-^i) '^^i 5

therefore cij^+j^dx^ = \p' (x^) dx^, neglecting Sjulx^.

Ex.—In the brachistochrone problem (3037), the result thus arrived at

signifies that the cycloid is at right angles to each of the given curves at its

extremities.

3041 If V involves the limits x^, x^, y^, jh, Ih, Ih^ &c., the

terms to be added to 8?7 in (3029), on account of the varia-

tion of any of these quantities, are

dx^\ [V..+ VyjH+V,/2,+ ...\dx
JXo

+ r {^oSyo+T;,g//x+T;>o+T;,gpi+&c.} dx.

In the last integral, g//o, ^j/i, ^Jh, &c. may be placed outside

the symbol of integration since, they are not functions of x.

Hence, when F involves the limits x^, x^, y^, y^, i?q, Px, &c.,

and those limits are variable, the complete expression for

gifjis

3042 8t7= p{iV-^.+ Q2.-^3a+&c.] hyclv

J Xo

%J Xq
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3043 Also, if y, = xp{x,) and y, = x{^\) be equations re-

stricting the limits, put

^y, = {i.'{x,)-2h] dx^ and 8//0 = [x'(«'o)-B} dx,, (3040)

The relation 7^= is unaltered, and, by means of it, the

additional integrals which appear in the value of H^—B^
become definite functions of x.

3044 Ex.—To find the curve of quickest descent of a particle from some

point on the curve ?/o
= xC^'o) ^o the curve y^ = ^ {x^).

p, and T/o- Equation (3042) now reduces to

^U = r(N-P^) ^ydx + V,dx,-{V,-\Vy,podx} dx,

+ P,cy,-{Po-\ Vy,dx]cy, (I).

Now E=0 gives N-F^ = 0; therefore V = Pp +A (3035)

-

.1 f
/"i^' - 7^' + A

therefore \ -77 wTTT^
Vl/-?/o v/(!/-2/o)(i+i')

Clearing of fractions, and putting A =
^^

,
this becomes

(2/-2/o)(l+r) = 2a (2).

^^^° ^ = ^^ = y(.-.!ici+/;i = ^k) (^>-

Hence F=l±/^; F,„ = -7, = -^ = -P. (by i:= 0),

therefore ^JyA^ = ^""^^ = ^^ ^^^•

Substituting the values (2), (3), (4), in (1), the condition H.-Uo produces

(l+2^\)dx,-{l+Po2h)dxo+PiCy^-p,cyo = 0.

Next, put for By^ and By^ the values in (3040) ; thus the equation becomes

{l+P,^'(^i)]d.r-{l+p,xi'^-o)}dx, = (5);

dx^, dx^ being arbitrary, their coefficients must vanish ; therefore

p^^P'(x,)=-l and i'lX'C'^o)
=-!•

That is, the tangents of the given curves \p and x ^^ ^^e points x^yo and x^i/i

are both perpendicular to the tangent of the brachistochrone at the point a-,?/,.

Equation (2) shews that the brachistochrone is a cycloid with a cusp at

the startiug-poiut, since there y = t/q, and thorclbro jjj = 00

.
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OTHER EXCEPTIONAL CASES.

(Continued from 303G.)

3045 V.--Denoting //, y,, yo. ••. Vn. "by y,Pi,2h --.Pn;

and T;, F,_, T; ... T;^ by N, P„ P, ... P,,;

let the first m of the quantities y,lh,p-i, &c. be wanting in the

function F; so that

Then ir= fZ,„.P,„-fV+i).P,„+i+... (-ir-"cZ„,P. = 0,

which equation, being integrated m times, becomes

p„-4P,«+i+^z2.p.+2-...(-ir-'"^?(.-.).-p.

= Co+ Ci.i'4-...+c,„_iaj"'-^ (i.),

a differential equation of the order 2n— m.

3046 VI.—Let X also be wanting in F, so that

y= f{Vm,Pm^l -Pn);

then K = is the same as before, and produces the same
differential equation (i.) From that equation take the value

of P,„, and substitute it in

V^ = P,nPm+l+ Pm+lPm+2+--- + Pn Pn+1'

Each pair of terms, such as Pm+2P>m+3~ <^2gPm+2Pm+ij is an

exact differential ; and we thus find

F=C+ P„, + iJ^,„4.1+(P«.+2B«+2-4^», +2iWl)+...

+ (PnPn-d.PnPn-l+ d,,P,p,.,)- . . . (" l)^^-'"-^^(.-.-l) .PnP>n^l

+ ^
{co-\-CiX+ ... +c,^_-,x'''-^) p)„,+idx.

The resulting equation will be of the order 2n—m— l, or

m+ 1 degrees lower than the original equation.

3047 ^n.—If V. be a linear function of p^, that being the

highest derivative it contains, P,, will not then contain p^.

Therefore d^^P^ will be, at most, of the order 2n— l. In-

deed, in this case, the equation ^ = cannot be of an order

higher than 2?i— 2. (Jelletf, p. 44.)
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3048 VIII.—Let 2^,„ be the lowest derivative whicli V in-

volves; tlien, if P,^ =f[x), and if only the limiting values of

X and of derivatives higher than the 7?^*'' be given, the problem
cannot generally be solved. (Jelletf, p. 49.)

3049 IX.—Let N= 0, and let the limiting values of x alone

be given ; then the equation K = becomes

or, by integration, P—Qj,+ B.,,,—&c. = c,

and the two conditions furnished by equating to zero the co-

efficients of Sv/i, %o) ^iz-,

{P-Q,+ &G.\ = 0, (P-Q.+ &c.)o = 0,

are equivalent to the single equation c = 0, and therefore

Hi—Hq = supplies but 2n— l equations instead of 2n, and
the problem is indeterminate.

3050 Let U=rVdx-\-V', where

F= F{x, 7/, j9, q ...) and V =f{x,, x,, y„ '!h,p„Pu &c.)

The condition for a maximum or minimum value of U arising

from a variation in y, is, as before, K = ; and the terms to

be added to H^— Hq are

r;r/.To+i';;s.'/o+F;„^i^o+ ... +F;d^+F;%i+&c.
If the order of V be n, and the number of increments cIxq, S//o,

&c. be greater than n-{-l, the number of independent incre-

ments will exceed the number of arbitrary constants in K, and
no maximum or minimum can be found.

Generally, U does not in this case admit of a maximum
or minimum if either V or V contains either of the limiting

values of a derivative of an order = or > than that of the

highest derivative found in V. (JcUetf, p. 72.)

FUNCTIONS OF TWO DEPENDENT VARIABLES.

3051 Let F be a function of two dc})eudent variables ij, z,

and their derivatives with I'cspcct to ,r; that is, let

V=f{A,y,iy,q,..z,p\q ,..) (1),



FUNCTIONS OF TWO DEPENDENT VARIABLES. 449

where p, q, ... ^ as before, are tlie successive derivatives of ^,

and p', q, ... those of z.

Then, if the forms of the functions y, z vary, the condition

P' .

for a maximum or minimum value of ?7 or Vdx is

W= r{KSf/-\-K'B:^) dj+H,^H,-^H;-H^=0 ... (2).

Here K', H' involve z, }'>'> ?'» •••5 precisely as K, jff involve

y, p, q, ... ; the values of the latter being given in (3029).

3052 First, if y and ^z are independent, equation (2) ne-

cessitates the following conditions :

^ = 0, ^'=0, H,-H,+H,'-H,'=0 (3).

The equations K= 0, K' = give y and z in terms of a;,

and the constants which appear in the solution must be deter-

mined by equating to zero the coefficients of the arbitrary

quantities ^y^, %i, ^p^, Sp^ ... Szq, S^i, ^j)^, Sjh't ... »

which are found in the equation

H,-H,+H,'-H,'= (4).

3053 The number of equations so obtained is equal to the

number of constants to be determined.

Proof.—Let V= f{x, y, y„ y^ ... i/„^, z, z^, z^ ... 2^^),

K is of order 2/t in y, and .-. of form (p (a;, ?/, y^... 1/2,,^, «, Zj, ... «(«+„)x) ••• (i-)i

K' is of order 2w in z, and .'. of form ^ (a*, y,yt ... y{m*H)xi ^t ^x ••• ^jibx) ••• (ii-)

Differentiating (i.) 2m times, and (ii.) m+ n times, 3wH-n+2 equations are

obtained, between which, if we eliminate z, jJj. ... 2(3,„+„)a., we get a resulting

equation in ?/, of order 2{m-^n), whose solution will therefore contain

2(m + n) arbitrary constants. The equations for finding these are also

2 {w,-\-7i) in number, viz., 2rt in H^— Hf^ and 'Im in H[— H'q.

3054 Note.—The numberofequations fordetermining the constants is not

generally affected by any auxiliary equations introduced by restricting the

limits. For every such equation either removes a terra from (4) by an-

nulling some variation (cy, ^p, &c.), or it makes two terms into one ; in each
case diminishing by one the number of equations, and adding one equation,

namely itself.

3055 Secondly, let y and z be connected by egjiie equation

3 II
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(j, (^xy:c) = 0. y and z are tlieii found by solving simultane-

ously tlie equations

(j) {a\ y,z) = and K :
<l>y
= K' : <^^.

Proof—(p (x, y, z) = 0, and therefore <}> (x, y + ^y, z+ Sz) = 0, wten the

forms of y and z vary. Therefore (p^^y + cpJz = (1514), Also K^y + K'h = 0,

by (2). Hence the proportion.

3056 Thirdly, let tlie equation connecting 7j and z be of tlie

more general form

4>{^^>y>p>q ... ^,p',q' ...) = (5).

By differentiation, we obtain

If (wliich rarely happens) this equation can be integrated so

as to furnish a value of ^z in terms of %, then dj)', dq\ &c.

may be obtained, by simple differentiation, in terms of Sz/, ^_p.

Generally, we proceed as follows :

—

^V=my+P^p-hQh+ ...+N'h+ F^P+Q'^q'+ (7).

Multiply (6) by X, and add it to (7), thus

,„ + {N'-^\<t>,)^z+ {P'+Xi>,)^jy + (8).

The expression for SZ7 will therefore be the same as in (2), if

we replace iV by iV+Xe^^, P by P+ X<^^, &c., thus

3057 BU=:^\{{N+\<l>,)-(P+\ct>X-\-...}Si/

+ [{N'-\-\<l>,)-{P'^\<t>,)^+...} Bz](Lv

+ {P+X(^,-(Q+X(^,).+ ...},8^,

-{P+X(^,-(g+X<^J,+ ...}«8i/o

+ {g+X(^,-(i?4-X<^,.).,+ ...},87>,

-;g+X(^,-(/{+X(/>,),+ ...}o87>o

&c. &c.

+ similar terms in P, Q ... p\ q ... &c. ...(0).

3058 To renderW independent of the variation h, we must
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tlien equate to zero tlie coefficient of Sz under the sign of

integration; tlius

N'+\<l>,-iP'']-H,).+ {Q'+H,)2.-&G. = (10),

the equation for determining X.

3059 Ex. (i.)—Given F= Fix, 7j,p, q ... 2), where

z='\vdx and v = F(x,y,p, q ...). :^f^

Tlie equation f is now z—^vdx = or v—Zj.= 0,

0i/ = '"j/. 9p = '"p^ 'Pa= ^1' ^^-^

<p, = 0, (j>p,= —1, ^3'= 0, the rest vanishing.

Substituting these values in (9), we obtain

SU= r[{N+Xv,-{P+ Xv,),+ (Q+ Xv,),^- ...} ^y + {N'+X,\8:]dx
J J-u

+ \P+\v^-(Q + Xv,)^+ ...\Jij,-{P+ \v^-(Q + \v,),+ ...],Si/,

Tor the complete variation DU add V^dx^—VQdxQ. To reduce the above so

as to remove Sz, we must put N' +K= 0, and therefore \ =—j N'dx. Let

\ = M be the solution, u being a function of a;, y,p,q ... »• Substituting this

expression for A, the value of cU becomes independent of ^z.

Ex. (ii.)—Similarly, if z in the last example be = j^^'" (2148), (p becomes

v—Zjjj, = 0; and, to make N'+\^ vanish, we must put A = —y^^N'.

3061 Ex. (iii.)—Let Z7=
f

x/l + yl+ zldx (1).

Here N = ; N'= ; P = —=^==^ ;
P'= J---==; Q=0;

Q'=0; and the equations K—0, K'—O become

P, = 0, P; = 0, or

Solving these equations, we get

y^ = ?n ; z-^ = n; or y = mx-\-A ;
z = nx + B.

3082 First, if x„ y„ z^, x^, y^, z^ be given, there are four equations to

determine m, n, A, and B.

This solves the problem, to find a line of minimum length on a given

curved surface between two fixed points on the surface.

3063 Secondly, if the limits .Tj, x^ only are given, then the equations

{P\ = 0, (P)o=0, (P')i = 0, (P')o=0,

are only equivalent to the two equations m = 0, n — 0, and A and B remain

undetermined.
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3064: Thirdly, let the limits be connected by the equatlous

"We shall have (^^.^+ ^^, jh + <Pz, 2'i) ''•^'i + <Pi^, ^V i + '•I'^-i ^'-i = ^•

Substitute <}>^^ = m^cpj.^, ((>2^=: 7i^<p^^, 2h=^'>^h p'\ = '>i
',
thus

(1 + m???i+ MHj) (ZXi+ Wj ^i/i + 7(i ^Zj = 0.

Eliminate dx^ by this equation from

and equate to zero the coeflBcients of ^i/i and Sz^ ; then

m^V^ = (P)i(l + ??z?i2j + 7mi) ; ?ijT^i = (P')i(l+mm-i + nn^).

Replacing Fj, Pj by their values, and solving these equations for m and n,

we find m = m^, n = Vi-

Similarly from the equation \p (.?•„, t/^, z^) = we derive m = m^, n = n^.

Eliminating x^, y^, z^, a^^, i/^, z^ between these equationp, and

y^ = mx^+A; z^ = vx^ + B', y^ = mxQ-\-A; z^=nx^-]rB;

(--^i, 2/i, «i) = ; y\> O^o, 2/o, 2o) = ;

four equations remain for determining vi, n, A, and B.

3065 On determining the constants in the solution o/ (8056).

Denoting j;, q,r ... by l^uP^jPs ••• j
"^6 liave

and for tlie limiting equation,

<l>{^^\I/,Pl,Pl, ."Pn,^,P'l,P2, ".p'm) =0.

V is of the order n in y and 7?i in z.

^ is of the order oi in y and m' in ^.

3066 Rule I.

—

If m Z^c > m', and n r?7/it'r > or < n, the

order of the final differential equation will he the greater of the

two quantities 2(mH-n'), 2(m' + n); and there will be a

sufficient number of subordinate equations to determine the

arbitrary constants.

3067 Rule II.—7/'in be < m', and n < n', the order of the

final equation ic ill generally be 2(m'+n'); and its solution

may contain any number of constants not greater than the least

of the two quantities 2(m'— m), 2 (n'— n).

For the investigation, see Jelleff, pp. 118—127.

3068 If V docs not involve x cxplicitl}^, a single integral of

order 2{nii-n) — l maybe found. The value of V is that

given in (303:^), with corresponding terms derived from z.
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Proof.— dV = Ndij+ P,dp, + ... +P„d2}„+ N'dz + P\dp\+ ...+P'^dp^.

Substitute for ^ and iV' from the equations K = 0, K' = 0, as in (3033),
and integrate for V,

RELATIVE MAXIMA AND MINIMA.

3069 In tliis class of problems, a maximum or minimum

value of an integral, Ui = Vich, is required, subject to the

condition that another integral, U.^ = V.^^dx, involving the
J Xq

same variables, has a constant value.

Rule.—Find the maximum or minimum value of the func-
tion Ui+ alJg; that is, take V^Yi+ aV.;,, and afterwards
determine the constant a hy equating Ug to its given value.

For examples, see (3074), (3082).

GEOMETRICAL APPLICATIONS.

3070 Proposition I.—To find a curve s which will make

F [x, y) ds a maximum or minimum, F being a given function

of the coordinates x, y.

The equation (5), in (3056), here becomes

where p = Xg, p'= y^, x and y being the dependent variables, and s the in-

dependent variable.

In (3057), we have now, writing u for F(x, y),

N = u^, N' = My, fp = 2p, fp,
= 2p';

the rest zero. The equations of condition are therefore

^ -M^— cZs(X.Cs) = and Uy— dg{\yj) = (1).

Multiplying by Xg, yg respectively, adding and integrating, the result is

\ = u,

the constant being zero.*

Substituting this value in equations (1), differentiating tta;^ and uyg, and
putting Wj = u^Xg+ u^yg, we get

Vsiu^Vs-UyXg) = uxog (2),

Xg(u^Xg—U:,yg) = uyog (3).

* Bee Todhunter's "History," p. 406.
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Multiplying (2) by y , and (3) by x„ and subtracting, we obtain finally

« (2/» a'2»— «» 2/2«) = «x 2/»

—

^h ^s, or

3071
«_^dud^_dud.

(4)^*^"*
p (Lv ds dy ds

p being the radius of curvature.

To integrate this equation, the form of u must bo known,

and, by assigning different forms, various geometrical theorems

are obtained.

3072 Proposition II.—To find the curve which will make

\F{x,y)ds^-\f{x,y)dx (1)

a maximum or minimum, the functions F and / being of given

form.

Let F{x, 7/) = n and /(x, y) = v.

Equation (1) is equivalent to \{u-\-vx^ ds.

In (3057) we now bave V=u + vp; and for (p,
p'^+p^ = 1, as in (3070).

Tberefore N = u^ +pu^ ; P = Vp = v; </)j, = 2p-,

N'= u,^+pv^
;

(pp' = 2i> ;
the rest zero.

Therefore, equating to zero the coefficients of ^x and cy, the result is the two

equations ^x+ P^x— (v + ^p)s = 0,

n^+pvy—{\p)s = 0;

or d, (Xx,) +v, = Ux+ ^>>'^x,

dsl^y,) =n^ + x^v^.

Multiplying by a;,, y, respectively, adding, and integrating, we obtain, as in

(3070), X = «, and ultimately,

Qn»7Q 1_ 1 /du_(ly_du. d^ dv\
dU/d

p
- ~

w \d.v ds dy ds ^ dyl'

3074 Ex.—To find a curve s of given length, such that the volume of the

solid of revolution which it generates about a given line may be a maximum.

Here \{ifx,—a})ds must be a maximum, by (3069), a? being the arbitrary

constant. The problem is a case of (3072),

u = a\ u^ = 0, v; =0, V = y\ v^ = 2y.

1 2ij

Hence equation (3073) becomes — = -
"i

•

Givinrr D its value, - ^^ "^^^"-'^

fwhere p = -f^],
and integrating, the result

PP,, V dxy

— = ' '

: from which x = \
—y-- „

—^—
.



FUNCTIONS OF TWO INDEPENDENT VARIABLES. 455

FUNCTIONS OF TWO INDEPENDENT YAEIABLES.

3075 Let V= f(:x,y,z,p,q,r,s,t),

in whicli x, y are tlie independent variables, and p, q, r, 5, t

stand for z^, Zy, z.2^, z^y, z-^y respectively (1815), z being an in-

determinate function of x and y.

Let U=\
\

Vdojdy,

and let tlie equation connecting x and y at the limits be

^ {x. y) = 0. The complete variation of Z7, arising solely from
an infinitesimal change in the form of the function z, is as

follows :

—

Let F„ Fp, &c. be denoted by Z, P, Q, B, S, T.

Let ^ = {P-B,-\8y) ^z-^\8^+mp,
^ = (Q-Ty-^S,)^z+^S^p+ nq,

X={Z-Pr-Qy + R2.+ S,y+ T,y) h.

The variation in question is tlien

3076 81/ =£(v.,=, -V',=..+<^,=,.g -^'-'S)
''"

Proof.— ^ Ydxdy=\ hVdxdy
J Xo J yo }xo]ya

J Xo J 2/0

as appears by differentiating the values of ^ and »//. But

Jj,„ d.^ -^ cZa; Jj,^
^' "' dx ^^ -^ dx

by (2257), and T"!^ '^^ ^ '/'iz-^'i-^y-V

Hence the result.

3077 The conditions for a maximum or minimum value of

U are, by similar reasoning to that employed in (3032),

</» = 0, ^ = 0, X = ^-
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GEOMETRICAL APPLICATIONS.

3078 Proposition I.—To find the surface, S, which will

make [I F{x., y, z) dS a maximum or minimum, i^ being a given

function of the coordinates x, y, z. [Jelhtt, p. 276.

Here, putting F (x, y, z) = «, V=u^l +/ + 2';

\i^. F - "^
• Q=-y^J^

and V„ Vg, Vt are all zero.

dP_ V (du
^

du \
^ ^^
a + q') r-pq.^

^

dx ^i^f^(^^\dx ^ dzl (i-|-^/ + 22)S
'

dQ^ q (du du\ ^^
(l-\-p')t-pqs

dy v/l+/ + 2' ^ d'j dz I (H-/ + 2^)t

The equation x = or Z-P^-Q, = gives

(1 + r/^) r-2pqs+ (1 +r) t 1
(
du^ du_du\Q^

(l+/+ 22)i u^/i+p' + q:'^ dx dy dzl

If E, W be the principal radii of curvature, and Z, m, n

the direction cosines of the normal, this equation may be

written

3079 i + i.+l(.|^+.J +n3 = 0,

and according to the nature of the function u different

geometrical theorems may be deduced.

3080 Proposition II.—To find the surface S which will make

\\F{x,y,^S)dS+\\f{x,y,z)dxdy

a maximum or minimum ; F and / being given functions of

the coordinates a3, y^ z.

Let F (a;, y, z) = lo and / (x, y, z) = v. Proceeding throughout as in

(3078), we have V = u^/Y^^fT^+v,

Z = s/l+p^ + q*U,+ V„

and the remaining equations the same as in that article if wo add to the

V,
reBultiiig ditloroutial equation the term — * on the left

u
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This equation may then be put in the form

R R u\ cLv dy dz dz /

where I, m, n are the direction cosines of the normal to the

surface.

3082 Ex.—To find a surface of given area such that the volume contained

by it shall be a maximum.

By (3069), the integral
| |

(z-a-yT+pT^) dxdy

must take a maximum or minimum value. The problem is a case of (3080).

We have u-=—a, v = z, m^. = 0, 14^ = 0, t/^ = 0, «^ = 1

;

and the differential equation of the surface (3081) reduces to

3083 or \^^,-\.

APPENDIX.

ON THE GENERAL OBJECT OF THE CALCULUS OF
VARIATIONS.

3084 Definitions.—A function whose form is invariable is

called determinate^ and one whose form is variable, indeter-

minate.

Let du be the increment of a function u due to a change
in the magnitude of the independent variable, hi that due to a

change in the form of the function, Du the total increment

from both causes ; then

Dv = du-^hL.

Thus, in (3042), the terms iavolving dx^ and dx^ constitute du,

and the remaining terms 8// ; the whole variation being Du.
hi is called the variation of the function u.

3085 A primitive indeterminate function, u, of any number
of variables is a function whose variation is of arbitrary but
constant form ; in other words, ^hi = 0.

3 N
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3086 Let V =^ F.u be a derived function,—tliat is, a func-

tion derived by some process from the function u ; F denoting

a relation between the forms, but not between the magnitudes,

of u and v.

The general object of the Calculus of Variations is to

determine the change in a derived function v, caused by a

change in the form of its primitive ?l

The particular derived functions considered are those

whose symbols are d and , denoting operations of differ-

entiation and integi^ation respectively.

SUCCESSIVE VARIATION.

3087 Let the variation of the variation, or second variation

of V due to a change in the form of the involved function,

y =f(x), be denoted by S (§F) or ^'F; the third variation by

B^V, and so on.

By definition (3085), y being a primitive indeterminate

function, and ^?/ its variation, ^-y = (1).

3088 The second variation of any derivative of y is also

zero, i.e., ^"^p, ^^q, &c. all vanish.

• Proof.- P(y„,) = B (c^,,,) = {S (hj)},^ = (chj)„, = by (1).

3089 If V= f{x, y, 2^, q, r, &c. ...), where ?/ is a primitive

indeterminate function of x, then

where, in the formal expansion by the multinomial theorem,

hj, ^j), &c. follow the law of involution, but the indices of r/^,

dp, &c. indicate repetition of the operation dy, d^, &c. upon F.

Proof.—First, ^V=(^yd^+ dp dp+ ^d^+...) V.

In finding PV, each product, such as hj dyV, is differentiated again as a

function of i/, f, q, &c. ; but, since the variations of ^?/, cp, &c. vanish by (2),

it is the same in effect as tlioiigh ey, ^j), &c. were not operated upon at all.

They accordingly rank as algebraic quantities merely, and therefore

PV= (^yd,+ Spdp+ ^qd,+ ...yV.

Similarly for a third differentiation ; and so on.

IMMEDIATE INTEGRABILITY OP THE FUNCTION F.

3090 Def.—When the function F (3028) is intcgrable

without assigning the value of y in terms of x, and therefore
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integrable whatever tlie form of the function y may be, it is

said to be immediately integrahle, or integrable per se.

3091 The requisite condition for V to be immediately

integrable is that K= ^ shall be identically true.

Peoof.— Vclx must be expressible in tlie form

where (p is independent of the form of y. Hence, a change in the form of y,
which leaves the values at the limits unaltered, will leave

I

'Vdx = ; that is, i ^K^y = 0.

But the last equation necessitates 7v = 0, since cy is arbitrary. And K=0
must be identically true, otherwise it would determine y as a function of x.
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GENERATION OF DIFFERENTIAL EQUATIONS.

3050 By differentiating ordinary algebraic equations, and
eliminating constants or functions, differential equations are

produced. Some methods are illustrated in tlie following

examples.

3051 From an equation between two variables and n
arbitrary constants, to eliminate the constants.

Rule.—Differentiate r times (r<n), and from the r+ 1

equations any r constants may he eliminated, and thus C (n, r)

different equations of the r*^ order (3060) obtained, involving

-3-^, -r—^, &c. Only r-|-l, however, of these equations will he
dx'" dx''"^

independent. By differentiating n times and eliminating the

constants, a single final differential equation of the n*^ order

free from constants may he obtained.

3052 Ex.—To eliminate the constants a and h from the equation

y = ax^ + hx (i.)

Differentiating, we find - "^ = 2ax + h (ii.)

Eliminating a and b in turn, we get

a. 4^ +hx = 2y, a:^ = ax- + y (iii., iv.)
dx ax

Now, differentiating (iii.) and eliminating h produces the final equation of

the second order,

^^ || -2x^ +2y = (v.)

The same equation is obtained by differentiating (iv.) and eliminating a.

3053 To eliminate tbe function <p from tbe equation z = (p (r),

where z? is a function of x and //. We have

Therefore '^. i

^v r V /
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3054 To eliminate </> from 'ii = (p {v), where ti and v are func-

tions of X, y, z.

Consider x and y the independent variables, and differ-

entiate for each separately, thus

^*x+ ^^z ^^:c
= 1>'{v) {I'x+ ^z ^x) ,

Uy + U,Zy = <}>'{v) {Vy+V,Z^),

and, by division, <{>' (v) is eliminated.

3055 To eliminate (p^, <p2, ... <pn from the equation

F {x, y, z, «^i(ai), faW, ... i>nM] = 0,

where a^, a^, ... a^ are known functions of x, y, z.

Rule.—Differentiate for x and y as independent variahles,

forming the derivatives of ¥ of each order ^ up to the (2n— 1)*^

in every possible ivay ; that is, F; F^, ¥y; Fg^., F.^^, Fj^,; Sfc.

There will be 2n^ unhnoivn functions, consisting of (pi, (p^, ... ^«

and their derivatives, and 2n'^+ n equations for eliminating

them.

3056 To eliminate ^, <^i(g, (p.,{^), ... <p,,{l) between the

equations

F [x,y,z,l, .p,{^), U^) ... <PM] = ^^

f{x,y,z,K,i>,(^),<p,i^.)...<p^{'.)\=0.

Rule.— Consider z a,nd ^ functions of the independent

variables x, y, and form the derivatives of F and f up to the

2n— 1*^ order in the manner described, in (3055). There ivill

be 4n^+n functions, and 4n^+ 2n equations for eliminating

them.

3057 To ehminate ^ from the equation

F{x,y,z,w,<p{a,^)} = 0,

where a, j3 are known functions of x, y, z, u\

Rule.—Consider x, y, z the independent variables. Dif-

ferentiate for each, and eliminate <p, (p„_, (p^ between the four

equations.
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DEFINITIONS AND RULES.

3058 Ordinary differential equations involve the derivatives

of a single independent variable.

3059 Partial differential equations involve partial deriva-

tives, and therefore two or more independent variables are

concerned.

3060 The order of a differential equation is the order of the

highest derivative which it contains.

3061 The degree of a differential equation is the power to

which the highest derivative is raised.

3062 A Linear differential equation is one in which the

derivatives are all involved in the first degree.

3063 The complete primitive of a differential equation is

that equation between the primitive variables from which the

differential equation may be obtained by the process of differ-

entiation.

3064 The general solution is the name given to the complete

primitive when it has been obtained by solving the given

differential equation.

Thus, reverting to the example in (3051), equation (i.) is the complete

priviifive of (v.) which is obtained from (i.) by diilerentiation and elimination.

The differential equation (v.) being given, the process is reversed.

Equations (iii.) and (iv.) are called the first integrals of (v.), and equation

(i.) the final integral or general sohifion.

3065 ^ particular solution, or particular integral^ of a

differential equation is obtained by giving particular values to

the arbitrary constants in the general solution.

For the definition of a singular solution, see (3068).

3036 To find when two differential equations of the first

oi'dor have a common primitive.

Rule.— ViffrrentiatG each rguatioii, and eliminate its

arbitrary constant. The tivo results will agree if there is a

common primitivejivhichy in thai case, will be found by elimi-

nating y, between the given equations.

Ex,—Apply the rule to equations (iii.) and (iv.) in (3052).
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3067 To find when two solutions of a differential equation,

each, involving an arbitrary constant, are equivalent.

Rule.—Eliminate 07ie of the variables. The other will also

disappear, and a relation betiveen the arbitrary constants ivill

remain.

Otherwise, if V=G, v= c he the two solutions : Fand v

being functions of the variables, and G and c constants ; then

dV dv__dV du_

cLv dy dy d.v

is the required condition.

Proof.—V must be a function of v. Let V= (p(v); therefore Fj = ^^v^

and Fj,= 'pv'^'y't then eliminate <p„.

Ex.—tan"' (aj + 7/) +tan"' {x— y) = a and x^-\-2hx- = 2/^ + 1 are both solu-

tions of 2xyy^ = x^ + y^+ ^' Eliminating y, x disappears, and the resulting

equation is h tan a. = 1

.

SINGULAR SOLUTIONS.

3068 Definition.— "A singular solution of a differential

equation is a relation between x and y which satisfies the

equation by means of the values which it gives to the differ-

ential coefficients t/.^, y.^j., &c., but is not included in the com-
plete primitive." See examples (3132-3).

3069 To find a singular solution from the complete primitive

^{x,y,c) = 0.

Rule I.

—

From the complete primitive determine c as a

function ofx, by solving the equation j^ = 0, or else by solving

Xc= 0, and substitute this value of c in the ptrimitive. The

result is a singular solution, unless it can also be obtained by

giving to c a constant value in the primitive.

3070 If the singular solution hivolves j only, it results from
the equation jc=0 only, and if it involves x only, it results

from Xc = only. If it involves both x and y, the two equa-

tions Xc = 0, yc= give the rame result,

OF TKB

TTNI^ERSITT
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3071 WJien the primitive equation (p (xyc) = is a rational

integral function, ^c = '^(^1/ ^^ used instead o/ Xg = or

ye = 0.

Proof.—Let <p (x, y, c) = be expressed in the form

y = fChc) (1).

Then, if c be constant, yx=fx (2);

and, if c varies, yx=fx+fcCx (3)-

When c is constant, the differential equation of which (1) is the primitive is

satisfied by the vahie of ?/^ in (2). But it will also be satisfied b}' the same

value of y^ when c is variable, provided that either fc = or /^ = co , and in

either case a solution is obtained which is not the result of giving to c a

constant value in the complete primitive; that is, it is a singular solution.

But f^ = is equivalent to y^ = 0, and /j. = oo makes y^ = (Xi , and therefore

X = constant.

GEOMETRICAL MEANING OP A SINGULAR SOLUTION.

3072 Since tlie process in Rule I. is identical with that

employed in finding the envelope of the series of curves

obtained by varying the parameter c in the equation

(j) (x, y, c) -— ; the singular solution so obtained is the equa-

tion of the envelope itself.

An exception occurs when the envelope coincides with one

of the curves of the system.

3073 Ex.—Let the complete primitive be

w = ca;+ v^l— c", therefore yc = x
; yc=^^ gives c = — -

Substituting this in the primitive gives y = vl + x"^, a singular solution. P
is the equation of the envelope of all the lines that are obtained by varying

the parameter c in the primitive; for it is the equation of a circle, and the

pinmitive, by varying c, represents all lines which touch the circle. See also

(3132-3).

3074 "The determination of c as a function of aj by the solution of the

equation y^ = 0, is equivalent to determining what particular primitive has

contact with the envelop at that point of the latter which cori-esponds to a

given value of x.

"The elimination of c between a primitive y=f(x,c) and the derived

equation y^ = 0, docs not necessarily lead to a singular solution in the sense

above explained.
" Por it is possible that the derived equation ?/p = may neither, on the

one hand, enable us to determine c as a function of x, so leading to a singular

solution ; nor, on the other hand, as an absolute constant, so leading to a

particular primitive.
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" Thus the particular pi-imitive y = e" being given, the condition yc=
gives e"^ = 0, whence c is +co if a; be negative, and — oo if « be positive.

It is a dependent constant. The resulting solution
J/
= does not then

represent an envelope of the curves of particular primitives, nor strictly one

of those curves. It repi^esents a curve formed of branches from two of them.

It is most fitly chai^acterised as a particular primitive marked by a singularity

in the mode of its derivation from the complete primitive."

l^Booles ''' Differential Eqiiations,'^ Supplement, p. 13.

DETERMINATION OF A SINGULAR SOLUTION FROM THE
DIFFERENTIAL EQUATION.

3075 Rule II,

—

Any relation is a singular solution luhich,

ivhile it satisfies the differential equation, either involves j and

makes Py iifinite, or involves x aiid makes ( — \ infinite.

3076 " One negative feature marks all the cases in which a solution

involving y satisfies the condition p^ = ao . It is, that the solution, while

expressed by a single equation, is not connected with the complete primitive

by a single and absolutely constant value of c.

" The relation which makes p,, infinite satisfies the differential equation

only because it satisfies the condition ?/c
= 0, and this implies a connexion

between c and x, which is the ground of a real, though it may be unimportant,

singularity in the solution itself.

" In the first, or, as it might be termed, the envelope species of singular

solutions, c receives an infinite number of different values connected with the

value of a; by a law. In the second, it receives a finite nnmber of values also

connected with the values of x by a law. In the third species, it receives a

finite number of values, determinate, but not connected with the values of x."

Hence the general inclusive definition

—

3077 "^ singular solution of a differential equation of the

first order is a solution the connexion of which tuith the com-

plete primitive does not consist in giving to c a single constant

value absolutely independent of the value of x."

[Boole's " Differential Equations," p. 163, and Supplement, p. 19.

RULES FOR DISCRIMINATING A SINGULAR SOLUTION OF
THE ENVELOPE SPECIES.

3078 Rule III.— ]Y]icn py or ( — j is made infinite hy

equating to zero a factor having a negative index, the solution

^' may be considered to belong to the envelope species''

3079 "In other cases, the solution is deducible from the

3
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complete primitive by regarding t; as a constant of multiple

value,—its particular values being eitlier, 1st, dependent in

some way on the value of x, or, 2ndly, independent of x, but

still sucli as to render the property a singular one."

\_Boole's " Bifferential Equations," p. 164.

3080 Rule IV.

—

A solution which, ivliile it makes py infinite

and satisfies the differential equation of the first order, does not

satisfy all the higher differential equations obtained from it, is

a singular solution of the envelope species.

m-\

Ex. : i/x
= my '" lias the singular solution y = when m is >1.

m -r

Now 2/ra; = "i O'i— 1) ••• O't— r+ 1) y '"
,

and, when ?• is > m, the value y = makes y^-x infinite. The solution is,

thei-efore, by the rule of the envelope species.

3081 Rule V.—" The proposed solution heing represented hy

u = 0, let the differential equation, transformed hy making u
and X the variables, be u^-l-f (x, u) = 0. Determine the in-

f^ dn
tcgral -^- as a function of x and u, in ivhlch U is either

Jo U
equal to f (x, u) or to f (x, u) deprived of any factor ivhlch

neither vanishes nor becomes infinite when u = 0. If that

integral tends to zero ivlth u, the solution is singular" and of

the envelope species. [Boole, Sttjyplement, p. 30.

3082 Ex.—To determine whether ^ = is a singular solution or par-

ticular integral of y^ =z y (log ?/)^.

Here w = y, and I —,

•'
^., = — , .^

J 2/ (log yy log'^

As this tends to zero with y, the solution is singular.

Verification.—The complete primitive is ?/ = c"--', and no constant value

assigned to c will produce the result y =: 0.

3083 Professor De Morgan has shown that any relation

involving both x and y, which satisfies the conditions j>y = oo
,

p^=: OD , will satisfy the differential equation when it does not

make 7/2.r> as derived from it, infinite ; that it may satisfy it

even if it makes y^.^ infinite ; and that, if it does not satisfy the

differential equation, the curve it represents is a locus of

points of infinite curvature, usually cusps, in the curves of

complete primitives. [Boole, Sxpiilcmmf, p. 35.
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FIRST ORDER LINEAR EQUATIONS.

3084 M+N-^ = 0, or Md.v-\-Ndi/ = 0,

M and N being either functions of x and. y or constants.

SOLUTION BY SEPARATION OF THE VARIABLES.

3085 This method of solution, when practicable, is the

simplest, and is frequently involved in other methods.

Ex. xy(l+ x')dy=z(l+ ,/) dx,

therefore /, '
.,
= —rr-—jr,

l + y^ x(l + x^)

and each member can be at once integrated.

HOMOGENEOUS EQUATIONS.

3086 Here if and N, in (3084), are homogeneous functions

of X and y, and the solution is affected as follows :

—

Rule.—Put y = vx, and therefore dy = vdx+ xdv, and
then separate the variables. For an example , see (3108).

EXACT DIFFERENTIAL EQUATIONS.

3087 Mdx-\-Ndy = is an exact differential when

M, = N,,

and the solution is then obtained by the formula

SMd.v-\-^{N-d,{^Mda^)] dij = C.

Proof.—If F=0 be the primitive, we must have Vj. = M, Vy = N;
therefore V^y = My = JV^,. Also V ==\ Mdx+ ij) (y), (p (y) being a constant

with respect to x.

Therefore N = V^ = dyj Mdx + (p' (y),

therefore <}> (t/) = ^ {N-dyJMdx} dy+G.

3088 Ex. (x'-Sx'y)dx+ Of-x')dy = 0.

Here 3Iy = —Sx^ = N^. Therefore the solution is

C=.^-xhj + ^[f-o:^-dy (I -a) I
dy
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3089 Observe that, if M(Jx-{-Ndij can be separated into two
parts, so that one of them is an exact differential, the other

part must also be an exact differential in order that the whole
may be such.

3090 Also, if a function of x and y can be expressed as the

product of two factors, one of which is a function of the

integral of the other, the original function is an exact differ-

ential.

ijnyi JiiX.— — cos — dx ,- cos - dy = cos — . ;
—^ = 0.

y y r y y r

Here — is the integral of the second factor. Hence the solution is

y

sin -^ = G.

y

INTEGRATINa FACTOR FOR Mdx-\-Ndij = 0.

When this equation is not an exact differential, a factor

which will make it such can be found in the following cases.

3092 I.— When one only of the functions Mx+Ny or

Mx—Ny vanishes identically, the reciprocal of the other is an
integrating factor.

3093 n.

—

If, ivhen Mx+Ny = identically, the equation

is at the same time homogeneous, then x~^°"^^^ is also an in-

tegrating factor.

3094 III.—If neither Mx+Ny nor Mx-Ny vanishes identic

cally, then, when the equation is homogeneous, — 1^ is an

integrating factor ; and ivhen the equation can be put in the

form <f>{xy)xdy-\-x{xj)jdK = 0, -

^.^^_-^
^*« an integrating

factor.

Proof.—I. and IH.—From the identity

M dx + Ndy = i f (Mx + Nij) d log x>j + (Mx - Ny) d log -
| ,
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assuming the integrating factor in each case, and deducing the required

forms for 31 and N, employing (3090),

11,—Put v= -^, M = a?"^ (v), N = x'"\p (v), and cly = zdv+ vdx in

Mdx + N(hj and 3Ix+ Ny.

3095 The general form for an integrating factor of

Mdx+Ndy = is

wliere v is some chosen function of x and y ; and the condition

for the existence of an integrating factor under that hypothesis

is that

M —N
3096 XT-^—TT— 'iniist be a function of v.

Nv^—MVy

Proof.—The condition for an exact differential of M/jdx + NfJtdy = is

(Mii)y-= (Nn) J. (3087), Assume f^
= <!> (v), and differentiate out; we thus

obtam 2— = —-^—
-f- ,

The following are cases of importance.

3097 !•—If an integrating factor is required which is a

function of x only, we put i^i
= <p {x), that is, v = x; and the

necessary condition becomes

—^^—

—

- must he a function of x only.

3098 II-—If the integrating factor is to be a function of xy,

the condition becomes, by putting xy = v,

M —N
- miist be afmiction of wy only.Ny—Mx

3099 III-—If the integrating factor is to be a function of

-^, the condition is
x

—i^——-^ must he a function of -^.
Mx+Ny -^

-^ X

If Mx-\-Ny vanishes, (3092) must be resorted to.
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In this and similar cases, the expression found will be a

function of v = -^ if it takes the form F (v) when y is re-
X

placed by vx.

3100 IV.— Theorem.— The condition that the equation

Mdx-\-Ndy = may have a homogeneous function of x and y

of the n^^ degree for an integrating factor, is

^^K,.-M,)+nKv^j,^^^
where t. = i^.

3101 The integrating factor will then be obtained from

Proof.—Put fx—v = x^xpiu) in (3097), thus

V Nvj.—Mv,j'

Perform tlie differentiations, and, by reduction, we get

>pIu) Mx+Ny

The right member must be a function of u in order that 4> (u) may be found

by integration.

3102 Ex.—To ascertain whether an integrating factor, which is a homo-

geneous function of x and y, exists for the equation

(y'^+ axy^) dy— ay^dx+ (x+ y)(x(ly—ydx) = 0.

Here M = -(ay^+ xy + y-), N = (y^'+ ax/' + xy + x-).

Substituting in the formula of (3100), we fiud that, by choosing n = -3,

the fraction reduces to ^^V-^^^ , and, by putting y = ux, it becomes -"": ^
y

^'

a function of u.

fi = x-'e ^^ -^=y-'e

the integrating factor required. It is homogeneous, and of the degree - 3

in X and y, as is seen by expanding the second factor by (150).

3103 If by means of the integrating factor ^it the equation

fLMd.e^l^Ndy = is found to have V=G for its complete

primitive, tl'ien the form for all other integrating factors will

be /"/(^)j wlicre/ is any arbitrary function.
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Proof.—The equation becomes

fiMf (V) dx+fxNf(V) chj = 0.

Applying the test of integrability (3087), we have

{i^^ifiy)}, = {i^Nf{v)u.

Differentiate out, remembering that

and the equality is established.

3104 General Rule.—Ascertain by the determmcdion of an

integrating factor that an equation is solvaUe, and then seeh to

effect the solution in some more direct waij.

SOME PARTICULAR EQUATIONS.

3105 (acr+%+c) d.v-]-{a\v+b'y+c') dij = 0.

This equation may be solved in three ways.

I.—Substitute X = ^— a, y = r]— ^,

and determine a and j3 so that the constant terms in the new
equation in E and n may vanish.

11.—Or substitute ax-\-hy-{-c = ^, a'x+ b'y -{-c =v.

3106 But if a:a' =h:b\ the methods I. and II. faiL The

equation may then be written as a function of ax-\-hy.

Put z = ax -{-by, and substitute hdy = dz— adx, and after-

wards separate the variables x and z.

3107 III.—A third method consists in assuming

(Ayi+ C) d^-h{A'^+ G') ch = 0,

and equating coefficients with the original equation after sub-

stituting ^=zx-\-7n-^y, V = ^-\- m.2y.

m^^, ?% are the roots of the quadratic

anv'+ ih+a)m+ h'=0.

The solution then takes the form

{(ami— a')(.r+m,?/)+ cw*i—c' }"'"'""'

{
(am2— a'){.v-\-m.2i/)-\-cnh—c' }

«'«^-«'
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3108 Ex. (Sij-7x + 7)dx + (7ij-Sx + S)chj = 0.

PiTfc X = ^— (1, 2/ = >?— (3, thus

(Sj,-?^) c^+(7v-3^i,) dn = (i.),

with equations for a and /3, 7a —3/3 + 7 = ; 3a— 7(3 + 3 = 0;

therefore a = — 1, /3 = (ii.)

(i.) being homogeneous, put r] = v^, and therefore drj = vd^+ ^do (3086) ;

.-. (7v'-7)Uii-\-(7v-3)^ulv = 0, or ^+pfldv = 0.
c, iV—7

The second member is integrated, as in (2080), with & = 0, and, after

reduction, we find 5 log (»j + ^) + 2 log (»/— ^) = G.

Putting I, = x— \ and n=- y, by (ii.) the complete solution is

{y +x-Yf{y-x +\y=G.

3109 When P and Q are functions of x only, the solution

of the equation

^+Py = is y=Ce-^'^ (i.)

by merely separating the variables.

3110 Secondly, the solution of

%^-Py = (i is y = c-^"'' { c+Jeci"%/..}

.

This result is obtained by the method of variation of
imrameters.

EuLE.

—

Assume equation (i.) to he the form of the solution^

considering the parameter C a function of x. Differentiate (i.)

on this hypothesis, and put the value of j^ so obtained in the

proposed equation to determine C.

Thus, differentiating (i.), we get ?/j. = (7j.e J ' —Fy,

therefore Q ^= CxG J''"", therefore C =
[
qJ'^"" dx + C.

Then substitute this expression for C in equation (i.).

Otherwise, writing the equation in the form (ry—Q)dx + dy = 0, the

integrating factor J '^ may be found by (3097).

3111 y^J^Py=Qf
is reduced to the last case by dividing by //" and substitutiug

^ — y •
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*3212 P,(Lv+P,d^+Q {^itIi/-^/(lv) = 0.

Pj, P3 being liomogeneoiis fimctions of ,*; and 1/ of the |/''

degree, and Q homogeneous and of the q^^"- degree, is solved

by assuming

Put y = ox, and change the variables to ,»j and v. The result

may be reduced to

which is identical in form with (3211), and may be solved

accordingly.

3213 (A, + Brr + G,y)(xdy-ydx)-(A, + B,x + G,y)dy

-(iA,+ B,:c^G,y)dx = 0.

To solve this equation, put x = t, + a, y = v + ft,

and determine a and /3 so that the coefficients may become homogeneous,
and the form of (3212) will be obtained.

RICCATI'S EQUATION.

3214 U,+ bu' = C.V^'^ (A).

Substitute // = ilv, and this equation is reduced to the

form of the following one, with n = Jii+ 2 and a = 1. It is

solvable whenever m (2^+1) = —4t, t being or a positive

integer.

3215 d'i/,-ai/-]-bt/ = c.e (B).

I.—This equation is solvable, when n= 2a, by substituting

y = vjf, dividing by x-"", and separating the variables. We

thus obtain r—:,
= af~'^dx.

c— ov

Integrating by (1937) or (1935), according as h and c in

equation (B) have the same or different signs, and eliminating

1; by y = vsf, we obtain the solution

3216 , =
^|,,.C£^^

(1).

* The preceding articles of this section are wrongly numhered. Each number and
reference to it, up to this point, should be increased by 100. The sheets were printed off

before the error was discovered.

3 p
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3217 01- ,/ = ^[- -^),..«tan
I
C- -iVtzM I (2),

3218 II- — Equation (B) may also be solved whenever
n— 2a , •-• • .— =r f a positive integer.

Rule.—Write z for j in equation (B), and nt+a for a

m the second term, and transpose b and c if t he odd.

Thus, we shall have

xz^— {nt -{- a) z -{-hz' = c-x" (when t is even) (3),

xz^^ —{nt-Y a) z+ cz^ = haf (when t is odd) (4)

.

Either of these equations can be solved as in case (I.), when

11 = 2 {nt-\-a), that is, when —-

—

' -- t. .^' having been de-

termined by such a solution, the complete primitive of (B)

will be the continued fraction

y =
--^ +—^— +...+

j:
+— ...ioj,

where h stands for b or c according as t is odd or even.

3219 III-— Equation (B) can also be solved whenever
71 -\~ 2a—-— = t a positive inte2:er. The method and result mil be

271
^ °

the same as in Case II., if the sign of sl he changed throughout

and the first fraction omitted from the value ofj. Thus

y =
71— a

,
2n — a

, ,
(t—l)n— a

,

^v— h—r— + -+^ T + -— (6).

Proof.—Case II.—In equation (B), substitute y = A+ -— , and equate

a ^'

the absolute term to zero. This gives ^ = , or 0.

Taking the first value, the transformed equation becomes

dx
n+ a

x^-(n+ a)y, + cy\=lx''.

Next, put )/,
= r ^—, and so on. In this way the /"' transformed

equation (3) or (4) is obtained with ,;; written for the ^"' substituted variable yt-
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Case III.—Taking the second value, ^ = 0, the first transformed equa-

tion differs from the above only in the sign of a ;
and consequently the same

series of subsequent transformations arises, with —a in the place of a. The

successive substitutions produce (5) and (6) in the respective cases for the

values of y.

3220 Ex. u,+ i<.' = cx-^. (3214)

Putting -ii = -^, -r-— 2 >^
X dx x^

and the equation is reduced to xy^—y^if = cxi of the form (B). Here

a =1, 5 = 1, 7^ = 1, and ^-^±^=2, Case III. By the rule in (3218),

changing the sign of a for Case III., equation (3) becomes

Solving as in Case I., we put z = vx^, &c. ; or, employing formula (1)

directly,

, = ye.*^^^^ ; and then, by (6), y = -^ -
,

3c
+

the final solution.

FIRST ORDER NON-LINEAR EQUATIONS.

3221 Type

where the coefficients P^Pzi ... Pn i^ay be functions of x

and y.

SOLUTION BY FACTORS.

3222 If (1) can be resolved into n equations,

and if the complete primitives of these are

V, = c„ V, = c,, ... n = c„ (3),

then the complete primitive of the original equation will be

(V-c)iV-e) ... (F,-c) = (4).
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Proof.—Taking n = 3, assume tlie last equation. Differentiate and

eliminate c. The result is

(r,-r,y- (v-v,y {v-v,rdv,dr,dv, = (5).

By (2), dV^ = f<i {ij^—i\)dx, &c., where ft, is an integrating factor. Sub-

stitute these values in (5), rejecting the factors which do not contain differ-

ential coefficients, and the result is

which is the differential equation (1).

3223 Ex.—Given yl + ^>j,,+ 2 = 0.

The component equations are ^/, + l = and 7/,+ 2 = 0, giving for the

complete primitive

(y + ,r-c)(y+2x-c)=0.

SOLUTION WITHOUT RESOLVING INTO FACTORS.

3224 Class I.—Type
<l>

(.r, jy) = 0.

When aj only is involved with jj, and it is easier to solve

the equation for x than fov ji, proceed as follows.

liuLE.

—

Obtain x = f (p). Differentiate and eliminate dx

hy means of dy = pdx. Integrate and eliminate p hy means

of the original equation.

Similarly, when y =f(p), eliminate dy, &c.

3225 Ex.—Given x = ay.,+ hy'i, i.e., x = ap+ hf (1),

dx = adp-\- 2hp dp, therefore dy = p dx = apdp+ 2hp-dp,

therefore !/ = o
^—^ r ^ •

Eliminating jfj between this equation and (l),the result is the complete primitive

(ax+ 6hy - hcf = (6a7/ - 4i'"- ac) (a'+ -ihx)

.

3226 Class 11.-%;.

<<^ (;>)+.# 0^) = x(/>)-

EuLE.

—

Biff'erentiate and eliminate y if necessary. Inte-

grate and eliminate p by means of the original equation.

If the equation be first divided by ^{p), the form is

simphfied into

3227 //-.*<^(/>)+x(/>)-

Differentiate, and an equation is obtained of the form

»r^,+ P.r = Q, wliere P and Q are functions of p.

This may be solved by (3210), and j) afterwards eliminated.
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3228 Otherwise, a differential equation may be formed
between y and jj>, instead of between (c and |7.

3229 Or, more generally, a differential equation may be
formed between x or y and t, any proposed function of ^, after
which t must be eliminated to obtain the complete primitive.

3230 Glairaufs equation, which belongs to this class, is of

the form i/ =pc€+f{p).

Rule.—Differentiate, and two equations are obtained—
(1) Rr = 0, and .-. p = e; (2) s^+f(p) = 0.

Eliminate -p from the original equation hy means of (I), and
again hy means o/(2). The first elimination gives y = cx-f-f (c),

the complete primitive. The second gives a singular solution.

Proof.—For, if Rule I. (3169) be applied to the primitive y = ex +f (c),

we have x+f{c) = 0; and to eliminate c between these equations is the
elimination directed above, c being merely written for p in the two equations.

3231 Ex.1. y=px+ x^/T+f.
This is of the form ?/ = i>'(p (p), and therefore falls under (3227). Differ-

entiating, we obtain xdp + dx\^l+p^-\
'''^'^ ^

^
= 0,

\/(1+F)
since dy ^=^ pO.x; thus

(70^) + !^?)'''"+^"='''

in which the variables are separated.

Integrating by (1928), and eliminating p^ we find for the complete
primitive x^+y'^ = Cx.

3232 Ex. 2. y =px+V¥^'p\
This is Clairant's form (3230). DiflTerentiating, we have

^ I.. ^ 1 = 0.
dx L \/{lr — d-p-)

The complete primitive is y = cx+ \/(h^— ctV)
;

and the elimination of p by the other equation gives for the singular solution
a^y'— b'x" = a-F', an hyperbola and the envelope of the lines obtained by
varying c in the complete primitive, which is the equation of a tangent.

3233 Ex. 3.—To find a curve having the tangent intercepted between
the coordinate axes of constant length.
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The differential equation which expresses this property is

= «./• 4-2/=i-+-7= (!)•

Differentiating crives -/- j ;»; H 7 [ =0 (2).
^ " dx L (l+/)t3

Eliminating p between (1) and (2) gives,

1st, the primitive ij = cx-\— (3);
V 1 + c

2nd, the singular solution x^ + y^ = a? (4)

.

(3) is the equation of a straight line
; (4) is the envelope of the lines

obtained by varying the parameter c in equation (3).

3234 Class III.

—

Homogeneous in x and j.

Type a^^<l>(^^,p^=.Q.

Rule.—Put j = vx, and divide by x". Solve for p, and

eliminate p by differentiating y = vx ; or solve for v, and

eliminate v by putting y = ^; and in either case separate the

variables.

3235 Ex. y=px +xyi+p\
Substitute y = vx, and therefore p = v+ xv^. This gives u = p + -/_! +i^*.

Eliminate p between the last two equations, and then separate the variables.

,
, . (IX 2vdv _ r.

The result is h T~r~^^ — '^'

X 1 + v

from which a; C^'H^) = (7 or a;- + r = Cc

The same equation is solved in (3131) in another way.

SOLUTION BY DIFFERENTIATION.

3236 To solve an equation of the form

Rule.—Equate the functions (p and 1// respectively to arbi-

trary constants a andh. Differentiate each equation, and

elimindte the CDiislanfs. If the results aqrce, there is a common
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primitive (8166), which may he found by eliminating j^ hetiueen

the equations ^ = a, ^ = b, and siibser[iiently eliminating one

of the constants hy means of the relation F (a, b) = 0.

Ex. ^-yy.+f{f-fyl) = ^'

Here the two equations x—yjj^. = a, f (y^—y^yl;) = ^>

on applying the test, are found to have a common primitive. Therefore,

eHminating y^, we obtain

Also, by the given equation, a+ h = 0.

Hence the solution is f {y^— {x + hf} = h.

HIGHER ORDER LINEAR EQUATIONS.

3237 Type g+p/J3 + ...+P„..,,.-^+/',,; = Q,

where Pi ... P„ and Q are either functions of x or constants.

Lemma.—If y^, ?/2, ... y,, be n different values of y in terms

of X, which satisfy (3237), when Q = 0, the solution in that

case ^\-ill be t/ = C^i/,+ C.2ij.,-{- . . .+ C„?/,,.

Pkoof.—Substitute y^, y^, ... ?/„ in turn in the given equation. Multiply

the resulting equations by arbitrary constants, G^, C^, ... C« respectively;

add, and equate coefficients of F^, P^, ... Pn ""-ith those in the original

equation.

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS.

3238 ;A.v+«i?/(«-i):f+...+«(«-i)«/..+««3/= Q (i)-

3239 Casel.—mien Q = 0.

The roots of the auxiliary equation

m*^+aim"-i+...+«.-im+«. = (2)

being ruj, hlj, ... m,„ the complete primitive of the differential

equation will be

3240 p = Cie-^-^-+C,e--+...+ C\e-«-^- (3).

If the auxiliary equation (2) has a pair of imaginary roots
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(a^ih), tliere will be in tlie value of y the coiTespondiug

terms

3241 Ae"'' cos kv-\-B(f'' s'mkv (4)

.

If any real root m' of equation (2) is repeated /• times, the

corresponding part of the value of // will be

3242 {A,+A,.v+A,a;'-^...+A,_,.v^-') e^>'\

And if a pair of imaginary roots occurs r times, substitute

for A and B in (3241) similar polynomials of the r— V^^ degree
in X.

Pkoof.— (i.) Substituting y = Ce'"^' iu (1) as a particular solution, and
dividing by Ge'"^, the auxiliary equation is produced, the roots of whicli

furnish n particular solutions, y = Cje"'"^', y = C'oe'"^^, &c., and therefore, by
the preceding lemma, the general solution will be equation (2).

(ii.) The imaginary roots a ± ib give rise to the terms Ce"^''''^-'''+ C'e"^''''^,

which, by the Exp. values (766), reduce to

(G+C) e"^ cos hx+ i{G- C) e"^ sin fe.c.

(iii.) If there are two equal roots m<^ = m^, put at first ???., = 1n^-\-^l. The
two terms (7ie"''^+ ae""'""'-^- become e'"-^' (C^i + G/'-O- Expand e*^ by (150),
and put G^-\-G.j = A, CJi = B in the limit when k = 0, G-^ = cc, G^ = —oo.
By repeating this process, in the case of r equal roots, we arrive at the form

(A,+ A,x + A,x' + ...+A,.,x'-')e"'^^;

and similarly in the case of repeated pairs of imaginary roots.

3243 Case Il.—When Q in (3238) is a function of x.

First method.—By variation of parameters.

Putting Q = 0, as in Case I., let the complete primitive be

y = Aa-]-B(3 -h Cy+ &c. to n terms (6),

a, j3, y being functions of x of the form c"'-\ The values of

the parameters A, B, G, .,., when Q has its proper value
assigned, are determined by the ;/- equations

3244 A^a +B,.(3 +to n terms = 0,

yl,«, +J9",i3,,. 4- „ -0,

^%v +y|,i3,,, + „ = 0,

A^, B,., &c. being found from these equations, their integrals

must be substituted in (6) to form the complete primitive.
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Proof.—Differentiate (6) on the hypothesis that A, B, Gy&a. are func-

tions of X ; thus

;y,= (^a,+ i?/3,+ ...) + (^.a + B,/3+...).

Now, in addition to equation (1), n— 1 relations may be assumed between

the n arbitrary parameters. Equate then the last term in brackets to zero,

and differentiate y, in all, n— 1 times, equating to zero the second part of

each differentiation ; thus we obtain

y^ =Aa^ +BI3^ +&C. and Aj,a +B^l3 -j-&c. = 0,

y,^ =Aa,^ +B(3,^ +&C. and A^a^ +B,ft^ +&c. = 0,

y{n-l)x= ^«(«-ljx+ -BA«-I)x+&C. and ^x"(»-2)x+ -5x/3(H-2)a;+&C. = 0.

The n quantities A^., B^., &c. are now determined by the n— 1 equations on

the right and equation (1). For, differentiating the value of ^(,j.i)xj we have

y,^ = {Aa„^+ B(3„^+ &C.} + {^^a(,_i)x+ 5^/3(„_i)..+ &c.},

and if these values of ^^, y>x, ... y,ix be substituted in (1), it reduces to

^x«(»-l)x+ -B,.A»-lia-+&C. = Q,

for the other part vanishes by the hypothetical equation

ynx+(hyin-i)x+---+ci>iy = o,

since the values of y^, ... y(H-i)x, and the first part of y^x: are the true values

in this equation.

3245 Case 11.—Second ifef/iot?.—Differentiate and eliminate

Q. The resulting equation can be solved as in Case I. Being

of a higher order, there will be additional constants which

may be ehminated by substituting the result in the given

equation.

3246 Ex.—Given y,,-7y.+ V2y =:^ x (1).

1st Method.—Pxxiimg x = 0, the auxiliary equation is m^—7m + 12 = 0;

therefore m = 3 and 4. Hence the complete primitive o{tju—7y^+12y =

is y = Ae'''+Be"' (2).

The corrected values of A and B for the primitive of equation (1) are found

from

A,e"+ 5,6*^=0") .-. A,^-xe-'^- and A= ^i^g-^^+a.

SA,e''+4iB,e'' = xy
B,= xe-'^ and B=-^^ e-'^'+h.

Substituting these values of^ and B in (2), we find for its complete primi-

tive y = ae\+le + -J^-

3247 2nd Method. y,,-7y.+ 12y = x (1).

S Q
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Differentiating to eliminate the term on the I'iglit, we get

The aux. equation is m'^—7m^+ l2m^ = ; therefore m = 4, 3, 0, 0,

Therefore y = Ae'^' + Be'^+Cx+D (2) ;

7/, = 4>Ae"'+ dBe''+G', y,. = 16^e^+ 95e^
1 7

Substitute these values in (1) ; thus C = —; D = y—r

;

therefore, substituting in (2), y = Ae'^+ Be^+ ^ + ^44^^ before.

3248 When a particular integral of the linear equation

(3238) is known in the form ij =f{x), the complete primitive

may be obtained by adding to y that value which it would

take if Q were zero.

7
Thus, in Ex. (3247), 2/

=
?i^ + TT7 ^^ a particular integral of (1) ;

and
iZ 144;

the complementary part Ae^'^+ Be^'' is the value of y when the dexter is zero.

3249 The order of the linear equation (3238) may always

be depressed by unity if a particular integral of the same

equation, when Q = 0, be known.

Thus, if y-i.+Piy-2.+P2y..+P3y= Q (!)>

and ii y = z be a particular solution when Q = ; let y = vz be the solution

of (1). Therefore, substituting in (1),

(z^,+ P^z,,+ P,z, + P,z)v+ &c. = Q,

the unwritten terms containing i\, v^x, and v^,-.

The coefficient of v vanishes, by hypothesis ; therefore, if we put v^ = u,

we have an equation of the second order for determining w. it being found,

V = yudx-\-G.

3250 The linear equation

where A,B^ ... L are constants, and Q is a function of x, is

solved by substituting a-\-hx = e\ changing the variable by
formula (1770), and in the complete primitive putting

t = log {a+ hv) .

Otherwise, reduce to the form in (3446) by putting

(lA-bd- = X^, and solve as in that article.
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HIGHEE ORDER NON-LINEAR EQUATIONS.

3251 Ty,e K-....g.^.-g)-0-

SPECIAL FORMS.

3252 F{.v, ?/,,., ?/(,.+a).^. ... ?/„,.) = 0.

When tlie dependent variable y is absent, and 7/,.,. is the

derivative of lowest order present, the equation may be de-

pressed to the order n—r by putting 7/,,,. = z. If the equation

in z can be solved, the complete primitive will then be

y = f
2+

f
(2149).

3253 F{i/, ?/,,, 7/(,^i), ... I/,,) = 0.

If X be absent instead of y, change the independent vari-

able from Q3 to y, and proceed as before.

Otherwise, change the independent variable to y, and

make j^ (= y^) the dependent variable.

For example, let the equation be of the form

3254 F(y, 7/„ y,^, 2/3.) = (1).

(i.) This may be changed into the form

F(y, av, x,„ x,,) = by (1761, '63, and '66)

and the order may then be depressed to the 2nd by (3252). The solution

will thus give x in terms of y.

3255 (ii.) Otherwise, equation (1) may be changed at once into one of

the form F (y, p, py, p,^) = 0, by (1764 and '61),

the order being here depressed from the 3rd to the 2nd. If the solution of

this equation be ^ = (?/, c^, c.^), then, since dy —pdx, we get, for the com-

plete primitive of (1), x=\ ^-^ +C3.
J {y, Ci, ^2)

3256 fc=i^W.
Integrate n times successively, thus

jnx
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3257 ?hv=F{yy
Multiply by 2ij^^ and integrate, tlius

KchJ J ^-^^
^^^'

^^{2 F{y)dy+ c,]

3258 ?/«x. = i^{!/(«-i)x},

an equation between two successive derivatives.

Put y(n-i)x = ^j tben z^. = F{z), from which

Hm+_^ «•

If, after integrating, this equation can be solved for z so

that z = (l>{x, c), we have V(«_i)a- = ^ (a?, ^)5 which falls under

(3256).

3259 But if z cannot be expressed in terms of x^ proceed as

follows :

—

_ ^ dz r dz
2/(n-3).-j^ j^^;

T^. „ f <i;2 f (^2; f dz
Fmally, j, =

J ^^ j
_...

J

_.;

the number of integrations and arbitrary constants introduced

being n—1.

3260 ?/«. = ^{y(«-2)4-

Put ^(«_2)^ = ^; then 2^2^. = i^(/), which is (3257), the

solution giving x in terms of z and two constants. If z can be

found from this in terms of x and the two constants, we get

Z or 2/(„_2).^. ==<^(^',^l, ^2)5

which may be solved by (3256).

3261 But if z cannot be expressed in terms of x, proceed as

in (3259).

DEPRESSION OF ORDER BY UNITY.

3262 When F {.V, ;/, 7/,, ;/,,, . .
.
) =

is rendered homogeneous by considering

a\ y, ?/,., ?/2,., ?/3,,., &c.
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to be of the respective dimensions 1, 1, 0, —1, —2, &c. ; put

,v = e\ y = ze\ &c.

The transformed equation will contain the same power of e in

every term, and will reduce to the form

F{z,ze, z.,,, ...) = 0,

the order of which is depressed by unity by putting Zq = u.

3263 When the original equation is of the 2nd order, the

transformed equation in u and z may be obtained at once by
changing a\ y, ?/.,., y.,^ into 1, z, if+^j u-\-uUg, respectively.

The solution is then completed, as in example (3264).

Peoof.—We have a? = e*
; y =. ze^

;

y^= e,+ z; y^^^ e"" (zo, + z,)
; ys^ = e"-" (^39— «») ; and so en.

The dimensions of x, ij, y^, &c. with respect to e^ are 1, 1, 0, —1, —2, &c.

Therefore the same power of e' will occur in every term of the liomogeneous

equation.

3264 Ex.: x'y,,= {y-xy,)\

Making the above substitutions for x, y, y^, and 1/2^., the equation becomes

^20 + ^9 = — ^e-

Put Zg =: ii; thus

71^+ u = — «« = —uuz, therefore tt^+ 1 = — «r, ^
= —dz,

therefore t?ar^u=a—z (1935), therefore z^ = « = tan (a— 2),

therefore dd = cot (a— z) dz, therefore = — log & sin (a — 2) (1941).

But 6 = log X and z = -^,
X

therefore bx = cosec la

—

—), or bx = sec f c+ —
|

,

by altering the arbitrary constant.

3265 When F {.V, y, ?/,, ij,,, . .
.
) =

is made homogeneous by considering cV, y, y^, y^^i, &c. to be of

the respective dimensions 1, ?i, n— 1, w— 2, &c. ; put

x = e^, 2/ = ze'"'^

and depress the order by putting Zq = u, as in (3262).

3266 When the original equation is of the 2nd order, the
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final equation between u and z may be obtained at once by
changing

.r, ;/,?/.,, ?/2.r iiito 1, z, u+nz, m«^+(2n— 1) u+n{n— l)zy

respectively.

3267 Ex.: y2,y. = ^y (l)-

With the view of applying (3265), the assumed dimensions of each

member of this equation, being equated, give

n—2 +n—l = l-\-n, therefore n = 4.

Thus x=:e'; y = ze''', y^ = e'' {z,+ 4^z); y,,= e'' {z,, + '?z,+ l'lz).

Substituting in (1), e disappears ; and by putting z, = u, z., = uu„ the equa-

tion is reduced to

0tH4«z)cZtt+(7ttH40H2 + 482--2) dz = 0,

which is linear and of the 1st order. This equation is also obtained at once

by the rule in (3266).

3268 When F(cl^ ?y, ?/.,, y,:,, ...) =
• 1 j_

\n(lx

is homogeneous with respect to ?/, y,^, y.^,-,, (tec, put y — e' ,

and remove e as before by division. The equation between u

and X will have its order less by unity than the order of F.

3269 Ex.: 2/2.+P2/x+Q2/ = (1),

P and Q being functions of x.

Here ?/ = eJ ; y^ = uy; y.^^ — {u^+ ti ) y.

Substituting, the equation becomes ?t^+ «^ +P«+Q = 0, an equation of the

1st order. If the solution gives u = (p(x,c), then | ^ (re, c) J.« = log ?/ is

the complete primitive of (1).

EXACT DIFFERENTIAL EQUATIONS.

3270 Let dU=<l> {x, y, y„ y,,, . . . ?/,,,) dx =
be an exact differential equation of the n*'' order. The highest

derivative involved will be of the 1st degree.

3271 Rule for the Solution {Sarrus).—Integrate the term

Inculcing y,,^ nnt]b resjyect to J(n-i)x only, and call the result Ui.

Find dUi, considering both x and y as variables. dU— dUi
ivill be an exact differential of the n— I*'' order.
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Integrate this with respect to J{n-2)x only, calling the resiilt

U2, a?i(i so on.

The first integral of the proposed equation ivill he

3272 Ex. : Let dU = {y' + (2x7j-l) yl+ xy2.+ ^y3x} d.v = 0.

Here U^ = x%^, dU^= (2xyi^+ x'ys^ dx
;

dU-dU^ = {7/+ (2xy— l) y^-xyo^) dx = 0;

.'. TJ.i = —xy„ dU2 = —{y;^+xy2x)dx, dU—dUi—dU2—(y^+ 2xyy^T.)dx',

tlierefore JJs = xy^, and JJ= xSjix— xy^+ xr/ = C
is the first integral.

3273 Denoting equation (3270) by clJJ — Vdx, the series of

steps in Rule (3171) involve and amount to the single condi-

tion that the equation

N-P,-{-Q,,-R,,-\-&G.= 0,

with the notation in (3028), shall be identically true. This

then is the condition that V shall be an exact 1st differential.

3274 Similarly, the condition that V shall be an exact 2nd
differential is

P-2Q,+3i?,,-483,+&c. = 0.

3275 The condition that V shall be an exact 3rd differential

is g-3i?,+^ s^-^-j^ T3.+&C. = 0,

and so on. [Euler, Comm. Petrop., Vol. viii.

MISCELLANEOUS METHODS.

3276 ih.-\-Pi/.+ Qtjl=0 (1),

where P and Q are functions of x only.

The solution is y = ^e'^'''-' {2^Qe~'^'^''\b^-hIx.

Proof. — Put e^
"' = z, and multiply (1) by 2; then, since z^ = Pz,

'^y:r+Qzijl^O. Put zy, = u-\ .-.im^-Qz--, .-. 71 = V(2 ^ Qz-dx), &c.

3277 z/2.+ Qz/i+^ = (1),

where Q and R are functions of y only.
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The solution is x = lJ'"(2\Be'^'""dy)-hl:,.

Proof.—Put e^
" = 2, and multiply (1) by z.

3278 ih^'+Pi/..-+Ql/'^ = ^>

where P, Q involve x only.

Put y^.,
= z, and the form (3211) is arrived at.

3279 y-2.+P!/l-{-Qi/: = 0-

This reduces to the last case by changing the variable from x

to 7/ by (1763).

3280 For a few cases in which the equation

y.+Py'+Qy+B =
can be integrated, see De Morgan's " Differential and Integral

Calculus," p. 690.

3281 2/2. = ci.v+hij.

Put ax+ hy = t (1762-3). Eesult U, = bt. Solve by (3239)

or (3257).

3282 (1 -^^') ih-^^'y.+q'y = 0.

Put sin~^rtf = t, and obtain y-zt+ c/y = 0.

Solution, y = A cos {q sin~^ x) +B sin (q sin~^ x).

3283 (l+ «ct-'0 yz,-\-axy,±Ti) = 0.

Put
I

,'' '*'—^= t, and obtain y.H±fv = ^ ^^ above.
i^{l+ax')

3284 LlouviUo's equation, yi.v-\-f{x)y^-\-F(y)yl = {).

Suppress the last term. Obtain a first integral by (3209), and

vary the parameter. The complete primitive is

3285 Jacohrs thcuron.—If one of the first integrals of the

equation ?/.., =/0r, y) is ?/., = <^ (.r, y, c) (i., ii.).
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tlie complete primitive will be

Proof.—Differentiating (ii.), we obtain <p:,-\-<p<p,j =/(«, !/), and differen-

tiating this for c, f:,c+ (t>c<py+ (p<p,,c = 0. But, by (3i87), this is the condition

for ensuring that (p,d}j— (i>,<pdx = shall be an exact differential ; therefore fc

is an integrating factor for equation (ii.), l/z—f (j^, V, c) = ^^

Equations involving the arc s, having given

3286 ds' = (M+ chf or s^ = \/l-{-yl.

3287 s = cLv-\-btj.

Here \/l -\-yl = a-^-hy^,.. Find y^^ from the quadratic equation.

3288 ci'2, = a.

Change from s to <« by (1763) ; /. — s'^s.^^.= a, .'. s~^ = 2ax-\-Ci

or 1+7/2 = —i

—

. ^. ^r /( 1 l)clx+i
^" 2ax-\-c' ^ ]\\2ax-\-c )

APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS
BY TAYLOR'S THEOREM.

3289 The following example will illustrate the method :

—

Given y,, = xy,-]ry, .'.
y-s.,
= {x'-]-2) y^,+xy.

GeneraUj, let y,,. = A,,y^,+Bjj ; //(„+i)., = A,^,y^,-\rB,,+,y.

But, by differentiation,

y(H+i).«= {A,,x-{-A',,+B,,) y^+ {A,,+B:,) y,

.'
. ^,,+1 = A,,x-\- yi;+ B,, and ^„+i = A,,+ B'^.

But A,= x, B,= l, .'. A,= x'+ 2, B, = x;

A, = x'-{-bx, B, = x'+ S, &c.

Now, when x= a, let y = b and y^= ir, then, by Taylor's

theorem (1500),

y = a-}-p {x-a) + (A,2Ji-BJj) (l^ + iA,p+B,h)^-^^^

+ &C.,

which converges when x—a is small. [De Morgan, p. 692.

3 R
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SINGULAR SOLUTIONS OF HIGHER ORDER
EQUATIONS.

DERIVATION FROM THE COMPLETE PRIMITIVE.

3301 Let v/,,, = <i>{'>',y,y.;y2. • ^(^-dJ 0)

be the differential equation, and let its complete primitive be

^7=/(»''«j^'^ ••• ^) (^)'

containing n arbitrary constants.

3302 Rule.—Tu find the general singular suliitloii of (1),

eliminate abc ... s between the equations

y = U jx = fx> y-ix = fax • • • J y(n-i) - = f

til tax Ia2x ••• t;i(n-l)xand

tlj Ibx tb2x ••• lb (11-1(11-1) X =

(n-l)x VV

(4).

Is Isx ls2x ••• Is(n-l):

The result is a differential equation of the n— V^' order, and

the integral of it, containing n— 1 arhitrarij constants, is the

sing^Uar solution.

Proof.—Differentiate (2), cousidering the parameters a, b ... s variable,

thus y^ = fx+fa 't.r + • •• +/,Sx. Therefore, as in (3171),

2/2X = />. if fax a. +fi,x b.v +...J\xS. = 0, as well

;

and so on up to y„^ = f„x- Eliminating a^, h^, ... 6\ between the n equations

on the right, the detei-minaut equation (4) is produced with the rows and

columns interchanged.

3303 Ex. : y-^y^+ ^^y^^-yl- (y^-Xy,^' =

The complete primitive is y = -j- +h,c + c(r + h'^

From which y^.=:ax + h

and the determinant equation is

pn2a, x\ ^
X +2Z/, 1 I

or + 2Z^.v

.(2).

.(3),

(4).



SINGULAR SOLUTIONS OF HIGEEB OUDBB EQUATIONS. 491

Eliminating a and b from (2), (3), and (4), we get the differential equation

M!, + (2x+f)cU ^ ^ , ^

the integral of -whicli, and the singular solution of (1), is

^/(iey + 4^x'+ x') = a;v/(l + rc*)+log{^+ y(l + x')} + G.

[Boole, Sup., p. 49.

3304 Either of the two * first integrals' (3064) of a second
order differential equation leads to the same singular solution

of that equation.

3305 The complete primitive of a singular first integral of

a differential equation of the second order is itself a singular

solution of that equation ; but a singular solution of a singular

first integral is not generally a solution of the original equa-

tion.

Thus the singular first integral (5) of equation (1) in the

last example has the singular solution 16y-\-4<x^-{-x'^= 0i which
is not a solution of equation (1).

DERIVATION OF THE SINGULAR SOLUTION FROM THE
DIFFERENTIAL EQUATION.

3306 Rule.—Assuming the same form (3173), a singular

solution of the first order of a differential ecptation of the n^^

order will make LYnx;
infinite ; a singular solution of the

d (y(n-l)x)

second order ivill mahe ^ ,
^-^"^^

, , ^ ,
^•^"'^-^

, hoth infinite

;

d(y,,_,),)' d(y(„.,),)
-^

and so on. [Boole, Sup., p. 51.

3307 Ex.—Taking the differential equation (3303) again,

y-^y^+i^%z-yl- (y^-xy.^y = (1),

and differentiating for y^ and ?/2j, only,

{^x'+ 2x (y.-xy.J-2y.J d(y,;)-{x+ 2(y^-xy^)} d(y,) = 0.

The condition ,; / = ^ requires

^x'+ 2x {y..-xy,,)-2y,, = 0.

Substituting the value of yo^^ obtained from this in equation (1), and rejecting

the factor (;^- + l), the same singular integral as before is produced (3303,
equation 5).
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EQUATIONS WITH MORE THAN TWO VARIABLES.

3320 Pd.v+Qdii-^Rdz = {S (1).

P, Q, B being here functions of x, y, 2, the condition that this

equation may be an exact differential of a single complete

primitive is

3321 P (Q-R.)+ Q{R-P^R (P-Q.) = 0.

Proof.—Let f^ be an integrating factor of Pdx + Qcly + Bdz = 0. Then
—fiPcIx = ijQdi/+ fiIlc1z, and, by (3187), for an exact differential, we must
have (i^Q)~ = (At-R)v Write this symmetrically for P, Q, and B, differentiate

out, and add the three equations after multiplying them respectively by P,

Q, and B.

To find the single complete primitive of equation (1),

3322 Rule.—Consider one of the variables z constant, and
therefore dz = 0. Integrate, and add (j> (z) for the constant of
integration. Then differentiate for x, y, and z, and compare

with the given equation (1). If a primitive exists, ^(z) will be

determined in terms of z only by means ofpreceding equations.

The complete primitive so obtained is the equation of a

system of surfaces, all of the same species, varying in position

according to the value assigned to the arbitrary constant.

3323 Ex.: (x-Sy-z)dx + (2y-dx)dy+ (z-x)dz = (1).

Condition (3321) is satisfied ; therefore, putting dz = 0, we have

(x-Sy-z) dx + (2 //- 3.1') dy = 0.

Applying (3187), M,, = — 3 = iV„ and integration gives

^x"'- Sxy—zx + y- +
(l>

(z) = 0.

Difierentiating now for .t, y, and z,

(x-Sy- z) dx+(2y- Sx) dy + {f (,v) - x } dz = 0.

Equating coefficients with (1), f'(z)=z, therefore (f>(z) = ^z-+C.
Hence the single complete primitive is

x'+ 2y^+ z-— 6xy— 2zx = C,

the equation of a system of surfaces obtained by varying the constant G.

3324 When the equation Pdx-\-Qdy-\-Rdz = is homo-
geneous, put x = 2iz, y = vz. The result, when the coefficient

of dz vanishes, is of the form

3325 Mdu-\-Ndv = i),
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solvable by (3184). Otherwise it is of the form

3336 ~ = Mdu-{-Ndv,
z

and the right will be an exact differential if a complete primi-

tive exists.

3327 Ex.: y%ilx^-zxdij-^',mjih=^^ (1).

Condition (3321) is satisfied. Patting

X = %{jZ, y = vz, dx = tidz-\--4 du, dy = vdz + z dv,

(1) becomes ^Zf + f^ + f = 0,
z oil 6v

and the solution is log {zu'v^) = G or xyz = G.

When the equation

Pdxi-Qdy+ B(h = (1)

has no single primitive

:

3328 Rule.—Asswne (p{x, y,z) = (2)

and differentiate ; thus

(^,dxH-<^ydy+ .^,dz==:0 (3).

The form of <p being given, eliminate z and dz from (1) hy

(2) and (3). The result, being of the form

Mdx+Ndy = 0,

can be integrated, and the solution taken lolth (2) co7istitutes a

solution of equation (1), and represents a system of lines {by

varying the constant of integration) drawn on the surface

^ (x, y, z) = 0.

3329 Ex.: {l + 2m)xdx+(l-x)ydy-\-zdz = 0.

Tiie condition (3321) not being satisfied, assume «- + t/^+ z^ = r^ as the

function <p, therefore xdx + ydy + zdz = 0; and by eliminating z and dz,

^mdx— ydy = 0, the integration of which gives y^— 4imx =. G, a cylindrical

surface intersecting the spherical surface in a system of curves (by varying

G), whose projections on the plane of xy are parabolas.

The condition that

3330 Xd.v-{- Ydi/+Zdz+rdt = 0,

where X, Y, Z, T are functions of x^ y, z, t, may be an exact
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differential, may be sliewn, in a manner similar to tliat of (3321)

,

to be expressed by any three of the equations

3331 Y{Z,-T,)+Z{T,-Y,) + T{Y,-Z^)=0,

T {X,- r,) +x(r, - r, ) + y{t,, -x,) = o,

X(Y,-Z,) + Y{Z,,,-X,)+Z{X^-Y,.) = 0,

the fourth being always deducible from the other equations.

If this condition is fulfilled, the solution of equation (3330)

is analogous to (3322).

Integrate as if z and t were constant, and therefore dz and
(It zero, adding for the constant of integration ^ {z, t).

Differentiate next for all the variables, and determine (jt hy
comparison with the original equation.

3332 If a single primitive does not exist, the solution must
be expressed by simultaneous equations in a manner similar

to that of (3328).

SIMULTANEOUS EQUATIONS WITH ONE
INDEPENDENT YARIABLE.

GENERAL THEORY.

3340 Let the first of n equations between n+ 1 variables be

Pdd+P.du+P.ih-]- ...+P,,dw = (1),

where P, Pi ... P« may bo functions of all the variables.

Let X be the independent variable. The solution depends

upon a single differential equation of the n^^^ order between

two variables.

Solving the n equations for the ratios dv : dy : dz : &c., let

dx d.ii dz (/?/'

. dy _Q^ dz_ _ Q2. ^ _ Oil
" dx Q ' dx ~ Q' dx Q'

Differentiate the first of these equations ii — \ times, substi-

tutino: from the others the values of r;,. ... ii\,, and the result
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is u equatioDS in ,f/^,, t/^.i- •••
1J,lv>

and the primitive variables

33, ?/, 2 ... W.

Eliminate all the variables but x and y, and let the differ-

ential equation obtained be

F{x,y,y_,..,y,,) == 0.

Find the n first integrals of this, each of the form

F{x, y, ?/,. ... y(n-i)x) = G, and substitute in them the values of

2/.1-) ?/2.rj
•••

i/».i-5
ill terms of x, y, z ... w, found by solving the n

equations last mentioned. Thus a system of n primitives

is obtained, each of the form F{x,, y,z ... lu) = G.

3341 The same in the case of three variables.

Here n = 2. Let the given equations be

P.,(Lv-\-Q,di/+R,dz = 0.

3342 Therefore
q^^/^^q^^^

=
B,pf-P.,B,

= P^-F^^^
From these let ?/^, = (|) {x, y, z), z,, = ^p {x, y,c).

Therefore t/o., = «^.,+ <l>, y,,+ 1>z -.v

Substitute the value of ^.,, and eliminate - by means of

y^, = <p (x, y, z). An equation of the 2nd order in x, _?/, //.„ //o,,.

is the result. Let the complete primitive of this be

y = X ('«j (h ^)- Then we also have (p (x, y, ^) = (/.,x
{>''> «? ^^)-

These two equations form the complete solution.

FIRST ORDER LINEAR SIMULTANEOUS EQUATIONS WITH
CONSTANT COEFFICIENTS.

3343 In equations of this class, the coefficients of the

dependent variables are constants, but any function of the

independent variable may exist in a separate term.

Such equations may be solved by the method of (o34U),

but more practically by indeterminate multipliers.

3344 Ex. (1): I +7.-2/ = 0, JL+2x+5y = 0.

Multiply the second equation by m and add. The result may be written

;^>a.) +(„„ + ,) (..+ |1=-1,|=0 (.).
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5*y;-l
To mako the whole expression an exact diftercntial, put :^-—-= = ^»- This

(2);gives ^, ^n'==J^

(1) now becomes "^ (^ + ^»?/) + (2m + 7)ix + my) = 0,

and the solution is x +my = ce-
-'"^'''^ and x + vi'y = c'e--'"'*"'-.

Solving these equations, and substituting the values (2),

iy =zce-^'''^^-c'e'^'''^^ = e-'''\{c-c')cost-i(c + c) sin^j,

^. = .--|(^ + ^^^)cos^+f^-^^)sinfl,
1 \ 2 '

" 2 / V 2

or 7/ rre-^'CC^cosi-C^'sinf), •'« = le-'mC+C) cost + (0-0') sin t}.

3345 Ex. 2 : a-, + 5.7; + 2/ = e*, ^y ^ + Sy- a; = e".

Multiply the second equation by vi, and add to the first

cl(x±my)_^^._^^^^ (
_^_^

l±3m | ^ ^.^^^^^.._

Put
"*" = iji, thus determining two values of vi, and put x-\-m.y =z; thus
5—m

2^+ (5_ „i) 2 = e' + «ie-^ This is of the form (3210)

.

]vfoTE.—The equations of this example, written in the symmetrical form

of (3342), would be
dx _ dy _

e^— hx— y e-*+ x— ^y
dt.

3346 General solution hy indeterminate rnultijjliers.

dx __ dy_ _ dz
Let

be given with

^2 = a.,x-^h.y-^c.^z^d.2.

suc'h that

(1).

Assume a third variable t and indeterminate multipliers J, m, )i

dt _ Idx + mdy+ndz _ Jdx-\-m dy + ndz

T ""
ZPi + mP.^+ rtPs ~\{lv-\- my + nz + r)

The last fraction is an exact dift'ereiitial, and, ia determine \, /, )/?, «, r,

wc have
r/, / + (/.,(;;+((..( /t = A/,

: (/j — A a. a^

b^ I + b.^ III. + h-^ n = Xin,

Ci I+ c'a m+ Cj Jt = X»,

dil+ ditn+ d^n = A?-,

^1 b,-K b.
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The detei'minant is the eliminant of the first three equations in I, m, n.

The roots of this cubic in \ furnish three sets of values of I, in, n, r, which,

being substituted in the integral of (1), give rise to three equations involving

three arbitrary constants ; thus,

c^t = {l^x + m^y -f n^z+ r^) ^s.

Eliminating t, we find for the solution two equations involving two

arbitrary constants.

A similar solution may be obtained when there are more than three

variables.

3347 To solve^ =^ =^ = &e. ...(1),

where P == ax -\- by+ c, P^ = a^c+ &iy+ Ci , &c

.

Assume ji = ai,-\-h] + cZ, ^j = aj^+ tj?? + Ci<^, &c.,

and take — = = — (2),
Pi P-2 P

the solution of which is known by (3346). Substitute i, = xi^, n = y^, and

these equations become
xd^+ ^dx ^ ydi:+ (dy ^ cU_

Pi P2 P'

and therefore '— = — = —

.

p,-xjp p.-yp ]J

Dividing numerators and denominators by C, the first equation in (1) is pro-

duced, and therefore its solution is obtained by changing ^, rj in the solution

of (2) into x^ and y^.

Certain simultaneous equations in which the coefficients

are not constants may be solved by the method of multiphers.

Thus,

3348 Ex. (1): Xt-^P{ax + ly) = Q, y^+P (ax+ h'y) = E,

P, Q, B being functions of t. Multiply the second equation by in, add, and

determine m as in (3344), The solution is obtained from

^+my = e-'""""'^''|a+f e^'^""''''-(^''(Q+ .;iE) dt\, (3210)

with two values of m.

334:9 Ex.(2): x,+ ^{x-y) = 1, y,+ ]
(x+ 5y) = t

are equations solvable in a similar mannei*, and the results ai-e

[Boole, p. 307.

3 s
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REDUCTION OF ORDER IN SIMULTANEOUS EQUATIONS.

3350 TiiEOKEM.

—

n simultaneous equations of any orders
between n dependent variables and 1 independent variable are
reducible to a system of equations of the first order by sub-
stituting a new variable for every derivative except the
highest.

3351 The number of equations and dependent variables in

the transformed system will be equal to the sum of the indices

of order of the highest derivatives. This will, therefore, in

general be the number of constants introduced in integrating

those equations. If, after integrating, all the new variables

be eliminated, there will remain n equations in the original

variables and the above-named constants. These equations
form the complete solution.

In practice, such reduction is unnecessary. The following
are methods frequently adopted. :

—

3352 Rule I.

—

Differentiate until by elimination of a vari-

able and its derivatives an equation of a higher order in one
dependent variable only is obtained.

3353 Rule II.

—

Employ indeterminate multipliers.

3354 Ex. (1): Xit = ax + by, y2t= a'x+ b'y.

By Rule I., differentiating twice for t and eliminating y and y.,t, we obtain

^'4i:~ (^+ &') *2!;+ {ah'— ah) x = 0,

which may be solved by (3239).

Otherwise by Rule II., exactly as in (3344), we find

am" + (a — h')m—h = 0,

and for the exact differential

(_x-\-iny).^t = (a + ma) (x-\-viy),

the solution of which, by (3239), is

X +my = Cye
^'^^

'

»'«'' *+ C^e "
^^^ ^ '"«'' *

in duplicate with the two values of m.

3355 Ex. (2): x.i-2ayt-\-hx=i0, y2t+ 2a.Vt+ hy = 0.

Diilerentiate, and eliminate y, y^, y^t ',
thus

Xu+ 2 (2a:- + h)x2t+b-x = 0,

and solve by (3239). Otherwise assume

;<;=:£ cos at + V sin at, y '= i) (^^s at— l sin at,

and the given equations reduce to

^,, = -{a' + h)l, ^„,= _(aH?')r;,

which are solved in (3257). [Boole, p. 311.
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3356 Ex. (3).—Let u = 0, V =z 0, iv = be three equations in x, y, z, t,

involving derivatives of t up to x^t, ijco ^u-

To obtain an equation between x and t. Differentiate each equation.

6+7 = 13 times, producing 3 + 13 X 3 = 42 equations involving derivatives

of t up to aJie;, 2/i9i, Zos,f Between these 42 equations eliminate ?/, ?/<, ... 3/19^,

2!, 2!^, ... 020^5 in all 41 quantities, and an equation of the 16th order in x and t

is the result. [De Morgan.

3357 If a number of equations involve the quantities x, X2t,

x.if, &c., iff, i/sf, y5t, &c., all in the first degree, these quantities

may be eliminated by assuming

X = L ^mpt, y = M cos,pt.

3358 If there be n linear homogeneous equations in n vari-

ables x,y,z, ... and their derivatives of the 2nd order only,

the equations may be solved by putting

cV = L sin j)t, y = Msiii^^, z = N smpt, &c.

3359 Ex. : Xot = ax+ hy, y.^ — gx +fy.
Putting X = L sin 2yt, y = Msinpt,

(a+p') L+hM=01 .1 a+p\ b I _ q
9L+(f+p')M = 0y --Ig, fi-f\

'

p and the ratios L : M are thus found.

Suppose L = —Ich and M= l-(p^-\-a),

then X = —Jcb sin pt, y = ]c(p^+ a) sinj^iJ,

and Jc and t are arbitrary constants.

PARTIAL DIFFERENTIAL EQUATIONS.

3380 An equation is termed a general primitive or a com-

plete primitive of a partial differential equation, according as

the latter is obtained from it by eliminating arbitrary functions

or arbitrary constants, as illustrated in (3150-7).

LINEAR FIRST ORDER P. D. EQUATIONS.

3381 To form the P. D. equation from the primitive

u-= <\> (?'), where u and v are functions of x, y, z.
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Rule.—Differentiate for x and j in turn^ and eliminate

^'(v). See (3054).

Otherwise.—Differentiate the equations u = a, v = b; thus

Uidx-hUydy+Ugdz = 0,

Vj^dx+Vydy+v^dz = 0.

Therefore -^ = -^ = ^, where P =
^|'^Jj^,

^x.

Tlien the P. D. equation loill he

Proof.—Since 2 is a function of x and y, z^dx+ Zydy = dz. But dx = hP,

dij = kQ, dz = kB, therefore IPz^+ lQzy = hB.

3382 Ex.—The general equation of a conical surface drawn through the

. , / 7 V . II— h ^ / z— c\
point (a, 0, c) IS '^ = (t> ,

x— a \x—al
the form of ^ being arbitrary.

Considering z as a function of two independent variables x and y, differ-

entiate for X and y in turn, and eliminate <p' as in (3154). The result is the

partial differential equation

{x—a) z^ + (y—b)Zj,-]-z—c = 0.

3383 To obtain the complete primitive; that is, to solve

the P. D. equation, Pzj.-\-Qzy = E,

P, Q, B being either functions of x, //, z or constants.

Rule.—Solve the equations

dx _ dy _ dz

"P ~ Q ~U'
Let the two integrals obtained he u = a, v = b

;

then u =z
<l>

(i^)

ivill he the comiilete jprimitive.

Propositions (3381) and (3383) extended to any number
of variables.

3384 To form the partial diiferential equation from the

primitive ^ («, i?, ... iv) = (1),

where ?6, v, ... w are n given functions of n independent vari-

ables a.', i/i ... z and one dependent t.
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KuLE.

—

Differentiate for all the variables thus,

<^,du+ (/),dv+ ... +<p,A^ = (2).

Therefore, since
(f)

is arbitrary, du,dv...dw must separately

vanish, giving rise to the n equations

du = u^dx+ Uy dy 4- . . . + Ut dt = 0,

dv = Vx dx+ Vy dy+ . . . + Vt dt = 0,

dw = Wjdx+ Wydy+ . . . + Wtdt = 0.

Solving these for the ratios, by (583), tve get

^_4L- il^ii (3),

P, Q ... R, S being functions of the variables or else constants.

Noiv, t being a function of all the rest,

t^dx+ tydy+...+tzdz = dt (4),

therefore, by (3) and (4), the partial differential equation

required is

3385 Pt,-^Q%-^...^-Rt, = S,

3386 If ^^ V ...whQ n functions of n variables, x, y ... t, the

condition of interdependence of the functions or existence of

some relation expressed by equation (1) is J{u, v ... w) =
(see 1606) ; that is, the eliminant of equations (2) must vanish.

3387 Conversely, to integrate the partial differential equa-

tion p^,+g^,+ ...+iiL= s (1).

Rule.—Solve the system of ordinary equations

| = |=.c. = J =| m,

and let the integrals obtained &e u = a, v = b, ... w = k
;

then ^ (u, V, ... w) = tvill be the complete primitive.

I/" P, Q ... R, S are linear functions of the variables, the

integrals of equations (2) can always be found by the method of

(3346).
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Note.—Suppose, in equation (1), tliat any coefficients P, Q
vanish; then, by (2), dx = 0, dij = 0, and therefore the cor-

responding integrals are x = a, y = h. The complete primi-

tive thus becomes
(\>{x, y, u, V ... w) = 0.

3389 When only one independent variable occurs in the

derivatives of the partial differential equation, the equation

may be integrated as though the others were constant, adding

functions of the remaining variables for the constants of

integration.

3390 (^^- 1) •
~~ — ^ Integrating for x as though y were con-
dx ^y^— x^

stant, the complete primitive is

2 = ?/sin-^— +0(2/).
y

Some equations are reducible to the above class by a transformation.

Thus

:

3391 Ex. (2): K,, = x'+ y\ Put z, = «,

therefore ii„ = x^+ if, therefore ?4 = ^^ = x^'y + i^/*+ (^) >

therefore z = ^x'^y + ^xy'^+ j (p (x) dx+ \P (y)

,

or z = \ (a;V + xy"") +x(^) + 'P(y)'

3392 Ex. (3): (:x-a)z^+(y-h)z_„ = c-z.

Solving by (3283), -^ = "^ =—
^ •' ^ ^' x-a y—h z— c

The integrals are

log(2/-Z>)-log(a;-a) = loga )
^^, lLl± = c, ^^^=C',

\og(z — c)—\og(x—a)=logC'j x— a ' x—a

therefore
^~ = o (

^~'^
) is the complete primitive.

x—a \x—a/
For the converse process in respect of the same equation, see (3382).

3393 Ex. (4).—To find the surface which cuts orthogonally all the

spheres whose equations (varying a) are

x- + y' + ^'-2ax = (1).

Let (j) (x, y,z) =() be the surface. Then

(.f-a)0^+ //f„+~0,- = O

by the condition of normals at right angles. Substitute the value of a from

(1), and divide by 0-; thus,

{x^-y''-z'')z,+ 1xyz^ = 2zx.
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By (3383),
dx _ dy _ dz_

^ = — gives ^=c for one integral.
y X z

Substituting y = cz, we then have

dx _ dz

x'-{c'+ l)z'~2zx

which, being a homogeneous equation in x and z, may be solved by putting

z = vx (3186). Tlie resulting integral is
'^ ' = G. Hence the com-

plete primitive is
^ "^^ ~'"~' = ^ f ^

J
and the equation of the surface sought.

3394: Ex. (5).—To find an integrating factor of the equation

(a;hj-2y*) dx+(x7f-2x') dy = (1).

Assuming z for that factor, the condition (Mz), = (Nz)^ (3087) pro-

duces the P. D. equation

(xf-2x')z,+ (2f-xhj)z, = 9(x^-y-^)z (2).

The system of ordinary equations (3283) is

dx _ dy _ dz

xy^—2x^
~~

2y^—xhj ~ 9 {x^—y^) z

The first of these equations is identical with (1) (and such an agreement

always occurs). Its integral is —^ -f -y = c.

Al=o
ydx + xdy ^ dz

^^'°
xy'-2xSj + 2xy'-xSj 9 (a^-y') z'

which reduces to 1 ^ -f — = ;

x y z

and thus the second integral is x^y^z = c.

Hence the complete primitive and integrating factor is

Any linear P. D. equation may be written as a homogeneous

equation with one additional variable; thus, equation (3387)

may be written

3395 l\.+ Quy + . • • + R^^'. = ^^h-

SIMULTANEOUS LINEAR FIRST ORDER P. 13. EQUATIONS.

3396 Pkoi'. I.

—

The solution of sneU equations may he made

to depend upon a sijstem of ordinary 1st order differential
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equations having a nnviber of variahles exceediiir/ hij niore than

one the number of equations.

Let there be n equations reduced to the homogeneous form

(3395) involving one dependent variable P and n-\-ni inde-

pendent. Select n of the latter, x,y ... ^, and let the remaining

??t be ^,r]...l. From the n equations find P,,, Py ... P^ in

terms of P^, P,, ... P^, and arrange the results as under :

P..+ ci,P,+ h,P^...+hP, = 0'

Py+ a2P^+ h,P^...-j-h,P^ = 0[ (1).

P. + c''nF,-\-h.P^...+KP^ = o,

Multiply these equations by A^, X25 ... X,^ respectively, and add

;

thus,

A1P..+ X2P, ... +X.P. + 2 (Xa) P,+ S {U) P„ ... +2 (XZ-) P, =
(2).

From this, as in (3387), we have the auxiliary system

dx___ dy_ _ dz_ _ d^ _ dn _ dl /on

Y^~ \ "'~ K ~2(Xa)~2(X6) "'~^{U) ^^^'

and, by eliminating X^, X2 ... X,„

d^— a^dx— a-idy ...—andz =
dn— h-^dx— h^dy ... — Jj^dz = 01 r,^\

dl- 1\ dx- h,dy ... - /.•„ d^. = 0.

Then, if u = a, v = I), &c. be the integrals of (4), they

will be values of P satisfying the equivalent system (1), and

the integral of that system will be F(u, v, ...) = 0.

3397 Prop. II.

—

To integrate a system of linear 1st order

P. D, equations.

Let A = ad^^-\-hdy ... -\-kd,,

so that AP = represents a homogeneous linear P. D. equa-

tion of the 1st order.

Rule.—^'Reduce the equations to the homogeneousform (1);

express the result symholically hy

AiP = 0, A.P = 0, ...A,P = 0,
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and examine ichether the condition

is identically satisfied for every pair of equations of the system.

If it he so, the ec[iiations of the auxiliary system {Prop. I.) will

he reducible to the form of exact differential efiuations, and

their integrals being ii = a, v = b, w = c, ..., the complete

value of P will he F (u, v, w, ...)j l^^^ farni of F being

arbitrary.
" If the condition be not identically satisfied, its ap2)lication

will give rise to one or more new partial differential equations.

Gonibine any one of these with the previous reduced system, and

again reduce in the same toay.

" With the neio reduced systemproceed as before, and continue

this method of reduction and derivation until either a system

of P. D. equations arises, hetiveen every two of lohich the above

condition is identically satisfied, or, wliicli is the only possible

alternative, the system P^ = 0, Py = 0, ... appears. In the

former case, the system of ordinary equations corresponding to

the final system of P. D. equations, will admit of reduction to

the exact form, and the general value of P ivill emerge from

their integrals as above. In the latter case, the given system

can only be satisfied by supposing P a constant.''

3398 "Ex.: P,+ (/+.-v/ + a-r)P,+ (7/ + .— 3,OP, = 0,

P,+ (a^„-; + // -.r//) P, + (./ -y) Ft = 0.

Representing these in the form A^P = 0, A.P = 0, it will be found that

(AiAj — zi,.,Ai)P = becomes, after rejecting an algebraic factor, xP^ + Pt = 0,

and the three equations prepared in the manner explained in the Rule will

be found to be

P,+ (3.r+ OP. = 0, P, + yP, = 0, P, + .7;P„, = 0.

No other equations are derivable from these. We conclude that there is but

one final integral.

" To obtain it, eliminate P^, P^, P^ fi'oixi the above system combined with

Pjx+ P,jdy +P,dz+Ptdt=0,

and equate to zero the coeflBcient of P, in the result. We find

dz—{t + 3x-) dx -ydy-xdt = 0,

the integral of which is % — xt— x^— lif = c.

" An arbitrary function of the first member of this equation is the general

value of P." [Boole, Sup., Ch. xxv.

For Jacobi's researches in the same subject, see Crelles Jonrnal, Vol. Ix.

3 T
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NON-LINEAR FIRST ORDER PARTIAL DIFFERENTIAL
EQUATIONS.

3399 Tupe F{x,j,z,z.,y^,) = ^ (!)•

Chaepits's Solutioj^.— Writing p, q instead of z^ and z,.,

assume ilic ecjnations

A^^dy = -Al- = -4B- (2).

Find a value of p from these by integration, and the corres-

ponding value of q from the given equation, and substitute in

the equation

dz = p(U-\-qdi/ (3 )

,

and integrate by (3322) to obtain tJic final integral.

Proof.—Since dz=pclx + qdy, we have, by the coudition of integrabihty,

j/y = q^. Express p„ and q^^ on the hypothesis that z is a function of x, y ;

jj a function of x, y,z
; q a function of a;, y, z,p ; considering x constant when

finding j5,/, and y as constant when finding q^. Equating the values of p^ and

(/,, so obtained, the result is the equation

Ap,+ Bpy + Cp, = I),

in which A, B, C. D stand for —q^,, 1, q—pqi„ q^+pq-.

Hence, to solve this equation, we have, by (3387), the system of ordinary

equations (2).

3400 Note.—More than one value of p obtained from equations (2) may
give rise to more than one complete primitive.

The first two of equations (2) taken together involve equation (3).

DERIVATION OF THE GENERAL PRIMITIVE AND SINGULAR
SOLUTION FROM THE COMPLETE PRIMITIVE.

EuLE.

—

Let the complete primitive of a F. D. equation of

the \st order be

z = f(x,y,a,b) (1).

3401 ^i^^t-G general prunitlre is obtained hy clluiliiating ;i

bet'lveen z = f {x, y, a, «^ (a) } and f., = (2)

,

the form of (p being specified at pleasure.

3402 ^-I'lie singular solution is obtained by eUtninating a and
h between the coinplete 'primitive and the equations

t-0, f,. = (3).
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Proof.—By varying a and h in (1),

p = f^+faa^+f,h, q = f,+faa,+f,Ar

Therefore, reasoning as in (3171), we must have

faa^+fiK^O and f,,a,,+f,h,, = (3),

therefore either /„ = 0, /,, = 0, leading to the singular solution ; or, elimi-

nating fa, ft,, «.. ^y- a,J h, = 0,

and therefore, by (3167), h = (p(a). Multiply equations (3) by dx, dy re-

spectively, and add, thus fada+fi,db = 0. Substitute l = (j> (a) in this and

in (1), and the equations "(2) are the result.

SINGULAR SOLUTION DERIVED FROM THE DIFFERENTIAL
EQUATION.

3403 Rule.—Eliminate p and q from the differential equa-

tion by means of the equations

Zp = 0, z,j = 0.

Proof.—Let the D. E. be z =/(«, y,p, q), and the C. P. 2 = Fix, y, a, h).

Now p and q being implicit functions of a and h, we have, from the first

equation, z^ = z^pa+ z^ qa, z,, = z^po + ^a ?Zi.

Hence the conditions z„ = 0, z,, = in (3) involve, and are equivalent to,

z, = 0, z, = 0.

3404 All possible solutions of a P. D. equation of tlie 1st

order are represented by the complete primitive, tbe general

primitive, and tlie singular solution. [Boole, p. 343.

3405 To connect any given solution witli tlie complete

primitive.

Let z = F{x, y, «, h) be the complete primitive, and

^ r= ^ (^x, y) some other solution.

Determine the values of a and h which satisfy the three

equations F = (}>, F^. = (^^., F^ = (p^.

If these values are constant, the solution is a particular

case of the complete primitive; if they are variable so that

one is a function of the other, the solution is a particular case

of the general primitive ; if they are variable and unconnected,

the solution is a singular solution.

3406 CoE.—Any two solutions springing from different

complete primitives are equivalent.
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3407 Ex.: z=px+ qy+pq (1).

By (3299), ^ = .7.^ = |. = .| (2).

T 1 z— px . xy + z
and we have q = —^—

; A = —q„ = 7-^-—n?

;

p+y (p+yy

He.ce (2) becomes i^ ,. = ., = ,-MiL, =f ;

.-. dp = 0, p = a ;
.'. q=: '-. Substituting in dz = pdx + qdy,

a + y

dz = (idx+^'^ dy (3).
a+ y

By (3322), making z constant, -^ + -^ = 0,

therefore — log (2— oaj)+log (a + ^z) = (^) (^)-

Differentiate for x,y,z, and equate with (3), thus (p'{z)={), therefore

<p {z) = constant (say —log 6); therefore, by (4), z = ax + by+ al), the C. P.

of (1).

3408 To find a singular solution by (3402), we must eliminate a and h

between z^^ = 0, 2;,, = ; that is, x + h = and y+ a = 0,

therefore z = —xy—xy + xy = —xy
is the singular sokition.

To find the general primitive by (3401), eliminate a between the two

equations z = ax+ (y + a) <p (a) and x+ {y + a) ^' (a) + (a) = 0.

NON-LINEAR FIRST ORDER P. D. EQUATIONS WITH MORE
THAN TWO INDEPENDENT VARIABLES.

3409 Pkoi'.—To find the complete primitive of tlie differ-

ential equation

F{d\,a^, ... a\„z,j)„pi ...p,) = (1),

3410 Rule.—Form the linear P. D. equation in $ denoted by

the summation extending from r = l to r = n. From the

auxiliary system (3387) n— 1 integrals

^l = «l, ^2 = rt2, ... ^„-i = an-i

''•

I Vdx,
"^

^^- dz ) dpr dpr Vdx, ^ ^'
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onay he obtained. From these equations, together with {l),find

Pi J P2 ••• Pn ^''^ terms of Xi, x,, ... x,,, substitute the values in

dz = pidxi+ padxg ... +PnClXn,

and the integral of this last equation will furnish the solution

re([uired in the form.

f (xi, X2 . . . x„, z, ai, aa . . . a^) = 0.

[Boole, Biff. Eq., Ch. xiv., and Snp., Ch. xxvii.

SECOND OEDEE P. D. EQUATIONS.

3420 Type F{.v,i/,z,z,,.,^„z,,,z,,„z.,,) = 0.

The derivatives 2.,., z^, z^^, z^y, z.,y are briefly denoted by

_p, q, r, s, t respectively.

z being a function of tlie two independent variables x and

y, the following values are of freqnent use

3421 dz = pcU-\-qdy ; dp = rdx-\-sdij ; dq = sdd?-\-tdi/.

If u be any function of x, y, and z, the complete deriva-

tives of u are indicated by brackets, thus

3422 M = u, +pu,, (Uy) := Uy+ qu,.

A linear 2nd order P. D. equation is of the type

3423 Rr-^Ss+Tt= V (1),

in which _B, S, T, Fare functions of x, //, z,p, q.

Pkoposition.—Any P. D. equation of the 2nd order which

has a first integral of the form u =f{v), where u and v involve

'C, y, 2, p, q, is of the form

3424 Rr+Ss+ Tt+U{rt-s') = V (2),

where B, S, T, U, Fare functions of x, ij, z,p, q, and

3425 U=u,,v,'-u,Vp (3).

Proof.—Differentiate u = / (v) for x and y separately, considering x, y, z,

p, q all involved in n and v, and eliminate f'{v). The result is equation (2),

with the values
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3426 f^l^ = n^ {Vy)- (Uy) Vp, ^iT = v^ (u,) - {v,) u,^,

with the notation (3422), ^ being an undetermined constant.

3427 Cor.—The condition to be fulfilled in order that

equation (1) may have a first integral of the form n =f{r) is

SOLUTION BY MONGE'S METHOD OF

3428 Rr-^Ss+Tt=V.

Rule.— Wri'tr the tiro equations

Rihf-S(iidij^-r(ii^ = o (1),

Rdp(Ii/-Vclvdi/-\-Tdqclv = (2).

Besolve (1) into its factors, producing the tnv equations

dy— m^ dx = and dy— mgdx = ,

From dy = m^dx and equation (2) combined, if necessary,

with dz = pdx+ qdy, find two 1st integrals u = a, v = b;

then u = f (v) will he one 1st integral of the given equation.

Similarly from dy = modx fnd another 1st integral.

3429 The final 2nd integral may he found from one of the

1st integrals hy Lagrange's method (3383).

3430 Otherwise, determine p and q in terms of x, y, z from

the two 1st integrals; substitute in dz =pdx-\-qdy, and then

integrate by (3322) to obtain the final integral.

3431 If equation (1) is a perfect square, there will be only

one 1st integral, and Lagrange's method only is applicable.

Proof. — By (3427) we may put n^ = mi(,^„ v,^ = mvp ; and also

dz = pdx+ qdy (3321) in the complete derivatives

(du) = u,,dx + u,idy + %(,ulz-\-Updp+ u^dq = 0, (dr) = &:c. = 0;

.-.by (3422) (71,) dx + (?/.„) dy + u, (dp +m dq) = | ,3.

(v,)dx+(v,)dy + v,(dp + mdq) = 0^

Solving these equations for the ratios dx : dy : dp + nuhj, we obtain at once

dx _ dif + mdx _ mdij _ dj> -f hi dq /,>.

ir~ s ~ T ~ V
^^'

with the values of J?, S, T, V in (342G).
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Equations (1) and (2) are the result of eliminating »i from (4). These

two equations with dz = pdx + qdy suffice to determine a first integral of

(3428) when it exists in the form « =/(i),

3432 Ex.(i.): q{l+q)r-{p+ q-^2pq)s^p{l-]-p)t = 0.

Solving the quadratic equation (1), we hud

2nlx + qdy = 0, or (1+2^) dx + (l + q) dij = i) (5).

First, dz = x>dx-\-qdy = 0, .•. z = A.

Monge's equation (2) is 2 (l + s) dpdy+jp (l+p) dqdx = 0,

which, by pdx = —qdii, gives -^£- = --^ ; and, integrating, ——L—B.

Hence a first integral is —'- = (p{z) (6).

Next, taking the second equation of (5) with

dz = p dx + q dy, dx + dy + dz = 0, .-. x + y + z = C.

Also, by (5), equation (2) now reduces to qdj) = pdq, and by integration,

p = qD ; therefore the other first integral is p = qyp {x+y + z).

For the final integral integrate j;— ^^' = 0; i.e., z^~\pz,, = 0, by (3383) ;

,
dy dz All dx + dy + dz

.-. dx = — T-. ^ = -TT' •"• - = A, and dx = —-^ — .

^ (x + y + z) 0' l-xP{x + y + z)

C

d(x+ y + z)
^j,(,,^^,) + j,>.

]l-^(x + y + z) ^ ^-^^ ^

Hence the second integral is ;«— /(;^' + 2/ + ~) =^ F {:).

3433 Ex. (ii.) : ^,,.-a'^,, = 0.

(i.) Here, in (3428), E = 1, S = 0, T=-a\ F=0; therefore (1)

and (2) become dij^—a^dx- = 0, dpdy — ahJqdx = 0.

From (1) dy + adx = 0, giving y+ ax = c, and converting (2) into

dp + adq = 0, which gives p+aq = c ; therefore a first integral is

p + aq = f(y + ax) (3).

Similarly, from (1), dy— adx = gives rise to another first integral

2) — aq = yp(y — ax) (4).

Eliminating j>» and q by means of (3) and (4) from dz = pdx + qdy,

dz = (2a)-' {(/. (y + ax)(dy + adx)-xl^(y-ax)(dy-adx)},

therefore, by integrating, z = ^ (y + ax) +^ (i/
— «'*-')•

For the symbolic solution of the same equation, see (3-5G6).

find

SOLUTION OF THE P. D. EQUATION.

3434 Ri'^Ss-^rt+U{rf-s')= V (1).

Let iii^, iiiz be the roots of the qLiaclratic equation

3435 7rr-Sm-\-RT-\-UV=0 (2).
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Let »! = a, L\ = b, and ^i., = a', r.y = b' be respectively

the solutions of the two systems of ordinary differential

equations.

3436 Vdp = riuthj- Tih ^ ITdp = m,dij-Tdx ^

Udq = mJx-Bdi/ (3), Udq = m,dx -Edy [ (4).

th = jj dx+ q dij ) d:i — j; dx + q dy )

Then the first integrals of (1) will be

To obtain a second integral

:

3437 1st.—When m^, m.^^ are unequal, assign any particular

forms to /i and /,, then substitute the values of p and q, found

from these equations in terms of x and y, in dz = pdx-\-qdy,

which integrate. Otherwise, assign the form of one only of

the functions f\, f.i, involving an arbitrary constant C, solve

for jj and q, and integrate dz =pdx-\-qdy, adding an arbitrary

function of C for the constant of integration.

3438 2nclly.—When ')%, m.2, are equal, and therefore, by (2),

S-' = 4.{BT^-JJV) (5).

Equations (o) and (4) coincide, and, since m = ^S,

reduce to

3439 mp=iSdy-Tdx (6),

Udq = iSdx-Bdy (7),

dz = p dx-\- qdy (8)

.

Here py = 7.,., and therefore the last equation is integrable

if the values oi p and q, obtained by integrating (6) and (7),

be substituted in it. Let n = a, v = b be the integrals of (6)

and (7) ; and let z = (}> {x, //, a, b, r) (0)

be the integral obtained from (8).

The general integral is found by making the parameters

(/, b, c vary subject to tAVO conditions b = f{a), c = F (a)

;

that is, by differentiating

z = <l>{x,y,a,f{<i), F(n)}

for (i, and oHmhiatino' ti.

3440 The general integral therefore represents the envelope

uf the surface whose equation is (l>).
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Proof.—(Boole, Sup., p. 147.) Assuming a Isfc integral of the form

u =f(v), eliminate /j, and v from equations (o426) by multiplying (i.) by

(H,J?f^, (ii.) by («„)«,„ (iv.) by (».r)0'v/)> (/Ob'^^'vz, andadding. Again,

eliminate /x and v by multiplying (i.) by («.,,)"> (ii-) by («v)^ (iii.) by (Ux)(Sh)i

(v.) by (^iij.) 7ip + (Uy) Uq, and adding. The two resulting equations are

B (u,) H,+ T («,) u,- U (u,) («,,) + Vu,, n,^ =
I

E,(n,y+soQM + TOhy+v{(n,r) »,+k)«j = o)

Multiply the 2nd of these by m, divide by V, and add to the 1st equation
;

the result is expressible in two factors either as (11) or (12),

{BOtd +^^hM + V<h,}{'>^hM+TOh,) + Vu,^} = (11),

{B(u.)+vi,(u,) + J%}{m,M +TM + ru,} = (12),

m,, vi., being the roots of the quadratic (2). By equating to zero one factor

of (11) and one of (12), we have four systems of two linear 1st order P. D.

equations. Taking each system in turn with the equations

(ti^)+stip+ tUq = 0,

and eliminating (uj), (u^), u^, u,^, we have the de-

terminant annexed for the case in which the 1st

factor of (11) and the 2nd of (12) are equated to

zero. In this case, and also when the 2nd factor

of (11) and the 1st of (12) are chosen, trans-

posing mj, Wj in the determinant, the eliminant is equivalent to

V{Br+Ss + Tt^U{rt-s')-V} = 0,

B
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POISSON'S EQUATION.

3441 P = {rf-srQ,

where P is a function of p, q, r, s, f, and homogeneous in r, k,

t ; Qis a function of a3, v/, 2;, and derivatives of ?:, which does

not become infinite when rt— s^ vanishes, and n is positive.

Rule.—Assume q = ^ (p) and express s and t in terms ofq^
and r; thuSi rt— s"^ vanishes, and the left side becomes a func-

tion 0/ p, q, and qp.

Solve for a Isf integral in terms o/p and q, and integrate

again for the final solution.

Proof.— s = 5, = q^p^ = (/,, r ; f = q, = q.rpy = qlr\

therefore rt— s- = 0. Also P is of the form (r, s, f)'" = r"' (1, q^,, cj],)'".

Hence the equation takes the form (1, g^, ql)'"'
= 0.

LAPLACE'S REDUCTION OF THE EQUATION.

3442 Rr+Ss+Tt+Pp+Qq+Zz= U (1),

where B, S, T, P, Q, Z, U are functions of x and // only.

Let two integrals of Monge's equation (3428)

Edy'-Sdxdy+ Tdir =
be (p {x, u) = a, ^ (;>j, //) = h.

Assume ^ = ^ {>', [/), v = 4^ {^v, y).

3443 To change the variables in equation (1) to i and j?,

we have

r = ;:,,. = %e+ 2;v^,^,7,.,+ ^,^r,H;:^L,+ r,.„,,

;

(1701)

t = Z,^ = Z2^ti+ 2^^^t,^V,+ ^2A+-A!j + -r,V,y ;

The transformed equation is of the form

,,^^Lz,+ ]\P,+Nx=V (2),

where L, ilf, N, V are functions of ^ and >;. This equation

may be written in the form

{d,+ M){d^+ L),+ {N-LM-L^::=V (3).

If N-LM-L^==i) (4),

we shall have

(d.-^M)::'=¥ with (J„+ L).v = c',
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and the solution by a double application of (3210) is obtained
from

By symmetry, equation (1) is also solvable, if

y-LM-M^ = (5).

But if neither of these conditions is found to hold, find z

in terms of z' from (3). It will be of the form

. = ^4+ 7?.' + ^',

where A, B, G contain ^ and v. Substitute this for z in

(c/,+ i) z = z', and the result is of the form

The same conditions of integrability, if fulfilled for this equa-

tion, will lead to a solution of (1), and, if not fulfilled, the

transformation may be repeated imtil one of the equations,

similar to (4) or (5), is satisfied.

3444 CoK.—The solution of the equation

z^,-\-az^+ hz^+ ahz = V

3445 For the solution of equation (2), wbeu L, M, V contain also z, see

Prof. Tanner, Proc. Lond. Math. Soc, Vol. viii., p. 159.

LAW OF RECIPROCITY. [Booh, ch. xy.

3446 Let a differential equation of the 1st order be

<l>{^v,ij, ^,p, q) = (1).

Let the result of interchanging cV and ]), y and ^, and of

changing z into 2hi-\-qy—z, be

^(p, q,px-\-qy-z,x,y) == 0... (2);

then, ii z = -^ (*, ij) be the solution of either (1) or (2), the
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solution of the other will be obtained by eliminating ^ and »?

between the equations

a; = d^xfi {^, f}), ij = (l^xlf {^, rj), z= iv-^rji/-^ {$, rj).

3447 Ex.—Let zz=pq (1), 2^^^ + r2y-z = xy (2),

be tbe two reciprocal equations.

The integral of (2) is z = xy+xf {^^\ .-.»// (bj) = bi + t>i
( y ) •

i,, T) have now to be eliminated between

»^=v-|/'(|)+/(|), !/ = £+/'(!). '-f" (3).

Each form assigned to/ gives a particular integral of (1). If / ( ^ )
= '^ y + Z^,

the equations (3) become x=^rj-\-l, y = ^+ a, z = tn,

and the elimination produces z = (x— l)')(y — a).

3448 In an equation of the 2nd order, the reciprocal equa-

tion is formed by making the changes in (3446), and, in

addition, changing

r into ——-, s into ^„ t into
rt—s rt—s" rf—s-

then, if the 2nd integral of either equation he z = \p (.r, //), that

of the other will be found by the same rule.

3449 The above transformation makes any equation of the

form <^ Q), q) r+^ {p, q) .v+x ilh q)t =
dependent for solution upon one of the form

X (^% «/)
»'-^

G*'^ 1/)^+^ (^^ y) t = 0.

3450 And, in the same way, an equation of the form

is dependent for solution upon one of the form

Rr^-Ss+Tt= V.

See Be Morgan, Camb. Phil. Trans., Vol. VIII.

SYMBOLIC METHODS.

FUNDAMENTAL FORMULA.

Q denoting a function of 0,

3470 {do-m)-'Q = e"''j6'-'"^ Qd0.
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Proof.—The right is the value of 1/ in fcbe solution of d,y—my = Q by
(3210). But this equation is expressed symbolically by (dg— ra) y = Q (see

1492), therefore y = (cZ^— 7?i.)'^Q.

Let X = e\ therefore d^ = xd^ and xdQ = dx. Hence
(3470) may be written

3471 {.v(h-m)-^ Q = cr"^ Ja-»^-i Q(Lv.

3472 Cor.— {de-m)-^0 = Ce"'\

3473 or (.vd.,-m)-'0= av'\

Let F(m) denote a rational integral function of m; then,

since dee"^' = one"'\ f^o, e'"' = mV"^ &c., the operation f/, is

always replaced by the operation mX . Hence, in all cases,

3474 F{de)e"'' = e'"'F(m).

3475 F(de) e''"Q = e'>''F(de+m) Q.

Formula (2161) is a particular case of this theorem.

3476 e^''F(de) Q = F {de-m) e'»^ Q.

Also, by (3474-6),

3477 F(m) = e-'«^F(fye'"^

3478 F (f/,+m) Q = e-'F {d,) e'«^ Q.

3479 F (de) Q = e-"''F{de-m) &''' Q.

To the last six formulce correspond

3480 F ixd^ .r"^ = x"^F{iii).

3481 F{a:d,) .v"'Q = .v"'F{M,-\-m) Q.

3482 ^v'^'F (ctY/,) Q= F {.vd,,-m) a^'^Q.

3483 F (m) = .v-"'F (erf/,) .v'".

3484 F{a^d^-]-m) Q = .v-"'F{a'd,) .v"'Q.

3485 F i^d,) Q = x-"'F {.vd,-m) .r'"Q.

If U=a-{-hx-\-cx^+ &c., then, by (3480),

3486 F{.vd,) U= F(0) a+F(l) bjv-{-F{2) c.r+&c.
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3487 F-'(.vd,) U= F-'{0) a-\-F-'{l) Kv-\-F-\2) cx^^kc.

3488 F(.v(]_,,7/(Iy, z(L, ...) <r'"ifz\.. = F{m., n,p ...) .r'y«^..

3489 ^v^'Un,. = (h{cU-\) {do-2) ... {(h-tl+l) U,

or, more succinctly, writing D for dg,

D{n-l) ... {D-n-\-l)n or D'"in (2452).

3490 Otherwise ,r"«,„,. =: .vd^{.rd,,— l) ... (.?y/,-/<+ 1) /^

Proof.—As in (1770). Otherwise, by Induction, differentiating again,

and remembering that a-^ = x.

Note.—In the symbolic solution of differential equations,

we may either employ the operator xd,, directly, or the

operator d^ after substituting e^ for x. Formulae (3480-5) or

(3474-9) will be required accordingly.

3491 {(^(/))e'-^j"g

= ct>{D) ^{D-r) (t>{D-2r) ... <l>{D-(n-l) r\ e"'-'Q.

Proof.—By repeated apjilication of (3475) or (3476).

For ready reference, formulas (1520, '21) are reprinted

here.

3492 /(.*'+ /0 = e^'"^-f{.r).

3493 fi'V+h, 7/+ A-) = e'"'..--H./(.r, ;y).

Let cIq+ «! X -\- CLuCr ...-{- cr„ r/;" = /' {,r)
,

then, denoting d^ by D,

3494 /( D) in- = uf{D) v^uof (D) r+ ^/" (i>) r+ &c.,

where / (D) means that D is to be written for x after differ-

entiating f{x).

Proof.—Expand uv, D.nv, I)- .uv ... B'^.uv by Leibnitz's theorem (1400);

multiply the equations respectively by a^, a,, a^ ... a„, and add the results.

3495 uf(D) r ^f{D) . uv-f" (D) u,v+ ^f" D.u,^ i—&c.
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Proof.—Expand uv^, uv-i^i uv-m ••• ''f''^'-.!) by theorem (1472), and proceed as

in the last.

3496 Fid,) ^^" m.v = F(-m') ^"^
m.v.

A more general theorem is

3497 F (7r^)(7.,„+ »,_„„) =z/^ (->H^)(»,,^^+ «_,,),

where ii and tt have the meanings assigned beloAV (3499),

and i = \/— 1

.

Theorem.—If ^ and x^ denote any algebraic functions of x

and //, it may be shown, by (3474) and (3475), that

3498 ^ {(!.+!/) H^r) = <!> {(h^^v) xl^Qf).

3499 Let u, or, more definitely, n,^ = (x, y, z, ...)", represent

a homogeneous function of the n^^^ degree in severable vari-

ables, and let

3500 ^ = ^4+K+-^.~+ &c.

Then, by (3480),

3501 TTW = nu, TT^H = 7ru, irhi = nhi, &c.

3502 Hence F {'n)u = F{n)u.

REDUCTION OF F{Tr,) TO /{it).

3503 Let u be any implicit function of the variables, and
let TT = TTi+ TT.,, where tt^ operates only upon x as contained in

u, and TTg only upon x as contained in ttil, &c. after repetitions

of the operation tt. Then

3504 '"'i" = '^ti, '^[ft =^ (tt— l)7r?/,

3506 <« = {rr— r-\-l) ... (tt— 2)(7r— 1) nn.

Proof.— tt^u = (^r— tt,,) u = ttk,

since tt^ has here no subject to operate upon.

TTj (( = (tt— n-.J TTH = (tt— 1) 7r«,

for, Ttu being of the 1st degree, tTo and 1 are equivalent as operators. In the

next step, tt^ and 2 are equivalent, and so on.

Cor.
—

"When u is a homogeneous function, we have, by
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(3501), TT^'a = n^'ii, therefore ir and n are equivalent operators

upon u. Hence (3506) may be written

3507 7T[i( = (»->•+ !) ... {n-2){n-l)nu = n^:lu,

which is Euler's theorem of homogeneous functions (1G25),

since in that theorem the operator is confined to v.

3508 As an illustration, let ttu = (xd^+ ydy) u = ttjM,

then Trjit = (.t;^ J-j.^+ 2xy cl^y+ y'doy) u, ir^u = {tt^ + tt.,) ttu = tTj u + ir, ttu.

Here Tr^mi = (xd^+ ydy) (xd^+ ydy) u,

the operation being confined to x and y in the second factor (.3503), and there-

fore producing {xd^-\-ydy)i(, merely.

Hence tt^m = {x'd.,:r-^'lxyd^,i-\-y'^do,j-\-xd^-\-ydy) v, which proves (3505).

li U = Uo-{-Ui-{-U2-\- ..., a series of homogeneous functions

of dimensions 0, 1, 2, ..., then, by (3502),

3509 F {n)U= F (0) u,-\-F{l) u,+F(2) u,-^...,

3510 F-'(7r)U= F-'{0) u,+F-'{l)u,-^F-\2)u,+ ...

3511 Ex. 1 : a" Z7 = ^(o+ ^i^.ti+ ahi^+ . .
.

,

3512 a-''U = u^+ a-^u,-{-a~hL2-\-...

Ex. 2 : Ji u have the meaning in (3499),

3513

and simikrly for the inverse operation F~^ (tt).

Proof.—By (8502) applied to the expansion of the subject by (150).

3514 __ ^_______ u,^,

where j)-\-q-\-r-\- .... = m, and pi = 1.2 ...
i).

Proof.—Equate coefficients of a"' in the expansion of

(l + rt)'^f7=(l + a)'''"-^(Ua)^"''(l + a)--"'... tr,

reducing by (3490).

3515 The general symbolic solution of the equation

F{de)a = Q is

u = F-' ((/,) Q-^F-' ((/J 0, by (1488-90).
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3516 The solution of the equation (:^)238), viz.,

where Q is a function of x, is most readily obtained by the

symbolic method. Thus 7%, 7iu, ... m,, being the roots of the

auxiliary equation in (3239), and A,B,G .,. N the numerators

of the partial fractions into which (7;i"-|-fti^)i"~^+ ••• +««)~^ can

be resolved, the complete primitive will be

3517

where (4-''0~'Q = e""-je-'"'^-QcZa-, (3470)

and the whole operation upon zero produces, by (3472), for

the complementary term,

3518 (7,e'""'-+a,e'"^''-... +C,e'v.

Proof.—Equation (1) may be written

or (4-w^i) (d^—ini) ... {dx-mn) y = Q,

.-. by (3515), y = \(d,-ind(d,-m,) ... id,-m,)\-' (Q+0),

whicb, by partial fractions, is converted into the formula above.

If r of the roots m^, m,, ... are each =.- ni, those roots give

rise in (3517) to a single term of the form

3519 {A +54+ Cch. • • • -h Rd,,) e-'-
[

6-"^'^' Q.

Proof.—By (1918), the r roots equal to in will produce

\A\d,-my+ B'{d,-vi)-'-\.. -^R'(d,-m)-'\ Q,

or (A + Bd,+ Cd,,... +Bd,.,?)id.-m)-'-Q.

3520 But, by (3470), (d^-vi)-' Q= (d^-ni)-'e'"^^e-"'^ Qd^

= e'"' I J e-™^e»'^ L-"" Qdx | dx = e'"4 e"'"^ Qdx, and so on.

3521 Ex. (1) : y^^-y.^-5y^-3 = Q.

Here 7n^—vi"—om- 3 = {m— '3)(m + iy,

. 1 ^ 1 1 L_^
{m-3)(m+ lf 16(Hi-3) 16(w+ l) 4(m+ l)-^'

therefore y = yV (d.~S)-'Q~^\ (4+ 1)"' Q-i O^.+ l)"' Q
= i^e'^ J

e-^'- Qf?"-— tV'^^ J
e- ^

Qr/,.'

-

ie-'j^e" QdxK (3520)

3 X
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3522 Ex. (2): u,,,.Jrfrf( = Q,

thei-efore /' = ('/.., + «-) '(^.

Here (vi^ + cr)-^ = (2m) -' {()» -/a) -'-(m + wt)"'},

therefore u = (2ia)'^ {(dj.— ia)'^ Q— (Jj.4-m)~' Q\

= (2ia)-' {e'"^ Je-'"^ Qdx-e-'"=' je'"^ Qdx} (3470)

= a" ' sin cw j cos o,f Q (?.« — a "
' cos a.e j siu ux Q dx,

by the exponential values (766-7).

3523 CoE. 1.—The solution of iu,-^a^u = is

u = A cos ax-\-B sin ac«.

3524 Cor. 2.—The solution of jf^,.— rt^jt = is

Change a into ia in the fifth line of (3522), and put Q = 0.

3525 When Q is a function whose derivatives of the 7i^^ and
higher orders vanish, proceed as in the following example.

Ex. (3): Uo,: + a'^u = (1+x)-,

therefore n = (d., + a") "' (1 + xy+ (d.,,+ a^)
"

'

= (a-'-a-%,+ a-%,-&c.)(l + 2x+ x') + (d,,-\-aY^0

= a'^ (l + xy—2a'^+A coaax + B sina.i",

the last two terms by (3523).

Exceptional Cat<e of the Inverse Process.

3526 Ex. (4) : M2.r + «"« = cos JW,

.-. 'II = (d,,+ aY' (cosux+ 0) = 1 (d,,+ a^)'' (e'"-'- + e-'"-''+ 0)

= I (e'"^ + e-''")(-w-+ (r)'' + ^cosaa; + 2?sinaa; by (3474) and (3523)

= coswa; (a''— «^)"^ + &c.

Now, if n = a, the first term becomes infinite. In such cases proceed
as follows :

—

Put A = A'-(a'-n')-\ and find the value pf
^"^ ".r-cosa;?;

^ ^^^^

n = a. By (1580) it is = iL^Mf
. Thus the solution is

X sin ax
, ,, , ti •

u = — \-A cos ax+ 1) sina.t;.
2a

The same result is obtained by making Q = cos aa; in the solution of (3522),

For another example, see (355'.').
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3527 Ex. (5) : y,,-9>u+ 20y = .^V%

therefore y = {(d,-4^)(cL-5)}-' x'e'"^+ {(ih-4)((l-5)}-'

= e''-{((l-l'){cl.-2)}-'x'+ Ae'^-+ Be'\ (3475, 3517, 3472)

Now 0,^^-3m+ 2)- = \ (l-^J^)''

C^^ 3,.-m- ^/3m^y^^^

Hence the solution becomes

y = e'"- {
i + f4+ H:^+ &c- } ^'+ ^6*'+ ^^'

= ^""

{Y + T + T 1
+^^''+-^^''-

3528 Ex. (6) : {d^-aYu = e--\

therefore n = {d^-ay'e"- = e^'^' (d,)-^ (3476) = e^^^^ + f o). (2149)

3529 Ex. (7): (d,+ ayy = sin mx,

there fore y = ('K+ «) "
" sin »ia) + (fZ^ + a) ' ^

= (4-a)' ('k-«')"' sin ma; + e-"^' (c/,.)'' [by (3478) with ^ = 0]

= (-vr-a^)-- (d,—ay sinonx + e-'"' (Ax + B) (by 3496)

= (ui' + a")"- (— VI' smmx— 2amcos7nx + a^ sin ma;) + e'"''^ (Ax-\-B).

REDUCTION OF AN INTEGRAL OP THE w"' ORDER.

3530 ^ Q = ;^3Y] { ^"''
J Q^^^^'- (« - 1)

^^"~'
J Q^^'^'

+ C {n, 2) .r"-« j
V''^/^''

. . . ± \Qd''-' cLv,

where n— l\ = 1.2 ... n.

Proof.—Bj^ (3489) d,M = e-'"(d-n+ l)(d,-n+ 2) ...d,Q (1),

therefore d.,M = {{d~n+l){d,-n+ 2) ... d,]-'e^''Q

'^-1-
+C'(«,2)(t7,-« + 3)-^-&c.}e"^(3 (3517)

= -J_{e(»-i)VJ,)-ie'-(7i-l)e("--'^(cZ,)-ie="+ &c.}Q.
w— 1

!

Then replace e' by a*.

The equation

3531 «<y..+6ct^'^//..,+ &c. = ^+J5.v+ at'^+&c. = q
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may, by (3480), be transformed into

U' W,-)'';' + ^> (.v/...)^'; + &c.} !j
= (2 or F{xd,) ij = Q.

The solution is then obtained from

3532 y = F-' (.''4) Q + ^-'
(j^'l,) 0.

The vahie of the 1st part is given in (3487).

3533 If a, i3, y, &c. are the roots of F{m) = 0, the second

part gives rise to the arbitrary terms

3534 If a root a is repeated r times, the corresponding

terms are

.1-
{ t\ (log aY-'-\- C, (log .r)'-^+ . . . + C,}

.

Proof.—The partial fractions into which F'^{xd:,) can be resolved, as

in (3517), are of the type G (a-d^ — ony^ 0, m being a root of F (jc) = 0. Bnt
(xd^.—m)"^ = Gx"^ (3473), G being an arbitrary constant.

For a root in repeated r times, the typical fraction is C (xd^.—m)''^, p
being less than. r. Now
(xAl-my Gx>" (log.r)^'-' --= {de-my Ge'"' iP'' = e"" (d,y CT^"' (3475) = 0,

therefore (xd,.-m)-P = Gx'" (log xy-\

The equation

3535 ai/,,e-{-bi/ne+&G. =f{e% siu 6, cos 6)

is reducible to the form of (3531) by x = e^ ; or, substituting

from (768), it may be written

Fide)y = :^{A„,e'"%

and the solution will take the form

3536 ^ = %A,,,e-'F-'{m)-^F-^{(h) 0,

for the last term of which the forms in (3533-4) are to be

substituted with .v changed to e\

3537 Ex. (1 ) : a;V = ax'" + hx"

xd^ (xd^-l)(xd^-2) y = ax"'+hx",

.-. u = {xd, (xd,-l)(xd,.-2)}-' (ax"' + h.r") + {xd, (xd,,-l)(xd,-2)}-'0

= ^ + ^ + .1 + Ih + Gx;
m {m-l) (7U-2) 71 (7i- l)(ji-2)

by (3180) and (3533). A result evident by direct integration.
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3538 Ex. (2)

:

x%,+ 3xy,, + y= {l-x)-\ By (3490)

{
xd^ (xd^- 1 ) + 3xd^+ 1 } !/ = (-^4+ 1

)' y = 1 + 2.^+ 3a;2+ &c.

,

.-. 2/=GiY7,+ l)-^(l + 2,« + 3cuH) = (0+l)-^ + 2(l + l)-^a) + 3(2 + l)-V+

(3480) =l+|.+^+&c.+ ^-^^^ + -^ =-llog(l-..) + &c.
<i o a' .'(' a;

3539 Ex. (3) : ,y,^+(4.7J-l) 2/^+(4aj'^-2.i;4-2) 7/ = 0.

Let TT = cZ,+ 2a". Then the equation may be Avxntten

7r(7r-l)^ = 0, .-. 7/ = {7r(7r-])}-'0= (7r-l)->0-tr->0.

Let (7r-l)-^0 = ?s
.-. (tt— 1)?< = 0, ov u,+ {2x— l)ii — (}, .-. « = i4e^'-^

3540 The solution of a P. D. equation of the type

where 7/1, u.,, &c. are homogeneous functions of the 1st, 2nd
degrees, &c. in x, y, and Tr^ = xd^,-\-yd,j (3503), is analogous to

(3531), and is obtained from that solution by substituting

7ti, U2, &c. for Bx, Gx?, &c. ; and, for such terms as Gx"-, an

arbitrary homogeneous function of x and y of the same degree,

3541 Solution of F{tt)u = Q,

where F(7r) = 7r"+ ^i7r"~^H-yl.27r""-+^„,

and Q=- u^^-{-Ui-\-Uo-\-kc.,

a series of homogeneous functions of x, y, z, ... of the respec-

tive dimensions 0, 1, 2, &c.

Here u = F-'{7r) Q+ F-\7r)0.

3542 The value of the 1st term is given in (3510). For the

general value of the last term (see Proof of 3533), let

F {711) = have r roots = m ; then

3543 C{w-m)-PO=C{a{\og.vy-'+v{\og.vy-\..-^w},

where u, v, ... w are arbitrary functions of the variables all of

the degree m.

3544 CoE.— (7r-m)-i = (cr, 1/, ... )'«,

that is, a sing^le homogeneous function of the variables of the

degree m (1620).
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3545 Ex. : x-zox+ 2xyzj.,,+ y'eo,,—a {xz^+ tjz^^ + az = n.,„ + «„,

u,„, u„ being homogeneous functions of the m^^ and /t"' degrees. The equation

may be written (tt-— OTTj-f a) z = ";« + '?'«

5

or, by (3505), (7r-rt)(7r-l) z = «,„ + «,„

therefore z = {(7r-a)(7r-l)}-' (u,, + n„) + {(7r-a)(7r-l)}-'

= !!i»
\

^*»_ + cr„-i-[7i.
{m— a)(m—l) (n— a)(n— l)

The first two terms by formula (3502) ; the last two terms are arbitrary

functions of the degrees a and 1 I'espectively, and result from formula (3543)

by taking ^ = 1 and m = a and 1.

3546 To reduce a P. D. equation, wlien possible, to the

symbolic form

{WJ^A,n"-^+A,W^-\..~\-A,)n= Q (1),

where n = Md^+ Nd^ + &c
.

,

and Q, M, N, &c. are any functions of the independent
variables.

Consider the case of two independent variables,

{Md,-\-Nd,Y u = ]\Pu,,+ 2MNu,y + N'u,,

+ {MM,+NM,) 71,+ {MN,+Ny^ n^, . . . (2)

.

Here the form of n is obtainable from the right by con-

sidering the terms involving the highest derivatives only, for

these terms are algebraically equivalent to (Md^-^Ndy)'^.

The reduction being effected, and the equation being

brought to the form of (1) ; then, if the auxiliary equation

3547 w''+A,m''-'-^A,in''--...-{-A, = (3)

have its roots a, h, ... all unequal, the solution of (1) will be

of the form

3548 u = {n-ay Q,+ {u-h)-U}+&c (4).

The terms on the right involve the solution of a series of linear

first order P. D. equations, the first of which is

3549 Mn,+ Nil,, J^ ...-au = Q,

and the rest involve h, c, &c.

If equal or imaginary roots occur in the auxiliary equation,

we may proceed as in the following example.
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3550 Ex.:

(l + xyz,^-^xy (l+x') z,.,,-\-4.x'i/%,+ 2x (1 +x') z^+ 2y (x'-l) z,+ a'z = 0.

Here IT = (1 + x") cl^.— 2xijd„, and the equation becomes (11^ + a') z = 0.

Let the variables x, y be now changed to ^, t], so that 11 = d^. Therefore,

since n (4) = 1, n (4) = (l + .r) ia.-2,r^£, = 1.

Therefore, by (3383), -^ =-^ = J£,
1+a- -2xy

from which, by separating the variables and integrating, we obtain

x'y + y = A (1),

and, by (1430), ^ = tan-^x+ B (2).

Also, since 11 (?/) = 7/^ = 0, (l + x"') t]^—2xyn,, = 0.

Therefore -^, = ^^ = -^,
l + .y- -2xy 0'

the solution of which is equation (1). Thus

^ = tan~^ X and rj = x'-y + y.

The transformed equation is now (_d2^+ a-) z = 0,

and the solution, by (3523), is

z = <p(r]) cos ak + \p (ji) sin a£,

arbitrary functions of the variable, which is not explicitly involved, being
substituted for the constants (3389). Therefore finally,

z =
<l>
(x-y + y) cos (a ta,n' ^ x) + \p (x-y + y) sin (a tan' ^ a').

MISCELLANEOUS EXAMPLES.

3551 «2.v+W2.+ M2.-=0.

Put d2y+ d.2z = a'. Thus tt-.^+ a^u = 0, the solution of which, by (3523)}

is ii = <p (y, z) cosax+ tp (y, z) sina.i;,

arbitrary functions of y and a being put for the constants A and B, Expand
the sine and cosine by (764-5) ; replace a^ by its operative equivalent, and,

in the expansion of sin ax, put a\p (y, z) = x (y, ") ; thus

u = f (y, z)- 1^ 0?,, + fU cp (y, z) + 1^
(cZ,,+ c?,,) ^ (y, z)-&c.

o ; o ;

[See (3626) for another solution.

3552 u,+ ti^+ ?/_, = ciT/^-.

Here a = (rZ,+ d, + d,)~' (xyz -f 0)

= {d.,-d_,, {d, + d,) + d.,, id, + d,y-...]{xyz+ 0).

Operating upon xyz, we get

u = ix'^yz—^x^ (2 + 2/) + Ta^*,
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the rest vanishing. For symmetry, take ^rcl of the sum of three such

expressions ; thus

Operating upon zero, we have, in the first place, d_j.Q = <p (yz)

instead of a constant, therefore d.^.^O = xf (yz), &c.

The result is

{1-x (d„+d,)+hy (d.+ d.y- ...}<!> (yz) = e-^^"^^"--'cp (yz) = 6 (y-x, z-x)

(3493) the complementary term.

3553 Otherwise, putting cZ^+ tZ^ = 5), we have, by (3478),

(d,+ ^)-'xyz = e-^-^d.,e^-^xyz = e--*-3^cZ.,{.. (y + x) (z + x)], (3493)

= e-^^{Wyz+ :Lx'(y + z)+}x^}

=^ ^x' (y-x)(z-x)+ix' (y + z-2x)+^x\

which agrees with the former solution.

3554 « Ux+ bUy -\- cu^ = cvyz.

Substitute x=. a^, y = hri, z = c(, and the equation becomes

which is solved in (3552).

The same methods fm^nish the solution of

3555 ttu,. -\-bUy'\- cu. = x'"y''z^\

3556 .^'5!.,+/p, = 2ajij\/a^-z\

Put z z^ a sin y,

.-. TT^ = a cos f . TTi", .'. TTV = 2,13?/, .". z-=.as\n(xy-{-c).

3557 aa;u^-{-hyUy-\- czu.^nu = 0.

Put X = i,", 7/ = T]'', z = C ;

.-. ^H^+ y]i(^ + ^u^—nu = 0, .-. by (3544) u = (x"
,
y'', z'' )".

3558 The solution of any P. D. equation of the type

F{.vd,, ijdy, zd„ ...)« = XA.v"y^'' •••

is, by (3488) and (3557),

W = ^ 177
"^ T + 777—1 7 -, 7

<'•
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3559 Ex. : xu^^-^yUy— au = Q,,^,

where Q,,= {x,yy^ (1620).

Here ti = (ni—a)'^Q„^+ TJa- When a = m, this solution becomes inde-

terminate. In that case, as in (3526), assume

m— a m— a

Differentiate for a, by (1580), putting Q„ first in the form

thus u = iQ,„ (log X + log y) + F,„.

Similarly, the solution of

3560 xu^.-\-yUy-\-xu-—mu — Q,^

is n = ^Q,„ (log X + log y + log ^) + V,„.

3561 ct w,+i/i*^+5:w^ = c.

The solution, by (3560), is

u = ic (log x+ \ogy+ log 2) + Fo-

3562 ^2x—^a^xy+tt%y = or {d,—adyyz = 0.

2 = (d^-ad^)-'0 = (fZ.,-a(^^)-' (y) e"^"y (3472)

by putting ot^j, for m, and ^ (y) for C. The second operation produces, by

(3476), z = e"''"v{x<p(y) + ^P(y)}=x<p(y + ax) + ^P(y + ax). (3492)

3563 ^v%^, —if^-iy+ 'J'%-—y^u = 0.

This reduces to (xd^+ yd^) {;xd^— yd,J) 3 = 0.

Here tt = xd^^+yd^, and m = in (3544),

therefore ^ = («, i/)"+ ( i^', —
j ,

the second term being obtained by substituting y'^ = y', and so converting

the second factor into (xd^+ y'd^,). The above may also be written

F and/ being integral algebi'aic functions.

3564 x,,,-a%y-\-2aM,-{-2a%!:^y = 0.

Putting y = at], this equation is equivalent to

(d,-d., + -2ah) (d^ + dr,) z = ;

3 Y
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putting X = log .7/ and ?; = loy- ;;', this gives, by (354-i),

= e-'^"'-F(,j + ax)+f{y-ax),
the functions being algebraic and integral.

3565 U2^—ahi.2y = <!> (.V, y).

.-. u = {cl,,-a'ch,)-' {x, y) (3515)

= {2ad,Y'
[
(,l-ad„)-'-{(l+ ad,)-'

}
(x, y) (3470)

= (2ad^)-^
{
e"^"v fe""^";'

(^
(x, y) dx-e-"-'"'.' (e"^"«' (x, y) dx

]
(3470)

= (2a)"'
j I

*i {x, y + ax)— ^., (,r, y— ax) j- c7//,

since e"^";/ (a-, ?/) = ./. (a;, 1/ + ax) (3492).

Here *, (x, y) =
|

^; (a^, 9/-«,r) (Z.t; + v/. (?/),

*2 (', y) =
J0

(', 2/ + «.') fZ.i' + x (!/)•

3566 If «/> 0^', //) = 0, the solution therefore becomes

H = xj/^ 0/4-«^?')H~Xi (Z/~"'0 [-BooZe, ch. 16.

For the solution in this case by Monge's method, see

(3433).

3567 %^^.—aZy = e""' cos tii/.

z= (d^— ady) -^e"'^ cos ny — e"^".'/
[
e
'
'"'"i' e'"' cos ny dx (3470)

= e«^''i/ [e'«^cosn (y-ax) dx (3492), and this by Parts, or by (1999), is

_ f^axiiy^mx

I
j^^ pQg ^^ (?/— aa?) — awsinn (y— ax) ] (Hr4-«V)"' + e"^''.v0 (y)

.-. 2 = e'"-'^ m cosny— an sinvy \ (m- + a'ii')'^ + (]> (y + ax), by (3492).

3568 z-a::,,= i).

, = (J,_ar/,,) -^ = e'""^'-^</> (0), by (3472),

^ («) taking the place of the constant G.

Therefore s = (a!) + ai^2.-l-iaV^4^+ &c. (3492)

Otherwise, to obtain z in powers of a;, we have, putting Ir = a~\

j;o.-62»i = 0,

.-. z = {(d,+ ldh(d.+ hd])}-'0 = e'''-"'(t> (t) + e-'"-">x}. (0 (3518) ;

then expand by (150).

3569 «2a -f^2// = ^os 1UV COS mi/.
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z = (t?>^.+ c?2;,)~^ COS nx cos raij.

Treating (h, and cosmy as constants, we have, by (3526), putting d.,y for a^

s = cos nx (diy— n-)
'' cos my + A cos ax +B sin a,^, or by (3496),

= cosnx cosmy (— m--n^)-' + (p
(ij) cos (xd,,) + \p (y) sin (*f7^),

A and J5 becoming ^ (y) and vp (//)•

3570 ^,^+2zh-\---24'+(''- = COS (w4+w^).

Therefore (tt + ia) (tt - ia) z = i {e'C'^-'^^' + e-f'"**"^'},

where tt = r7,+ f?^. Therefore, by (3510), with x = e*, (/ = e^

Ca^— (j^i+ w) a^— (m+ ?i) -^

a^—^m+ny

3571 Prop. I.—To transform a linear differential equation

of the form

into the symbolical form

MD) u^-f,{D)eUi+MD)e^'u^kc. = T (2),

where Q is a function of .v, T a function of 6, x = e^ and

Multiply the equation by Qf ; then the 1st term on the left

becomes, by (3489),

(,,+ le'+ cr'-' +...)D{D-1) ...{D-n-i-l) u.

This reduces, by the repeated appUcation of formula (3476)

with the notation of (2451), to

3572 aD^"Ui-\-h {D-iy^^ eUi^-c {D-^Y"^ e-'u-^ka.

The other terms admit of similar reductions.

3573 Conversely, to bring back an equation from the sym-

bohc form (2) to the ordinary form (1), employ formula (3475)

so as to transfer e"" to the left of the operative symbol.

3574 Ex. : x' {xhi,,-\- 7xu^.+ hu) = g''{I) (i»-l) + 7D + 5} «

= e-' (D- + 6J>+ 5) « = e-^ (D+ 1) (D+ 5) u

= (X»-l)(D+ 3)e"tt (3476).
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For tlie converse reduction, the steps must be retraced, employing (3475).

See also example (3578).

3575 Prop. II.—To solve tlie equation

u+a^<l> (D) e'u+a,<f> (D) ^ (D-l) e'' u ...

wliere U is a function of 0.

By (3491)

Putting p"it for this, the equation becomes

3576 Therefore

where qi, q.2 ... q„ are the roots of the equation

and A,. = q'l.-^

iq,'-qi){q>--q-^ ••• (qr-qn)'

The solution will then be expressed by

U = A^Ui-\-A.2Ui ... 4-^nW„,

where ?/^ is given by the solution of the equation

3577 u,-q4iD)e'u,.= U.

3578 Ex.:

(x' + 5x'+ G.v') «o.+ (4x + 25x'+ S6x') u,+ (2 + 20a; + 3G.r'0 u = 20.v».

Putting X = e*, and transforming by (3489),

(l + Se'+ Ge^O i>(-D-l) H + (4+ 25e''+ 3Gc-') D(( + (2 + 20e''+ 36e-^) it = 20e^

The first term = D (D-1) « + 5 (D-l)(D-2) e'^+ G (D-2)(D-3) e'"«

by applying (347G). The other terms similarly ; thus, after rearrangement,

(D+ l)(i' + 2)« + 5(D + l)-e'« + GD(i) + l)e'-'« = 20e^

Operating upon this with {(D+ l)(D + 2)}-', we get

or (1 + .V + Cp^)« = e^ if p = (i)+l)(D + 2)->e^

therefore « = {3 (l + 3p)-'-2 (1 +2,))'} <>'' = 3;/ -22,

if 2/ = (1 + 3p)
-

' e="' and .- = (1 + 2p) "' e^*.
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Hence (l + 3p)y = e'' or y + S (D+l)(D+ 2)-' e'y = e''

;

therefore (D + 2) y + 3 (D + 1) e'y = e"> (S-\-2), by (3474),

or (-D + 2) y+ Se' (D+ 2) y = 5e^ by (3475) ;

that is, (x+ Sx')y,+ 2(l + Sx) y = 5x'.

Similarly (x+ 2x') 2,+ 2 (1 + 2.v) z = 5x\

Solve these by (3210), and substitute in m = 3y— 2z.

3579 Prop. III.—To transform tlie equation

u+(f>{D) e''u = U into v-\-<f>{D^n) e'v = V,

put u = e'^^v and U — e^^ V.

Proof.—By (8474), because (D) e'^^'-^'tJ = e»> (D+ n) e'^v.

3580 Prop. IV.—To transform the equation

?f+(^(i>) e"-' u = t/ into v+V'(i>) e^^'v = F,

put

3581 where P HI>)

-

HD) ^JD-r) <l>{B-2r) ...

Proof.—Pnt u =f(D)v in the 1st equation, and e'''f{B)v =f{D—r)e'''v

(3476). After operating with f'^ (D) it becomes

v + <l>(D)f(D-r)f-'(D)e'-^v=f''iD)U,

therefore (p (D) f(D-r) /"' (D) = 4^ (D) by hypothesis

;

and so in inf. Also U =^ f (D) V.

3582 To make any elementary factor x(^) ^^ 'Pi^) ^®'

come, in the transformed equation, x (-^ i ^^'0' where r is an

integer; take ^ (D) = xi^+ nr) Xi(-^)- See example (3589).

3583 To make any factor of (p {D) of the form —^y
/^

disappear in the transformed equation, take '^(-D) = xi{D),

where Xi(-^)' ^^ ®^^^ case, denotes the remaining factors of

<^(X>). See example (3591).
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3584 III tlie application of Proposition IV., differentia-

tion or integration will be tlie last operation according as

^j- /^7^ (3581) lias its factors, after reduction, in tlie

numerator or denominator, and therefore according as \p (D)

is formed by algebraically diminishing or increasing tlie several

factors of (p (D). However, by first employing Proposition III.,

the given equation may frequently be so prepared that the

final operation with Prop. IV. shall l^e differentiation only.

See example (1).

For further investigation, see Boole's Dif. Eq., Ch. 17, and Supplement,

p. 187.

3585 To reduce an equation of the homogeneous class

(3531) to a binomial equation of the same order of the form

The general theory of such solutions is as follows. Let
the given equation be

it+q {(i>+«i)(i>+ «2) ... {D+a,)}-\^'Ui = U ... (1),

%, rtg, ... ctn being in descending order of magnitude. Putting

w =r e'^'^v, by Prop. III.,

'V+ q{D{D-7i:;^,) ... (Z>-^^7=^J}-^^«^• = e"^'U... (2).

To transform these factors, regarded as ^ (D), by Prop. IV.

into ^{D)=D{D— l)...{D-n + l), we convert D into D+ rn

(3582), r being an integer.

Hence for the j/^^ factor we must have

D-\-rn — ai-{-aj, = D—j;+ 1,

3586 and therefore a^— iip = rn -\-p— 1 (3)

.

If this relation holds for each of the constants a^ ... rt„,

equation (1) is reducible to the form

3587 u^-q{D{D-l)...(D-n-\-l)]-\"'i,=^ Y (4),

which, by (3489), is equivalent to !/„.,.+ </'/ = 1,,.,. = X.

1/ being found in terms of x from the last equation, and,

V being = P,/ ^
(^

ij (3580), the solution will result from

3588 „ = !-...»P,.
(/;-i)(_^>-^)y(/^-"+i)

,;

while U and Y are connected by the same relation as u and y.
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3589 I^x- 1 : Given ./•>«3., + 1 8a;-«,, + 84to.+ 96a + Say'u = 0.

Putting X = e" and employing (3489), this becomes

{D (D-l)(D-2) + 18D (D-l) + 84D+ 96} u + 3e'ho = 0,

or (D+ 8) (D+ 4) (D+ 3) « + Se'' tc = 0,

therefore « + 3 {(D+ 8}(D+ 4)(D+ 3)}-^e^^^« = (1).

Employing Prop. III., put u = e~^"v,

therefore (3476) v + 3 {D (D-4>)(D-5)}-' e''v = (2).

To transform this by Prop. IV. into

y + S{D(D-l)(D-2)}-'e'^y = (3),

we have

P tm = D(P-l)(J-2)(D-3)(J-4)(J}-5) ... ^ .„_! wr,_9>)
'4,{D) Z)(D-4)(D-3)(I»-3)(D-7)(Z>-8) ...

^ '^ "^'

.-. i;= (D-l)(D-2) ;/,
.-. ii = e-''(D-l)iD-2)7j (4),

and the solution is obtained by differentiation only, performed on the value

of 2/ as obtained by the solution of (3), that equation being equivalent to

D(D-l)(D-2)y + -Be''y = 0, or, by (3489), y,, + Sy = 0.

If, however. Prop. IV. were used to pass directly from (1) to (3), we
should have

<p(D) ^ I)(D-l)(D-2)(D-S)(D-4)(D-b) ...

'4^(D) (i)+ 8)(D+ 4)(X»+ 3)(D+ 5)(D + I)D...

1

(i'+ 8)(D+ 6)(D + 4)(D+ 8)(D+ 2)(D+ l)'

and equation (4) would involve integrations of y as high as D'^^y.

3590 Note.—By the literal application of Rule IV., the right side of

equation (3) ought to be F = {(!> -1)(Z)— 2)}"^ ; but no such term is

required when the original and transformed equations are of the same order,

for in such cases the arbitrary constants introduced by the operation upon
zero disappear with the terms containing them in the final differentiation

>

The result is the same as if the operation upon zero had not been performed.

In the following example, V has to be retained.

3591 Ex.2: (x-x')u,,+ (2-l2x')u,-'30xu = (1).

Multiply by x, transform by (3489), and remove e"' to the right of each

function of B by (3476), thus

u— (J+ 4)(J + 3)„,,,_M = (2).
D^D + l)

Transform this by Prop. IV. into

v-^±^e-v = V (8).

We have ?i == P,^^ u == (-D+ 4) (D + 2) n,

7= {(D+4)(D+ 2)}-iO = Ae--'+ Be-'' (3518).

The operation upon zero is required in this example (see 3590), because (8)
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is of a lower order tliun (2) ; but only one term of the result need be retained,

because only one additional constant is wanted. Hence (3) becomes

(D+ l)v-(D+ S) e-% = (D+ 1) Ae-'-' = -Ae-'\

Changing again to x, this equation becomes

(x'-x') v,-4:xh-+A = 0.

The value of v obtained from this by (3210) will contain two arbitrary con-

stants. The solution of (1) will then be given by

u= (D+ 4)(Z>+ 2)r.

3592 Ex. 3 : W2«-« (h+ 1) x-'u-qho = 0, [Boole, p. 424.

n being an integer.

Multiplying by x" and employing (3489), this becomes

u-cf {(D+ n)(D-n-l)}-^ e-'u = 0.

This is changed by Prop. III. into

v-q'{D(I)-2n-l)}-'e''v = 0, with m = e'-'V,

and this, by Prop. IV., into

y-q'{D(D-l)}-'e''y = or t/,.-5V = (3489).

y being found from this by (3524), we then have

u = e-'-P.
^-'^

. y = e-'-(D-V)':,y = x-"(xd^-my.
JJ— Zn— 1

But, by (3484), F (xd,-m) = x"'F (xd,) x-'\

.'. w = X-" X (xd,) x-\x' (a;4) x-' ... x'"-' (xd^^) x'^'^'y,

or u-=x-^"''^(x'd,yx-"'*'y

= X-'"' (x'd^y x--"-' (Ae'^+ Be-"') (3525).

This may be evaluated by substituting z = x'-. (See Educ. Times Reprint,

Vol. XVII., p. 77.)

3593 Ex. 4 : n,,-a'u,,-n (n + 1) x'^ u = 0.

The solution is derived from that of Example (2), by putting q = ad^^,

and arbitrary functions of y after the exponentials instead of A and B ;
thus

to = X-'"' (xM^y X-""' {e"^"." ./) (y) + e
"'" -4 (y) }

= X-"-' (x'd^y X--" " {0 (2/ + ax) + >//(?/ + ax) }, by (3492).

[Boole, p. 425.

3594 (l+ttd-) u.,,'\-axu,±nUi = 0.

To solve this equation or its symbolical equivalent obtained

by (3489), viz.,

3595 u^.^liJ^=g^e-u = il

Substitute / = [-tt^—^ i" the soluticm of u.t^n-n = 0, by (3523-4).

J v/(l + aa;^)
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3596 Similarly, to solve the equation

or, the same in its symbolical form,

[ dx •

Substitute t = —7—^ r in the solution of w^, ± ?t*i( = 0.
Jx^(x^+ a)

(3596) is obtainable from (3593) by changing 6 into —0.

3598 Pfaff's equation,

When Q = 0, the symbolical form becomes

b(D-n)(D-n-l) + e(D-n) + c,"^
aD{D-l) + cD+f '

"-^ ^^^'

If w be not = 2, substitute 20'= nd, and therefore 2cfe = nd^..

3599 Thus „+^i|5^1(|5|le-. = (2).

where Oj, aj are the roots of the equation

h (^na-v)(^na-n-l) +e (^na-n) -{-g = (3),

and /3i, /3j are the roots of

a |n/3 (|7i/3-l)+c i"/3+/ = 0.

Four cases occur

—

3600 I.—If Oi— Qj and /3i— /Bj are odd integers, (2) can be reduced by

Prop. IV. (3581) to the form v + ^ ^^~"'^ ,^^~"^~^^ e'^'v = 0,

and then resolved into two equations of the first order.

3601 II.—If any one of the four quantities Oi— /Jj, aj— /Pj, «2 — /3i, fj—Z^a

is an even integer, (2) can be reduced by Prop. IV. to an equation of the

first order.

3602 III.—If Pi—Ij-j and aj + uj— /3j— /jj are both odd integers, then, by
Props. III. and IV., (2) is reducible to (3595).

3603 IV.—If aj-oj and Oi + Qj— /3i— /Sj are both odd integers, (2) is

reducible in like manner to (3597). [Boole, p. 428.

Note.—The integers may be either positive or negative, and when even

may be zero.

3 z
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SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS
BY SERIES.

3604 Case I.—Solution of the linear differential equation

/o (D) u-f, (D) e^' u = or f, {.vtQ u-f, {.vcQ .v^ u = 0,

in which fo{D), fi{D) are polynomial expressions of the form

ao+ chD-\-cuD\.:-\-a,D'^ and f,{D) = {D-a){D-h){D-c) ....

3605 Let </>(!))=/, (D)-f-/o(D), and let

3606 ^ («) = 1 + <^ (rt + r) X'+ <!> {a+ 27-) <p{a+ r) x'^

-{-<p (rt + 3r) <p {a+ 2r) cp {a+ r) x^''-{-&c.

Then the solution will be

3607 u = A.v'<P{a)+B.v'^{b)+ av'^ic)+ &c.

Proof.—Operating with f~^ (D) and writing p for ^ (D) e''",

u -pu = f-' (D) = Ae"' + Be''' + &c. (3518)

Therefore, by (3515), « = (l-p)"' (Ae''' + Be'"+ ..,)

= (l+P + p'+...)AG"' + (l+p-^p'+...)Be'' + &c.

Now in each terra substitute for p" the value in (3491), and remove D by

formula (3474).

Case II.—Solution of

3608 MD) u+MD) e'u+MD) e~'u ... +/,(D) c^^'u =

where A(D) = {D-ct){D-h){D-c) ...

Let ^ (a) := 1 + F, (a + l) x-\-F^ {a+ 2) x'+ Slc,

where the coefficients F^{a-{-l) or v^, i^2(«+ 2) or v^, &c. are

determined in succession by the formula

3609 /o (m) v,„+f, (m) r„,_: . . . +/. (m) i'„,_, = and v, = 1

The solution will then bo expressed by

3610 u = ^.r«*(a)+ /^.f'*(«')-f CV*(c)+ &c.

Proof.—From (1)

«= {l + 0.(/J)e"...+0,(D)e'-}-7o-'(^)-O (3),

where l'r(D) = fr{D) ---fo{D).

Hero fo-'(r))0 = {(D-a)(D-h) ...}-' = Ae"" + Be^' + . . . (3518);

and {l + ^,(D)e"..,+./.„(D)e-j-' = l + F,(D)e« + i^,(X»)e^^+...
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To determine F^, F^, &c., operate upon each side with {l+0 (D) e' + ctc.},

and equate coefficients of powers of e ; thus formula. (2) is obtained. (3)

now becomes

u= {l + F,(D)e'+ F,(D)e''+...}(Ae'"^+Be"^+...) (4).

Multiply out; apply (3-i74), and put x for e".

3611 Ex.

:

xht2x—(a+ h— l) xio^+ahio— qxhi = 0,

or, by (3489), {B-a){B-h) ti-qe^'u = 0.

Here f,(D) = (D-a)(D-b), A (D) = 0, f,(D)=-q.

Therefore (2) becomes (m—a)(m—b) v,„ = qVin-2,

therefore F^, F^, &c. vanish, and ^o («) = 1»

F,(a + 2) = qFg (g) _ q

(a + 2-a)(a + 2-Z>) 2(a+ 2-5)'

F,^a+ ^) = --^M^
(a+4-a)(a+ 4-6) 4.2 (a+ 4-&)(a + 2-Z>)

Therefore ^ (a) = 1 +
qr -.2,„4

2(a+ 6-2) 4.2(a-6 + 4)(a-6 + 2)

Similarly we find F^(h-\-2), F^{h + 2), &c., and thence ^(Z^); and, sub-

stituting in (3610), we have

_ A a
I

^?-^"''
I

^^'^°''
Iu- ^-^ +2(a4-6-2)"^4.2(a-6 + 4)(a-i + 2) '"

^ ^2(6-a+ 2)^4.2(6-a + 4)(6-a + 2)

3612 The solution is arrived at more quickly by formula (3607). We

have {!>) — ±
(D-aXB-hy

<^(a+ 4) = -

producing the same series by the value of * (a). Similarly with $ (6),

(»+2) = 20^^^' *(''+ *) = 4-(^;^^' *=

3613 When /o(-D) lias r factors each =: B—a, the corres-

ponding part of the value of u in equation (4) will produce

3614 ^o+"4,log.^^+^2(log.^f ... +^._x(logcr)-S

where the coefficients A^, A-^, ... are each of the form

3615 But if any one of the quantities F, (a+ r) = (3608),

then Gr = also.
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Proof.—/"' (D) now contains a term of the form

e''"(co+Ci0...+c,e'-O = t^'v, say.

The corresponding part of ii in (4) is

{l + ^i(D)e''+...} e'"'v

= [e'''+ e^''*'^'F,(D+ a+ l)+c"''"'F,{D+ a+ 2) + ...]v by (3475).

Expand each function F by Taylor's theorem in powers of D, operate upon v,

and arrange the result according to powers of 0.

In practice, proceed as in the following example.

3616 Ex. : a;u2;,-{-u^+cf^u = 0.

Multiplying by z and changing by (3489), this becomes

DV+ s'e'"u = 0. I>-u = gives u = A + Bd.

Substitute this value and operate with I), considering A and B as variables,

and equate to zero the coefficients of the powers of ; thus

B'A+ q'e^'A +WB = 0, B'B+ q'e'^B = 0.

Then change D into m, and e'^J. into a„_r, to obtain the relations

m^a„,-^q^a^.i+2'mb^ = ; m''b„+ q^b^.^ = 0,

which determine the constants successively in terms of a^ and l^ (which are

arbitrary) in the equation

u = ao+ aiX^+ atX*+ ...+\ogx (bQ+ b2x''+ h^x*+ ...),

which thus becomes the solution sought. [J5ooZe, Biff. Eq., p. 439.

SOLUTION BY DEFINITE INTEGRALS.

3617 La2)lace^s method.—The solution of the equation

^(^((/,)w+^(c/,)i. = (1)

is u=C^{e'''^S'^'\cf>t)-'}dt (2),

the limits being determined by

/'*i«^'=0 (3).

Proof.—Assume t* = e e'^Tdf, and substitute in (1), putting f (cZ,) c''

= ^(0e^' (3474), thus

{xe^'f (0 Tdt+
[
c"xP (0 Tdt = 0.

• This mothod of solution is meruly indicated here, and the reader is referred to Boole's

jD//. Hq., Ch. xviii., for a comploto investigation.
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Integrating the first term by parts, this becomes

e'^cp (0 r-je-' [cZ, [<|>(t)T}-^p (t) T^t^O (4),

an equation which is satisfied by equating each term to zero. The second
term thus produces a value of T by integration by (3209), and this value
substituted in the first term, and in the value of u, g-ives the results (3)
and (2).

3618 Ex. (1): a^u,:,+au^'-q\vu=0* (4).

Here <}> (4) = c^a,— j^ ;// (d^) - ad^, <p (t) = f^-q", ;// (0 = at. Hence
(2) and (8) become

u = G{e''(f-q')^''dt; e''' (t'- q')^= 0;

a being positive, the limits are t = Joq, and, putting t = qcos d, we find

u=z C
I

V"'^sin"-'etZ0 (5).

3619 The solution in series by (3608) is as follows. Equations (1) and
(2) of that article are in this case

D(D+a—1)m— gV^M = and m (m+ a— l)vn—q^Vn-2 = 0.

Thus, a in (3608) =0, and I = 1-a. Therefore (3610) becomes

" = ^{^+2^) + 2.4(a+ li(a+ 3)
+^^-

^^-^-1^+2|g^ + 2.4(3-ai(5-.)
-^^-} ^'^'

Both series are convergent by (239 ii.).

The results deduced by Boole are these

—

3620 (5) is equivalent to the particular integral represented by the first

series of (6).

3621 A second particular integral, by assuming u = e'^'^'^t;, is found to

be, when 2— a is positive,

u = C^x'-"
I

e'^^'^sin'-^flcZfl (7).
Jo

3622 When a lies between and 2, the complete integral is

tt= (7ijV^«"'«sin"-^0(Z9+C2a;^"'[V*'='"«sin^-"^(^6l (8).

* The method by definite integrals is elucidated by Boole chiefly in the solution of this
important equation.
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3623 But, if a = l, the solution becomes

u= fV*'°«« {A + Blog(xsm''d)] dO (9).

3624 If a does not lie between and 2, tlieu, if a be negative, put

a = a—2n, and replace the fix'st term of (8) by

(7, (xd,+ a-l)(ixd,+ a-S) ... (xd,+ a-27i+ l) [V"^^sin<^'-ic^0 ... (10),

the transformation being eflFected by (3580).

3625 And if a be positive and > 2, put u = e^'^-''''''v = x'^'''v. This con-

verts a into 2— a, a negative quantity, and the case is reduced to the last

one.

3626 Ex. (2).—To solve by tliis metliod tlie P. D. equation

ihx+i(2y+U2z= (1)

wlien r = \/{x'^+ i/)'

Eliminating x and y, (1) becomes

rU2r+ l('r+ '>'^''2z = (2).

Now the solution of this equation is number (9) of Example (1), if w^e

change x into r, q into id^, and A and B into arbitrary functions of z. We
thus obtain

n= [V<=°^^^'^={./)(2) + ;//(2)log(rsiu=e)} dd (3),

or, by (3492),

M= ^j j^ + tVcoseJ fZ9+ ;p(2 4-tVcos0) log(rBin-^) c?^ (4).

See (3551) for another solution.

3627 If « be the potential of an attracting mass at an external point,

and if it, = F {z) when r = ; then, since log r = oo
, ^ (z) must vanish

;

therefore F(c) = <\, (s) dd = tt^ (z).

Hence (4) reduces to « = — I JT" [ -.fiV cos Q \ dO.

ParsevaVs Theorem.

3628 If, for all values of n,

and A'-\-B'ii-^^G'u-^^ ... = ^p{u) (1),
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then

AA'+ BB + ... = L^^^[<l> (e^-^) tA (e'-0+ <^ (e'^ 4 (e"''^)] dO.

Proof.—Form the product of equations (1), and in it put u = e'" and e''"

separately, and add the results. Multiply by dd, integrate from to tt, and
divide by 27r.

P. D. EQUATIONS WITH MORE THAN TWO
INDEPENDENT VARIABLES.

3629 By means of Fourier's theorem (2742), the sohition

of the equation

may be deduced by a general method in the form

ti = (1+ f/,) (((((( e'^^'-'^^^'^
xjj {a, b, c) dadbdcdXdiidp,

the limits of each integration being — oo to go , and the func-

tion ^ being arbitrary and different in the two terms arising

from the operator {l-\-df).

Boole, Ch. xviii., and more fully in Cauchy's Exercice di'Anahjse MathS'

matique, Tom. I., pp. 53 et 178.

3630 Poisson's solution of the same equation in the form of

a double integral is

7i=(l + dt)\ I ^sin.^4' O'^ + ^^'^siulsinT?, ?/ + /iLsin^cos /?, z + ht coa ^) d^dr/

with the same latitude in the interpretation of xp.

[Gregory's Examjyles, p. 504.

DIFFERENTIAL RESOLVENTS OF ALGEBRAIC
EQUATIONS.

3631 Theoeem I. (Boole).—''If y^, y^ .-.Vn are the n roots

of the equation

y^-air'-^l = () (1),

and if the m^^ power of any one of these roots be represented
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by u, and if a = g\ then u as a function of B satisfies the

differential equation

„-(!izix)+i!i-iy"-'Y^_»_i)rz)<»)-i-.e-„ = o,
\ n n / \n n / •- J

and the complete integral of the same will be

3632 " Cor. I.—If m=-l and if n be > 2, the differential

equation

/)(»-.) „_i (!i^ i>-± _iy""'e.»„ =
n \ n n I

has for its general integral

y iV ••• Vn-i being any n— \ roots of (1).

" If be changed into —0, and therefore D into — D, the

above results are modified as follows :

—

3633 " CoE. II.—The differential equation

has for its complete integral

u = C,y'^-^ C^yl . . . + C^yZ,

Vii 2/2 ... Vn being the roots of the equation

ay'-?/"-^+ a = (2).

3634 " CoK. Ill,—The differential equation

„-„(/>-2).»-..[(!i^i>+±)'"-"]-V«„ = 0,

supposing 7i > 2 has for its com})lete integral

2/i>?/2 ••• 2/n-i being any n—\ roots of (2),
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" Theorem 11. {Ilarley).—
3635 " The differential equation

^ -"^ \ n n I \n n I

is satisfied by the ??i^'' power of any root of the equation

if—xif-'^-a = 0,

u beino; considered as a function of x.

3636 " Cor.—The differential equation

is satisfied by the Wi^""^ power of any root of the equation

?/'*— ////"-'+ («— !) X = 0."

[Boole, Biff. Eq., Sup. 191—199.

3637 See also Boole, Phil. Trans., 1864; Harley, Froc. of the Lit. and

Phil. Soc. of Manchester, Vol.11.; Bawson, Proc. of the Bond. Math. Sac,

Vol. 9.

4 A



CALCULUS OF FINITE
DIFFERENCES.

INTRODUCTION.

3701 III this branch of pure mathematics a fuuction (/> (,')

is denoted by %., and (j){x-\-h) consequently by u_^+,,. The
increment h is commonly unity . If Ax denotes the increment

h, and A^^^. the consequent increase in the value of ?;^.5 we have

3702 A«., = «,+^,,-w,,.

3703 When Ax diminishes without limit, the value of

Ai/,
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3708 Hence the 71th. difference of a rational integral func-

tion of tlie nth deo'ree is constant.

3709 So also A".r" = 1.2.3...7i.

3710 Notation.—Factorial terms are denoted as follows :

—

3711 ^ =u\r-l

3712 Thus x{x-l) ... {x-m+ l) = x^'-\

3713 1 -...i-m)

Hence \m, ml, and m^'"^ are equivalent symbols.

3714 According to (2452), x''"' would here be denoted by a;'.'"'. The
suffix, however, being omitted, it may be understood that the common differ-

ence of the factors is always —1.

and, if m<Cn, A^i-^'"^ = 0, since Ac = if c = constant.

3718 A.v^-'") = -ma.^^-"-'\ A\v^->"^ = (-m)^"^^^-'"-"^

3720 AmI;"^ = {u..i-u.-,n^^) "i'"-^^

3722 Ex.:

A(ax + by'"'> = am(ax + by"'-^\ ^(ax + hy""> = -am (ax + hy-'"-'^\

3724 Alogw,=:logh+ ^^(, Alog<-i) = logiiH±2_.

3726 Art-^- = {a— 1) «'', A'Vr"-'' = {a"'— iya"'-'\

owoo AM^iu/
I 7\ /o • «\"siii ^ , / ,

n(a-\-'rr))
3728 A" («ct"+^) = 2sm—

-

^ rtci'+64- —^^-r^—^f.**^^ cos^ ' ^ V 2/ cos I

'

2 )

Pr.oOF.— A sin (art; + ?>) = sin (ux + a + b) — sin (ax+ b)

= 2 sm ~ sm \ax-\-b^ —
j

.

That is, A is equivalent to adding ——— to the angle and multiplying the
2

sine by 2 sin -.
^

2



548 CALCULUS OF FINITE DIFFERENCES.

3729 Conversely, tlie same formula holds if tlie sign of n
be changed throughout.

EXPANSION BY FACTORIALS.

3730 If A"'/'(0) denote the value of AX-v) when x= 0,

then (^ GO = <j> (0)+ A(/) (0) .r+ ^^^ .v^'^+^^^ ^'^)+ &c.

3731 If AcV=/^ instead of unity, the same expansion holds

good if for A"<^(0) we write (A"<^(<(')-r/^")^^o; that is, making
x= after reduction.

Proof.—Assume (a?) = aQ+ a^x+a^x^-^+ a^x'^'-^&c.

Compute A0 (a;), A^^ (a')? &c., and put x=:0 to determine fto, ai, aj, &c.

GENERATING FUNCTIONS.

3732 If '?f.r^'" he the general term in the expansion of (p{t),

then (i)(t) is called the generating function of n^. or (p{t) = Gi',^.

Ex.: 0—t)-'=G(x + l), for a!+ l is tbe coefficient of t'' in the

expansion.

3733 Gu., = <i>{t), G».,«=M), ... Gh,.,„ = M.

3734 GA»,, = (l-l)<^W, ... GA"»,, = (l-l)V(0.

Proof.— G^u^= Gu^^^—Qu^, &c.

THE OPERATIONS 27, A, AND d^.

3735 -E* denotes the operation of increasing k by unity,

Eu^, = H.,+1 = jf.,+Ait., = (1 +A) t/..,.

The symbols E' and A both follow the laws of distribution,

commutation, and re;petition (1488-90).

3736 E^ 1+A = c-^- or e^.*

Proof.— Eu^ = a^.x = u^+ (lv^ix+h^2x^''^+ :^-^<-^ix^'x+ &'C-
2.3

= (l + '7,,+H.,+ ^jh.+ &o.) u, = e"'u,.

By (1520), A.r being unity.

* The letter d is reserved as a symbol of differentiation only, and the suffix attached to

it indicates the independent variable. Sec (1187).
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3737 Hence A = 6'^^! and D = \ogE.

3739 Consistently with (3735) E"^ denotes the diminisliing

X by unity ; thus E~'^n,. = u^^^i.

For Eti^.i = u^, .". w^.i = E'^tCj;.

Ux+n "2^'^^ terms o/u^ and successive differences.

3740 «^.+« = u,-\-n^u,+ C (»., 2) A2?f,+C (w, 3) A%,+&c.

Proof.— (i.) By induction, or (ii.) by generating functions, or (iii.) by
the symbolic law :

(ii.) Gu,,, = (i)'V (0 = [ 1+ (
j -i)

I
'V(o-

Expand by the Binomial theorem, and ajiply (3734).

(iii.) «,,„ = E««^=(1 + A)«tv

Apply the laws in (3735) by expanding the binomial and distributing the

operation upon %.

Conversely to express /y'u^. in terms of u^,,, 7?.,+i, v^^.+c,, &c.

3741 A"Jf^. = tf,^^^^--nff,,+„_!+ C (71, 2) w.,+«_2 . . . (-1)" u,.

Proof.— AX- = (^-l)""a; (3736).

Expand, and apply (3735) as before. Putting .»; = 0, we also have

3742 AX = ^K-nu„-,+ C,,,u,_, ... (-1)" ii,.

3743 A"cv"^ = (,t'+?j)'"-« (.v+n-l)'"

-\-C (71,2) {.v-\-n-2y"-&c.

3744 A'^O'" = M™-n (7i-l)"^+C(w, 2)(w-2)'«

-C{n,3){n-3y"-^&G.

3745 Ex. : By (3717) A"0" = n ! Hence a proof of theorem (285) is

obtained.

3746 A'%,v,,= {EE'^iyu,v„
where E operates only upon if^ and E' only upon i\^,.

Proof. A?(,_,,v^ = Uj, + i
i\, , i

— u^^ i\ = Euj. . E'v^— n^r^ = (EE'— 1 ) u^ v^..

ApiMcations of (3746).

3747 Ex. (1): ^''u,v,= {~iy{\-EE'Yu,v,.
Expand the binomial, and operate upon tlie subjects u-^, v^ ; thus
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374:9 Kx. (2) : To expand cfsmx by successive differences of sin a-.

A" a"" sin a) = |
_E? (1 + A') — 1 1

"
a"" sin a; =

|
^ + ^^' } ""^ sin x

=
{
A" + «A"-'J?A'+(70^2) A"--E-A'H&c.

}
a^sina;

= A" a\ sin .c + /iA"-^ a^ '^ A sin a? + C (ii, 2) A''--a^"- A^ sina;+ &c.

= n"'! (a— l)''sina' + ?i(a— l)"''«Asina)+6'(ii, 2)(a— l)"'-o^A^sina! + &c.
|

,

by (3727), wliile A'' sin « is known from (3728).

3750 Ex. (3) : To expand A"Mj,?;j, in differences of u^ and v^ alone : put
E = l + ^, E'=l-^^' in (3746), thus

A«M^'y^= (A + A'+ AA')"m^.v^,

wliicli must be expanded.

A"Ux in differential coefficients of \\.

3751 A«w., = C%+^i^/r'+^2C'?r,-+&c.
Proof.— A"»^. = (e"-" — 1)"?^,. (3737).

Expand by (150) and (125) as if cZ^ were a quantitative symbol. See also

(3701).

-r-Yi i^'>^ successive differences of u.

3752 g={log(l+A)}"«,

The expansion by (155) and (125) will present a series of

ascending differences of u.

Pkoof.— e""=:l+A, .-. J, = log(l + A).

3753 Ex.:if% = i, ^ = A^^

—

2^'Y~~¥'^^'''

If G be a constant,

3754 i>{n)C=cl>{A) €=<!>({))€ and <PiE)C = <t>{l)C,

Since every term of (1>(D), or of (j) (A) C, operating iipon C, produces 0;
and every term of (E) operating upon produces G.

IIERSCHEL'S THEOREM.

3757 <p{c') = <l>{E)c^^-^

3758 =ci>0)+ct>(i£)i)j-j-ci>{E)iy^.^+&c.
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Proof.—Let ^ (e^ = A^^-A^e* ... +^„e"*

= A,e'-'+ A,Ee'-' ... +AnE"e'-^ = (A,+A,E ... +A„E„) e"-'

= <^(iJ) e°-^ = (E) { 1 + O.f + j*^ +&C.
}

,

and 0(i;)l = 0(l) by (3756).

A THEOREM CONJUGATE TO MACLAURIN'S (1507).

3759 <l>{f) = <l>{D)e'-^

3760 =^{0)+<l>{(QO.t+<j>{(h)0\^-^&G.

PiiooF.— <p{t)=<l> (log eO = ^ (log i') e°' (3757)

= </.(D)e°-' (3738) = ^ (-D) (1 + O./+ +&c.|,

and ,/;(D)l:=</)(0) (3754).

n being a positive integer,

3761

" ~
^At'"

"^
1 . 2 . . . (yi+ 1) f/a'"+^ "^ 1.2... («-}-2) ^/ci""^-^

"^

Proof.—By (3758), putting (e') = (e'-l)",

(e'-l)"=(i;-l)"0./+(:EJ-l)"0-.-^'-+&c. =:A"0./ + A"0^^ + &c.

Put t — d^, and employ (3736) and (3737).

INTERPOLATION.

Aiyproximate value of u^ in terms of n particidar equi'

distant values.

3762 If u^ is an integral algebraic function of the degree

n—1, ^''u,. vanishes, and therefore by making x = 0, and

writing x for n in (3740),

3763 "... =^ u,-]-.rAu,-\-C,^,A'u, ... +C,,,_iA'-^w,.

This is formula (265). The given values are u^,, Aii^, A^ii^,

&c., corresponding to «, h, c, ...

3764 For an application of the formula to the problem of interpolation,

see (267), in whicli example x = 1-54 and u^ = log 72-54.
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3765 When tlie term to be interpolated is one of a set of

equidistant terms, employ (3741). A"?(^; = 0, as in (37G2) ;

tliercforc

3766 '^-""«-i+^.,2*^.-2-C\3'^.-3 ... + (-1)"'^ = 0.

3767 Ex.: From siuO, sin SO'', sin 45°, and sin 60', to deduce the value

of sine \h\

The formula gives sinO— 4 sin 15°+ 6 sin 30°—4 sin 45" + sin GO^ = 0,

or -4sinl5°+3-2y2 + iN/3 = 0,

from which sin 15" = 1(6-4/2 + 73) = '2594.

The true value is "2588
; the error "0006.

LAGRANGE'S INTERPOLATION FORxMULA.

3768 Let ft, b, c, ...h be r^ values of x, not equidistant, for

wliicli the values of ?/.^, are known ; then generally

3769

"- ^^'-(a-b){a-c) ... {a-k)'^^^'lb-a)(b-c) ... [b-k)

'{k-a){k-b){k-c)..:

Proof.—Assume i(,„., = A (x — h)(x— c)... (x— Ji)

+ B(x--a){x-c) ... (x-k) + C(x-a)(x-b)(x-il) ... (x-Jc) + &c.,

and determine A, B, C, &c. by making x = a, h, c, &c., in turn.

If the values of a,b,c, ... Jc are 0,1,2, ... n—l, (3769)

reduces to

3770 u - u
^-Gr-l)...(.r~/i+2)

3770 K^ - */«-!
1.2.8... Oi~l)

_ ,rOr-l)...(.r->i+a)Gr-n+l)
1.1.2.3... (;i-2)

.,, a>(,r-l) (.r-»+4)(.t-»+ 2)(.r-;^ +l)
,

+ "«-^
2.1.1.2.3...(>,^

'^^•' ""'

3771
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MECHANICAL QUADRATURE.

The area of a curve whose equation is y = z/.,. in terms of

n-\-l equidistant ordinates u,Uy, ... n,^, is approximately

3772 nu+!^..+{l^-f)^+il^-.,+,.^^

\6 4 ,3 / o

!

+iy
-— +1^'^—i- +-3- -^^N iry-

Proof.—The area is = I u^-dx. Take the vakic of n.^- in terms of
Jo

i6(„ 16, ... ?«„_! from (376o) and integrate.

3773 When n = 2, {\ijLv = ^^-^^[h+ik

Jo t>

3775 « = 4, f»,fe = l4(«+»,)+64.(».+-0+2t»,_

Jo 4o

3776

n = 6, ) f^,,^/cr = ^ {u-\- J^2+ "i+ '^u+') ('^1+ ''5) +6/rjj

.

Jo iU

In the last formula, which is due to Mr. Weddle, the co-

efficient of A^u is taken as -^-o
instead of 1-4-0, its true value.

These results are obtained from (3772) by substituting for

each A its value from (3742).

COTES'S AND GAUSS'S FORMULA. •

3777 These give the area of the curve directly in terms of

fixed abscissae.

They are obtained by integrating Lagrange's value of //.,.

(3769-71), and arc fully discussed in articles (2995-7).

4 B
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LAPLACE'S FORMULA.

3778 ^"ujLv =
l^^-t-

wi+wo ••• + 1^

the coefficients being those in the expansion of

^ {log (1 + 0}"-

•^1^2 12 24 72U 5 "^

Hence, putting ?fj = A^y^.,

f' , Mn + «i A- Wo ,

Adrift o^

and so on ; then add together the n equations.

3779 Formula (3778) contains A?f,„ ^\„ &c., which cannot

be found from 7(o5 ''i ••• ^hr

The following formula does not involve differences higher

than A?/.„_i.

3780 ^\Ar = '-^^-ui+u, ... +1^

-^ (Af/,_i- A^^,)-^ (A-?/„_i-A-/^,)-&c.

Proof.—In the proof of (3778), change ,.,
,

,. into E —--

—

t^jttk'
log(l + A) log(l— Aii )

and put E'hv_, = iv^.i (3739) after expansion, and proceed as before.

SUMMATION OF SERIES.

3781 Definition: ^m., = //„4-Mv,+i+'^.+2- •• + "..•-!•

3782 Theorem : 2//, = A-^m,+ C,

where G is constant for all the assigned values of x.
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Proof.— Let <l>(x) he such that Af (x) = ^i^, then (p (x) = A'^u^,

therefore «„ = (a + l)—(j) (a). Write thus, and add together the values of

^*a) «a+i> ••• "x-i- Therefore, by (3781), S?*^, = («)— <^ («) = ^"'"o-— ?> (")>

and ^ (o) is constant with respect to x.

Taken between the limits x = a, x = h— l, we have the

notation,

3783 ^iifl or tl-\,. = tih-tu^, = ^-'ih-^-'u„.

Functions integrable in finite terms :

3784 Class I. ^.r(-)=lL_.+ C\m+1

3785
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3791 ir t;]iis function bo presented as «,., and ^l'^ u_, be required, we
first find 71^= 1, ?t,= 5, «.,= 15, &c. ; then the differences A?*,,, A^«u, ... A*«^ =
1, 4, G, 4, 1, and then, by (3780), the required sum, as in the example re-

ferred to.

3792 For another example, let S".7;' = 1 + 2^.. +n^ be required.

Here ^x' = 3x' + 5x + l, A\c^ = 6x + 6, AV = 6,

therefore AO^ = 1, ^'0' = 6, A'O' = 6 (1),

x^ may now be expressed in factorials, and the summation may then bo

effected by (3784). First, by (3730),

x^zzz x + Sx(x~l)+x(x-l)(x-2);
therefore, by (3784), SlV = 2 (n+ lf (3783),

n 3 _ n(n + l) S(n + l)n(n-l) (n+ l) n (n-l)(n-2) _ n\n + lf'^~2'^
3 4

-4"
3793 Otherwise, by (3789), taking a = 0, we have

7(^ = x^, u„ = 0, A?<„ = 1, A-?t,| = 6, A'«u = 6, as above.

Therefore
y,-i ^ n(n-l) 6n(n- l) (n-2) 6n (n-l)(n-2)(n-S) _ n'jn-lf
"' '''

2 "•" 1.2.3 1.2.3.4 4 '

therefore, changing n into ?i+ l, S"'?fjr = —

—

——

.

4

3794 Class IV.—When the general term of a series is a

rational fraction of the form

—' !—
, where 7/ ^.

= ax-\-b,

and the degree of the numerator is not higher than cc+m— 2
;

resolve the numerator into

by (3730). The fraction then separates into a series of frac-

tions with constant numerators which can be summed by
(3787).

3795 If the factors u.^.... ?/.,.+,„ are not consecutive, introduce

the missing ones in the denominator and numerator, and then
resolve the fraction as in the foregoing rule.

3796 Fx. : To sum the series --— + -— + - - + to n terms.
1.4 2.5 3.0
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Tbe ..^ncrna is —^— = 0^+^)0^ + ^)

n (n+ l)+2n+ 2 _ 1
^

«(n + l)(%+ 2)(n+ 3) 0i+ 2)(« + 3) (ri+ l)(u+ 2)(« + 3)

2

The sum of w terms is, therefore, by the rule (271),

/!_ J_Ulf^ ^ U^f-^ ^

\3 «+ 3y 2 \2 3 (w+ 2)(«+ 3)/ 3 \2.3 (ri + l)(^j+2)(7i+ 3)

^ 11 ^7t?+ 12n+ ll
~ 18 3Oi+ l)(n + 2)0i+ 3)"

If the form in (3787) is used, the total constant part G is determined finally

by making n = 0, which gives G =—.

3797 Theorem. f{E) a^j> {x) = a^f{aE) <i>
{x),

f being an algebraic function.

Proof.—Let a = e'", then the left

= f{E)e'''^<l>{x)=f{e")e'^^^<p{_x) (3736) = e'»V(e'' "")«/> C^O (3475)

^a^f{aE)<p{i,).

Class V.—If <p (x) be a rational integral function,

3798

The upper limit is understood to be x—1, and a constant is to

be added, (3781-2).

Proof.— Sa^^ (a-) = ^-\i^f(x) = (i;-l)-'a^0 (x) = a^ (aE-l)-'<p (x)

(3797) = a-
{
a (1 + A)-l } "V (x) = j£^l^l+^^y'cp (x).

Then expand the binomial.

2a'''^(x) in successive derivatives of ^(x).

3799 2«-^-<^GiO =^ [ i+^if Oi')+^ <^"Gr)+&c. (

,

w.ere .„ = (S^iyV = (l+^yV.
Proof.—By (3757), \P (e^) = xj^ (E) e"-^; therefore (see last proof)

a^{aE-l)-u\x) (putting ^= e^) = ft^ (aE-l)"' e"-^*^ (a;)
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3800 Ex.: To sum the series 2.1+4.8 + 8.27+ 10.04+ to n terms.

AVo require 2V + 22'.«* = 2^+ 2^ (a;*-2A.«'+ 2-A-.i;''-2'AV)

= 2^-.f* + 2^
{
x^- 2 (3a;'^ + 3.« + 1) + 4 (O.f + 0)- 8 .

}

= 2^-{2.i!»-0.r + 18.T-20}.

3801 If ^~"''.r be known for all integral A^aliies of n, and if

^\. be rational and integral,

Proof. 2«^.t;^. = {EE' -lyUi^v,^ = (A^'+ A')-^ «,,v^ (3740) and (3730).

Expand tbe binomial operator, observing (3738).

3802

Pkoof. ^IX-^x = i^+^^y^^v^, as in (3801),

= A-" v^u^-n (A-"-^E) v^^u^+ (7„,.> (A-«--J5;-) v^Ahi,,-&c.,

producing tbe above by (3735) and (3782).

Observe that, in (3801) and (3802), two foi'ms ai'e obtainable in each case

by expanding the binomial operator from either end of the series.

3803 Ex. : To sum the series sin a + 2" sin2rt + 3^ sin 3a + to a- terms.

The sum is = x' sin ax+ '^x' sin ax. Taking u_^ = sin ax and v^ = x^, we
know A~"sinfta3, by (3729) ; therefore (3801) gives

2a;^ sin ax = (2 sin ^a)~' sin I ax— I (a + tt)
j

(x— 1)"

— (2 sin|n)~-sin
,
(cc— (a + 7r)

j

(2.i!— 3) + (2 sin |a)'^sin | a.«— f (a + 7r)
|

2.

APPEOXIMATE SUMMATION.

3820 The most useful formula is the following

1 (Pif,.
,

1 f/'-'j/'"

Pkoof.— 2vA^ = ((-"-l)-'»^. E.xpand by (l.'')3;t) wiMi D in the place

of a;.
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Ex. 1 : The value of %v^' at (2939) is given at once by the formula.

3821 Ex. 2 : To sum the series 1+ — + —... H approximately,

- +2- = - +C+ loga;-f - -i-, + -l^-&c.
X X x 2x r2x' 120a;*

Put X = 10 to determine the constant ; thus

from which C = "577215, and the required sum is

.577215 +log.+ ^-^-|^ + ^-^,-&c.

3822 Ex.3: i+^ + i^ + i^+&c.,

x^ 2x' 2x^ 2x' 2x' 2x^ 2x"''

' x^ 2 2 4 12 12 20 12'

The convergent part of this series, consisting of the first five terms, is an

approximation to the sum of all the terms.

3823 A much nearer approximation is obtained in this and analogous

cases by starting with the summation formula at a more advanced term.

E.,.: 1+i + i + i+^^^i^

^2035 J^ _L 3^_M.+&e
1728 ^2.5'^ ^2.5^ ^2.5* 2.5«^

^ 2035 111 1

1728 50 250 2500 187500
"^ '''

The converging part now consists of a far greater number of terms than before,

and the convergence at first is much more rapid.

3824 Ex. 4: The series for logr(ie + l) at (2773) can be obtained by
the above formula when x is an integer. For, in that case,

logT (x + 1) = logl + log2 + log3 ... +log.<; = log.u + S logs;,

and (3820) gives the expansion in question, the constant being determined
by making x infinite.

3825 Formula (3820) may also be used to find [ uj.c by the

process of summation, and thus answers the purpose of

Laplace's formula (3778).
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2"Uj in a scries of derivatives of u^.

3826 Lriwma.—

...W+ l){6''-l]-\

Proof.—Put v„ for n-l\ (e/-l)-". Then

Vn.i =—(dt+ n) i\ = {dt + n){dt + n— l) i'„.i.

S%j. may now be developed.

3827 Ex.—To develope 2^*., {Booh, p. 97)

with jLy = 0, and

^..1 = (-l)"A,..i - (2r+ 2) ! = I - I + I +(2.1 + 3.1,-1)

+ 2r{(r+ 2)(r+l)J,.2 + 3 ('•+ !) ^..1 + 2^1, }r.

Therefore, changing t into f?^., we get

2V = |||«.^/.«-|||«.^/.^+j«.c7..-|«.+ ^^'^-&c.

3828 2"Uj m a series of derivatives of Uj_n.

Let 33" cosec'* 3; = 1 — C^'k^ -H O^rc* — &c. , then

iLoole, p. 98.

3829 2

^(0)-^(l)+,^(2)_&c. = iJl-| + ^-&e.(^(0).
By tins formula, a scries of the given type may often be trans-

formed into one much more convergent.

p.ooK.-Tbo loft =^m = 2+^*'(0) = i rTp:*^.
the expansion of which is the series on the right.

3830 -'^-^'

—

^^ s^^^^ '^ ~"
"o^

"*" "^ ~ T "^^^^ •^"Q^i^iiug ^'^c fi^'st six terms,

it becomes ^^ + I - ^ + &c. Takiug (0) = (0 + 7)-\
'

00 7 o

1 1,„ 1(1,1, 2 ^ 2.3 ^oy- Q
+&C. = -

I y + ^-7-3 + ^--^-^g-^ + 8.7.8.9.10+'^'-

The sum after six terms converges rapidly by this formula, and more rapidly

than if the formula had been applied to the scries from its commencement.



PLANE COORDINATE GEOMETRY.

SYSTEMS OF COORDINATES.

CARTESIAN COORDINATES.

4001 In tliis system (Fig. 1)* the position of a point P in a

plane is determined by its distances from two fixed straight

lines OX, OY, called axes of coordinates. These distances

are measnred parallel to the axes. They are the abscissa PM
or ON denoted by x, and the ordinate PN denoted by //. The

axes may be rectangular or oblique. The abscissa ,*' is

reckoned positive or negative according to the position of P
to the right or left of the y axis, and the ordinate // is positive

or negative according as- P lies above or below the x axis

conformably to the rules (607, '8).

4003 These coordinates are called recMngular or ohlique

according as the axes of reference are or are not at right

POLAR COORDINATES.

4003 The polar coordinates of P (Fig. 1) are r, the radius

vector, and 9, the inchnation of r to OX, the initial line,

measured as in Plane Trigonometry (609).

4004 To change rectangular into polar coordinates, employ

the equations ,r = r cos 6, y = r sin 6.

4005 To change polar into rectangular coordinates, employ

r = \/c^+/, e = taii-1 nty

* See the end of the volume.

4
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TRILINEAR COORDINATES.

4006 The trilinear coordinates of a point P (Fig. 2) arc

o, |3, y, its perpendicular distances from three fixed lines which
form the triangle of refeiryiice, ABC, hereafter called the trigon.

These coordinates are always connected by the relation

4007 aa+by8+cy=2,

4008 or a sill A +y8 sin B-\-y sin C = constant,

where a, b, c are the sides of the trigon, and % is twice its

area.

4009 If <'«j y are the Cartesian coordinates of the point

afty, the equations connecting them with the trilinear

coordinates are, by (4094),

a = oV cos a-f // sin a—p^,

fi = ,1' cos )8+// sill ^—pi,

y = OS cos y-\-y sin y—pz-

4010 Here « has two significations. On the left, it is the

length of the perpendicular from the point in question upon
the side AB of the trigon. On the right, it is the inclination

of tliat perpendicular to the x axis of Cartesian coordinates.

Similarly /3 and y.

4011 The angles a, [3, y are connected with the angles

Af B, C by the equations

y—13= IT— A, a—y = 7r^B, a—fi = 'rr-\-C,

only two of which are independent.

4012 7^1, P-i, l>:i
are the perpendiculars from the origin upon

the sides of the triangle ABC.

ARKAL COORDINATES.

If A, B, C (Fig. 2) be the trigon as before, the areal co-

ordinates a', /3', y' of the point F are

4013 a-±-!U!!.' B-^-!l£A y=x=£ii^.
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Tlie equation connecting the coordinates is now

4014 a+/S-fy'-l.

4015 To convert any homogeneous trilinear equation into

the corresponding areal equation.

4016 Substitute aa = 2a', byS = 2y8', Cy = 2y'.

Also any relation between the coefficients /, m, n in the

equation of a right line in trihnears will be adapted to areals

by substituting /a, rii{\ M for /, m, n. Similarly for a, b, c,

f, g, h, in the general equation of a conic (4656), substitute

aa\ bh^, cc^ /be, gca, hah.

In either the trilinear or areal systems, a point is deter-

mined if the ratios only of the coordinates are known.
Thus, if a : (^ : y = P : Q : B, then, with trilinear co-

ordinates,
/>2 P

4017 a = —p:—J— ^; and, with areal, a -^

aP-^hQ+cR' ' ' P+Q-^R

TANGENTIAL COORDINATES.

4019 111 this system the position of a straight line is deter-

mined by coordinates, and the position of a point by an

equation. If /o + )»/3 + y/y z= be the trilinear equation of a

straight line EDF (Fig. 3); then, making a, (5, y constant,

and I, m, n variable, the equation becomes the tangential

equation of the point (a, /3, y) ; whilst /, m,n are the co-

ordinates of some right line passing through that point.

Let X, ^, V (Fig. 3) be the perpendiculars from A, B, G
upon EDF, and let pi, p^, ih be the perpendiculars from A, B,

G upon the opposite sides of the trigon ; then, by (4624), we
have

4020 R\ = l2h, RiM = nip,, Rv = np,,

where B = ^{I^-\-'m^-\-n^— 27nn cos A — 2nl cos B— 2lm cos C).

Hence the equation of the point becomes

4021
V a , /8

, Y ., X sin 6^ . sm 0. . sin 6. ^
X

—

-\-aJ—-\-v^-=0 or X i+/x =+v ^' := 0,

Pi Jh Ih Pi Pi P-

where p, = OA, 6, = ABOG, &g., and 2AJUJG = p,p,^me.
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Eormiila (4021 ) sliows tliat, when tlie perpendiculars X, ^, v

are taken for tlie coordinates of tlie line, the coefficients be-

come the areal coordinates of the point referred to the same
trigon.

4023 Any homogeneous equation in I, m, n as tangential

coordinates is expressed in terms of X, m, v by substituting for

/, m, n, — , — , — respectively. By (4020).

Ih Ih Ih

4024 An equation in X,^t, v of a degree higher than the first

represents a curve such that X, ^tt, v are always the perpen-

diculars upon the tangent. The curve must therefore be the

envelope of the line (X, ^t, v).

TWO-POINT INTERCEPT COORDINATES.

Let X = AD, ^i = BE (Fig. 4) be variable distances from
two fixed points A, B measured along two fixed parallel lines,

then

4025 a\-^rhii-^c = {)

is the equation of a fixed point through which the line DE
always passes. This may easily be proved directly, but we
shall show that it is a particular case of the system of three-

point tangential coordinates.

Let one of the vertices (0) of the trigon in that system be at infinity

(Fig. 3). Then equation (4022) becomes

X sin 0, ,
// sin 0., , . nni:^ • a A

1 -j. ti 1
-I- sin COE sin 6*3 = 0.

Pi P'2

For I' : p3 = sin COE always. Divide by sin COE then X -^ sin COE = AD,
&c., and the equation becomes

5iEii^D+ 515^^1^+ sin ^3 = 0.

Pi P2

The only variables are AD and AE. Calling these X and ^, the equation

may be written n\ + h^-\-c = Q,

the form taken by ^/X+ ?)^/ + c'j' = when v = 00 and c' vanishes.

ONE-POINT INTERCEPT COORDINATES.

4026 Tjct (I, h be the Cartesian coordinates of the point

(Fig. 5) ; and let the reciprocals of the intercepts on the axes
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of any line DOE passing tlirougli he ^ = -j^,, v = -j^.

Then, by (4053),

4027 f^^+h = 1

is the equation of the point 0, the variables being t„ rj.

This is a case of the system of three-point tangential coordinates in which

two of the vertices (B, G) of the trigon are at infinity. Equation (4022)

now becomes ^l?]B-^ + sin BOB sin d,+ sin COE sin 63 = 0,

Pi

sin 0, ,
sin 0.,

,
sin Q^ — r\

-p^^-AD^-lE-^'
which is of the form a^-^-hr] = \.

TANGENTIAL RECTANGULAR COORDINATES.

4028 This name has been given to the system last described

when the two fixed lines are at right angles (Fig. 6).

The coordinates S, r/, which are defined as the reciprocals

of the intercepts of the line they determine, have now also the

following values.

4029 Let X, y be the rectangular coordinates of the pole of

the line in question with respect to a circle whose centre is

the origin and whose radius is h ; then

f=| and , = i,

since x.OM=y.ON= ¥; for M, N are the poles of y = 0,

x = 0.

4030 The equation of a point P on NM whose rectangular

coordinates are OB = a, OS = h, is

a^^br, = l, by (4053),

this equation being satisfied by the coordinates of all lines

passing through that point.

4031 In all these systems an equation of a higher degree

in K, V represents a curve the coordinates of whose tangents

satisfy the equation.



ANALYTICAL CONICS
IN

CARTESIAN COORDINATES.

LENGTHS AND AREAS.

Coordinates of the point dividing in tlie ratio n : n the

right line which joins the two points ;/'//, x ij'

.

4032 f^'-i^^^i^. r, = ^UL±2LJL.
n-\-n n-\-n

Proof.— (Fig. 7.) I = x +AG = x-\ '—, (.«'—.<;). Similavly for ?/.

4033 If« = »', f='^, v =^-

4034 Lengtli of the line joining the points xi/, x'y'

= y(,r-y)^+(//-//7.

Tlie same with oblicjuo axes

4035 V(^v-^v'y-{-{t/-t/Y-\-2(.v-.v')[f/-i/)i'OS<o.

Proof.—By (Fig. 7), Euc. I. 47, and (702).

Area J. of a triangle in terms of the coordinates of its

angular points xYi/i, x.^y.,, r^y/g.

4036 A = I {.*'i//2-.t\.//i + .*"2;/3-'^V/2+ '^'3.'A— '^'i.^/^}-

PudOF.—(Fig. H.) By considering the tliree trapezoids formed by i/,, y^, y^

and the sides of the triangle, we have

A = i
(//, +://,)(.r,-.'',) + i (!/o+ f/3 )

Of, -''•:) -^ (.'/» + .'/,)0''3--«i)-
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Area of the triangle contained by the \ axis and the lines

1/
= miX-{-Ci, y = m.2,x+ Co, (4052)

4037 A = J^^ill^ = .Jjlfllf'j^y («5G)

Proof.—(Fig. 9.) Area = | (.'^'i
— ^dl^y a.nd p is found from

pm^—pm^ = Ci— Co. The sign of the area is not regarded.

Cob.—Area of the triangle contained by the lines

4038 4 = i|(£i=£5)!+(£j=^' + fe=^
(. }}ii—m

4039 _ { Ci (ma— mg)

+

c-i (^%— ^^^1)+ ^' i (>>< 1
— m-^ ]

'

2 (mi— m.y) {m.2— nis) {ni-^— nii)

4040 = iBi^--B,C,Y ^^"*"
2B,B, {A,B,-A,B,)

^

ACiA'i — Square of Determinant (^4iR,ty
^"^^ ~ 2{A,B,-A,B,){A,B,-A,B.^{A,B-A,B,y

Pkoof.—(Fig. 10.) ABC = AEF+CDE-BED. Employ (4087).

_____^ E

Area of Polygon of n sides.

First in terms of the coordinates of the angidar points

4042 2A = (criy.,---.r.,^?/0 + (<^'2y3-^%?A')+ --. + G*^.yi-^^'i?/J

Secondly, when the equations to the sides are given, as in

(4037).

4043 2A=i^l^^^i^^^^+...+i^^^^.

4044 Also three values similar to (4039, '40, '41).

Proof.—By (4367), adding the component triangles.

4047 Each expression for the area of a triangle or polygon

will be adapted to oblique axes by multiplying by sin w.
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TEANSFORMATION OF COORDINATES.

4048 To transform tlic origin to tlie point Id-

Put .i> = .i'+A, y = ij'-^k.

To transform to rectangular axes inclined at an angle B

to the original axes.

4049 Put

.r = .!>' Qo^e-y' siii^, //
= //' cos^+.i' siii^. (Fig. 11.)

Pkoof.—Consider a;' as cos0 and t/' as sin^^. Then .<; = cos (^ -|- 9) and

i/ = sm(./. + ^) (627, '9).

Generally (Fig. 12), let w be the angle between tlie original

axes ; and let the new axes of x and //
make angles a and /3

respectively ^vith the old axis of x.

4050 Put .r siu o) = x' sin (w— a) +//' sin (w— ^)

and y sin w = .v' sin a-\-y' sin ^.

Proof.— (Fig. !-•) The coordinates of F referred to the old axes being

OG = X, PC = y, and referred to the new axes, OM = x, I'M = y', we have,

by projecting OCP and 02IP at light angles first to CP and then to OC,

CD = MF- 31E, FN = ML + PK,
which are equivalent to the above equations.

To change Rectangular coordinates into Polar, hk being

the pole 0, a the inclination of the initial line to tlie x axis

(Fig. lo), and xy the point P.

4051 Put .V = A+ r cos (^+a), // = k+r sin (^+a).

THE RIGHT LINE.

EQUATIONS OF THE RIGHT LINE.

4052 yy=->/M+c (1),

4053 - +f =1 (2),
(I
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4054 A' COS a-\-i/ sin a = j) (3).

4055 Aa'-\-Btj-\-C = (4).

Peoof.— (Fig. 14.) Let AB be the lino. Take any point P upon it,

coordinates OiV = .7;, PN = y. Tlien, in (1),' m = tanO, where 6 = BAX,
the inclination to the X axis ; therefoi^e mx = — OG, and c is the intercept

OB. In (2), a, h are the intercepts OA, OB. In (3), p = OS, the per-

pendicular from upon the line ; a = Z AOS.

p = OB+LP = X cos a+ y sin a

.

(4) is the general equation.

4056
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To oblique axes :

4072 tau 4> = , , / ,

—
7v^ j 7

Proof.—As in the last, employing (40GG).

Equation of a line passing through x'y':

4073 y-y = »^ {^^ -^^'1> ^^'s- 8)

4074 or y— tn.v = y'— wicv'

,

4075 or .4.2+% = A.v'+ By'.

Proof.—From Figure (13), m being = tan 0.

Condition of parallelism of two lines :

4076 m = 7)i', or AB=AB.
Hence the equations differ by a constant.

Condition of perpendicularity :

4078 mm=~l or AA^BB = {i. (4070)

The same to oblique axes :

4080 1+ {m-\-m') cos 6>4-mm' = 0. (4072)

4081 or AA -^BB'= {AB'-^rA'B) cos co,

Af\ork ' l+ «<eoscu
4082 or m = '—

.

Wl+COSW

A line passing through the points x^y^, avyo '

4083 iaii = Ilii:]li = ,n.

Proof.— (Fig. IG.) By the simihir right-angled triangles PCA, ABB.

4084 Or ,y = ,,M4-'M2ZJMj,

4085 or (^v-^r,)[ii~!r;) = {.v-.v,){y-n,).

Proof.—This equation represents a straight line because it is of the first

degree; and the coordinates of each of the given points satisfy the equation.
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A line passing tlirougli x'y and perpendicular to a given

line (m) :

4086 y-y = - ^i^-^)' (4073, '78)

m
4087 or Bx—Ay= Bx —Ay

The two lines passing through xy' and making an angle

j3 (= tan'M^^o) with a given line {m^)

:

4088 ?rz]L = p:zl!h. and I!h±2!h.. (4073,70)
x—X 1+ m^m.2 1 — m^tn.2

A line passing through hh and dividing the line which

joins Xii/i and ^2//2 ii^ the ratio 1^ : ??2

:

4089 ^= ^jrfiZkl^-) (4073, '32)

Coordinates of the point of intersection of two lines

:

4090 .^.= Jl=^ = ff^:f|.

4092 y = ^j!n2=££L. = _ 4#=4|- ("i*^)
"^ m.2—m^ A^B^—A.B^

Length of the perpendicular from a point x'y' upon a

given line

4094 = ^^' cos a-\-i/' sin a—p.

Proof.—Let AB (Fig. 14) be the line, and Q the point x'l/'. Then, by

(4054), a;' cos a+ 2/' sin u = OT, the perpendicular from upon a parallel line

through Q, and j) = 08.

Otherwise, the same perpendicular

4095 = Aa,'-]-Bi/ -f g ^^QgQ^ ,gj^ ,94^

A/yl'+ jy^

The same with oblique axes

Qfi _ {Ax'-\-By'
^^ ~ ^/{A-^+B-^-

obtained in a similar way from (4065-69).

4nqfi - (Ax -\-Bi/-\-C) sin (o

- ^^-i_^B'-2ABcos(oy
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Condition of three lines intersecting in one point

:

4097 CiWJo— rjomi+Ca/Wg— CaWia+Csmi— CiWig = 0.

The area in 1009 must vanish.

4098 Otherwise.—If certain values of the constants /, ??i, n
make the expression

vanish identically, the three lines indicated intersect in one

point.

Proof.—By (4099), for then values of x and y which make (1) and (2)

vanish also make (3) vanish.

A line passing through the point of intersection of the

lines Ax+ Biji-C = and A'x-{-B'i/-\-G' = is

4099 A.v-\-B?/^C= k {A\v-\-B'i/+C'),

4100 or l{A.v-\-By-\-C)-m{A',v-]-B'i/-\-C') = 0,

hj I, and m being any constants.

4101 Rule.—If the equation of a right line contains a third

variable k in the first degree, the line altvays ])asses through a

iixed looint.

Proof.—For the values of x and y, which satisfy simultaneously the given

equations, also satisfy (4099), whatever k may be. See (4604).

4102 If in the equation of a line Ax-\-By-^G = 0, the co-

efficients A, B, G involve x, y\ the coordinates of a point

which moves along a fixed right line, then the first hne passes

through some fixed point.

Proof.—By means of the equation of the fi.xed line, y' may be eliminated,

and X then remains a third variable in the first degree (4101).

4103 To find the point in Avhich the line Ax+ Bij + G inter-

sects the line joining the points xy, xy; substitute

A,v-\-Bij-\-C iovn, and y4.j'+%'+ C for // in (4032).

Proof.—By (4095), since the segments intercepted are in the ratio of the

perpendiculars from xy^ xy upon the lino -4a; + J5y + C
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If (j) be the angle between the lines,

yntn 4- JL \/(lr— ab) 2 siiio) v/(/r— «^)
4112 tan (^= ^ ^ ^ or —

,
, ^.,\ \

according as the axes are rectangular or oblique.

Proof.—Assume {ij— m.^a'^{y—m^x) =0, and apply (4088).

Equation of the bisectors of the angle <p :

4113 ka:^-^a-h)mj-hif = ^.

Proof.—Let y = ixx be a bisector (/i = tan i//) ; then, since 2J/ = (^, + l

-^^^^ = ^^h±J!h_ = -2^, by (4111) ; and ^ = I
1

—

fj.^
1— ?;Ji«2.2 a — b X

The roots of tliis equation are always real.

GENERAL METHODS.

APPLICABLE TO ALL EQUATIONS OF PLANE CURVES.

4114 Let F(.^^;/) = (i.) ^nd f{.v,ij) = (ii.)

be the equations of two curves of any degree.

4115 To find the intercepts on the x and y axes.

Put y = in (i.), then x becomes the intercept on the x axis.

Similarly, 'put x = for the intercept on the j axis.

4116 To find the points of intersection of (i.) and (ii.).

Solve as simultaneous equations. Each pair of values of x
and J so obtained gives a point of intersection. Imaginanj

values give an hnaginary point.

4117 To determine equation (i.) so that the line may pass

through certain fixed points, x^y^, x^y^ &c.

Substitute x^j^, Xayg, ^'c. for xj successively, so forming

as many equations as there are points. From these equations

the constants iii (i.) must be determined in terms of Xi,ji, x.,,y..,

4118 The number of arbitrary points cannot exceed the

number of constants in the equation.
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4119 Condition tliat (i.) and (ii.) may touch.

At a point of contact tiuo or more points of intersection

must coincide, and therefore the equation for x or y, obtained as

in (4116), must have tiuo or more equal roots for each point of

contact. The contact is said to he of the second order when
there are three coincident points; of the third order when
there are four, and so on.

4120 To find the equation of the tangent at a point x'y' on

the curve f(x,y) = 0.

Form the equation to the secant through two adjacent points

Xiyi, x,j2 (4083), and determine the limiting value of -^^ '^'^

Xi X2

ivhen the points coincide by means of the equations f (x^, yi) = 0,

f(x3,y2)-o.

4121 Otherwise m=^, % (5101).

4122 For the equation of the normal, change m of the

tanp^ent into (4086).m

4123 To express the equation of the tangent, or normal, in

terms of m and the constants of the curve.

From the equation of the tangent or normal, the equation to

the curve, and the equationfurnished by the value ofm, eliminate

x' y', the coordinates of the point of contact of the tangent.

THEORY OF POLES AND POLARS.

4124 Let F(x, y, x, y) = represent the equation to the

tangent of a curve at the point x'y'.

Then F{x, y, x, y') = 0, the equation obtained by inter-

changing the constants x',y' with tlie variables ;«, 7/, represents

the polar of any fixed point x'y' not on the curve.

Let Xyiji, x^y^ (Fig. 19) be points A, B on the curve, and let the tangents

at those points intersect in x'y'. Consider the equations

Fix,.y,,x,y)=Q. ..(}), F(x„y„ x,y) = ... (2), F(x,7j, x',y') = ... (3).

Here (1), (2) are the tangents, and (3) is some straight line or curve

according to the dimensions of x and y. Also (3) passes through the points
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of contact .^'j//,, r/'o'/o, and raay therefore be called the cicrve of contact-; or, if a

right line, the chi)nl of contact of tangents drawn from x\ y\ i.e., the polar.

4125 Heuco the coordinates of the points of contact of

tangents from an external point ,i"'v/' will be determined b}^

solving (3) and the equation of the curve simultaneously.

4126 Again, let x'y (Figs. 20 and 21) be any point P not on the curve.

Then, from the equations

F(x,y\x,y)=0...i4), F (x,y,x.„y,) = ...(o), F (x,y, .r,,y,) = ... (G),

we see that (4) is some straight line ; that, if x.j,y^ and x^y^ are any two points

upon it, (5) and (6) are the curves of contact of tangents from those points
;

and that these curves of contact pass through the point x'y'.

4127 If the points x.^j/^, x^y^ are taken at A, B, where (4) intersects the

curve, (5) and (6) then become curves touching the given curve at A and B,
and passing through x'y'. We may call these lines the curve tangents

from x'y'.

4128 Lastly, let xy' in (o) be a point within the given curve (Fig. 22),

then the equations

F(x,y,x',y')=0...(7), F (x„y,,x,y) = ... (8), F (x,,y„x,y) = ... (9)

show that (7) is the locus of a. point, the curve tangents from which have
their chord of contact always passing through a fixed point. When x'y' is

without the curve, as in Fig. (19), the same definition applies to every part

of the hicus (3) from which tangents can be drawn.

4129 If the given curve be of a degree higher than the

second, the line of contact of the tangents from a point is a

curve, and the line of contact of the curve tangents from a

point is a straight line (Figs. 19 and 20). A similar converse

relation is exhibited in Figures (21) and (22).

If the curve be of the second degree, equations (o) and

(4) become identical. The line of contact or the polar is

always in this case a straight line, and so is the locus (7).

Figures (19) and (20) now become identical, as also (21)
and (22).

4130 The polar of the point of intersection of two right

lines with regard to a conic passes through their poles.

Proof.—As in (4124). Let (1) and (2) be the two lines, (,t,.Vi), (^VJi)
their poles, and x'y' their point of intersection.
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4131 To find the ratio in which the line joining two given

points xy, x'y' is cut by the curve /(x, y) = 0.

Substitute for x and y, the supposed coordinates of the

point of intersection i the values

n-\-n n-\-n

and determine the ratio n : n' from the resulting equation.

The real roots of this equation correspond to the real points of

intersection.

4132 To form the equation of all the tangents that can be

drawn to the curve from a point x'y'

.

Express the condition for equal roots of the equation in

(4131), and consider xy a variable point.

4133 To form the equation of the lines drawn from x'y' to

all the points of intersection of two curves.

Substitute 7ix-\-n'x, ny' -\-n'y for x and y in both curves,

and eliminate the ratio n : n .

Proof.—Take any other point xy on the line through xij and a point of

intersection. The ratio n : n (4131) is the same for each curve, and there-

fore may be eliminated.

4134 To find the length, r = AP or AP' (Fig. 23), of the

segment intercepted between the point A or x'y' and the curve

/ {x, y) = on a straight line drawn from A at an inclination

9 to the X axis. That is, to form the polar equation with

x'y' for the pole and the initial line parallel to the x axis.

Substitute for X. and y, the assumed coordinates of the point

of intersection, the values x = ON or ON', y = PN or P'N',

that is, X = .r'+r cos^, j =: y'-\-r ^m.6,

and determine r from the resulting equation. That is, put

a = in (4051).

The real values of r are the distances of the points of inter-

section from x'y'.

4135 When an equation has been obtained for determining

X the length of a line, important results may frequently be

arrived at by applying theorem (406) respecting the sum and

product of the roots.

4 E
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THE CIRCLE.

Equation with the centre for origin.

4136 a?^+i/^=r\ (Fig. 24.)

Equations of the tangent at the point P or x'y'.

4137 y-l/ =-jr (.r-ciO. (4120)

4138 ^v^v'+m' = r\

Also, by (4124), the polar of x'y', any point not on the curve.

4139 ?/ = ma^-^r Vl-^ni' ; m = — ^. (4123)

4140 -V cos a-\-i/ siu a = r,

a being the inclination to the x axis of the radius to the point

'<^'y'-

Equation of the circle with a, h for the coordinates of the

centre Q. (Fig. 24.)

4141 (.,,_«)'^4.(,^_6y^=,.^

Tangent at x'y', or Polar,

4142 Op-«)(y -«)+(// -6)0/ -ft) = r\ (4138)

4143 or (cP— a) cos a+ (//— b) sin a = r,

a being the inclination of the radius to the point x'y'.

General equation of the circle :

4144 .^--|-/+2^>^^•+2^/+c = 0.

4145 Centre {-^g, -/). Eadius y{g^-\-f^-c).

Proof.—By equating coefficients with (4141).

Equation of the circle with oblique axes : (Fig. 25.)

4146 {.v-aY+ 0/-0y-\-'2 {a'-^a){,/-b) cos <o = r~, (7u2)

4147 or .(••^+ 2d'i/ cos 0) +//"— 2((i-\-b cos co) .v

— 2{b-\-a cos6>)//

-|- cr+2ab cos (D-\-b- = r~.
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General Equation.

4148 ci'^+2.r// cos (o-{-7f-\-2g\v+2fi/-\-e = 0.

The coordinates of the centre are

fcOSCU— o-
, 2- COS CO—

f

4149

4150 Ptadius = \i>'-— 2fi>' cos (o-\-f-— c siir <o

SlUOt)

Proof.—By equating coefficients with (4147).

Polar Equation.

4151 r'+P-2rl cos (^-a) = c\ (Fig. 2G)

4152 or r^— 2l cos a r cos 6—21 siu a r sin 6-\-l^—r — 0.

Proof.—By (702), the coordinates of P being r and d.

General form of the polar equation :

—

4153 r''-^2gr cos ^+2/r sin d+c = 0.

4154 tan a = ^. / = V^+f-

Proof.—By equating coefficients witli (4152).

4156 Equation of the circle passing through the three

points rt'i?/i, .Co//.,, x^y.^.

w y 1

<^i III 1

Proof.—Eliminate g,f, and c from (4144) by (4117).

Equation of the chord joining x^ij-^^ xjj., two points on the

circle x^+ y' = v"

:

4157 ^r Grx+^r,) +// (y.+y^) = ^r^2+Ih!h+r', (4083, 4136)

4158 or .rcosi(6'i+6',)+ 7/sini(6'i+6',) = rcosi(^,-^.,),

where rcos^i = r^i, 7'sin0i = y^, &c.

'*'l Ih
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4159 Note.—The coordinates x, y of a point on the circle x- -\- y- = ''^^ may

often be expressed advantageously in this way in terms of 0, a single variable.

4160 Let S = {.v-ay-\-{?j-hy-'r' =
be any circle (Fig. 27). Then, if xij be a point P outside the

circle, S becomes tbe square of the tangent from P. If xy be

a point P' within the circle, S becomes minus the square of

the ordinate drawn through P' at right angles to the radius

throu2:h P'.

CO-AXAL CIRCLES.

(See also 984 and 1021.)

4161 If -S = .v'+ir+2g.v +2/// +c = 0,

be two circles, the equation to the radical axis is

If x = be taken for the radical axis, the equation to any

circle (radius r) of the system of coaxal circles (1021) is

4162 .v'-{-f-2K\v ± 82 = and k'-r^ = ± S\

+ in Figure (1), — in Figure (2). Here d = IB ii constant,

and h=. 10 a variable.

4164 The polar of xy' for any circle of the system passes

through the intersection of

.vx -\-i/i/± S^ = and .r+ .r' = 0.

Proof.—Its equation is xx'+ yTj'-h (x + x')±P = (4121). Then by

(4099).

4165 When Jc = ^, then h = ID = ID'. D and D' are

Poncelet's limiting points.

4166 The polar of D with respect to any of the circles

passes through D\ and vice versa, by (41 G4).

4167 Tangents from any point on the radical axis to all

circles of the system are equal (41(30, '01).
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4168 The radical axes of three circles, S^, S^, S.^, meet in a
point called their radical centre.

4169 The reciprocals with respect to the origin D or D' of

the system of co-axal circles are all confocal conies (4558).

The equation of the circle, centre Q, cutting the system of

circles orthogonally is, putting IQ, = h,

4170 .r'+/—2%— 8'^ = 0. (1230, 1236)

This circle passes through D and D'.

The common tangents to the two circles

(x-aY+ (y-hy = r' and (x-ay+{y-hy = r'\

(See also 1037.)

The equation for a in (4143) is

4171 {a— a) cosa+(6— 6') sina+r=Fj''= 0.

Pboof.—Assume (4143) in a, h, r, a, and also in a', b', r, a as coinciding
lines. Then tana = tana'; therefore a' = a or tt + u. Take the difference
of the two equations.

The chords of contact are

4172 ia-a'){^-a)+ {b-b){i/-b)-\-r{rzfr') = 0,

4173 {a-a'){ai-a')-\-{b-b'){i/^b')+r(r^r') = 0,

with — for exterior tangents, + for transverse.

Pkoof.—For these are straight lines, and they pass through the points of
contact of each pair of tangents respectively, by (4171).

The centres of similitude 0, Q are the intersections of the
external and transverse tangents respectively.

a'r—ar' b'r—br'
4174 Coordinates of 0,

r—r 7
— r

4175 Coordinates of Q, 'il±^, Vr+br
r-\-r r-\-r

Proof.—By equating coeflBcients in (4172) and (4142), the polar of

or Q.

4176 The six centres of similitude of three circles lie on
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four straight lines called axes of similitude. Sec the figure

of (1046).

Proof.—The coordinates of the three centres of the forms (4174, '75)

will in each case satisfy equation (4083).

4177 The equation of the external axis of similitude is, in

determinant notation (554),

(IrA) a3-(l?v/3) y+ {nh(h) = 0.

Peoof.—By forming the equation of the right line passing through two

of the centres of similitude whose coordinates are as in (4174).

4178 The remaining three axes are found by changing in

turn the signs of i\, r^ ; r^, r^ ; rg, r^.

4179 If one of the circles touches the other two, one axis of

similitude passes through the points of contact.

4180 The angle 6, at which the circle F [x, y) = 0, radius

r (Fig. 29), intersects the circle whose centre is lih, and

radius U is given by the equation

iJ2-2iJrcos^ = jP(/i, A').

Proof : 6 = OQP, B'- 2.Br cos 6+ r- = FT' + /•- ^ F (Ji, 1-) + r\

(702) and (4160).

4181 Cor. 1.—If the circles are given by the equations

x^+ y''+ 2g'oj-{-2f'y-{-c' = 0, ;,^-{-y'+ 2i/x+ 2j'y+ e = 0,

the equation for cos becomes, since h=—g, k= —/,

2Rr cos 6 = 2g'g'-^ 2ff'-c-c. (4145)

4182 CoE. 2.—The condition that the two circles may cut

orthogonally is

4183 CoR. 3.—By solving three such equations, we can

find the circle cutting three given circles orthogonally (4186).

4184 CoR. 4.—The condition that four

circles may have a common orthogonal

circle is the determinant equation

^3 g^ Jl 1
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4185 Cor. 5.—If the circle x-+ if+ iax-^2Fy^G = cuts

three other circles at the same angle Q, we have, by (4081),
three equations to determine G, F, G.

minant equation may be written

^v'+if -.V -7J 1

-{-2R cosp

The resulting deter-

4186 The first determinant, put =

-w -11 1
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is in a constant ratio (a) to its distance from a fixed riglit line

XM (the directrki).

When e = unity, the curve is a parabola. (See also p. 248,

et seq.)

Equation of the Parabola with origin of coordinates at the

vertex A.

4201 !r = 4«ci.

Here a = AS, x = AN,

y = FN.

Proof.—Geometrically, at (1229).

Analytically, from

PS'' = if + ix- af = PM" = (x+ af.

The equations with the rf^ ^
origin at S and X respectively

are

4202 t/ = 4^a{a^-\-a),

y = 4«(cV-«). (4048)

Equations
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Equation of the parabola

with a diameter and tangent for

axes of coordinates.

4211 f = ^acc,

where 'r-

4212 a = acoBeG^e = SP;

x = PV; y = QV.

Proof.—Geometrically, at (1239). Otherwise, let VQ= -VQ'hc equal

roots of opposite signs of the quadratic (4221), V being the point xy,

therefore ?/^ or r^ = (y'"'—4^ax') cosec^ = 4a cosec" d.x,

since y'^ = 4a x abscissa of P.

4213 Equations (4204-10) hold good for these axes, with a

written for a in each.

For the polar equation of the parabola, see (4336).

4214 Quadratic for n^ : n.2, the ratio of the segments into

which the line joining two given points x^yi, a'o^a is divided by

the parabola i/—4ax = 0,

(4131)

Equation of a pair of tangents from any point x'y'

:

4215 {y"-4^a.v'){t/-^tt^') = W-2« (^4-.^0}' = 0.

The condition for equal roots in (4214).

Quadratics for the coordinates of the points of contact of

tangents from x'y'

:

4216 aj^^-(y'^-2ax') x-aw" = 0.

4217 /-2?/y+4a.r' = 0.

Proof.—Solve simultaneously the equations of the curve and the polar

(4205) and (4125).

Coordinates of the point of intersection of tangents at Xj^yi

and x^y.^

:

4218 a'=m y=y^.
4a 2

4 F
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Quadratic for m of the tangent from xy'

:

4220 m\v —my +« = 0. (4206)

4221 General polar equation of the parabola, or quadratic

for r, the segment intercepted between a point, x]j\ and the

curve on a line drawn from that point at an inclination to

the X axis (4134),

r' sin2^+2r {ij sin ^-2a cos ^) +?/''—4ay = 0.

Quadratics for the coordinates of the points of intersection

of the line Ax+ By+ G and the parabola y^ = 4<ax : (4116)

4222 A\v^-2 {2B'a^AC) .v+C = 0.

4223 Ai/'-^4<Bai/-\-4^Ca = 0.

Length of intercepted chord,

4224 W{{Bhi'-ACa){A'-^B')}-^A\ (4oa4)

Equation of the secant through x^i/i, x^y^, two points on

the parabola

:

4225 !/ {yi+y2) = ^jiVz-^^ax, (4083)

4226 or y{m^-\-m2) = 2a-\-2m-^mo^oc.

4227 The subtangent NT = 2x. Fig. of (4201)

4228 The subnormal NG = 2a.

Pkoof.—Put y = in (4205) and (4208).

4229 The tangent PT' = 4^.v{a-^.v).

4230 The normal PG' = ki (a^.v).

The perpendicular p from the focus upon the tangent at xy :

4231 p = ^/aia^+a) = Vu^- (4212), (4095)
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The part of the normal intercepted by the curve is equal to

4233
4«(l+ m')t ^ _

4«
(4221), (4135)

m^ siu- ^ cos d

4234 The minimum normal = 6rt\/o and 9?i = v/2.

Length of a chord thi^ough the focus

4235 = -^ = 4a'. (4212)

Coordinates of its extremities, with the focus for origin :

- rtrt

w

2« cos 6 '2a sin 6
4237 * = - ^-^j^^i, «/ = - ^^^em-

Coordinates of its centre :

4239 ^=^-|S^' y = 2a.oie.

THE ELLIPSE AND HYPEEBOLA. '

(See also p. 233, et seq.)

4250 Referring to the definition (4200) ; when e is less than

unity, the conic is an eUii^se ; when greater than unity, an

hyperhola.

Equation of the ellipse with the origin of coordinates at X
and SX=p.

4251 y^-^{.v^py = e\v\

Proof.—Bj the definition in (4200).

Abscissae of vertices :
(Supply A' in the following figure.)

4252 XA =^, XA' = j^. (4115)
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4273
^3 .2

«2 ^ Ki

Proof.—By (4200), 7/+ {x+ GSf = e^(a; + OX)^ &c.

4274 PiV: QN :: 6 : a. (4271)

4275 Def.—QGNis the eccentric angle, (^, of the point P.

X and y in terms of the eccentric angle :

4276 a^ = acos<t>, y = h siu <ji. (Ell.)

4278 X = a sec <^, y = b tan <^. (Hyp.)

Five forms of the equation of the tangent or polar of the

point xy' :

4280

4281

4282

4283

4284

4285

y—ti = 7-;(<l?— 0?).

oox_,inL— 1
„2 "T 12

*•

a7C0S(^ ?/sin(^ ^ 1 (Ell

)

aft
^sec(^ ytaii(^ _-^ (Hyp.)

(4120)

(4123)

(4276)

(4278)

X COS y-\-y siu y = \/d^ cos'^y+ft'^ siu^ y,

•y being the inclination of ^. (4054) & (4372)
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Five forms of the equation of the normal at x'y' :

4286 2/-y = g; (---')• ^''''^

4287 ^-^=a'-h\ or ha^-h/ = a'-b\
oc y

where h and h are the intercepts of the tangent.

4289 »=m.r-i!Lig!=^ .
(«23)

4290 «.^' sec j>—hy cosec <^ = a^—fy'. (4276)

4291 .*\^-^x2/ = {^x^'-Viy').
(^^^2)

where a^iyi is the extremity of the conjugate diameter.

Intercepts of the tangent or polar on the axes

:

4292 -^ and —

.

(4115), (4281)
00 y

Intercepts of the normal

:

(4287)

,,2_ 1^2

4294 On the X axis, —5— x or e^x.

4296 On the 7/ axis, — "
~

y or — y37.//-

Focal distances r, r of a point <r?/ on the curve :

4298 {a±cx) in Ell.

4299 (ca7±a) in Hyp.

Proof,—From r' = {ae±x)--\-if, and (4272).

Perpendiculars from the foci upon the tangent

:

4300 p = byj^, p' = byj'-. (4095,4282)
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4302
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Quadratic for abscissae of points of contact of the tangent

from xy' :

4312 cr^ {bV-^aY^)-2aWxiv'-^a' ih^-y^) = 0. (4282, 4125)

Quadratic for m of the tangent from xij :

4313 m' {x'--a^)-2mxy-\-y'-h'' = 0. (4282)

General polar equation of the ellipse, or quadratic for r,

the segment intercepted between the point q/i/ and the curve

on the right line drawn from that point at an inclination to

the major axis and x axis of coordinates.

4314 («' sin^^+i^ cos-^) r^

+2r (ay sin ^+6V cos^) + {aY+bV-a'b') = 0.

4315 Length of intercej)ted chord = difference of roots.

4316 Distance to middle point of chord = half sum of roots.

4317 Rectangle under segmc7its ^products of roots.

CoE.—If two chords be drawn to a conic at two constant

inclinations to the major axis, the ratio of the rectangles under
their segments is invariable.

For, if xij be their point of intersection, the ratio in ques-

tion becomes a^sin^0-j-Z>^ cos-0 : a^sin-0'-f-^'cos''O^', which is

constant if B and B' are constant.

Locus of centres of parallel chords :

4318 a^y sin e-^-h'x cos ^ = 0. (4314)

Quadratic for abscissae of points of intersection of the line

Ax-\-By-\-G = and the ellipse Wx^-\-a"y^—crlr' = 0. (411G)

4319 {A^a'-\-B-}r) x''-{-2ACd\v-\-Chi"-B-a-¥ = 0.

>iQOA _ -ACa''±Bahx/A'a'-i-n-fr-C'
A-a-\-B-b^

4321 For the ordinates transpose A, B and a, h.
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Length of intercepted chord :

Hence the condition that the hne may touch the ellipse is

4323 A'a'-{-B%' = 0\

The chord through two points Xiij^, x^y.i, is

*^'^*
^? "^ P ~ a"

"^
b' ^ '

or, denoting the points by their eccentric angles a, /3, the

chord joining a/3 is

4325 ±cos^+ |-sin5+^ = cos^.

The coordinates of the pole of the chord or intersection of

tangents at x-^y^, x.^y^ (or a/3 as above).

4326 V — ^^y^'^^^-^y^ ^ ^' iVi—y^^ -a ^^^^ («+^)

Vx-Vy-i oi\yx-x^y^i cosi(a-^)"

4329 V = ""^y^'^'^^-'y^ = ^'(-^^^"-^-J = b
^i^i(^+^)

.^ ^\+^2 ^^^^2-^*^1 cosi(a-/8)

The following relations also subsist

>1 QQo "^^^ — «^ sin g sin ^ _ 6^ cos a cos ^

__ b (sina+sin/S) __ a (cosa+cosff)-
2y

-
2.V

" which are of use in finding the locus of {x, y) when a, /3 are

connected by some fixed equation."
(Wolstenholme's Problems, p. 116.)

4 G
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4334 If a, i3, 7, S are tlie eccentric angles of tlie feet of the

four normals drawn to an ellipse from a point xy, tlien

a+)8+y+8 = 37r or 5ir.

Proof.—Equation (4290) gives the following biquadratic in z = tan }^(j),

by/ + 2(ax+ a'-h') z'+ 2 (ax-a'+ h') z-by = 0.

Let a, h, c, d be the roots. Eliminate d from ah+ ac+ &c. = and ahcd = — 1

(406). Thus ab+ hc+ca= — + -=^ + —r; from which, since a = tan|a,
^ ^ be ca ab

&c., we get sin(/3+ y) + sin(y + a) + sin(a + /3) =0;
and, since l— (ab + ac+ &c.)+ahcd = 0,

tani(a+/3-f y + o) = 00, .-. a + /3 + y + 2 = Stt or Stt.

4335 The points on the curve where it is met by the

normals drawn from a fixed point xy' are determined by the

intersections of the curve and the hyperbola

a^'cc'y-y'yx = c'xij. (4287)

POLAR EQUATIONS OF THE CONIC.

The focus S being the pole (Fig. of 4201), the equation of

any conic is

4336 r(l+ecos^) = /,

being measured from A, the nearest vertex.

For the parabola, put e = 1.

Proof.—
r=SP; d = A8F; l = SL; r = e{8X+ SN) (4200) = l+ er cob 6.

The secant through two points, P, F, on the curve, whose

angular coordinates are a+/3 and a— /3 (Fig. 28), is

4337 r {ecos^4-seci8cos(a-^)} = /.

Proof.—Let ASQ = a, I'SQ = FSQ = ft.

Analytically. Take (4109) for the equation of PP'. Eliminate r, and r,

by (433G), and substitute 2a for e, + d^ and 2/3 for 0,-0,.

Geometrically. Let PP' cut the directrix in Z ;
then QSZ is a right angle,

by (IIGG). Take C any point in PP' ; SC = r ; ASC = 0. Draw CD, CE,

CF, CG parallel to SL, SP, SQ, SX, and Dll parallel to XL. Then

l=SL= SH+HL.

arr SL or, n ^'^ ^P _ SL _ IlL _ BL^^=^^^ = "''°^^- GG=PM-^-lJX-GG'
.-. IlLz= CE = r sin CSF sec /? = r cos (a— 0) sec /3,

.•. Z = er cos/(3 + >'sec/3 cos(u— 0).
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The equation of tlie tangent at the point a is, conse-

quently,

4338 r {e cos ^+cos (a-^)} = I.

4339 Length

A Focal Chord.

_ 2/
"~ 1— e^cos^^'

(4336)

Coordinates of the extremities, the centre G being the

origin :

_ a(e±cos6) _ / sin 6

l±ecos6 ' ^"Idzecos^*4340 a^

4342 The lines joining the extremities of two focal chords

meet in the directrix. [By (4337)

Polar equation with vertex for pole :

4343 r^ (1 -e^ cos^ 6) = 21 cos d. (4200)

Polar equation with the centre for pole :

4344 r^ («' sin^ e+b' cos^- 6) = a'b\

4345 or r ^/(l-e' cos^ 6) = b.

Proof.—By (4273). Otlierwise, by (4314), with x' = y' = 0.

CONJUGATE DIAMETERS.

dr

T A A'

Equation of the ellipse referred to conjugate diameters for

coordinate axes :

4346
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where

4347 a" =
»'^'

h" = — .

a-sm'a+6'cos'a' a- sin' /8+ 6
' cos^ /3

Here a = CD, h' = GP, a is the angle DCB, and jS the angle

FOB.

Proof.—Apply (4050) to the equation (4273), putting ^ = -^= -^ and

tan a tan /3 = ^, by (4351)

When a = h', a+/3 = tt, and equation (4346) becomes

4349 ^-^ir = «
' = i {(I'+b').

Let the coordinates of D be x, y, and those of P x,y; the

equation of the diameter GP conjugate to GD is
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The perpendicular from the centre upon the tangent at

xy is given by

4366 7 = -^+^- (4281,4064)

The area of the parallelogram PCDL (Fig. of 4307) is

4367 pa' = ab = a'h' sin <u,

where p = PF, a' = GD, b' = CP, i^ = A PCD.

Proof.—From (4366), and (4352), and a'=^x' + y'\

Other values of p^

:

4369 P'^-i^-^W^r (^362)

4371 p^ = a" sin^ e-\- b' cos^ 0.

Proof.—From (4844, '67), putting r = a.

4372 p^ = a^ cos' y+6' sin' y, (4371)

y being the inclination of j9.

4373 p^ = a" (1 -e' sin' y). (4372, 4260)

Equations to the tangents at P and P\ the coordinates of

D being x, y :

4374 ocy'-yx =±ab (4073) m = -^.

DETERMINATION OP VARIOUS ANGLES.

4375 j)Cd=-^. Fig. p. 595. (4356)

4377 tan PCD = - ^, (4070, 4352-3)

where c = ^{a'-h') = G8.



698 CARTESIAN ANALYTICAL CONICS.

4378 tan (SPT) =— = 1+gcosg
^^^^^^ ^^SG, 4336)

^ c^ e sm ^

where = P8T. [See figure on page 588.

If i// be tlie inclination of the tangent to tlie x axis,

4380 ianxlf = -^ = £+^. (4280)^
ai/ sm ^

Proof: ^p = + /SPr. Then by (631) and (4379).

4382 tan SPS' = tP^. (652, 4378)

2¥
4383 tan ^P^' = —^, tan CPG = ^.

If OP^ OP' are tangents to an ellipse,

Proof.—By figure and construction of (1180), TOF'= ITOS'. Therefore

i.no' OS'+OS"-S^ 2(70H20/S^-4a^ _ „

,

If »', y are the coordinates of 0,

4386 tanPOP' = 2v£(*!£!+£2:!z^.

Proof.—By (4311), taking terms of the second degree for the two parallel

lines through the origin and tan^ from (4112).

It is worthy of remark that the substitutions (4276-8)

may also be usefully employed when the axes of reference are

conjugate diameters : though, in that case, the geometrical

signification of ^ no longer exists.
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THE HYPERBOLA
REFERRED TO THE ASYMPTOTES.

4387 .ri/=JK+6^).

Proof.—By (4273) and (4050). Here x = CK, y = PK.

Equations of the tangent at P, {x, ?/).

4388 ciy+y?/ = i(«'+^')- (4120)

4389 y = m.v-{- v/m(«^+6'0. (4123)

4390

4391 Intercepts on the axes CI = 2a?' , CL = 2?/.

THE RECTANGULAR HYPERBOLA.

4392 Here a = h, e = \/2 ; and the equation with the

ordinary axes is

4393 ^'-1/ = «'• (4273)

4394 Tangent xx'-yy'^a''. (4281)
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Equation with tlie asymptotes for axes :

4395 2ay = a\ (4387)

4396 Tangent a:y-\-xij = a\ (4388)

THE GENERAL EQUATION.

The general equation of the second degree is

4400 ci9^+ ^hxij+ hf -H 2gx+ 2/7/+ c = 0,

4401 or ax^+ hif+ cz^+2fyz+ 2gzx-{-2hxy = 0, with z = l.

The equation will be denoted hj u ov <\>{x,y) = 0.

THE ELLIPSE AND HYPERBOLA.

When the general equation (4400), taken to rectangular

axes of coordinates, represents a central conic, the coordinates

of the centre, 0' (Fig. 30), are

440^ ^1 - ^^_j^ - c' y ab-h' - C

Proof.—By changing the origin to the point xt/ and equating the new

g and /each to zero (4048).

For the case in which ab = /t^, see (4430).

4404 The transformed equation is ax^-\-2hjcij-\-hy^-\-c' = 0,

4405 where c' = aa^''-\-2Lv)/-\'hir+2g.v-^2fi/'-\-c.

4406 =g*<^'+/y+^.

^407 - «ft^+2fyA-^(f-^fA''^-^/^'^ _ A. (4466)

The inclination B of the principal axis of the conic to the

X axis is ffiven by

4408 tan 2^ = ^.
Proof.— (Fig. 30.) By turning the axes in (4404) through the angle 6

(4049) and equating the new h to zero.
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Tlie transformed equation now becomes

4409 «V+6y+c' = 0,

4410 iu which ti =^{a-\-b+ \/m^+(«-6)^ }

,

4411 b' = i {a-\-b-v'4sh'-\-{a-by}

,

a and b' are found from the two equations

4412 a-\-b' = (i-^b, ab' = ab— h\ [See (4418).

The semi-axes aiid excentricity are

4414 V--^, V-T' ^^'"^ e=^'(^l-|^). (4273) (4261)

For the coordinates of the foci, see (5008).

4416 Note.—If B be the acute angle determined by equation

(4408), we have to choose between 9 and 0-\-^ for the inclina-

tion in question, since tan 20 is also equal to tan (20+ 7r).

Rule.*—For the ellipse, the inclination of the major axis

to the X axis of coordinates will be the acute angle 6 or + ^7r,

according as h and c' have the same or different signs. For the

hyperbola, read " dfferent or the same.''

Proof.—Let the transformed equation (4409) be written in terms of the

semi-axes p, 2 ; thus cfx'^+p'y'^ ^ jfcf, representing an ellipse. Now turn
the axes back again through the angle —d, and we get

{q^ cos^ 6+f sin^ d) X'- (p'^-c/) sin 2$ xy + {(f sin^ d-\-p^ cos' 0) t/^ = p\\

Comparing this with the identical equation (4404), ax^+ 21ixy-\-hi/ = —g\

we have ip'^
—

'i) sin 29 = — 2/i, p-q^ = — c';

sin20 = ^.^^„. Hence ^ is < -J
c p'— q" 2

when h and c' have the same sign, p being >q. A similar investigation

applies to the hyperbola by changing the sign of g'.

* This rule and the demonstration of it are due to Mr. George Heppel, M.A., of

Hammersmith.

4 H
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INVARIANTS OF THE CONIC.

4417 Transformation of the origin of coordinates alone

does not alter the values of a, h, or h, whether the axes, be

rectangular or oblique. This is seen in (4404).

When the axes are rectangular, turning each through an

angle 9 does not affect the values of

4418 ab-h', «+6, ^^-4-/^ or c.

When the axes are oblique (inclination w), transformation

in any manner does not affect the values of the expressions

4422 . , and —^—^^

These theoi'ems may be proved by actual transformation by the formulae

in (4048-50) . For other methods and additional invariants of the conic, see

(4951).

4424 If the axes of coordinates are oblique, equation (4400)
is transformed to the centre in the same way, and equations

(4402-6) still hold good. If the final equation referred to axes

coinciding with those of the conic be

4425 a\v'-^h'ii'-\-c' = 0,

and the inchnation of the new axis of ,i' to the old one, we
shall have c unaltered,

4426 tan 20= 2/,sm^-„sm2<«
2/t coso)—-a cos2a*— />

'

4427
, _ CT+fe—2Acos6j+yQ

, J,
_ (i-\-h—2hQO^<o—^Q ^

2 sin- 0}
'

2 sin- w
'

where Q = a^-\-'U^-\-2ah cos 2w + 4A {a-\-h) cos a)-{-4^^.

Proof.—(4404) is now transformed by the substitutions in (4050),
putting /3 = + 9O°, and equating the new h to zero to determine tan 20.

a' and // are most readily found from the invariants in (4422). Thus, putting
the new /t = and the new w = dO\

. 7/ a+ 6— 2/i cosw n /w ah— h^
a +0 = —~—-— and ab = -r-5—

,

sm u> sin u)

equations which determine a and ?/.
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The eccentricity of the general conic (4400) is given by

the equation

4429 __£!_ _ (a+ b-2li cos coy _^

Proof.—By (4415), and the invariants in (4422).

THE PARABOLA.

4430 When ab— Jr = 0, the general equation (4400) repre-

sents a parabola.

For X, y' in (4402) then become infinite and the cui^ve has

no centre, or the centre may be considered to recede to

infinity.

Tui^n the* axes of coordinates at once through an angle %

(4049), and in the transformed equation let the new coeffi-

cients be a, 111, h\ 2c/, 2/ , c'. Equate li to zero; this gives

2/?

(4408) again, tan 26 =—-. If 6 be the acute angle deter-

mined by this equation, we can decide whether 9 or 9-\-^Tr is

the angle between the x axis and the axis of the parabola by

the following rule.

4431 KuLE.— The inclination of the axis of the imvahola to

the X axis of coordinates will be tJie acute angle 9 fh. has the

opposite sign to that o/a or b, and 9-\-\Tr if it has the same

sign.

Proof.—Since ah— h^ = 0, a and h have the same sign. Let that sign

be positive, changing signs throughout if it is not. Then, for a point at

infinity on the curve, x and y will take the same sign when the inclination is

the acute angle 9, and opposite signs when it is O + ^tt. But, since

ax^^lif = +00 , we must have 2hxij = — co, the terms of the first degree

vanishing in comparison. Hence the sign of h determines the angle as stated

in the rule.

4432 -"<'=V46' •^°«'' = V^-
Proof.—From the value of tan 20 above, d being the acute angle obtained,

and from /t^ = ab.

4434 Also a = and h' = a+ b.

For a'b' = ab— lr = 0, and we ensure that a' and not 6' vanishes by

(4431). Also a+b' = a+b (4412).
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4436 ff
= g COS e+f sin e =

"^^ff^*
-

4438 r = .cos^-^si„<»=^-:^i=^*.

4440 But if /i lias tlie same sign as a and b, change 6 into

O+Itt. (4431)

Pkoof.—By (4418, 4432-3).

The coordinates of the vertex are

4441 ''^-W^' y=--y-

Obtained by changing the origin to the point x'lj and equating to zero

the coefficient of y and the absolute term. The coefficient of x then gives

the latus rectum of the parabola ; viz.

:

4443 L - -^ - - 2^J>±/V^. (4437)

METHOD WITHOUT TRANSFORMATION OF THE AXES.

4445 Let the general equation (4400) be solved as a quad-

ratic in y. The result may be exhibited in either of the forms

4446 // = aa^+/3± \/ft {x'-1px^rq)^

4447 y = arJrfi±Vf^ {(^^-pY+iq-f)}^

4448 1/ = a.'+,8± v> (.r-y)(.r-S),

4449 where a=z —j, fi = -j, (^ = ^." .

4454 , ,. - >> („bc+2fkh-ar-hf,--''lr) _ bA
{(ib—lr)- C'-

4456 y and S = ;> ± V{f—q).

4458 Hero v/ = aa'4-/3 is the equation to the diameter DD
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(Fig. 31), 7 and g are the absciss93 of D and D\ its extremities,

the tangents at those points being parallel to the y axis. The

surd = PN = FN when x — OM. The axes may be rect-

angular or oblique.

When ah— ]r = 0, equation (4446) becomes

4459 1/ = aa +/3 d= J ^q'-2p^v,

4460 where p = bg—hf, q=p—bc.

4462 In this case, ^, is the abscissa of the extremity of

the diameter whose equation is y = ax-}-^ and the curve has

infinite branches.

RULES FOR THE ANALYSIS OF THE GENERAL EQUATION.

First examine the value of ab—h^ and, if this is not zero,

calculate the numerical value of c (4407), and j^roceed as in

(4400) et seq. If ab— h^ is zero, find the values ofip' and q'

(4459). The following are the cases that arise.

4464 ab—h- positive—Locus an ellipse.

Particular Gases.

4465 ^ = —Locus the point xy'.

See (4402). For, by (4404), the conjugate axes vanish.

4466 6A positive—No locus.

By (4447-54), since q—p^ is then positive.

4467 /i = and a = b—Locus a circle.

By (4144). In other cases proceed as in (4400-14),

4468 ab—h^ negative—Locus an hyperbola.

Particular Gases.

4469 A = —Locus two right lines intersecting in the

point xy'.

By (4447), since g—p^ then vanishes. In this case solve as in (4447).
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4470 bA negative—Locus the conjugate hyperbola.

4471 a-\-b = —Locus the rectangular hyperbola.

By (4414), since a'= —h'.

4472 a = b = — Locus an hyperbola, with its asymptotes

parallel to the coordinate axes. The coordinates of the centre

are now —^ and — -^, by (4402). Transfer the origin to

the centre, and the equation becomes

4473 ''^=T-
In other cases proceed as in (4400-14).

4474 ah— h^ = —Locus a parabola.

Particular Gases.

4475 |/ = —Locus two parallel right lines. By (4459).

4476 J)'
= q = —Locus two coinciding right lines.

By (4459).

4477 Ji' = and (/ negative—No locus.

^ By (4459). In other cases proceed as in (4430-43).

Ex. 1.: 2x'^-2xy+y' + 3x-y-l = 0.

3 1
Here the values of a, li, h, (j, f, c are respectively 2, —1, 1, --, — — , —1,

G ah— h- 4

The locus is therefore an ellipse, none of the exceptions (44G5-7) occurring

here. The coordinates of the centre, by (4402), are

' _ kf-bg _ _i „' _ f/^'-"/ _ _ 1

ah— h' ab— k '1

Hence the equation transformed to the centre is

2x'-2xy +y'-^ = 0.

Turning the axes of coordinates through an angle so that tan29=—

2

(4408), we find the new a and h from

a'+ 6' = 3, ah' = \; (4412)
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therefore a' = i (3-^/5), b' = ^ (3+ v/5),

and the final equation becomes 2 (3— v/5) a;^+ 2 (3+ ^/5) ?/* = 9.

The inclination of the major axis to the original x axis of coordinates is

the acute angle ^tan"^ (— 2), by the rule in (4416).

Ex. (2): 12x'+ 60xy + 75y'-12x-8y-6 = 0.

The values of a, h, b, g,f, c are respectively 12, 30, 75, —6, —4, —6,

a6-7i^ = 0; p' = bg-hf= -330; q'=f-bc. (4460)

Since jj' does not vanish (4475-7), the locus is a parabola. Proceeding,

therefore, by (4430-43), we have

ta.29 = ^^ = -|; sm« =^, cos e =
-l^.

(4432)

By the rule (4431), we must take O+^tt for the angle, instead of 6. There-

fore g=-gsme+/cosg=
^^^J^^

= -^.

y = -/sine-, cos 0= %43 =729-

and 6' = a + 6 = 87 (4435).

Consequently the transformed equation is

Q^7 2 I

44 ,64 ^ ^
^^^ +"729"+ 729^-^ -^ = ^-

The coordinates of the vertex are computed by (4441), and the final

44

87x/29*'

Ex. (3)

:

x' + 6xy+9y' + bx+ 15y + 6 = 0.

The values of a, h, b, g,f, c are respectively 1, 3, 9, — , — , 6,

ab—W = and p = bg— kf = 0,

therefore, by (4475-7), if there is a locus at all, it consists of two parallel or

coinciding lines. Solving the equation therefore as a quadratic in y, we

obtain it in the form (x+ oy + 2) (x + Sy + S) = 0,

the equation of two parallel right lines.

The equation of the tangent or polar of x'l/ is

4478 u,,'<.v-\-Uy,i/-\-u,,z = or u,.a:'-\-Uyt/-]-u.z =0

;

(4401, 1405) obtained by (4120) in the form

4479 («.!-'+%'+§•) .r+ (Ay+%'+/) y-\-g^'-^fy+c = 0,

4480 or {ax+hy-]-g) a;'+ {Kv^hy+f) y'J^^cc^fy^c = 0,
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4481 or

AVlien the curve passes through the origin, tlie tangent at

the origin is

4482 ga)-\-fy = 0. (4479)

And tlie normal at the same point is

4483 nv-g\i/ = 0.

4484 Intercepts of the curve on the axes, —— , — -/.
a b

4486 Length of normal intercepted between the origin and
the chord

= ^^ V (4483-4)
a-\-h

Rigid Line and Gunic with the general Equation.

4487 Quadratic for n : n\ the ratio in which the line joining

xy, x'lj is cut by the curve.

Let the equation of the curve (4400) be denoted by

^ (aj, ?/) =0, and the equation of the tangent (4479) by
t// (a3, y, c-^^', ^') = ; then the quadratic required will be found,

by the method of (4131), to be

n^^ {x\ y) -i-2mi\f/ (.r, y, od\ y) + n^^ {x, y) = 0.

The equation of the tangents from .r'//' is

4488 <t>
{'V\ y) i> Gr, //) = {^ (.r, //, a>', y')}\

Proof.—By the couditiou for equal roots iu (4487).

CoR.—The equation of two tangents tlirougli the origin is

4489 B.v^-'llliy^r Cy- = i). (46G5)

Tlie equation of the asymptotes of u (4400) is

4490 aul+ 2/mj(,+ bill = 0.
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The equation of the eqiii - conjugates of the conic

ax^-\-21ixy-\-hif = 1 is

4491 (a+&)(«-r+2/u7/-f 6//-) = 2 ((ib-1i^(^-\-if).

Proof.—When the conic is ax^ + bif = 1, the similar equation is

(a+ h) (ax' + hif) = 2ah (x' + ^f) or (ax'-hf) = 0,

given by the intersections of the conic and a circle. Transformation of the

axes then produces the above by tbe invariants in (4418).

4492 When the coordinate axes are oblique, the equation

becomes

{a-h){ax'-hif) + 2x (hx + hy) (h-a cos w) + 2ij (ax + hj)(]i-h cos w) = 0.

Greneral polar equation

:

4493 (« cos^ 0-\-2h siu ^ cos e-\-b siir 6) r'

+ 2 fe cos ^+/siii 6) r-\-c = 0.

Polar equation with {x, ij) for the pole : (4134)

4494 {a cos' e^~ 2/i siu 6 cos e-\-h sin ' 6) r-

+2 {{ax^hy+g) cos^+(%+Act'+/) siu^} r^F{wy) = 0.

Equation of the hue through xif parallel to the conjugate

diameter

:

4495 {^—^v){a.v'-^luj^g)^{y-y'){luv'^hy'^f) = 0.

Proof.—By the condition for equal roots of opposite signs (44'. »4).

Equation of the conic with the origin at the extremity of

the major axis, L being the latus rectum.

4496 if = L.v-{l-e') .v\ (4269, '59)

Equation when the point ah is the focus and

Ax -\-Iju-\-G = the directrix :

4497 ^{(•'-")'+0/-'')'5
=''7n§Jf-

(^20"'«»^)
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INTERCEPT EQUATION OF A CONIC.

Tlie equation of a conic passing through four points whose

intercepts on oblique axes of coordinates are s, «' and t, t\ is

4498 ^+2/..,+ |:-.(±+ J.)-,(l + |)+l =0.

Equation of a conic touching oblique axes in the points

wliose intercepts are s and t :

4499 ^+2/u^//+^-^-^+l = 0,

4500 or (^ + |-^iy+nr// = 0.

Comparing with the general equation (4400), we have

4501 'S' =— , * = --p^ v = 2h-— = 2 ^•^ .

g f St c

Perpendicular p from wi/, any point on the curve, to the

chord of contact

:

AKOP. W2 _ vs'f^l/f^co
(4096, 4500)*^"^ ^' -~

s'+t'-26'tQOS<^'

Equation of the tangent at xy' :

4507 2(^+^-l)(i^+ |--l)+.-(.<.'/'+.'» = 0-

4508 The equation of the director- circle is

(l + lstc)(x^+ y' + 2xy cos w)— /i (x + y cosw) — k (y + x cos uj) + hk cos w = 0.

The parabola with the same coordinate axes as in (4109)

:

4509 (^ + f-l) =^ o.. V7 + Vf=l-

Proof.—From (•l-'300), putting h= — ~ (4174), and tliorefbro v = -.

st St
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Equation of the tangent at x', y'

:

4511 or ,; = ,„.r+_-j-^, » = -Vi?-

Equation of the normal at xy'

:

4512 .'/ = »-+(^;^7+;)F. '« =
n/-^-

4513 Normal through the origin xVs = yVt.

(4123)

(4122)

The equations of two diameters are, with any axes,

4514 iL_X = l and ^-f = -l-
S t St

Proof.—Diameter tbrotigh Of, -^^ = - by tte property OB = i?Q, iu

the figure of (4211).
^ '

Coordinates of the focus :

451 6 cV = "^^
y = —

. (5009)4010
s'-\-f-\-2stGOSto' ^ s'+f+2stcos<o

Equation of the directrix :

4518 cV{s-^t GOS(o)-\-1/{t-\-S COS 6)) = St COSG).

Proof.—Expand (4509), and form the equation of the polar of the focus

by (4479) and (4516).

When the axes are also rectangular, the latus rectum

4519 i>= ^fi-^. (4095,4516-8)

4520 Locus of the centre of the conic which touches the

axes at the points sO, 0^

:

t,v = Si/. (4500, 4402)

4521 To make the conic pass through a point xy' ; substi-

tute xy in (4500), and determine v.
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SIMILAR CONICS.

4522 Definition.— If two radii, drawn from two fixed

points, maintain a constant ratio and a constant mutual

inclination, tliey will describe similar curves.

4523 If the proportional radii be always parallel, the curves

are also similarly situated.

If tliere be two conies (1) and (2), with equations of the

form (4400), then—

The condition of their being similar and similarly

situated is

4524 ^ = -^ = t
a h b

Pi^OOF.—By (4404), changing to polar coordinates, r : r' = constant.

The condition of similarity only is

4525 M!=(^:; (4418-9)
h^—ab Ir—ab

or, with oblique axes,

^^gg (^^+ 6-2Aeosa))- ^ {u'^b'--2h'Q0f^0iy
(4422_3)

h^— ab li-— ab'

CIRCLE OF CURVATURE.

CONTACT OF CONICS.

4527 Def.—When two points of intersection of two curves

coincide on a common tangent, the curves have a contact of

ihQ first order; when three such points coincide, a contact of

the second order ; and so on. To osculate, is to have a con-

tact higher than the first.

4528 The two conies (Fig, ^2) whose equations are

ax^ +2//r*'//+ />/r+ 2j/<i! = (1),

a'x'+ 21i'xii-\-h'tf+ 2g'x = (2),
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touch the y axis at the origin, 0, by (4482). EUminate the

third terms from (1) and (2), and we obtain x = 0, the line

through two coincident points, and

4529 {ah'-a'h) a'+2 {hh'-h'h) 1/-2 fe -?>» = 0,

the equation to LM, the line passing through the two remain-

ing points of intersection of (1) and (2). (4099)

Again, eliminate the last terms from (1) and (2), and we
obtain

4530 «- « g") ^'+2 {hg'-h'g') .vy+ (bg'-b'g) 2/ = 0,

the equation of the two lines OL, OM. [By (4111) and (4099)

4531 If the points L, M coincide, the conies have contact

of the first order. The condition for this is that (4530) must

have equal roots ; therefore

4533 {ag'- ag) (bg'- b'g) = {lig - h'g)\

4533 If the conies (1) and (2) are to osculate, M must

coincide with 0. Therefore, in (4529), hg' = Vg.

If in (4532) hg' = h'g, the conies have a contact of the

third order.

CIRCLE OF CURVATURE.
(See also 1254 et seq.)

The radius of curvatui^e at the origin for tlie conic

(Lv^-^2JLVt/-\-by^-\-2gx = 0,

the axes of coordinates including an angle w, is

4534 P = -
h siu (si

Proof.—The circle touching the curve at the origin is

x^-\-2xy co?,b)-\-if—2rx sin w = 0,

by (4148), and the geometry of the figure, 2rsinw being the intercept on

the X axis. The condition of osculating (4533) gives the value of p.

p is positive when the convexity of the curve is towards the y axis.

Eadius of curvature for a central conic at the extremity

P of a semi-diameter a, the conjugate being h'.
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4535 p = ^^=*l=if!*: = -*;. (4367)
a sm<y j) jr no

Proof.—Take the equation and figure of (434G) (a = CF). Transform
to parallel axes through P. Then by (4534).

The same in terms of x, y, the coordinates of the point P.

4539 , = (*V:My)!.

Pkoof.—By (5138), or from (4538) and the value of h at (4365).

The coordinates of the centre of curvature for P, the

point xijf are

4540 i= -~, V = — ~^^ where 0^= a^—b\

P,..00P.-(.ig. 33.) ..o. 5| = t^ = i, ana
lj

=
^^^=f^.

with the values of p, PG, and PG' at (4535) and (4309).

Radius of curvature for the parabola.

Taking the diameter and tangent through the point for

axes,

4542 p =^=J^= ^^. (Fig. of 4201)
' sin u sm^ ff Si

By (4534), and equation (4211).

Coordinates of the centre of curvature at xij (rectangular

axes)

:

4545 ^ = 3^+2«, ^ = -|7.-

Proof.—From
i/
— i}:p = y:PG and p = 2a cosec" 0, PG' = 2acosec0

and y = 2a cot 6.

The evolute of a central conic (Fig. 33) :

4547 (aa^^-^{bf/)^={fr-Ir)K

4548 or {a\v^-^by-c'Y-\-27(rhh^\2nf = 0,

where c" = (r— lr.
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Proof.—Substitute for x, y in the equation of the conic (4273) their

values in terms of ^, t} from (4540). Otherwise as in (4958), or by the

method of (5157).

The curve has cnsps at L, H, M, and K.

The evolute of the parabola :

Proof.—As in (4548), from the equations (4201) and (4545).

CONFOCAL CONICS.

4550 ^ + |l=:l and 4+1^=1

are confocal conies, if

a^-a" = ¥-h'\

or the sign of h'''^ may be changed.

For the confocal of the general conic, see (5007).

4551 Confocal conies intersect, if at all, at right angles.

Proof.—If «, «' are the two conies in (4550), changing the sign of h"" to

make the second conic an hyperbola, «—«'=0 will be satisfied at their point

of intersection ; and {hj a'— a"^ = If' -\-h'') this proves the tangents at that

point to be at right angles (4078, 4280).

Otherwise geometrically by (1168).

4552 Tangents from a point P on one conic to a confocal

conie make equal angles with the tangent at P. [Proof at (1291)

4553 The locus of the pole of the line Ax+By+ G with

respect to a series of confocal conies in which d^— h" r= A, is

the right line perpendicular to the given one,

BCA-ACy-\-AB\ = {S.

Proof.—The pole of the line for any of the conies being xy ; Aa? = — Cx
and I?6^= —Cy (4292) ; also d-— lr' = A. Eliminate a" and W.

4554 CoR.—If the given line touch one of the conies, the

locus is the normal at the point of contact.
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4555 Grai-cs' Theorem. — The two tangents drawn to an

ellipse from a point on a confocal ellipse together exceed the

intercepted arc by a constant quantity.

Proof.—(Fig. 132.) Let P, P' be consecutive points on the confocal from

which the tangents are drawn. Let fall the perpendiculars FN, P'N'. From

(1291), it follows that /.FP'N = F'FN', and therefore P'jV = P^". The

increment in the sum of the tangents in passing from P to P' is

BB'- QQ' + P'N-FN' = BB'- Q Q'.

But this is also the increment in the arc QB, which proves the theorem.

4556 M the tangents are drawn from a confocal hyperbola,

as in (Fig. 133), the difference of the tangents PQ, FB is

equal to the difference of the arcs QT, BT.

•The proof is quite similar to the foregoing.

4557 ^t the intersection of two confocal conies, the centre

of curvature of eitlier is the pole of its tangent with respect

to the other.

Pkoof.—Take -^ + ^ = 1 (i.) and -^ — ^, = 1 (ii.) for confocal conies.
a- h' a' '

At the point of intersection, x"- = ^^ and y"-= — (where c" = (r—h'-);

loy a'— a"- = h- + h"\ The coordinates of the centre of curvature of x'y' in

(i.) arc x" = ^\ y" = -^(^ (4540-1). The polar of this point with

respect to (ii.) will be ^^ + -Kr = 1- Substitute the values of x", y"; and

we see, by the values of x', y', that this is also the tangent of (i.) at P.

4558 A system of coaxal circles (4161), reciprocated witli

respect to one of the limiting points 1) or D\ becomes a

system of confocal conies.

Pkoof.—The origin B is one common focus of the reciprocal conies, by

(4844). The polar of P with respect to any of the circles is the same line,

by (41GG). P and its polar (both fixed) reciprocate (4858) into the line at

infinity and its polar, which is the centre of the conic. The centre and one

focus bcinc: the same for all, the conies are confocal.



ANALYTICAL CONICS
IN

TRILINEAR COORDINATES.

THE RIGHT LINE.

For a description of this system of coordinates, see (4006).

The square of the distance between two points aj3y, a'/3'y is,

with the notation of (4008),

4601

4602

=^ [a cos^ (a-a )-hl) cos^ (i8-/8')^+r cosC(y-y)1.

Proof.—Let P, Q be the points. By drawiag the coordinates /?y, fi'y',

it is easily seen, by (702), that

pg^ = [(/3-/3T+{y-yT + 2(/3-/5')(r-y')cos^]cosec^4 (I).

Now, by (4007), a (a- a') + b(/5-/3') + 0(7-7') =0,

from which b(f3-i3'y = -a(a-a')(/3-/3')-c(/3-/3')(7-y'),

and a similar expression for 0(7— 7'/. Substitute these values of the square

terms in (1), reducing by (702).

Coordinates of the point which divides the straight line

joining the points afty, a^^'y in the ratio I : m :

4603 '^±^\ '-^j^, '-^^. By (4032).
l-\-m l-\-7ri l-{-m

ABC being the triangle of reference, and a = 0, |3 = 0,

7 = the equations of its sides, the equation of a line passing

through the intersection of the lines = 0, (5 = is

4604 /a-myS = or a-A:.5 = 0.

4 K



618 TRILINEAR ANALYTICAL CONICS.

Proof.—For this is the locus of a point whose coordinates a, ft are in the

constant ratio vi : I or k (4099).

When I and m have tlie same sign, the line divides the external angle C
of the triangle ABC; when of opposite sign, the internal angle C.

The general equation of a straight Hne is

4605 /a+my8+«7 = 0,

and it may be referred to as the Une (/, m, ??).

Proof: la + mft = is aritj line through the point C, and (la+ mft)-^ny
= is any line through the intersection of the former line and the line 7=0
(4604), and therefore any line whatever according to the values of the arbi-

trary constants /, m, n.

The same straight hne in Cartesian coordinates is

4606 (/ cos a+m cos ^+?i cosy) cV

+ (/ sin a-\-m siu /8+ n sin y) ?/— (/;?!+ >m;>2+ ups) = ^•

Proof.—By substituting the values of o, ft, y at (4000).

Or, if the equations of the sides of ABC are given in the

form Arr-\-B^y-\-Gi = 0, &c., the hne becomes

4607 {lA,-{-mA,-]-nA,) .v-i-{lB,+mB,-\-nB,)i/

-\rlC,-\-mC,-\-nC,= 0.

Proof.—By (4095), the denominators like \/(AI + II\) being included in

the constants /, »j, v.

4608 If '' = ^K ' = ^i '" = ^ are the general equations of

the hnos a, /3, y, then it is obvious that lu-\-mv = is, like

(4604), a line passing through the intersection of u and Vy and

Jn-\-mn^nw = represents any straight line whatever.

To make an equation such as a = p (a constant) liomo-

geneous in a, /3, y; multiply by the equation S = aa -f^/S + Cy

(4007), thus

(a;i^-S)n-fb;v3 + Cjiy = 0,

wliicli is of the same foi'iti as ( llJOo).
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4610 The point of intersection of tlie lines

/a + m/3+ ?iy = and ra-\-m(5-\-ny =

is determined by the ratios

/3 y
mn —mn nl'— n'l Im — I m

The values of a, (5, y are therefore

and (4017).

VI ei i ^ (mn — m'?i) t {nV— n'l) t (Ini —I'm)
4611

j^
,

2>
' D '

where D = n (mn — m'n) +1) [nl'— n'l) -f t {Im'— I'm)

.

Proof.—By (4017), or by solving the three equations

aa + 1)/3 + cy = S, ^a + m/3 + ny = 0, I'a + m'ft + n'y = 0.

The equation

4612 aa+l)i8+Cy = or a sin ^+i8sin J5+y sin C =

represents a straight line at infinity.

Proof.— The coordinates of its intersection with any other line

Za+WjS + ny = are infinite by (4611).

4613 Note: ar« + B/3 + cy = 2, a quantity not zero. The equation

(^a-\-hft-{-(.y = is therefore in itself impossible, and so is a line infinitely

distant. The two conceptions are, however, together consistent; the one

involves the other. And if, in the equation Za + m/3 + ?iy = 0, the ratios

I : m : n approach the values a : fc : c, the line it represents recedes to an

unlimited distance from the trigou.

4614 The equation corresponding to (4612) in Cartesian coordinates is

Oa; + 0?/ + 6^ = 0, the intercepts on the axes being both infinite. Cartesian

coordinates may therefore be regarded as trilinear with the x and y axes for

two sides of the trigon and the other side at an infinite distance.

4615 The condition that three points

aii3i7i, a.,l^zy2, «3/3373 may lie on the same

straight line is the determinant equation,

tti /3i
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4616 Cor.—Tlie above is also tlie equation of a straight line

passing tlirough two of the fixed points if the third point be

considered variable.

4617 Similarly, the condition that the three following

straight lines may pass through the same point, is the deter-

minant equation on the right,

= 0.

4618 The condition of parallehsm of the two straight lines

is the determinant equation

Proof.—By taking tbeliue at infiuity (4(jl2j for the third Hue in (4617).

I )n n

I' m' n

a 1) r

= 0,

4619 Otherwise the equations of two parallel Hues differ by

a constant (4076). Thus

/a+m)8+«y+A- (aa+byS+ry) = (4007)

or (/+A-a)a+(m+A'l))/8+(;i+AT)y=

represents any line i)arallel to /a + zyz/S-h^/y = by varying

the value of k.

The condition of perpendicularitv oP the two lines in

(•1618) is

4620 W -\-mm' -\- nn'— {uni' -\- m h) i'osA—(nl'-\-n'l) cos B

4621 or V (l—m vosC—ii cos B) -\-7h {m—n cos A— I cos C)

-\- n {n— I cos B—m cos ^ ) = 0.

Proof.—Transform tlie two ccjnations into Cartesians, by (4G06), and
apply the teat AA' + BJi' = (4078), remembering that

voaift-y) = -eoKJ, &c. (kill).
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When the second line is AB or 7 = 0, the condition is

4622 " = m cos .4 +/ cos B.

It also appears, by (4676), that (4620) is the condition that

tlie two lines may be conjugate with respect to the conic

whose tangential equation is

4623 /^4-m'+/i'— 2m/j cos A —2nl vosB — 2lm cos C = 0.

The length of the perpendicular from a point a(i'y' to the

line la-{-'}}ij3-\-uy = :

la +m^'+ ny __^__^^__4624
a/

}
i:--{-)n~-\-n-—'2mn cos A — 2nl cos ii—2/m cos C]

Proof.—By (4095) the perpendicular is equal to the form in (4006), with

x', y' in the place of x, y, divided by the square root of sum of squares of

coefficients of x and y. The numerator ~ la' + miy+ ny'. The denominator

reduces by cos (/3— y) = —cos J., &c.

4625 Equation of tlie same perpendicular :

a a l—m QOsC— n cos B

^ )8' m— /icos^— / cos C =0.

y y n— I cos B—m cos A

Proof. — This is the eliminant of the three conditional equations

ia + Mj3 + A> = 0, La->rMi^'-\-Ny' = 0, and equation (4621).

4626 Equation of a line drawn through a'j3'/ parallel to the

line (/, m, n) :

a a Xm—hn

y y I)/—am
Proof. — It is the eliminant of the three conditional equations

la-\-mii->rny = 0, la' + mjj' + tiy' = 0, and the equation at (4618).

= 0.

4627 The tangent of the angle between the lines (Z, m, n)

and {V, m\ n) is

{mn—mn) sin A-\-{nJ!—nl) sini?+ {Im'— l'm) sin (7

ll'j^r^nwi-\-nn— {mn-\-m'n) GOsA—{nl'-\-nl) cosjB— (/m'+Z m)cosC

Proof.—By (4071) applied to the transformed equations of the lines,

(4606), observing (4007).
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EQUATIONS OF PARTICULAR LINES and COORDINATE RATIOS
OF PARTICULAR POINTS IN THE TRIGON.

4628 Bisectors of the angles A, B, C

:

/B-y = {), y-a = 0, a-y8 = 0.

4629 Centre of inscribed circle (or in-centre)* 1:1:1.

The coordinates are obtaiaed from their mutual ratios by the formula

(4017).

4630 Bisectors of the angles y^, ir— B, tt— C:

/3-y=0, y+a = 0, a+y8 = 0.

Centre of the escribed circle which touches the side a (or

a ex-circle) —1:1:1.

4631 Bisectors of sides drawn through opposite vertices :

P^inB = y siu C, y smC = asluA, asinA = fi siu B.

4632 Point of intersection (or mass-centre) :

cosec^ : coseci^ : cosecC.

Proof.—Assume inp—ny = 0, by (4G04), as the form of the equation of

a line through A, and determine the ratio ih : n from the value of y : /3

when a = 0.

The coordinates of the point of intersection may be found by (4G10), or

thus :

o : ft = sin B : sin A = cosec A : cosec B,

ft : y = sin C : sin B = cosec B : cosec G,

therefore a : /3 : y = cosec A : cosec B : cosec C.

4633 Perpendiculars to sides drawn through opposite

vertices :

)8cosB = y cosC, y cos C= a cosyl, acosA = ficosB.

4634 Orthocentre: secyl : secB : secC.

* This nomenclature is suggested by Professor Hudson, who proposes the following :

—

" In-circle, circum-circle, a ex-circle ... mid-circle for inscribed circle, circumscribed circle,

circle escribed to the side a, and nine-point circle; also in-centre, circum-centre, a ex-

centre, ... viid-ceritre, for the centres of these circles ; and in-radiufi, circum-radiits, a ex-

radius, ... mid-radius, for their radii ; central line, for the line on which the circum-centre,

mid-centre, ortho-centre, and mass-oentre lie ; and central length for the distance between

the circum-centre and the urtho-ccntro."
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If the Cartesian coordinates of A, B, G be x^y^, x^iji, x^y-i,

the coordinates of the centre of the inscribed circle are

4635 ^ = '±!v±*fi+^3_ m+bm+e>h

Proof.—By (4032). Find the coordinates of D where the bisector of

the angle A cuts BC in the I'atio 6 : c (VI. 3), and then the coordinates of E
where the bisector of i? cuts AD in the ratio b + c : a.

4636 For the coordinates of the centre of the a ex-circle,

change the sign of a in the above values of x and y.

4637 The coordinates of the mass-centre are

4638 The coordinates of the orthocentre are obtained from
the equations of the perpendiculars from X2y2i ^Hlzi viz.,

{x^—x.^x-\-{y^—y.^y = x.,{w^—A\^-\-y^{y^—y.^.

Perpendicular bisector of the side AB

:

4639 a^mA-^^\nB-\-y^m{A—B) = 0,

4640 or acos^-y8cos5--^sin(v4-jB) = 0,

4641 or

/ , rtsiiiBsinCX . /« ,
ft sin C sin ^\ ^ ^

\ 2 sm A / \ 2sinB J

4642 Centre of circumscribed circle (or circum-centre) :

cos^ : cos^ : cosC.

Proof.—A line through the intersection of y and a sin ^1-/3 sin5 (4G31)

is of the form a sin^ — /3 sinB + ?(y = 0, and, by (4622),

n = —?,\nB cos x4-)- sill ^1 cos 5 = sin (A— B).

Otherwise, by (4633) and (4619),

a cos J.— /? cosB + k =
is any line perpendicular to AB ; and the constant k is found by giving a : (3

the value which it has at the centre of A l>.
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4643 Centre of tlie nine-point circle (or mid-cpntre)

:

cos (B-C) : cos (G-A) : cos (A-B).

Proof.—By (955) the coordinates are the arithmetic means of the corres-

ponding coordinates of the orthocentre and circum-ceutre. Therefore, by

(4(334, '42) and (4017),
a ^

secA
,

cos A 7

s'mA sec.l + sin5secJ5-|-sin(7 6ecO sinJ. cos^4 + sini?cosi?-|-sin(7cosC )

which reduces to cos (B— C)x constant.

4644 Ex. 1.—In any triangle ABC (Fig. of 955), the mass-centre E, the

orthocentre 0, and the circum-centre Q lie on the same straight line ;* for the

coordinates of these points given at (4632, '34, '42), substituted in (4615),

give for the value of the determinant

cosec A (sec B cos (7— cos B sec G) + &c.,

which vanishes.

Similarly, by the coordinates in (4643), it may be shown that the mid-

centre iV lies on the same line.

Equation of the central line :

Ex. 2.—To find the line drawn through the orthocentre and mass-

centre of ^-BC. The coordinates of these points are given at (4632, '34).

Substituting in the determinant (4616) and reducing, the equation becomes

a sin 2^ sin (B-C) +13 sin 25 sin (C-yl) -|-y sin 2C sin (A-B) =0.

Ex. 3.—Similarly, from (4629, '42), the line drawn through the centres

of the inscribed and circumscribed circles is

a (cos B— cos 6')+/3 (cos C—co{iA) + y (cos J.— cos B) = 0.

Ex. 4.—A parallel to ^B drawn through C:

a sin A +/3 sinB= 0.

For this is a line through a/3, by (4604), and the equation difiVrs only by a

constant from y = 0, for it may be written

(a sin.l + /^ sinL' + y sin C)—y sin (" = 0.

Ex. 5.—A poi })endicular to BG drawn through C is

« cos -h /3 = 0.

For a peipeiidicnlar is /3 cos 7?— y cos (7 = (4633) (1),

and a line through C is of the form /d + »i/j = 0. Hence, by (4619), the

constant Ic (a sin A + ji sin B + y sin C) must be added to (I) so as to elimi-

nate y. Thus
/J sin C cos B + a sin A cos (7 -|- /3 sin 5 cos C = 0,

(3 sin {B+C) + « sin .1 cos C = or /3 + o cos C = 0.

Tlif Luutriil \\uv. iSce uut«f tu ;4G29).
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ANHARMONIC RATIO.

For the definition, see (1052).

4648 The three ratios of that article are the vakies of the

ratio h : k' in the three following pencils of four lines respec-

tively

—

a = 0, a-kfi = 0, /8 = 0, a+///3 = 0... (i.) (Fig. 34),

a=0, a-^y8==0, a^k'l3 = 0, /3 = 0... (ii.) (Fig. 35),

a = 0, /3 = 0, a+A-/3 = 0, a+k'/S = 0...(iu:} (Fig. 36).

4649 The anharmonic ratio (i.) becomes harmonic when

h = h'. Hence the lines a-\-h^, a— l'P form a harmonic pencil

with the hnes a, j3, the first dividing the external and the

second the internal angle between a and /3 (Fig. 37).

4650 Similarly, the anharmonic ratio of four lines whose

equations are

is the fraction
(a^i— M2) i^h—fh)

Proof.—Let OL be the Hue a = 0, and

OB, 13 = 0.

fx^—/d^ = difference of perpendiculars from

A and B upon OL, divided by p.

Similarly, ^3— i^i,
&c. These differences

are proportional to the segments AB, CD,

AD, BC, and jj is a common divisor.

4651 Homographic pencils of hnes are those which have the

same anharmonic ratio. Thus the two pencils

a — /iiii3, a —^^2/3, a — ^tg/S, a — ^ii/3,

and a'— ^ii/3', o' — ^i./B', a—f.L.^(i', o'— ^ii/3',

are homographic pencils.

4 L
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THE COMPLETE QUADRILATERAL.

4652 Def.—Any foiii' riglit lines together with the three,

called diagonals, which join the points of intersection, make a

figure called a complete quadrilateral.

4653 Let be any point in the plane of the trigon ABC.
Draw AOa, BOh, GOc, and complete the figure. The equa-

tions of the different lines may be written as under, with the

aid of ijroposition (4604), the ratios I : m : n being arbitrary

and dependent upon the position of 0.

In;

ca,

nb.

Aa, ))(/B-~iiy = 0,

J3b, ny -la = 0,

Cc, la —)n^ = 0,

)n^-\-iiy — la = {),

ny -\-la —ni^ = 0,

la -\-nifi— ny = 0,

AP, mP-\-ny = 0,

BQ, ny +/a = i),

CR, la -\-m^= i);

OP, m/i-\-ny -2la = i),

OQ, ny +/a -2/;/^ = 0,

OR, la -^m^-'Iny = i),

PQR, la-\-nil3-\-ny = 0.

Proof.—Aa, Bb, Cc are concurrent by addition, he is concurrent with
lib and ft, and with Cc and y, by (4G04). AP and OP are each concurrent
with be and a. PQB is concurrent with each pair of lines be and a, ca and

ft, ah and y. Similarly for the rest.

4654 Every pencil of four lines in the above figure (supply-

ing AP, BQ, Git) is a liarmonic pencil.

Proof.—By the test in (4G4'J), the alternate pairs of equations being tlie

sum and difl'erence of the other two in every case.

Otherwise by projection. Let PQRS be the quadrilateral, with diagonals
UP, QS meeting in C. (Supply the lines AC, hC in the figure.) Taking the

plane of projection parallel to OA 11, the figure projects into the parallelogram
2jqrs; the points yl,7j pass to infinity, and therefore the lines J L-, ]>C become
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lines harmonically divided by the sides of the parallelogram, the centre,

and the points at infinity.

4655 Theorem (974) may bo proved by taking o, /', y for the lines BC,

CA, AB, and Va^-mj^ + ny, la^-m'fl ^ny, Ja + mft + n'y for he, ca, ah, the last

form being deduced from the preceding by the concurrence of Aa, Bh, and Cc.

THE GENERAL EQUATION OF A CONIC.

The general equation of tlie second degree is

4656 aa:'+b/3'+ cf-\-2fl3y-{-2fiya-\-2hal3 = 0.

This equation will be denoted by <^ (o, /3, 7) = or n = 0.

Equation of the tangent or polar

:

4657 i(a'Ci-\-u^l3-\-Uyy = or u^^a+u^P' -\-u^y = 0,

the two forms being equivalent and the notation being that of

(1405). The first equation written in full is

4659
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Proof.— By the methods in (4120). Otherwise by (4678); let a/3y

be on the curve ; then <p (a, /3, y) = 0. Next let the point where the line cuts

the curve move up to afty. Then the line becomes a tangent and the

ratio n : n' vanishes; the condition for this gives equation (4G58).

Cor.—The polars of the vertices of the triangle of refer-

ence are

4660 aa-]-hft+oy = 0, /,a+^,;8+/y=:0, o-a4-/;8+fy = 0.

4661 The condition that u may break up into two linear

factors representing two right lines is, by (4469), A = 0,

where

4662 A = abc-\-2fgh-af'-bg—cJr. (4454)

a h g
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determinant form annexed corresponding to (4GG3), or in full

4667 {BC-F') a'^(CA-G') /B'-]-{AB-H')f

+ 2 (GH^AF) /8y+2 (HF-BG) ya+2 (FG-CH) ayS = 0.

4668 or A {aa'-^bfi'+cf+2fl3y-^2oya-\-2ha/B) = 0.

Proof.—Eliminate )' from U =z and the given line. The result is of

the form I/\^ + 2EAjLt + JIju'^ = 0, and therefore the envelope is LM — B^, by

(4792). This produces equation (46G7). The coefficients are the first

minors of the reciprocal determinant of A (1G43), and therefore, by (585),

are equal to aA, 6A, &c.

4669 The condition that U may consist of two Hnear factors

is, as in (4661), D = 0, where

4670 D = ABC+2FGH-AF'-BG'-CH' =^\ (1643)

In this case ?7 becomes the equation of two points, since the

line Aa+^ij3-|-vy must pass through one or other of two fixed

points. See (4913).

4671 The coordinates of the pole of Xa+/i/3 + vy are as

A\+H,.i-\-Gv : H\-\-Bfi+Fv : GX-^F^i+Cv,

4672 or U^:U,: U,.

Proof.—By (4659) we have the equations in the '^^^.io,T!^'Z I'

margin, the solution of which gives the ratios of a : (3 : /.
"'

_^ j
^ _|_*^ _ ^.^^^

AiVJQ « — /^ V — ii
^"''^ A\ + H/ii + Gy II\+ Bfi + Fp G\ + Ffi + Gy A'

Hence the tangential equation of the pole of X'a+ //3+ v'y,

i.e., the condition that Xa + ^ijS + vy may pass through the

pole ; or, in other words, that the two lines may be mutually

conjugate, is

4674 \U^'+^iU,'-\-vU.' = or XX^;,+itt'C/^+ v'f7.= 0,

the two forms being equivalent, and each

4676 = ^xv+i^^i^/+Cvv'

+ F(^v'+/i'v)+ G(vV+v'X)+ i/(X^'+XV).

The coordinates of the centre oq, /3o, yo are in the ratios

4677 An+m+ Gt : m+Bh+ Ft : Gn-\-Fh+ Ct,

where a, tj, C are the sides of the trigon.
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Proof.—By (4-G71), since the centre is the pole of the line at infinity

aa+ bfl+ cy = (4612).

Tlie quadratic for the ratio n : n' of the segments into

which the Une joining two given points a/3-y, a'/3'y' is divided

by the conic is, with the notation of (4656-7),

4678
<!> {a', p', y) n'-\-'2 ((^„a +(/»,/8'+(^y) nn'-{-ct> {a, 0, y) n" = 0.

Proof.—By the method of (4131).

The equation of the pair of tangents at the points where 7
meets the general conic u (4656), is

4679 aitl-{-2hujip-\-bui= 0.

Pjjoof.—The point a'/3', where y meets the curve, is found from

au"- + 2ha'iy + hiy'- = [y = in (4G56)]. The tangent at such a point is

ny + u^jy' = (4658). Eliminate a', /3'.

The equation of a pair of tangents from al3'y is

4680 ^ (aW) ^ i^Py) = {<t>.ci'+<t>,li'-\-cl>yy7.

Proof.—By the condition for equal roots of (4678).

By actual expansion the equation becomes

(^]>y2+Glo'-2Flh) cP + iCa' -{-Ay'-2Gya) /3'H(^l/3' +iV -2/fa/5) y'-

+ 2(-Al3y + nya + Gui3-Fa')tyy'

4681 +2(Hl3y-Bya+ Fal3-Giy)y'a'

+ 2 (Gi3y + Fya-Cafi-Ey') u'lY = 0.

In which either a', /i', y' or o, /?, y may be the variables, for the forms are

convertible.

Otlierwise the equation of the two tangents is

4682 4>(/3y-)8'7, ya-ya, a/3'-a/3) ^ 0. (4665)

Proof.—By substituting py' — /)'y) ^^- f^*'' ^^ P^ '' "^ (4664), the condition

that the line joining "'/j'y' to any point a/Sy on either tangent (see 4616)

should touch the conic is fulfilled. The expansion produces the preceding

equation (4681).

The equation of tlie asymptotes is

4683 (^(a,A7) = <^(ao,A.7o)-A-S (1),

wluM'c (/„, /^,„ y,, :ii't' tiie coordinates of the centre.
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Otherwise tlie equation, in a form homogeneous in

a, /3, y, is

4684 (aa,+lj;8o+rro) ^(^,^,7) = k{na-\-hl3+CyY (2),

where n, I), t are the sides of the trigon.

And, finally, if the tangential equation (4664) be denoted

by O (A,^i, v) = 0, the equation of the asymptotes may be

presented in the form

4685 a>(a,Ij,r)(^(a,A7) = (aa+l)y8+r7rA (3).

Proof.— (i.) The asymptotes are identical with a pair of tangeuts from

the centre ; therefore, put a^, jj^, y^ for o', /3', y' in (4680) ;
thus

<t> ("> fi, y) f ("o' l\, ra) = ^•' ('^« + fV' + cry = k'T (4),

since the polar becomes the line at infinity.

N'ow, multiplying the three equations in (4672) by a, /3, y respectively,

and adding, we obtain (j) (a, ft, y) = Jc (Xa + nft + yy), and therefore

0K,/3o,yo) = A-(ar. + [v3 + cy) = /.-2 (5),

since the line at infinity (4612) is the pole of the centre.

From (4) and (5), by eliminating A-, equation (1) is produced ; and by

dividing (4) by (5), we get equation (2).

Again, taking the values of a, ft, y from (4673), we have

^- + ^^^ + ^y = HKj^^ ^,a therefore ^^o+J^/'o+ ^/o = *1^^M).
k ^ k A

By the last equation, (2) is converted into (3). See also (40GG).

CoK.—Since the centre (oo, 1%, y^) is on the asymptotes,

we have

4686 <^ K, A, 7o) = ^'^ - * i^> ^^ 0-

4687 The semi-axes of the general conic (4656) are tlie

values of / obtained from the quadratic

(«+*^> h,
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Proof.—The centre being a„/3„y„, put a — a,^ = x, /3—l% = y, y— yo = s.

a/3y being a point on the conic, and /• the radius to it from the centre, we

have, by (4G02),

r- = ^(x\\ COS A + 7fb cos B + zh cos C) (1).

Also (4656), f (a, 13, y) = <p (a,+ x, /3„+ y, y,+ z) = 0.

Expand and write /, m, n for aa^ + hl3^+ (jY,„ lia^,+ hi%+j\, f/"o +//^o + <'7u-

The terms in x, y, z become

U-\-r,:y^nz= Z (n -a^) +&c. = 2-2 = (4007) (2),

and we obtain (.<, y,z)=-<p (a„, /3„, y,) = :s=A-f-<I» (a, i\ c) (4686) (3).

The maximum and minimum values of r" and therefore of

3racos^ + 2/"^cosI?-|-s^ccos6' (4)

required, subject to the equations (2) and (3). By the method of
^

unde-

ained multipliers (1862), the quadratic above is found.—i^erre/'^'s Tril.
are

tei'mined

Coord., Ch. 4, Art. 18

4688 The area of the conic = TrSalJCA

Proof.—If the roots of the quadratic (4687) are ±rr\ rfcr.;'-, the area

will be 7rri?-2. The coefficient of r"'' reduces by trigonometry to — SV, and

the absolute term is —4' (a, t, c). Hence the product of the roots is found.

4689 The conic will be an ellipse, hyperbola, or parabola,

according as ^^ (n,i),C) (4664) is positive, negative, or zero.

Proof.—The squares of the semi-axes have opposite signs in the hypei*-

bola. Therefore the product of the roots of the quadratic (4687) must for

an hypei'bola be negative, and therefore <1» negative in (4688).

4> (a, h, c) = makes the curve touch the line at infinity (4664), a pro-

perty which distinguishes the parabola.

The condition that the general conic (4656) may be a

rectangular hyperbola is

4690 r«+^*+c= 2/cos^4-2i,'- cosi^+2/i cosC.

Proof.—Let the asymptotes be

/a + mft + ny = 0, I'a + m'(3 + n'y = 0.

Forming the product, equating coefficients with (4685), and denoting

(j) (a, b, c) by <?>, we get the proportions

W _ ))im' _ u.ii' _ mn' + m'n

a^j— a-A
~

h(p— b-:l
~

c^— rA ~~
2(/^— bcA)

id'+ 11' I hii'+l'vt

2 (g<p— ca A) 2 (^hf— ab A)
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We may therefore substitute these denominators in (4620) for the condition

of perpendicularity of the asymptotes. The result reduces to the equation

above, by (837).

For another method, see (5002).

4691 The general conic (4656) will become a circle when

the following relation exists between the coefficients :

b sin^C+c sm'B-2fsmB sinC

= c sinM+« sin^C—2^smC siii^

= a shrB+b siu^^ — 2/i sinA shiB.

PuooF.— Equate coefficients of the equation of the conic (465G) with

those of the circle in (4751).

4692 The equation of the pair of lines drawn from a point

a(5'y to the points of intersection of the conic (/> and the line

L = \a-\- 1^(3 ^vy = is, writing L' for Aa'+ |ii/3'+ vy , with the

notation of (4656-7),

V'cl> (a, fi, y) - 2LL'((^y+ <^,/3'+ <^,y ) + ^'* (« '
^'^ V) = ^

Proof.—By the method of (4133).

4693 The Director-Gircle of the conic, that is, the locus

of intersection of tangents at right angles, is, in Cartesians,

C {.v'^-if)-2G.v-2Fij^A^B = 0.

Proof.—Let the equation of a tangent through xy be

mi,—n + (y— inx) =0.

Therefore in the tangential equation (4665) put \= vi, yu = — 1, v=:y — mx,

and apply the condition, Product of roots of quadratic in m = —I (4078).

The equation of the same circle in trilinears is

4694 iB+G+ 2FcosA)a'-\-{C-{-A+ 2GcosB)fi' + iA-i-B+ 2HcoiiC)y"'

+ 2 (A cos A-H cosB- G cos G-F)(3y

+2(-HcosA +B cos B-F cos G-G)7a
+ 2 (-G cosA-F cos B+CcosG-H) aft = 0;

or, in the form of (4751),

4695
(aa+ fe/3 + cy)(^+^+|^^^^a + &c.) = ^l^Ail (a^y + 6y« + c«/3).

4 M
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Proof.—The equation of a pair of tangents (4681) through a point o^y
in trilinears, when the tangents are at right angles, represents the limiting

case of a rectangular hyperljola. Therefore the ecination referred to must

have the coefficients of a', /3'", &c. connected by the relation in (4690),

which thus becomes the equation of the locus of the point a^y ; i.e., the

director-circle.

4696 When the general conic is a parabola, C= in (4G93)

and ^ {a, h, c) = m (4G95), by (4430) and (4689), and these

equations then represent the directrix.

PARTICULAR CONICS.

4697 A conic circumscribing the quadrilateral, the equa-

tions of whose sides are a = 0, i3r=0, 7 = 0, S= 0, (Fig. 38)

ay = A-/38.

Proof.—This is a curve of the second degree, and it passes through the

points whei'e a meets /3 and h, and also where y meets /3 and d.

4698 The circumscribing circle is a-y = d=y8S; + or — , as

the origin of coordinates lies without or within the quadri-

lateral.

Proof.—Transform (46'>7) into Cartesians (4009) ; equate coefficients of

X and y and put the coefficients of xy equal to zero.

4699 A conic having a and y for tangents and j3 for the

chord of contact

:

(Fig. 39)

ay = k^K

Proof.—Make ^ coincide with ft in (4698).

4700 A conic having two common chords o and /3 with a

given conic ^S^

:

(Fig. 40)

S = ka^.

4701 A conic having a common chord of contact a with a

given conic 8 : (Fig. 41)

S = Aa'.

4702 Coil.—If UPQ be drawn always parallel to a given
line, rN'ozRP.FQ, by (4317).
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4703 A conic Laving a common tangent T at a point x'y'

and a common chord witli the conic S

:

(Fig. 42)

4704 A conic osculating ^S' at the point xij where T touches
at one extremity of the common chord / (x— iG)-\-m (y— ?/) :

(Fig. 43)

S=T {Lv+ 7mj- Iv - my')

.

4705 A conic having common tangents T, T' at common
points Avith the conic 8 : (Fig. 44)

S = kTT.

4706 A conic having four coincident points with the conic

S at the point where T touches : (Fig. 45)

S = kTK

4707 The conies S+L^ = 0, S+M' = 0, S-\-N' = 0,

(Fig 40) having respectively L, M, N for common chords of

contact with the conic S, will have the six chords of inter-

section

L±M=:0, M±N=0, N±L=0,
passing three and three through the same points.

Proof.—From (S+ iP) - (S+ N') = (M+N){M-N), &c.

By supposing one or more of the conies to become right lines, various theorems
may be obtained.

4709 The diagonals of the inscribed and circumscribed

quadrilaterals of a conic all pass through the same point and

form a harmonic pencil.

Proof.— (Fig. 47.) By (4707), or by taking LM=E? and L'W = E''

for the equations of the conic by (4784).

4710 If three conies have a chord common to all, the other

three chords common to pairs pass through the same point.

Proof.— (Fig. 48.) Take 8, S+ L3I, S+LN for the conies, L being the

chord common to all ; then M, N, M—N are the other common chords.
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4711 The hyperbola .vy = (Ocr+0//+j>)-

is of the form (4699), and has for a chord of contact at infinity

Oxi-Oy+2^ = 0, (i; y being the tangents from the centre.

4712 The parabola y^ = (0^-\-Oy+p) .v

has the tangent at infinity Ox-{-Oy-{-p = 0.

4713 So the general equation of a parabola may be put in

the form of (4699). Thus

(a.r+/3^)-^+(2^-.v+2/i/+c)(0^+0^/+l) = 0.

Here ax+ fty is the chord of contact, that is, a diameter; 2gx + 2fy + c is

the finite tangent at its extremity, and Ox + Oy + 1 the tangent at the other

extremity, supposed at infinity.

4714 The general conic may be written

{cLv'+2kvy-{-bt/)-\-(2g.v-\-2fy-hc){0x-j-0y-^l) = 0.

For this is of the form ay + kl3o, S being at infinity.

4715 The conies 8 and S-k{0.v-\-Oij+iy

have double contact at infinity, and are similar.

4716 The parabolas 8 and S-k''

have a contact of the third order at infinity.

Proof.—For S and S—(0x + 0y-\-Jiy have the line at infinity for a chord

of contact ; and, by (4712), this chord of contact is also a tangent to both

4717 All circles are said to pass through the same two

imaginary points at infinity (see 4918) and through two real

or imaginary finite points.

Proof.—The general equation of the circle (4144) may be written

(x + iy)(x-iy) + (2gx + 2fy + c)(0x + 0y+ l) = 0;

and this is of the form (4G97). Here the lines x±iy intersect Ox + Oy + 1

in two imaginary points which have been called the circular poi)ds at {njinity,

and 2(jx+ 2fy + c in two finite points F, Q ; and these points are all situated

on the locus x^+ y'^ + 2gx+ 2fy + c — 0.

4718 Concentric circles touch in four imaginary points at

infinity.
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Proof.— The centre being the origin, equation (4136) maybe written

{x+ iij)(x—{y) = {Ox + Oi/ + ry\ which, by (4699), shows that the lines a; ± iy

have each double contact with the {supplementanj) curve at infinity, and the

variation of r does not affect this result. Compare (4711).

4719 The equation of any conic may be put in the form

^v'+y' = ey.

Here x = 0, y = are two sides of the trigon intersecting at

right angles in the focus
; y = 0, the third side, is the directrix,

and e is the eccentricity.

The conic becomes a circle when e = and y = oo , so that

ey = r, the radius, (4718).

4720 Two imaginary tangents drawn through the focus

are, by (4699),

{^v+ii/){a:—ii/) = 0.

These tangents are identical with the lines drawn through

the two circular points at infinity (see 4717). Hence, if two

tangents be drawn to the conic from each of the circular

points at infinity, they will intersect in two imaginary points,

and also in two real points which are the foci of the conic.

All confocal conies, therefore, have four imaginary com-

mon tangents, and two opposite vertices of the quadrilateral

formed by the tangents are the foci of the conies.

4721 If the axes are oblique, this universal form of the

equation of the conic becomes

The two imaginary tangents through the focus must now
be written

{cV-\-y{cosQ}-\-i siuco)} {^v+y (cosw— i siuw)} = 0.

4722 Any two lines including an angle 9 form, with the

lines drawn from the two circular points at infinity to their

point of intersection, a pencil of which the anharmonic ratio

is e^('^-2«).

Proof.—Take the two lines for sides /3, y of the trigon. The equation

of the other pair of lines to the circular points will be obtained by elimin-
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ating- a between the equations of the line at infinity and the cii'cum-circle,

viz., a« + tv3 + cy = and ^ + -^ + ^ = 0. (4738)
« n y

The result is /3^ + 2/>y cos ^+ y- = ;

or, in factors, (/3 + (''"y
) (/3 + e-'V) = 0.

The anharmonic ratio of the pencil formed by the four lines ft, /S + e'^y,

y,ft-\-c-''y is, by (4G48, i.),

— e'« :
p-'« = — e"« = e'"

'"--"'.

4723 Cob.—If 9 = ^Tr, the lines are at right angles, and the

four lines form a harmonic pencil. [Ferrers' TrU. Coords., Ch. VIII.

THE CIRCUMSCRIBING CONIC OF THE TRIGON.

4724 The equation of this conic (Fig. 49) is

Wy-^mya+nap = or 1 + !±+ ^ = 0.

Proof.—The equation is of the second degree, and it is satisfied by

a = 0, ft
= simultaneously. It therefore passes through the point aft.

Similarly through fty and ya.

The tangents at A, B, and G are

4726 ^^ + -;=0, ^+^ = 0. 1+^ = 0.

Proof,—By writing (4724) in the form

mya + ft(Iy + na) = 0,

ly-\-na = is seen, by (4G97), to be the tangent at ay ; for the intersection's

of a and y, with the curve, now coincide, and ^ (now ly + na) passes through

the two coincident points.

4729 The tangent, or polar, of the point a'(5'y is, b}^ (4G59),

(my'+ *j/3') a+ {na'+ ly') ^8+ (Ifi'-^ma') y = 0.

4730 The tangents at A, D, G (Fig. 49) meet the opposite

sides respectively in P, Q, R on the right line

a
, Aj_>:==0. By(4G04).

I
^ m ^ n

4731 The line "- — ^- passes through (D), the intersection

of the tangents at A and B.
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4732 The diameter tlirougli the intersection of the tan-

gents at A and B is

nna—nhl^+{ltl-mh) y = 0.

Proof.—The coordinates of the point of intersection are I : vi : —n, by

(4726-7), and the coordinates of the centre of AB are b : a : 0. The

diameter passes through these points, and its equation is given by (4616).

4733 The coordinates of the centre of the conic are as

/(-/a+ >>*t)+ /ir) : m(/a— mlj+ wr) : n{l^+mh-nt).

Proof.—By (4610), the point being the intersection of two diameters

like (4732). Otherwise, by (4677).

4734 The secant through {a^ftai), {c^-Ay-^, ^^ny two points

on the conic, and the tangent at the first point are respectively,

Proof.—The first is a right line, and it is satisfied by a = Oi, &c., and

also by a = cu, &c., by (4725). The second equation is what the first be-

comes when n'2 = "i' &c. For the tangential equation, see (4893).

4735 The conic is a parabola when

f^'-^m'h^-{-nH'-2mnht-2nUil-2lmnh = 0,

4736 or y(/a)+ v/0Hl))+y(»a) = O.

Proof.—Substitute the coordinates of the centre (4733) in aa + 6/3 + Cy = 0,

the equation of the line at infinity (4612).

Otherwise, the conic must touch the line at infinity ; therefore put a, b, C

for A, ^i, r in (4893).

4737 The conic is a rectangular hyperbola when

/ cos J+m cos B-\-ii cos C = 0,

and in this case it passes through the orthocentre of the

triangle.

Proof.—By (4690), and the coordinates of the orthocentre (4634).

THE CIRCUMSCRIBING CIRCLE OF THE TRICON.

4738 Py siu4+ 7a sinB+afi siuC = 0,

siu^ ,
siiiB . sin (7 ..
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Proof.—The values of the ratios I : vi : n, in (4724), may be found geo-

metrically from the equations of the tangents (4726-8).

For the coordinates of the centre, see (4642).

THE INSCRIBED CONIC OF THE TRIGON.

4739 ra'-]-m'P'-\-ny-2m7i/3y-2nlya-2lmalB = 0.

4740 or ^{la) +y(»*«+ ^(ny) = 0.

Proof.— (Fig. 50.) The first equation may be written

ny (ny-2la-2mi3) + (la-r>i(3y = 0.

By (4699) this represents a conic of which the lines y and ny— 2la— mft are

the tangents at F and /, and la—m^ the chord of contact. Similarly, it may
be written so as to shew that a and /5 touch the conic.

4741 The three pairs of tangents at i^,/, &C.5 are

2my8+2«y-/a ) 2ny-\-2la-mfi ) 2la-\-2m^-ny ?

and a J

'

and 13 -> and y J

and they have their three points of intersection P, Q, B on

the right line /a+ mjS + ^iy. By (4604).

4742 The coordinates of the centre of the conic are as

nh-\-mC : ZC+wcl : ?/ia+/I).

Proof.—By putting a and ft = zero alternately in (4739), we find, for

the coordinates of the points of contact,

at D, /3 = -i^^', and at E, a = ^"^'^

nh + mi
' '

m\ + h
'

therefore the equation of the diameter through C bisecting DE is, by (4603),

a ^ ft

Similarly the diameter bisecting DF is
la + lb 7ib + mc

Therefore the point of intersection, or centre, is defined by the ratios given

above.

Otherwise, by (4677), and the values in (4665), writing for a, h, c,f, g, h

the coefficients in (4739).

4743 The secant through ai/3iyi, nj^.^y, any two points on

the curve.

^y^/n (\/^o+v/^x) = 0.
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Proof.—Put a^fi^yi for afiy, and shew that the expression vanishes by

(4740).

4744 The tangent at tlie point ai/3iyi

:

Proof.—Put a^= a^, &c., in (4743), and divide by ^^(a^fi^yi).

4745 The equation of the polar must be obtained from

(4739) by means of (4659).

4746 The conic is a parabola when

a * b c

Proof.—Similar to that of (4736).

THE INSCRIBED CIRCLE OF THE TRIGON.

4747 a' cos*A +^2 cos*|-f f cos*
^

-2l3y cos^:|cos2-| -2ya cos^^cos^i _2a/8 cos^^-cos^^.

4748 or cos^ ya+cos^ V^/8+cos-^ ^y = 0.

4749 The rt-escribed circle : (4629)

cos— v'^^+siu— y^+siu— \/y.

Proof.—At the point of contact where y = 0, we have, in (4740), geo-

metrically, r being the radius of the circle,

Z : m =
i(5

: a = rcot-^sin^ : root— sin5 = ±cos^|J. : cos^-B;

+ for the inscribed; — for the escribed circle and tt—B instead of B.

4750 The tangent at a(5'y\ by (4744), is

eosA -^ +COS 4^ +COS I -f, = 0.

The polar is obtained as in (4745).

GENERAL EQUATION OF THE CIRCLE.

4751 (/a+?«)8-f «y) (a siu ^+^8 sin 7?+y siu C)

\-}i [j^y siu ^+ya siu /^+ a/3 siu C) — 0.

4 N
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Proof.—The second term is the circumscribing circle (4738), and the

first is linear by (4G()9) ; therefore the whole represents a circle. By varying
k, a system of circles is obtained whose radical axis (4161) is the line

la + mft + ny, the circumscribing circle being one of the system.

4752 If l'a-^'}n'(5-\-n'y be tlie radical axis of a second system
of circles represented by a similar equation, the radical axis

of any two circles of tlie two systems defined by Ic and Jc

will be
^•'(/a^-my8+ ?iy)-A•(ra+m'^+»^V) = ^

Proof.—By eliminating the term

/3y sin A + ya sin i? + a/3 sin C.

4753 To find the coefficient of X'+ if in the circle when
only the trihnear equation is given.

Rule.—Mahe a, /3, y the coordwates of a j^oint from wliich

the length of the tangent Is hioivn, and divide by the square of
that length; or, if the point he within the circle, substitute

^' half the shortest chord through the poinV^ for ^Hhe tangent."

Proof.—If S = be the equation of the circle, and m the required co-

efficient ; then, for a point not on the curve, S -^ m = square of tangent or

serai-chord, by (4160).

THE NINE-POINT CIRCLE.

4754 a' sin 2A +)8-' sill '2n-\-y sin 2^
— 2 (/8y sin/1-fya sill />+ a/3siiir) = il
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Proof.—The equation represents a circle because it may be expressed iu

the form

(a cos J. 4-/5 cosi) + y cos C)(a sin J.+ /3 sin i? + y sin G)]

— 2 (/3y sin A + ya sin B + afi sin C) = 0.

See Proof of (4751). Now, when a = 0, the equation becomes

(/3 sinS— y sin(7)(/3 cos5-y cos G) = 0,

whicli shews, by (4631, '3), that the circle bisects BC and passes through D,
the foot of the perpendicular from A.

4754« The equation of tlie nine-point circle in Cartesian

coordinates, with the side BC and perpendicular on it from A
for X and y axes respectively, is

x^+ y--B, sin {B- G) x-E cos (B-G) y = 0,

where B is the radius of the circum-circle.

THE TRIPLICATE-RATIO CIRCLE.

47546 *Let the point S (Fig. 165) be chosen, so that its

trilinear coordinates are proportional to the sides of the trigon.

Draw lines through S parallel to the sides, then the circle in

question passes through the six points of intersection, and the

intercepted chords are in the triplicate-ratio of the sides.

[The following abbreviations are used, a, h, c, and not a, i\ c, being in

this article written for the sides of the trigon ABG-I

K=a-+ b' + c-; \= ^Qrc"+ e'er+ d-J)-) ; A = ABC

;

f^
= ~; u> = A BFD = DE'F', &c. ; 6 = DFD' = DE'D', &c.A

By hypothesis, i?- = A = X = __1A__ (4007)=^ (1),

BF c y ^ ^ BD'

therefore BF . BF' = BD.BD', therefore F, F', D, D' are concyclic.

If AS, BS, CS produced meet the opposite sides in I, m, n,

B)i _ g sin BCn _ aa __ a? , ^n ,^.

An 6sin^C'« Z>/3 6"

* The theorems of (1 to 36) are for the most part due to Mr. R. Tucker, M.A.
The original articles will be found in The Quarterly Journal of Pure and Applied Mathematics,

Vol. XIX., No. 76, and Vol. xx., Nos. 77 and 78.

Other and similar investigations have been made by MM. Lemoine and Taylor and
Prof. Neuberg, Mathesis, 1881, 1882, 1884.
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SF' = BD = -;^ =v^ (1) = ^. Similarly BF' = ^, &c. ... (3).
smB KsmB A J^

7)D' = 7)P^=^.-^ = $,&c (4).
sin (7 Ac A

^D' = ^D + DI>' = ^^^^^^, &c ..(5).

FD = y(BD' + BF'-2BD.BF cos B) = ^, by (2) and (5) (G).

Hence DBF and B'B'F' are triangles similar to ABC, and tliey are equal

to each other because FSF = B'SF = E'SF', &c. (Euc. I. 37.)

BF' = y(BB'- +BF"-2BB.BF' cosB) =^ (7).

Hence BF' = FB' = EB'.

B'F = ^BB'=^-^\+^ &c (8).
a A

^^^^^BF^±FB^-mi^cr + <f+]^ (5 & 6) = -^ (9).^^^"^
2BF.FB 2X ^ ^ 2\ ^ ^

sin-"=V^-£)=ir('««) (^°)-

A , , ,
J,

a- cos ^ + 6c ^-1 -1 s

COS0 = cos (/I— w), &c. = (.iij.
A

AFE' + BBF'+ CEB' = ^^"^^'^"^^'^ + &c. = /x^A = BEF, by (G) ... (12).

Or, geometrically, by Euclid I. 37.

Radius of T. R. circle, p = ^B, by (G) (B = circum-radius) (13).

The trilinear equation of the T. R. circle is

a6c(cr +/3Hr)=^(«" + ^/^+ ^y)'+ «'PV+^V + c'«/3 (1-i),

or (h' + c') a'+ (r + tr) /r + (a^+ Ir) y' = {{a-+ h') (cr + r) + hV'
] ^

+ ((L= + r)(Z.= -ffr) + cV} ^^ + {(c' + cr)(,y + K-) + a'h'} ^... (15).

Obtained by substituting the trilinear coordinates of B, E, F, through

which points the circle passes, in (4751), to determine the ratios I : 7n : n

and k. The coordinates of B are

^ g (a^+ IJ^) sin C ac' sin J?
^' K '

' K •

Similiuly those of B and F.
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THE SEVEN-POINT CIRCLE *

4754c Let lines be drawn tlirougli A, B, G (Fig. 1G5)

parallel to the sides of the triangles DEF, B'E'F', as in the

figure, intersecting each other in P, P\ L, M, N. Let Q be
the circam-centre ; then the seven points P, P', L, M, N, Q, S
all lie on the circumference of a circle concentric with the

T. R. circle. (IG)

The proof depends on Euclid III. 21, and the similar triangles DEF,
B'E'F'.

The radius p' of the seven-point circle is

' P /(V^~ Qx^N 2PP^ sin 2a; C(17),

obtained from p'- = p' + 8D"^—2pSD cos (B- TDD')

.

Expand and substitute cos TDD' = —— = -r-j^, by (3) and (5),

sm TDD = COS (11), cosi? = —!—
, s]n_B =—, cosJ. = —-~ .

^ ^ 2ca etc 2bo

3p + p'= R\ by (17) and (13) ; ^ =
V'cS^' ^^ *^^^^ ^"^ "^^^ -

1 (20).'

The triliuear equation of the seven-point circle is

a6c(aHiff'+ y') = a'/8y + iV«+ c'a/3 (21),

or o/3y+ Jya-t-ca/3 = ^ (5ca-fca/3 + a5y) (aa + Z)/3 -fey) (22).

If the coordinates of P are a^, l\, y^, and those of P' a{,
ft'i, y[ ; then

"i"! = /3i/5i = yiyi (23).

The equation of STQ is, by (4615),

a sin (B-C)+f3 sin (C-yl) + y sin (A-B) (24).

And the equation of PP' is

JL(a'-hV-) + 4-(h'-chi') + ^(c'-a'b') = (25).
a c

The point S has been called the Symraedian point of the

triangle. It has also this property. The line joining the viid-

* This circle was discovered by M. H. Brocard, and has hoen called " The Brocard Circle,"

the points r, I" being called the Brocard points.
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point of any side to the mid-point of the perpendicular on that

through S.

Proof.—Let X, Y, Z (Fig. 166) be the feet of the perpendiculars ;
x, y, z

the mid-points of the same, and X', Y', Z' the mid-points of the sides. Now
the trilinear coordinates of X', /S', and x in order are proportional to

0, c, h This determinant vanishes

;

a, h^ c . therefore the three points are on

1, cos (7, cos I? the same right line, by (4015).

That the three lines X'x, Y'y, Z'z are concurrent appears at once by (970),

since CX- 2Y'x, &c.

The Symmeclian point may also be defined as the intersec-

tion of the three lines drawn from ^, i?, C to the corresponding

vertices of the triangle formed by tangents to the circum-

circle at A, B, G.

Let Ba, (7/3, Ay be taken = CX, AY, BZ respectively.

Then Aa, B^, Gy meet in a point 2, by (976), and this point

by similarity of figure is the Symmedian point of the triangle

formed by lines through A, B, G parallel to the sides BG,

GA, AB.
If the sides of X'Y'Z' be bisected, similar reasoning shews

that a, the Symmedian point of the triangle X'Y'Z', lies

on S^.
It can also be shewn that, if A'B'G' be any triangle having

its sides parallel to those of xiBG and its vertices on SA, SB,

8G, the sides of the two triangles intersect in six points on a

circle whose centre lies midway between the circum-centres

of the same triangles. When A'B'G' shrinks to the point Sy

the circle becomes the T. R. circle.

A more general theorem respecting the triangle and circle

is the following

—

Take ABG any triangle, and let DD'EE'FF' be the points in order, in

which any circle cuts the sides.

Let BD = pc, CE = qa, AF - rb
| ^^O)

CD' = p'b, AE'=qc, BF'=r'a)

From BD.BD' = BF. BF', &c., Euclid III. 35, we can write three equations

which are satisfied by the values

p = r' = tac, q=p'=iah, r = q' = the (27),

and from these equations it appears that

DF=ffc; B'F' = aa, &c., where ff --= /(/-.V-/A'-M) (28),

BO that BEF and B'E'F' are both similar to ABC.
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<

Also DF'=tabc, therefore DF' =^ FE' = ED' (29).

^ . -^^-^ tac sinB i, .

From &mBFD = we can obtain
a

cot BED = cot
(l>
= =F^-^^=^ (30).

The radius of the circle = (tR (31),

and the coordinates of its centre are

a = E j cos ^ + t(Kcr-a'-h'-c*) 1
_ gij^ii^^j.]y ;3 ^nd y (32).

(. zbc )

The equation of the circle is

al3y+ hya + cai3 = t (aa + b[3 + cy) {ahc(l— ta-)+&c.} (33),

or tabc[a\l-ta')+l3'(l-th')+y'{l-tc')}

= a(3y{(l-tb'){l-tc') + ebx~\ +&c (34).

When t = 0, <t = 1 and the circle is the circum-circle (35).

When tK=l, (T = tX=— and the circle is the T. R. circle (36).

CONIC AND SELF-CONJUGATE TRIANGLE.

When the sides of the trigon are the polars of the opposite

vertices, the general equation of the conic takes the form

4755 /V+m2)82-?iy = 0.

Proof.— (Fig. 51.) The equation may be written in any one of the

three ways,
/V = {ny-\-m(3){ny—m(3), m^^^ = (ny + la)(ny—la),

n^y^ = {la + im^){la—imf3).

Hence, by (4699), a or BG is the chord of contact of the tangents

ny:hml3(AQ, AS) drawn from A, and ft is the chord of contact of the

tangents ny ± la (BR, BP) drawn from B. Hence a, ft are the polars of A, B
respectively ; and therefore y or AB is the polar of G (4130). Also y may
be considered to be the chord of contact of the imaginary tangents Za±im/3

drawn from G.

4756 If the points of intersection of a and j3 with the conic

be joined, the equations of the sides of the quadrilateral so

formed are

QR, Ia-\-mfi+ny = 0, SF, la-\-mfi-ny = 0,

PQ, -^la-\-tnl3-{-ny = 0, RS, la—m3-{-ny = 0.

Hence QB, SP and PQ, BS intersect on the line y in A'

and B'.
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4757 Eacli pencil of four lines in the diagi^am is a liarmonic

pencil, bjtlie test in (4649).

4758 The triangle A'B'C is also self-conjugate with regard

to the conic.

Proof.—The equations of its sides GB\ CA', A'B' are

lu-mft = 0, Za + m/3 = 0, y = 0.

Denote these by a, /3\ y, and put a, /8 in (4755) in terms of a', /S'. The
equation referred to A'B G thus becomes a'^-|-)8'^— 2ft'y^ = 0, which is of the

same form as (4755).

4759 It is clear that the triangles AQS and BPB, formed
by a pair of tangents and the chord of contact in each case,

are also self-conjugate.

4760 Taking A'B'G for the trigon, and denoting the sides

by a, /3, y, the equations of the sides R8, PQ, QB, SB of the

quadrilateral become respectively

ny :^la= 0, mfii ny = 0.

Ex.—As an example of (4611), we may find the coordinates of P from
the equations

aa + b/3 + Cy = S -s

C
" ~ ^lm^(amn + hil + dm)

+ m(3—ny = ^ from which < /S = '^mn-i-(amn+bnl+ clm)

— lu+ +ny = 0) ^7= ^)il^(amn + hnl+ clm).

To obtain the coordinates of Q, B, and S, change the signs of m, n, and I

respectively.

ON LINES PASSING THROUGH IMAGINARY POINTS.

4761 Lemma I.—The right line passing through two con-

jugate imaginary points is real, and is identical with the line

passing through the points obtained by substituting unity for

^/— \ in the given coordinates.

Proof.—Let {a + ia\ b + ib') be one of tlie imaginary points, and therefore

(a— ia, b— ib') the conjugate point. The equation of the line passing through
them is, by (4083) and reducing, b'x— a'y + a'b— ab' = 0, which is real.

But this is also the line obtained by taking for the coordinates of the

points (a+ a'j b + b') and (a— a', b— b').

Lemma II.—If P, S and Q, B are two pairs of conjugate
imaginary points, the lines BS and QR are real, as has just

been sliown, and, tliorefore, also their point of intersection is
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real. The otlier pairs of lines PQ, BS and PR, QS are

imaginary. But the points of intersection of each pair are

real, and are identical with the points which are obtained by

substituting unity for \/— 1 in the given coordinates, and

drawing the six lines accordingly.

Proof.—Let the coordinates of the four points be as under

—

P a+ ia, h + ih', Q a + ia, jj + ifl':

S a— ia, h — ih', R u—ia, (o—ift'.

The equations of PB and QS, by (4083), are L+ iM and L—iM, where

L = (b—p) ,i'— (a— a) y + a jj — ah +a'iy— a'b',

M= (h' + i3')x—(a—a)^j + afi-ab— aiy +cib'.

Now the Unas L :iz iM= intersect in the same real point as the lines

i ± ill = 0, because the values L = 0, M = satisfy both equations

simultaneously. Hence, to determine this point, we have only to take i as

unity in the given coordinates.

Lemma III.—If P, S are real points, and Q, B sl pair of

conjugate imaginary points, the lines PS and QB are both

real, by Lemma I., and consequently their point of intersec-

tion is real. The remaining pairs of hues PQ, BS and PB, QS
and their points of intersection are all imaginary. But the

line joining these two imaginary points of intersection is real,

and is jdentical with the line obtained by substituting unity

for \/— l in the given coordinates and drawing the six lines

accordingly.

Proof.—Let the coordinates of the four points be as under

—

P x,ij„ Q a + ia, i8+//3',

S x.2y,, B a— ia, ft—ifi'.

Since the coordinates of B are obtained from those of Q by merely changing

the sign of i, the equations of the four imaginary lines will take the forms

PQ A-iB, SQ C-iD,

PB A + iB, SB C+iD.

Now let the coordinates of the point of intersection of PQ and SB be

L+iM, L' + iM', then will L—iM, L'—iM' be the coordinates of the intersec-

tion of PB and SQ, for the equations of this pair of lines are got from those

of PQ and SB by merely changing the sign of i. The points of intersection

are therefore conjugate imaginary points, and the line joining them is real,

by Lemma I. Also, since that line is obtained by writing 1 for i in the co-

ordinates of those points, it will also be obtained by writing 1 for i in the

original coordinates of Q and B and constructing the figure as before.

4
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4762 To find a common pole and polar of two given conies :

(i.) If the conies intersect in four real points P, Q, R, S,

construct the complete quadrilateral (4652). Then A'B'G

(Fig. 51) is a self-conjugate triangle for each conic, by

(4758), and therefore each vertex and the opposite side form

a common pole and polar to the conies.

(ii.) If the conies do not intersect at all in real points, the

triangle A'B'G is still real, by Lemma II. (4761), and can be

constructed in the manner shown.

(iii.) If two of the points (P, S) are real, and two {Q, B)

imaginary, then, by Lemma III., the vertex A' and the side

B'G are real, and may be constructed, and they form a common
pole and polar of the given conies.

Returning to the triangle of reference ABG,

4763 Let la = ny cos (j>, m(i= ny sm<p; then the chord

joining two points <^i, <^2 is

la cosi (<^i+(^2)+»^/3 sini (<^i+<^2) = ny cosj (<^i
— (^o)^

and therefore the tangent at the point <(>' is

4764 loi cos ^'-\-mfi sin
<f>
= ny.

4765 Putting V = L, m' = M, n''=-N, the conic (4755)

becomes
La:'JrMP'-\-Ny' = (1).

4766 The tangent or polar of a(5'y' is

Laa+Ml3fi'-\-Nyy' = (2).

4767 Hence the pole of \a-\-iJ,p-\-vy — i)

'' H'-M'i)' (^^-

4768 The tangential equation is

i+i+i=' (^)'

and this is the condition that the conic (1) may be touched

by the four lines

\a±fil3±vy = 0.
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4769 In like manner,

La'^+M)8'^+iVy- = (5)

is tlie condition tliat (1) may pass through the four points

(a, ±^\ ±y').

4770 The locus of the pole of the line Xa+^^+vy with

respect to such conies is

a ^ /8
"^

r

Proof.—By (3), if (a, /3, y) be the pole, " = y &c., .-. L = —, in (5),

the equation of condition.

4771 The locus of the pole of the line la-\-mB-\-ny, with

respect to the conies which touch the four hues Xa± /ti^± vy

I tn n

Proof.—By (3), if (a, ft, y) be the pole, « = y &c., .*. i = -, &c., in

(4), the equation of condition.

4772 The locus of the centre of the conic is given in each

case (4770, '1) by taking the line at infinity

asin J.+j3 sin 5+ 7 sin (7

for the fixed line, since its pole is the centre.

4773 Thus the locus of the centre of the conic passing

through the four points (a±/8'±y') is

a ^ sin A ^"^ sin B y'~ sin C _ q
~^ +^i8~~+ y

4774 The coordinates of the centre of the conic (1) are

, La M^ Ny
given by __ = _^ := —Z-

Proof.—Let the conic cut the side a in the points (0^i7i), (O/S.^y.^. The
right line from A bisecting the chord will pass through the centre of the

conic, and its equation will he ft : y = (3^ + ^.2 : yi + y.2- Now A +A is the

sum of the roots of the quadratic in y8 obtained by eliminating y and a from

the equations La' + Mft^ + Ny^ = 0, a = 0, and aa + hft+ Cy = 2. Similarly

for yi + y2 eliminate a and /3. The equation of the diameter thi'ough A being

found, those through B and G are symmetrical with it.
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4775 The condition that the conic (1) may be a parabola is

Proof.—This is, by (4), the condition of touching the line at infinity

i\a+ hft-\-Cy = 0.

4776 The condition that (1) may be a rectangular hyperbola

is L-\-M-\-N = i), and in this case the curve passes through

the centres of the inscribed and escribed circles of the trigon.

Proof.—By (4G90), (a, b, c are now L, M, N). (1) is now satisfied by
a := ±/3 = ±y, the four centres in question.

4777 Circle referred to a self-conjugate triangle :

a' sin 2A-\-fi' sin 2B+y' sin 2C = 0.

Proof.—The line joining A to the centre is ~- = —~ (4774). Therefore

—
-, the condition of perpendicularity to a by (4622). Similarly

iicosB ccosO
N ^ L

c cos G a cos A^
therefore (1) takes the form above.

IMPORTANT THEOREMS.

CARNOT'S THEOREM.

4778 If J, B, G (Fig. 52) are the angles of a triangle, and

if the opposite sides intersect a conic in the pairs of points

a, a ; h, h' -, c, c ; then

Ac.Ac'.B(i.Ba'.Cb.Ch'= Ah.Ah'.Bc.Bc'.Ca.Ca'.

Proof.—Let a, /3, y be the semi-diameters parallel to BC, GA, AB ; then,

by (4317), Ah . Ah' : Ac : Ac = /3^ : y^. Compound this with two simihir

ratios.

4779 Coil—If the conic touches the sides in n, h, r, then

Ac\Ba\ Cb' = Ah\ Bc\ Ca\



THEOREMS. 653

4780 The reciprocal of Carnot's theorem is : If A, B, G
(Fig. 52) are the sides of a triangle, and if pairs of tangents
from the opposite angles are a, a' ; h, h' ; c, c' ; then

sin (Ac) sin (Ac) sin (Ba) sin (Ba) sin (Cb) sin {Cb')

= sin (Ab) sin (Ab') sin (Be) sin (Be) sin (Cm) sin (Ca),

where (Ac) signifies the angle between the lines A and c.

Proof.—Reciprocating the former figure with respect to any origin 0,
let A, B, G (i.e., BQ, QP, PB) be the polars of the vertices A, B, C. Then,

by (4130), Q, B will be the poles of AB, AG; and b, h', the polars of the

points h, V, will intersect in B and touch the reciprocal conic. Similarly, c, c'

will intersect in Q. A, h' are perpendicular to OA, Oh', and therefore

/.Ah'= Z AOh', and so of the rest.

PASCAL'S THEOREM.

4781 The opposite sides of a hexagon inscribed to a conic

meet in three points on the same right line.

Proof.— (Fig. 53.) Let a, ft, y, y', ft', a be the consecutive sides of the

hexagon, and let u be the diagonal joining the points au and yy'. The
equation of the conic is either ay— Jcftu = or a'y'—k'ft'u = 0, and, since

these expressions vanish for all points on the curve, we must have ay— l-ftu

= ay'— k'ft'to for miy values of the coordinates. Therefore oy— a'y'

= li (hft— k'ft'). Therefore the lines a, a' and also y, y' meet on tlie line

kft— k'ft'; and ft, ft' evidently meet on that line.

Otherwise, by projecting a hexagon inscribed in a circle with its opposite

sides parallel upon any plane not parallel to that of the circle. The line at

infinity, in which the pairs of parallel sides meet, becomes a line in which
the corresponding sides of a hexagon inscribed in a conic meet at a finite

distance (1075 et seq.).

4782 With the same vertices there are sixty different

hexagons inscribable in any conic, and therefore sixty dif-

ferent Pascal lines corresponding to any six points on a conic.

Proof.—Half the number of ways of taking in order five vertices B, G,

D, E, F after A is the number of different hexagons that can be drawn, and
the demonstration in (4781) applies equally to all.

BRIANCHON'S THEOREM.

4783 The three diagonals of a hexagon circumscribed to a

conic pass through the same point (Fig. 54).



664 TBILINEAR ANALYTICAL GONIOS.

Proof.—Let the three conies /S+ L\ S+ M\ S +N\ in (4707), become
three pairs of right lines, then the three lines L—M, M—N, N—L become
the diagonals of a circumscribing hexagon.

Pascal's and Brianchon's theorems may be obtained, the one from the

other, by reciprocation (48-40).

THE CONIC REFERRED TO TWO TANGENTS AND
THE CHORD OF CONTACT.

Let L = 0, M=0, B = (Fig. 55) be the sides of the

trigon ; L, M being tangents and B the chord of contact.

4784 The equation of the conic is LM= R\ (4G99)

4785 The lines AP, BP, and GP are respectively

IlL = R, iiR= M, irL = M. [By (4604).

Since the point P on the curve is determined by the value

of ^5 it is convenient to call it the point /n.

4788 The points /i and — ju (P and Q) are both on the line

ju^Jv = M drawn through G.

4789 The secant through the points ^, /x' (P, P'} is

/m/x L- (ft+fi) R+M = 0.

Proof. — Write it fi(fi'L— ]i) — (fi'Ii—M), and, by (4604), it passes

through the point ^'. Similarly through /j. Otherwise, determine the co-

ordinates of the intei-section of ^L—B and f.ili~M, and of {.I'L—U and

fx'B—M by (4610), and the equation of the secant by (4616).

4790 Cor.—The tangents at the points /n and — ^i (P, Q)
are therefore

4791 These tangents intersect on B. [Proof by subtraction.

4792 Theorem.—If the equation of a right line contains an

indeterminate ^ in the second degree, it may be written as

above, and the line must therefore touch the conic LM= R^.

4793 The ])olar of the point (//, M\ B') is

LM'-2RR-\-L'M = {).
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Proof.—For /i + ju' and ju^', in (4789), put the values of the sum and
product of the roots of /li'^L' -2fiB' + 31' = (4790).

4794 Similarly the polar of the point of intersection of

aL—B and bB—M is

abL-2aR-^M=0.

4795 The line GE joining the vertex G to the intersection

of two tangents at ^t and /.i, or at —/n and —jn', is

iHLL—M= 0.

Otherwise, if two tangents meet on any line ciL— M, drawn
through G, the product of their ^u's is equal to a.

Proof.—Eliminate R from the equations of the two tangents (4790).

4796 The chords PQ, FQ and the line GE all intersect in

the same point on B.

Proof.—The equations of FQ', P'Q are, by (4789),

l^fi'L± d-i-i-i') E-M = 0,

and, by addition and subtraction, we obtain fxfx'L—M = (4795), or i?- = 0.

4797 The lines i^fx'L+M (GD) and B intersect on the chord

PP' which joins the points jn, ^t/; or—The extremities of any
chord passing through the intersection of aL-\-M and B have

the product of their ^'s equal to a.

4798 The chord joining the points ^i tan ^, /i cot ^ touches a

conic having the same tangents L, M and chord of contact B.

Proof.—The equation of the chord is, by (4789),

fi^L— fiE (tan
(l)
+ coi<p) +M= 0,

and this touches the conic JyMsin^2^ = jB^ at the point yu, by (4792).

4799 The tangents at the points ;ii tan <}), /i cot (p intersect

on the conic LM= B^ sin^ 2(j>.

Proof.—Write the equations of the two tangents, by (4790), and then
eliminate )u.

4800 Ex. 1.—To find the locus of the vertex of a triangle circumscinbing

a fixed conic and having its other vertices on two fixed right lines.

Take LM = B"- for the conic (Fig. 56), aL+ M, hL+M for the lines CD,
GE. Let one tangent, DE, touch at the point /x ; then, by (4796), the others,
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PD, PE, will toiicli at the points — , — , and therefore, by (4790), their

equations will be r- r-

l!^L-~li + M, ^L--B+ M.

Eliminate /.«, and the locus of P is found to be (^a-\-h)-LM = A^abp-.

[Salmon, Art. 272.

4801 Ex. 2.—To find the envelope of the base of a triangle inscribed in

a conic, and whose sides pass through fixed points P, Q.

(Fig. 57.) Take the line through P, Q for E ; LM- P- for the conic ; ciL—M,
hL —M for the lines joining P and Q to the vertex G. Let the sides through P
and Q meet in the point fx on the conic ; then, by (4797), the other extremi-

ties will be at the points — — and , and therefore, by (4789), the

equation of the base will be a&L + (a + ?0 A'-R + /-3'^ = 0. By (4792), this

line always touches the conic ^ah LM = (a + by B^. \_Ibid.

4802 Ex. 3.—To inscribe a ti-iangle in a conic so that its sides may pass

through three fixed points. (See also 4823.)

We have to make the base ahL+ (a+ h) ixB + in^M (4801) pass through

a third fixed point. Let this point be given by cL = P, dB = M. Elimi-

nating L, M, B, we get ab + (a + b) ixc + fx'^cd = 0, and since, at the point /u,

nL = B, fj}L = M, that point must be on the line abL + (a-\-b) cB + cdM.

The intersections of this line with the conic give two solutions by two posi-

tions of the vertex. [^Ibid.

RELATED CONICS.

4803 A conic having double contact with the conies S and
S' (Fig. 58) is

where E, F are common chords of S and 8', so that

S-S' = EF.

PiioOF.—The equation may be written in either of the ways

(fiE+Fy = 4^N or (fxE - P)- = 4^. S',

showing that fxE =h F are the chords of contact ^IP, CL. There arc three

such systems, since there are three pairs of common chords.

4804 C'oR. 1.^—A conic touching four given hues A,B, C, D,
the diagonals being J^, F (Fig. 59) :

ii:'E'-2ii {AC-\-IJD)-\-F = i\.

Here S = AG and S' = BB, two pairs of right lines.



ANEABMONtO PENCILS. 657

Otherwise, if L, M, Nhe tlie diagonals and L±M±N the

sides, the conic becomes

4805 ii'L'-iM {U+3P-N')+M' = 0.

For this always touches

(L'+M'-Ny-WM' or (L+ 3f+N)(M+N-L){N+ L-M)iL-\-M-N).
[Sahnon, Art. 287.]

4806 Cor. 2.—A conic having double contact with two
circles G, C is

4807 The chords of contact become

^+C-C' = and ^-C+(7' = 0.

4808 The equation may also be written

which signifies that the sum or difference of the tangents

drawn from any point on the conic to the circles is constant.

ANHARMONIC PENCILS OF CONICS.

4809 The anharmonic ratio of the pencil drawn from any

point on a conic through four fixed points upon it is constant.

Proof.—Let the vertices of the quadrilateral in Fig. (38) be denoted by

A, B, C, I), and let P be the fifth point. Multiplying the equation of the

conic (4697) by the constants AB, CD, BC, DA, we have

, AB.CD _ ABa . CDy ^ PA .PB sin APB . PC . PD sin CPD
BC.DA BCfi . DAS PB.PC sin BPG. PD . PA sin DPA

sin APB. sin CPD
sin BPC. sin DPA

Compare (1056).

4810 If the fifth point be taken for origin in the system

(4784, Fig. 55), and if the four lines through it be

L—iJLj^R, L— ix,R, L—fJiJi, L—jM^R,

4 p
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the anliarmonic ratio of tlie pencil is, by (4G50),

4811 CoE. 1.—If four lines through any point, taken for

the vertex LM, meet the conic in the points ^tj, /n.,, fx-s, /t^, the

anharmonic ratio of these points, with any fifth point on the

conic, is equal to that of the points —/Hi, — a'o,
—

/"s, —l^a i^

which the same lines again meet the conic.

4812 CoE. 2.— The reciprocal theorem is—If from four

points upon any right line four tangents be drawn to a conic,

the anharmonic ratio of the points of section with any fifth

tangent is equal to the corresponding ratio for the other four

tangents from the same points.

4813 The anharmonic ratio of the segments of any tangent

to a conic made by four fixed tangents is constant.

Proof.—Let fx, n^, fj^,
yug, fx^ (Fig. 60) be the points of contact. The

anliarmonic ratio of the segments is the same as that of the pencil of four

lines from LM to the points of section; that is, of nn^L—M, iiii.Jj—M,

HH-Jj—M, fifi^L- M, a pencil homographic (4651) with that in (481U).

4814 If P, P' are the polars of a point with respect to the

conies 8, S\ then P-\-hP' will be the polar of the same point

with respect to the conic S-\-h8'.

4815 Hence the polar of a given point with regard to a

conic passing through four given points (the intersections of

8 and 8') always passes through a fixed point, by (4101).

If Q, Q' are the polars of another point with respect to

the same conies, Q-\-hQ is the polar with respect to 8-\-h8'.

4816 Hence the polars of two points with regard to a

system of conies through four points form two homographic
pencils (4651).

4817 The locus of intersections of corresponding lines of

two homographic pencils ha^ang fixed vertices (Fig. 61) is a

conic passing through the vertices ; and, conversely, if the

conic be given, the pencils will be homographic.

Proof.—For climinatiiio- A- fnmi P + AT'= 0, Q + IQV, we get !'(/= r'Q-
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4818 Cor.—The locus of the pole of the line joining the two
points in (4816) is a conic.

PROOr.—For the pole is the intersection of P+ hP' and Q + hQ'.

4819 The right lines joining corresponding points AA', &c.

(Fig. 62) of two homographic systems of points lying on two
right lines, envelope a conic.

Proof.—This is the reciprocal theorem to (4817) ; or it follows from

(4813).

4820 If two conies have double contact (Fig. 63), the an-

harmonic ratio of the points of contact A, B, G, D of any
four tangents to the inner conic is the same as that of each

set of four points (a, b, c, d) or {a, h\ c', <V) in which the

tangents meet the other conic.

Proof.—By (4798). The ^'s for the points on the latter conic will be

equal to the /.t's of the points of contact multiplied by tan <p for one set, and
by cot^) for the other, and therefore the ratio (4810) will be unaltered.

4821 Conversely, if three chords of a conic aa , hb', cc be

fixed, and a fourth rZc?' moves so that \ahcd\ = [ctb'c'd'l, then

dd' envelopes a conic having double contact with the given

one.

For theorems on a right line cut in involution by a conic, see (4824-8).

CONSTRUCTION OF CONICS.

THEOREMS AND PROBLEMS.

4822 If a polygon inscribed to a conic (Fig. 64) has all its

sides but one passing through fixed points A, B, ... Y, the

remaining side az will envelope a conic having double contact

with the given one.

Proof.—Let a,h, ...z be the vertices of the polygon, and a, a', a", a'"

four successive positions of a. Then, by (4811),

I
a, a, a", a"

}
=

{ ^j
^'

>
^"

>
^"'

|
= &c. =

|
2;,

Therefore, by (4821), the side az envelopes a conic, &c.
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4823 Poncelet's construction for inscribing in a conic a

polygon having its n sides passing through n given points.

Inscribe three polygons, each 0/ n+ 1 sides, so that n of
each may pass through the fixed points, and let the remaining
sides he a'z', af'z", ?\1"t:!" , denoted in figure (65) hy AD, CF, EB.
Jjet MLN, tlie line joining the intersections of opposite sides of
the hexagon ABCDEF (4781), meet the conic in K; then K
will be a vertex of the required polygon.

Proof.— iD.KAGIj] = iA.KDFB\, each pencil passing through

K, P, N, L; therefore the anharmonic ratio
|
KAGE ]

=
\
KDFB \ for any

vertex on the conic, by (4809) ; i.e., I Kaa'a" \ =
|
Kz'z"z"' \ . But, if az

be the remaining side of a fourth polygon inscribed like the others, we have

by (4811), as in (4822), | aa'a'a" \ = i zz'z'z" | . Hence K is the point

where a and z coincide.

4824 Lemma.—A system of conies passing through four

fixed points meets any transversal in a system of points in

involution (1066).

Proof.—Let u, u be two conies passing through the four points ; then

u-\-'kitj' will be any other. Take the transversal for x axis, and put ?/ = in

each conic, and let their equations thus become ax-+ 2qx + c = and

aV+ 2(7'a)+c' = 0. These determine the points where the transversal

meets u and u . It will then meet u + Jcu' in two points given by
ax^ + 2gx+ c+ k (aV + 2g'x + c') = 0, and these points arc in involution with

the former, by (1065).

Geometrically (Fig. QQ),

[a.AdhA'] = [c.AdbA'] (4809),

therefore { AGBA' ]
=

{
AB'G'A'

}
=

{
A'G'B'A

}
, therefore by (1069).

4825 Cor. 1.—One of the conies of the system resolves

itself into the two diagonals ac, bd. Hence the points B, B\
G, G' are in involution with D, D' , where the transversal cuts

the diagonals.

4826 CoR. 2.—A transversal meets a conic and two tan-

gents in four points in involution, so as to meet the chord of

contact in one of the foci of the system.

For, in (Fig. 66), if h coincides with c, and a with d, the

transversal meets the tangents in G, G', while B, B\ D, B', all

coincide in F (Fig. Ql), one of the foci on the chord of

contact.
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4827 The reciprocal theorem to (4824) is—Pairs of tangents

from any point to a system of conies touching four fixed hnes,

form a system in involution (4850).

4828 The condition that \x-\-iiiij-\-v:: may be cut in involu-

tion by three conies is the vanishing of the determinant

As

^1
B,

B.

a.
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Otherwise, let a, fl, y be the sides of ABC; la + mft + ny, I'u + ra'ft + n'y

the fixed Hues Oa, Oh ; and a = /x/3 the moving base ah.

Then the equations of the sides will be

(Ifi + m) l3 + ny — 0, (I'fi + m) a + n'fiy = 0.

Eliminate /i; then Imajj— (ml3 + ny)(l'a+n'y), the conic in question, by

(4697).

4831 Given five points, to find geometrically any number of

points on tlie circumscribing conic, and to find the centre.

Let A, B, 0, D, E {Fig. 70) be the five points. Draw any

line through A meeting CD in P. Draw PQ through the inter-

section of AB and DE meeting BO in Q; then QE ivill meet

PA in F, a sixth point on the curve, as is evident from PascaVs

theorem (4781).

To find the centre, choose AP in the above construction

parallel to CD, and find two diameters, as in (1252).

4832 To find tbe points of contact of a conic with five right

lines.

Let ABCDE {Fig. 71) be the pentagon. Join D to the

intersection of AG and BE. This line unll pass through the

point of contact of AB, and so on.

Proof.—By (4783), supposing two sides of the hexagon to become one

straight line.

4833 To describe a conic, given four points upon it and a

tangent.

Let a, a', b, h' {exterior letters in Fig. 52) be the four

points. Then, ifAB is a tangent, c, c' coincide, and GarnoVs

theorem (4778) gives the ratio A.& : Bc'l Then by (4831).

Since there are tivo values of this ratio, + (Ac : Be), two

conies may be drawn as required,

4834 To describe a conic, given four tangents and a point.

Let a, a , b, V {interior letters in Fig. 52) be the four

tangents. Then, ifQ be the given point on the curve, the lines

c, c' must coincide in direction, and (4780) gives the ratio

-sin2(Ac) : sin^ (Be), by ivhlch the direction of a fifth tangent

through Q is- determined. Then by (4832). Tlie two values

+ (sin Ac : sin Be) furnish ttvo solutions.

Otherwise by (4804), d.elcrmiiiivg ^i by tlie coordinates of

the given point.
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4835 To describe a conic, given three points and two
tangents.

Let A, A', A'' he the points {Fig. 67, supplying obvious

letters). Let the two tangents meet AA' in the points C, C.

Find F, F', the foci of the system AA\ CC in involution (1066)

determining the centre by (985). Similarly, find Gr, G', the

foci of a system on the line KK". Then, by (4826), the chord

of contact of the tangents may be any of the lines FG, FG',

F'G, F'G'. There are accordingly four solutions, and the

construction of (4831) determines the conic.

4836 To describe a conic, given two points and three

tangents.

Let AB, BO, CA {Fig. 167) be the tangents, and P, P' the

points. Draw a transversal through PP' meeting the three

tangents in Q, Q', Q". Find F, a focus of the system PP', QQ'

in involution (1066, 985) ; G a focus for PF, qq',and H/or
PP', Q'Q''. Cunstruct a triangle luith its sides passing through

F, G, H, ami ivith its vertices L, M, N on BC, CA, AB,
by the method of (4823), lohich is equally applicable to a recti-

lineal figure as to a conic. L, M, N will be the points of

contact. The reason for the construction is contained in

(4826). There will, in general, be four solutions.

If the conic be a parabola, the foregoing constructions

can be adapted by considering one tangent at infinity always

to be given.

4837 To draw a parabola through four given points a, a, b, b'

.

This is problem 4833 with the tangent at infinity.

In figure (52), suppose cc to coincide and AB to remove to infinity so as

to become the tangent at c, the opposite vertex at infinity of a parabola, and

therefore to be perpendicular to the axis. Cc then becomes a diameter of

the parabola, and Caruot's theorem (4778) shows that

Ca.Ga ^4^Ba^^ sin' AGc

Gb.Cb' AV'' Bo'' sin' BGc

since the points C, a, a, h, V are all on the axis of the parabola relatively to

the infinite distance oi AcB. This result, however, is at once obtained from

equation (4221), Ga.Ca : Cb . Gb' being the ratio of the products of the roots

of two similar quadratics. Thus a diameter of the parabola can be drawn
through C by the known ratio of the sines of AGc and BCc.

Next, describe a circle round three of the given points a, a', b. By the

property (1263) and the known direction of the axis, the other point in

which the circle cuts the parabola can be found.

Five points being known, we can, by Pascal's theorem, as in (4831),
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obtain two parallel cliovds, and tben find P, the extremity of tlieir diameter,

by the proportion, square of ordinate cc abscissa (1239).

Lastly, draw the diameter and tangent at P, and then, by equality of

angles (1224), draw a line from P which passes through the focus. By
obtaining in the same way another pair of parallel chords, a second line

through the focus is found, thus determining its position.

4838 To draw a parabola when four tangents are given.

This is effected by the construction of (4832, Fig. 71). Let AB, BC, AE,

ED be the four tangents, and CD the tangent at infinity. Then any line

drawn to C will be parallel to BC, and any line to D will be parallel to ED.

4839 To draw a parabola, given tliree points and one

tangent.

This is effected by the construction of (4835, Fig. 67). Let hC be the

tangent at oo ; then the centre of involution must be at C, so that

CC.CC = 0. CO = CA.CA' = CF-, determining F. F', another point on

the chord of contact, being found by joining AA" or A'A", FF' will be the

diameter through a, since the other point of contact h is at infinity.

4840 To draw a parabola, given one point and tliree

tangents.

This is the case of (4834), in which one of the given tangents h' is at

infinity. B must therefore be at infinity, and QB, FB and the tangent h,

since they all join it to finite points, must be parallel. The ratio found

determines another tangent, and the case is reduced to that of (4838).

4841 To draw a parabola, given two points and two

tangents.

This is problem (4836). Suppose AC in that construction to be the

tangent at infinity. F, G, H will be determined as in (4830) by mean
proportionals. The chords LM, NM will become parallel, since M is at

infinity; and we have to draw LA'' and the parallel lines from L and N to

pass through F, G, H in their new positions, so that the vertices L, N may
lie on BC and AB.

Otherwise by (4509), the intercepts s and i can readily be found from the

two equations furnished by the given points.

4842 To describe a conic touching three right lines and

touching a given conic twice.

Let AD, CF, EB {Fig. 65) he the three lines as they cut

the given conic. Join AB, AF, BC, BE, and determine K hi/

the Pascal line MLN. K will he one point of contact of the

two conies, hy (481^2) aiid the proof in (4823), since AD, CF,

EB, and the tangent at K are four iJositions of the " remaining

side " in that proposition. The prohlem is thus reduced to
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(4834), since four tangents and K the i?oint of contact of one of

them are noio Jcnoivn.

4843 To describe a conic toucliing eacli of two given conies

twice, and passing through a given point or touching a given

line.

Proceed by (4803), determining ^ hij the last condition.

To describe a conic touching the conies S-^-L^, S-\-M'\

S-\-N'^ (4707) and touching S twice. ISahmn, Art. 387.

THE METHOD OF RECIPROCAL POLARS.

Def.—The polar reciprocal of a curve is the envelope of

the polars of all the points on the curve, or it is the locus of

the poles of all tangents to the curve, taken in each case

with respect to an arbitrary fixed origin and circle of recipro-

cation.

4844 Thus, in figure (72), to the points P, Q, B on one

curve correspond the tangents qr, rp, and chord of contact j^q

on the reciprocal curve ; and to the points p, q, r correspond

the tangents QB, BP, and chord PQ.
The angle between the tangents at P and Q is evidently

equal to the angle j^Oq, since Oj), Oq, Or are respectively per-

pendicular to QB, BP, PQ.

4845 Theorem.—The distance of a point from a line is to its

distance from the origin as the distance of the pole of the line

from the polar of the point is to its distance from the origin.

Proof.— (Fig. 73.) Take for origin and centre of auxiliary circle, FT
the polar of c, pt the polar of C, CP perpendicular on polar of c, cp perpen-

dicular on polar of G. Then

r- - 00. Ot = Oc.OT ) Therefore, by subtraction, OO.mt=Oc.MT,

and 0G.0iH=0c.0M) or 00 .cp =Oc.GP;

that is, OP : 00 :: cp : cO. Q. E. D.

CoE.—By making CP constant, Ave see that the reciprocal

of a circle is a conic having its focus at the origin and its

directrix the polar of the circle's centre.

4 Q
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GENERAL RULES FOR RECIPROCATING.

4846 ^ point hecoiues the polar of the point, and a rigid line

hecoines the pole of the line*

4847 ^ ^^'^e through a fixed point becomes a point on a fixed

line.

4848 The intersection of two lines becomes the line ivhich

joins their poles.

4849 Lines passing through a fixed point become the same

number ofpoints on a fixed line, the polar of the point.

4850 ^ right line intersecting a curve in n points becomes n
tangents to the reciprocal curve passing through a fixed point.

4851 Tivo lines intersecting on a curve become tivo points

wliose joining line touches the reciprocal curve.

4852 Tivo tangents and the chord of contact become tioo

points on the reciprocal curve and the intersection of the tan-

gents at those points.

4853 -4 pole and polar of any curve become respectively a
polar andpole of the reciprocal curve; and a point of contact and
tangent become respectively a tangent and its point of contact.

4854 The locus of a point becomes the envelope of a line.

4855 -4n inscribed figure becomes a circumscribed figure.

4856 Four points connected by six lines or a quadrangle

become four lines intersecting in six points or a quadrilateral.

4857 The angle between tivo lines is equal to the angle sub-

tended at the origin by the corresponding points. (4844)

4858 The origin becomes a line at infinity, the polar of the

origin.

4859 Tivo lines through the origin become two points at

injiniiy on the polar of the origin.

4860 Tivo tangents through the origin to a curve become two

points at infinity on the reciprocal curve.

4861 The points of contact of such tangents become asymptotes

of the reciprocal curve.

4862 The angle between the same tangents is equal to the

angle betiveen the asymptotes. (4857)

* Tliat is, with respect to the circle of reciprociitiou, and so throughout with the excep-
tion of (4853).
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4863 According as the tangents from the origin to a conic are

reat or imaginary, the reciprocal curve is an hyperbola or

ellipse.

4864 if l^i'& origin be tahen on the conic, the reciprocal curve

is a parabola.

For, by (4860, '1), the asymptotes ai'e parallel and at infinity.

4865 A trilinear equation is converted by Teciprocation into

a tangential equation.

Thas ay = hfth is a conic passing through four of the intersections of

the lines o, /3, y, <). Reciprocating, we get a tangential equation of the same
form AC = hBB, and this is a conic touching four of the lines which join

the points whose tangential equations are A=- Q, JB = 0, (7 = 0, D = 0.

See (4907).

4866 The equation of tlie reciprocal of tlie conic ahf-\-l>^ii?

= aW witli the same origin and axes is

where h is the radius of the auxiliary circle whose centre is

the centre of the conic.

Proof.—Let p be the perpendicular on the tangent, its inclination
;

then fcV-2=/ = a2cos^0 + 6-sin2 6l (4732).

4867 The same when the origin of reciprocation is the

point xy\
{aw' -\-yii' -\-W)'^ = a\v'^-{-b\i/\

Proof: A;V~'=p= -/a^ cos^d+ b'^ sm-d—{x' cosd + y' sinO).

4868 The reciprocal curve of the general conic (4656), the

auxiliary circle being x^+ y^ = ¥ or iG^-\-y^+ z^ = in tri-

linears, will be symmetrically

replacing ^ by — A'^

Proof.— Let i/j be a point on the reciprocal curve, then the polar of i>/,

namely, a'^+ i/'/— A''' = 0, must touch the conic, by (4853). Therefore, by

(4(365), we must substitute 4, ?/,
—

Jc' for A, /,/, u in tlie tangential equation
^\- + &c. = 0.

4869 From the reciprocal of a curve with respect to the

origin of coordinates, to deduce the reciprocal with respect to

an origin xy', substitute in the given reciprocal equation

'*'

for .V and —, '^'\i.i ^^^ ^•
a?.z--\-iji/'-{-k'' d\v-\-yij-\-k'
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Proof.— Let, 7' he the perpuiidicular from the origin on the tangent and

PB = ^. The perpendicular iVom x'y' is F— x'cosd— y'sind,

h' Jr , a ' • a .
^^' ccx +yy'+ Jc^

^
.•. — = —-—3! cos — y smU, .. - = --^

;

p It Ih p

Icp cos
•. Rcos

aV+ 2/2/' + ^''

TANGENTIAL COORDINATES.

4870 By employing these coordinates, theorems which are

merely the reciprocals of those already deduced in trilinears

may he proved independently. See (4019) for a description

of this system.

The following proposition serves to transform by recipro-

cation the whole system of trilinear coordinates of points and
equations of right lines and curves, into tangential coordinates

of right lines and equations of points and curves.

THEOREM OF TRANSFORMATION.

4871 Griven the trilinear equation of a conic (4656), the

tangential equation of the reciprocal conic in terms of X, fx, v,

the perpendiculars from three fixed points A\ B' , C upon the

tangent (Fig. 74) will be as follows, being the origin of

reciprocation and 0A\ OB', OC =p, ^/, r:—

4872
^^X^ hiL' cv" 2ffiv 2^-v\ 2h\fi _

^^

jr ff r^ qr rp pq

Prook.—Let a = 0, /3 = 0, y = be the sides of the original trigon ABC.
The poles of these lines will be A', B', C, the vertices of the trigon for the

reciprocal curve. Let BS be the polar of a point P on the given conic

;

a, /3, y the perpendiculars from P upon BC, GA, AB ; i.e., the trilinear co-

ordinates of P. Let X, n, V be the perpendiculars from A', B', C upon BS;
i.e., the tangential coordinates of the p6lar of P referred to A', B', C. Then,

by (484.5), ^ = ^^„ A=^,, -r = ^. Substitute those values

of a, ft, y in (4656) and divide by 0P\

4873 The angular relation between the trigons ABG and
A'B'C is

JiVCr = TT-A, evil' = iT-B, A'OB' = TT-C,
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4874 If ^BG be self-conjugate with regard to tlie circle of

reciprocation, it will coincide with A'B'C.

4875 Now let be the circum-centre (4629) of A'B'G'

(Fig. 74), then it will be the in-centre of ABC, and, by (4873),

2A'='n-A, 2B'=n-B, 2C'=7r-C.

Also p = q = r in (4872), which becomes ^ (X, fi, v) = 0, so

that the conic and its reciprocal are represented by the satiie

equation. Consequently any relation in trilinear coordinates

has its interpretation in tangential coordinates. We have

then the following rule :

—

4876 Rule.—To convert any expression in trllinears into

tangentials, consider the origin of the former as the in-centre of

the trigon, change a, |3, y into X, ^, v, and interpret the result

by the rules for reciprocating (4846-65). If the angles of the

original trigon are involved, change these by (4875) into the

angles of the reciprocal trigon, of luhich the origin ivill now be

the circum-centre.

4877 Referring trihnears and tangentials to the same trigon

ABC, the equation of a point, as shown in (4021), becomes

AX+l/x+X.^0;
Ih Ih Ih

4878 01^5 by multiplying by -|-2,

BOC\^COAiL-^AOBv = {). (Fig. 3)

The equation of a point can generally be obtained directly

from the figure by means of this formula.

EQUATIONS IN TANGENTIAL COORDINATES.

For direct demonstrations of the following theorems, the reader may
consult Ferrers' Trilinear Coordinates, Chap. vii.

4879 The point dividing AB in the ratio a : i\ that is, the

intersection with the internal or external bisector of C, is

aXdbV = 0- Centre of AB X+^ = 0.

The point in (4878) is now on the side AB.

4881 Mass-centre, X+/li+i/ = 0. [For BOC=:COA^AOB.
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4882 In-centre, nX+V+Cv^O. r By (4878), for

4883 «- ex-centre, —aX+b/x+Cv = 0. L a t^0. L—

7

4884 Circum-centre X sin 2A +/x siu 2B-\-v sin 2C = 0.

Proof.—For JJOC = ^B' sin 2.4, &c. in (4878). 0//ie?7t!ise.—By recipro-

cation (4876), a sin J. + ^ sin Z? + y sin (1 = is the line at infinity referred

to the trigon ABC ; therefore

X sin ^ + /Li sin J5 + »' sin (7 =
is the equation of the pole of that line referred to A'B'C ; that is,

\ sin 2^' + ^ sin 21/' + J' sin 26'', by (4875).

4885 Foot of perpendicular from C npon AB,

Xtan J[+/u,tan^ = 0.

4886 Orthocentre X tan A +fi tan B-^v tan C = 0.

4887 Inscribed conic of ABG, [Proof below.

4888 Point of contact with AB,

MX+Lfi = 0.

4889 In-circle (4629),

(^-a) iiv-\-{^-h) vX+(s;~r) x^ = o.

4890 Point of contact witli AB, (d-l)) X+ (5-a) /m = 0.

4891 ii ex-circle, (6—1)) X/A+(d— r) vX—^fxv = 0.

Proof.—Since the coordinates of AB of the trigon are 0, 0, v, the equa-

tion of the inscribed conic must be satisfied when any two of the coordinates

X, /i, V vanish, therefore it must be of the form (4887). Otherwise by
reciprocating (4724).

If the circle touches AB in D (Fig. 'S), X : - n = AB : BD = S-ci : t^-h

(Fig. of 700), which proves (4890).

(4888) is the equation of the point of contact, because the line (0, 0, r)

passes through it and also touches the conic (4887).

(4889) is the in-circle by (4887) and (4890) and what precedes.

4892 Circumscribed conic, [By (487G) applied to (4739, '40).

L-X-+M>'+iVV-2MA>v-2iV2:vX-2LJ7X/i, = 0, (4740)
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4893 or ^{L\)-\-y/Mii-^^Ny = 0.

4894 Tangent at A, Mfx, = Nv.

4895 Circum-circle

4896 or a^/x+IJv//*+ryv=0.

Proof.— By (4876) applied to (4747, '8), and by cos— = sin^' (4875)

4897 Eolation between tlie coordinates of any right line

:

4898 Coordinates of tlie line at infinity

:

X = /x = v.

Proof.—The trilinear cooi'dinates of the origin and centre of the re-

ciprocal conic are o = /3 = y, (4876). It is also self-evident.

4899 The point IX -{- m/LL -{- uv = will be at infinity when
l-^m-i-n = 0.

Proof.—By (4876), for the line la + mft + ny = will pass through the

origin a = /3=:y when l+m + n:=0.

4900 A curve will be touched by the line at infinity when

the sum of the coefficients vanishes.

Proof.—By (4876), for this is the condition that the origin in trilinears,

a = /3 = y shall be on. the curve.

4901 The equation of the centre of the conic (p (X, ^t, v) is

4902 or (a+h-\-g')\+{h+b+f)iM-\-{g^f+c)v = 0.

Proof.—The coordinates of the in-centre of ABC (4876) are a=fi'=y\
therefore the polar of this point with regard to the conic f (o, ft, y) is

0^ + ^ _1_,^ =0 (4658). This point and polar reciprocate into a polar and

point, of which the former, being the reciprocal of the in-centre, or origin, is

the line at infinity, and therefore the latter is the centre of <p (X, u, y), while

its equation is as stated.
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4903 The equation of the two points in which the line

(X', /Li, v) cuts the conic is

<l>
(V, im\ y')

<f>
(X, II, v) = ((^^V+<^,,x'+</,,v7-. (4680)

4904 The coordinates of the asymptotes are found from the

equations

(l> {\, fjL, v) = and <^a+ <^m+<^''= 0.

Proof.—These are the conditions that the line (A, /x, j-) should touch the

curve and also pass through the centre (4901).

4905 The equation of the two circular points at infinity is

a^(X-^)(x-v)+lj^(^-v)(^~x)+cHv-x)(v-ft) = 0.

Proof.—Put X'= ii'= v' in (4903) to make the line at infinity, and for

the conic take the in-circle (4889).

4906 The general equation of a circle is

a^ (x-^)(x-v)+I)'^ {i,-v){i.-\)^e {v-\){v-ix)

= {lX-\-mix-^nvy (1),

where l\-\-m^i-^nv = is the equation of the centre.

Proof.—The general equation of a conic in trilinears may, by (4601), be
put in the form

a(/3-/3o)(y-yo) + K7-yo)(«-«o)+c(«-"o)(/5-/5o) = {la + mr^ + ny)\

where la + m/3 + Ky = is the directrix, and ao/3oyo the focus. Now let the

focus be the in-centre of the trigon, and therefore a„ = /3o=yo= |SS~^ (709).

By this relation and aa + 6^+ cy = 2, the equation is expressed as

a(S-a)(a-/S)(«-y) + &c. = (Z'a+w'/3 + 7t'y)-,

or (a—/3)(a— y) cos" |^'1 + &C. = (ra + m'/i +«'y)''

Reciprocating by (4876), this becomes

(\—fx)(X— v) ain- A' -\- &.C. = (Z\+ "'A' +«»')',

the constant factor introduced on the right being involved in I, m, n; and
sin7i' = cos-j^, by (4875). And we know that this is a cii'cle by (4845
Cor.), and that the directrix of the conic reciprocates into the centre of the

circle.

Otherwise.—The left side of (1) represents the two circular points at

infinity (4905), and, if for the right we take the equation of a point, the

whole represents a conic, as in (49(»9), of the form AC = B'-. In this case,

A, C, the points of contact of tangents from B, being the circular points, the

conic must be a circle with i' = for its centre.
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Abridged Notation.

4907 Let ^ = 0, B = 0, G = 0, D = (Fig. 75) be the

tangential equations of the four points of a quadrangle, where
A = a^X-\-hiiii-\-Ci^v, B = a.2\-\-biiii-\-C2v, and so on. Then
the equation of the inscribed conic will be AG = hBD.

Proof.—The equation is of the second degree in \, ju, v; therefore the

line (\, /J., J') touches a conic. The coordinates of one line that touches this

conic are determined by the equations A = 0, B = 0. That is, the line

joining the two points A, B touches the conic, and so of the rest.

4908 If the points B, D coincide (Fig. 76), the equation

becomes AG = JiB- ; and A = 0, G = are the points of

contact of tangents from the point B = 0.

4909 Referring the conic to the trigon ABG (Fig. 78), and
taking AG = k^B^ for its equation, let a tangent ef be drawn,

and let Ae : eB = h : m. The equations of the points f and

/ will be
mA+ hB = 0, mhB + 6' = 0.

Proof.—The first equation corresponds to (4879). For the equation of/,

eliminate A from mA + kB = and AG — Jc^B^-.

4910 Let e, h (Fig. 77) be two points on AB whose equa-

tions are mA-\-hB = 0, 7iiA-\-kB = 0. The equation of the

point jj, in which tangents from e and h intersect, is

mmA-lr{m-\-m) kB-^C = 0.

Proof.—The equation may be put in the form

(mA + JcB)(mA + l-B) = 0,

because k'^B'^=AG if the line touches the conic. The equation being of the first

degree in A, B, G, must represent some point. That is, the relation between

A, /.I, V involved in it makes the stivaight line \a-\-i.ip-\-vy pass through a

certain point. But the equation is satisfied when mA + lcB = 0, a relation

which makes the straight line pass through e. Hence a tangent through e

passes through a certain fixed point. Similarly, by '^n'A + A-Jj = 0, another

tangent passes through li and the same fixed point.

4911 CoE.—Let m = m, then the equation of the point of

contact of the tangent joining the points ma+ liB and ml'B-\-G

(4909) (e and/, Fig. 78) will be

m'A-\-2mkB-\rC = ().

4912 If ill Fig- (78) the trilinear coordinates of the points

4 R
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A, B, G are ii\, y^, z„ x.„ 7/2, ^2, ^h. y.s, ^3, the coordinates of tlie

point of contact p of the tangent defined by m will be

'in\+ 2mJcx.2+ ^3, m^T/i+ 2?ri/i;?/2+ Va, mh^+ 2 »Jj^a+ z-^,

and the tangent at j^ divides the two fixed tangents in the

ratios h : m and mh : 1, by (4909).

4913 Note.—The equation f7 or $ (A, ^, v) = (4G65) expresses the

conditiou that Xa+fift + i^y shall touch a certain conic. When U is about

to break up into two factors, the minor axis of the conic diminishes (Fig. 79).

Every tangent that can now be drawn to the conic passes very nearly

through one end or other of the major axis. Ultimately, when the minor

axis vanishes, the condition of the line touching the conic becomes the con-

dition of its passing through one or other of two fixed points A, B. In this

case, Z7 consists of two factors, which, put equal to zero, are the equations

of those points. The conic has become a straight line, and this line is

touched at every point by a single tangent.

4914 If TJ and V (Fig. 80) be two conies in tangential

coordinates, hJJ-[-TJ' is then a conic having for a tangent

every tangent common to Z7 and TJ' ; and kU-\-AB is a conic

having in common with U the two pairs of tangents drawn

from the points A, B.

The conic U' in this case merges into the line AB, or,

more strictly, the two points A, B, as explained in (4913).

4915 If either hJJ^JJ' or hU+AB breaks np into two

factors, it represents two points which are the opposite ver-

tices of the quadrilateral formed by the four tangents.

ON THE INTERSECTION OF TWO CONICS.

INTRODUCTORY THEOREM.

Geometrical meaning' of ^{— 1).*

4916 In a system of rectangular or oblique i)lanc coordinates, let the

operator \/— I prefixed to an ordinate ij denote the turning of the ordinate

about its foot as a centre through a right angle in a plane perpendicular to

the plane of xy. The repetition of this operation will turn the ordinate

* [The fiction of imaginary lines and points is not ineradicable from Geometry. The

theory of Quaternions removes all imaginarincss from the symbol V -\, and, as it appears

that a partial application of that theory presents the subject of Projection in a much clearer

light, 1 have here introduced the notion of the multiplication of vectors at right angles to

each other.]
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through another right angle in the same plane so as to bring it again into

the plane o£ xy. The double opei'ation has converted y into —y. But the two

operations are indicated algebraically by v — 1 . -s/— 1 .y or (V —lYy = —y,
which justifies the definition.

It may be remarked, in passing, that any operation which, being per-

formed twice in succession upon a quan tity, changes its sign, offers a con-

sistent interpretation of the multiplier v/— 1.

4917 With this additional operator, borrowed from the Theory of

Quaternions, equations of plane curves may be made to represent more

extended loci than formerly . Consider the equation a^ +y^= dr. For values

of » < a, we have y = zk Va'—x^, and a circle is traced out . For values of

x>a, we may write y = ±i \/x^— a^, where i = v/— 1. The ordinate

\/x' — c^ is turned through a right angle by the vector i, and this part of the

locus is consequently an equilateral hyperbola having a common axis with

the circle and a common parameter, but having its plane at right angles to

that of the circle. Since the foot of each ordinate remains unaltered in posi-

tion, we may, for convenience, leave the operation indicated by i unperformed

and draw the hyperbola in the oi-iginal plane. In such a case, the circle may
be called the principal, and the hyperbola the supplementary, curve, after

Poncelet. When the coordinate axes are rectangular, the supplementary

curve is not altered in any other respect than in that of position by the

transformation of all its ordinates through a right angle ;
but, if the coordi-

nate axes are obliqiie, there is likewise a change of figure precisely the same

as that which would be produced by setting each ordinate at right angles to

its abscissa in the xy plane.

In the diagrams, the supplementary curve will be shown by a dotted line,

and the unperfoi'med operation indicated by i must always be borne in mind.

For, on account of it, there can be no geometrical relations between the

principal and supplementary curves excepting those which arise from the

possession of one common axis of coordinates. This law is in agreement

with the algebraic one which applies to the real and imaginary parts of the

equation x^— (iyy = al When y vanishes, x = a in both curves.

If either the ellipse b^x^ + a-y'^ = d-b- or the hyperbola b-x''— a-y' = d-b-

be taken for the principal curve, the other will be the supplementaiy curve.

It is evident that, by taking diflTerent conjugate diameters for coordinate

axes, the same conic will have corresponding diflFerent supplementary curves.

The phrase, "supplementary conic on the diameter DD," for example, will

refer to that diameter which forms the common axis of the principal and

supplementary conic in question.

4918 Let us now take the circle x~+ y- = d^ and the right line x = h.

When & is > a, the line intersects the supplementary right hyperbola in two

points whose ordinates are ±^' v &'— o.^. By increasing b without limit, we
get a pair of, so-called, imagiyiary points at infinity. These lie on the

asymptotes of the hyperbola, and the equation of the asymptotes is

(^x + iy)(x-iy) = 0.
_ _

We can now give a geometrical interpretation to the statements m (4/'20).

The two lines drawn from the focus of the conic b'-x' + a^y- = d'b'' to the
" circular points at infinity " make angles of 45° with the, major axis, and
they touch the conic in its supplementary hyperbola b'^x^—d' {iy)- = d'lt\

An independent proof of this is as follows.
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Draw a tangent from S (Fig. 81) to the supplementary liypei'bola, and
let a;, y be the coordinates of the point of contact P. Tiicii

^ = ^, (115^0) = _-f^; and >j = A s/(^^-a^) -
^'

by the value of x. Also

SN = x-CS= ,^'f ,.. - y^F^'

Therefore y = SN, therefore SP makes an angle of 45'^ with CN.

The following results are required in the theory of projec-

tion, and are illustrated in figures (82) to (86). Two ellipses

are taken in each case for principal curves, and the supple-

mentary hyperbolas are shown by dotted lines. As the planes

of the principal and supplementarj^ curves are really at right

angles, the intersections of the solid lines with the dotted are

only apparent. The intersections of the solid lines are real

points, while the intersections of the dotted lines represent

the imaginary points.

4919 Two conies may intersect

—

(i.) in four real imints (Fig. 82);

(ii.) in ttvo real and two imaginary ])oints (Fig. 83)

;

(iii.) in four imaginary i^oints (Fig. 84).

[When the two hyperbolas in figures (83) and (84) are similar and
similarly situated, two of their points of intersection recede to infinity (Figs.

85 and 8G). Hence, and by taking the dotted lines for principal, and the
solid for supplementary, curves, we also have the cases]

(iv.) in ttvo real finite 2^0 ints and two imaginary points at

infinity ;

(v.) in tivo imaginary finite points and two imaginary
points at infinity ;

(vi.) in two imaginary finite points and two real points at

infinity ;

(vii.) in ttvo real finite points and two real points at

infinity.

4920 Given two conies not intersecting, or intersecting in

but two points, to draw the two supplementary curves which
have a common chord of intersection conjugate to the
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diameters upon whicli tliey are described, or in other words,

to find tlie imaginary common chord of the conies.

Poncelet has shewn by geometrical reasoning (Proprietes des Projectlves,

p. 31) that such a chord must exist. The following is a method of deter-

mining its position

—

Let (abcfgh'^xi/iy = and (a'b'c'fg'li''^xyiy = (i.)

be the equations of the conies G, C (Fig. 89), the coordinate axes being

rectangular. Suppose PQ to be the common chord sought. Then the

diameters AB, A'B' conjugate to PQ bisect it in B, and the supplementary

curves on those diameters intersect in the points P, Q. Now, let the coor-

dinate axes be turned through an angle B, so that the y axis may become

parallel to PQ, and therefore also to the tangents at A,B, A', B' .
This is

accomplished by substituting for x and y, in equations (i.), the values

XG0s9— y &\nd and 7/ cos + a; sin 0.

Let the transformed equations be denoted by {ABGFGH'^xyiy = and

{A'B'G'F'G'H''^xyiy = 0, in which the coefficients are all functions of 0,

excepting c, which is unaltered. Solving each of these equations as a quad-

ratic in y, the solutions take the forms

y = a,-(; + /3±\//* {x^— 2]px+ q), y = a'x + fV± \^fJ.' (x-— 2p'x + q) ...(n.),

with the values of a, 13, /j., p, q given in (4449-53), if for small letters we
substitute capitals. Thus, a, /3, fi, p, q are obtained in terms of and the

original coefficients a, h, h,f, g, Ji.

Now, the coordinates of D being 4 = ON, n = DN, we have // = aE+ l^

and jy = a'^+ /3', therefore a^+ ft = a^+ fi'
(iii-)-

The surd in equations (ii.) represents the ordinate of the conic conjugate

to the diameter AB or A'B'. For values of x in the diagram > OM and

<0B, the factor \/—l appears in this surd, indicating an ordinate of the

supplementary curve on AB or A'B'. Hence, equating the values of the

common ordinate PD, we have

I, (e-2p-Uq) = 1^' (e-2p'Uq) (iv.).

Eliminating t, between equations (iii.) and (iv.), we obtain an equation for

determining 0; which angle being found, we can at once draw the diameters

AB, A'B'.

THE METHOD OF PROJECTION.

4921 Problem.—Given any conic and a right hne in^ its

plane and any plane of projection, to find a vertex of projec-

tion such that the line may pass to infinity while the conic is

projected into a hyperbola or ellipse according as the right

line does or does not intersect the given conic ; and at the

same time to give any assigned proportion and direction to

the axes of the projected conic.
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Analysis.—Let HCKD be the given conic, and BB the right line, in

Fig. (87) not intersecting, and in Fig. (88) intersecting the conic. Draw
UK the diameter of the conic conjugate to BB. Suppose to be the

required vertex of projection. Draw any plane EGGD parallel to OBB,
intersecting the given conic in CB and the line UK in F, and draw the

plane OEK cutting the former plane in E, F, G and the line BB in A ; and

let the curve EGGD be the conical projection of HCKD on the plane parallel

to OBB.
By similar triangles,

FF^ _ OA ^FG_^aA . EF.FG ^ OA^ .^.

HF~HA^^ FK AK' "EF.FK HA.AK ^ ^'

Let a, ft be the semi-diameters of the given conic pai'allel to UK and GB
;

+1,
^^'' - (^

^^'' - P^'-SA.AK .^.^"^
EF.FK ~ a'' •- EF.FG~ a'.OA'

^^"

Now, since parallel sections of the cone are similar, if the plane of ECKD
moves parallel to itself, the ratio on the right remains constant ; therefore, by

(1193), the section EGGK is an ellipse in Fig. (87) and an hyperbola in

Fig. (88). Let a, h be the semi-diameters of this ellipse or hyperbola

parallel to EG and GD, that is, to OA and BB ; then, by (2),

^ = £ Ej^, ... OA' = $^HA..AK (3).
a^ ct OA- b-a-

But ^EA.AK= AB-, where AB in Fig. (88) is the ordinate at A of the
a

given conic, but in Fig. (87) the ordinate of the conic supplementary to the

given one on the diameter conjugate to BB. Therefore

AO'=^AB' (4).

Hence AO, AB are parallel and propoi'tional to a and b. And, since AB
is given in magnitude and direction, we have two constants at our disposal,

namely, the ratio of the semi-conjugate diameters a and b and the angle

between them, or, which is the same thing, the eccentricity and the direction

of the axes of the ellipse or hyperbola on the plane of projection.

4922 The construction will be as follows :

—

Determine the point A as the intersection of BB ivith the

diameter HK conjugate to it. Choose any j^Iane of inojection,

and in a plane through BB, parallel to it, measure AO of the

length given by equation (3) or (4), maJiing the angle BAO
equal to the required angle hetioeen a and b. will he the

vertex of projection^ and any plane IJM.'^ parallel to OBB will

serve for the plane of pirojection.

4923 OoR. T.—'If AO = AB, the projected curve in Fig. (88)

will in every case be a right hyperbola.



TBI] METHOD OF PROJECTION. 679

4924 CoE. 2.—If BAO is a right angle, tlie axes of tlie pro-

jected ellipse or hyperbola are parallel and proportional to

AO and AB. Hence, in this case, the eccentricity of the

hyperbola will be e = OB : OA.

4925 Cor. 3.— If AO = AB and BAO = a right angle,

the ellipse becomes a circle and the right hyperbola in Cor. 1

has its axes parallel to AO and AB.

4926 To project a conic so that a given point in its plane

may become the centre of the projected curve.

Tahe for the line BB the polar of the given jjoiiit, and con-

struct as in (4922). For, ifV be the given point, and BB its

polar {Fig. 87 or 88), p the projection ofP ivill have its polar

at infinity, and ivill therefore be the centre of the projected

ellipse or hyperbola, according as P is within or luithout the

original conic.

4927 To project two intersecting conies into two similar

and similarly situated hyperbolas of given eccentricity.

Take the common chord of the conies for the line BB {Fig.

88), and project each conic as in (4922), employing the same

vertex and plane of projection. Then, since the point A and

the lines AB and AO are the same for each projection, corres-

ponding conjugate diameters of the hyperbolas are parallel and

proportional to AO and AB ; therefore, Sfc.

4928 To project two non-intersecting conics into similar

and similarly situated ellipses of given eccentricity.

Tahe the common chord of a certain two of the supple-

mentary curves of the conics (4920), in other words, the

imaginary common chord of the conics, for tlie line BB, and

proceed as in (4927).

4929 To project two conics having a common chord of

contact into two concentric, similar and similarly situated

hyperbolas.

Tahe the common chord for the line BB, and construct as in

(4922). The common pole of the conics projects into a common

centre and the common tangents into common asymptotes.
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4930 To project any two conies into concentric conies.

Find the common pole and polar of the given conies by

(4762), and take the common polar for the line BB in tlte

construction of (4922). The common pole projects into a
common centre.

*xuOX. Ex. 1. — Given two conies having double contact with each other,
any chord of one which touches the other is cut harmonically at the point of
contact and where it meets the common choi'd of contact of the conies.

\_Salmons Conic Sections, Art. 354.

Let AB be the common chord of contact, PQ the other chord touching
the inner conic at G and meeting AB produced in D. By (4929), project
AB, and therefore the point D, to infinity. The conies become similar and
similarly situated hyperbolas, and C becomes the middle point of PQ (1189).
The theorem is therefore true in this case. Hence, by a convei'se projection,
the more general theorem is inferred.

49oA Ex. 2.—Given four points on a conic, the locus of the pole of any
fixed line is a conic passing tlirough the fourth harmonic to the point in
which this line meets each side of the given quadrilateral. [Ibid., Art. 354.

Let the fixed line meet a side AB of the quadrilateral in D, and let

AGBD be in harmonic ratio. Project the fixed line, and therefore the point
D, to infinity. C becomes the middle point of ^J5 (1055), and the pole of
the fixed line becomes the centre of the projected conic. Now, it is known
that the locus of the centre is a conic passing through the middle points of
the sides of the quadrilateral. Hence, projecting back again, the more
genei'al theorem is inferred.

4i70o Ex. 3.— If a variable ellipse be described touching two given
ellipses, while the supplementary hyperbolas of all three have a common
chord AB conjugate to the diameters upon which they are described ; the
locus of the pole of AB with respect to the variable ellipse is an hyperbola
whos^e sup})lementary ellipse touches the four lines CA, CB, C'A, C'B, where
C, C are the poles of AB with respect to the fixed ellipses.

(Salmon, Art. 355.)

Pkoof.—Project AB to infinity and the three ellipses into circles. The
poles P, C, C become the centres 2', c, c of the circles. The locus of p is a
hyperbola whose foci are c, c . But the lines Ac, Be now touch the supple-
mentary ellipse of this hyperbola (4918). Therefore, projecting back again,
we get AC, BC touching the supplementary ellipse of the conic which is the
locus of P. Similarly, AC, BC touch the same ellipse.

4934 Any two lines at riglit angles project into lines wliicli

cut liannonically tlie line joining the two fixed points which
are the projections of the circnlar points at infinity.

Proof.—This follows from (4723).
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4935 The couverse of tlie above proposition (4931), wbicli is the theorem

in Art. 356 of Salmon, is not nniversallj true in any real sense. If the lines

drawn through a given point to the two circular points at infinity form a

harmonic pencil with two other lines through that point, the latter two are

not necessarily at right angles, as the theorem assumes.

The following example from the same article is an illustration of this

—

Ex.—Any chord BB (Fig. 88) of a conic HCKD is cut harmonically by

any line PKAH through P, the pole of the chord, and the tangent at K.

The ellipse BKB here projects into a right hyperbola ;
B, B project to

infinity. The harmonic pencil formed by PK and the tangent at K, KB and

KB projects into a harmonic pencil formed by 2^^ fii^d the tangent at h, kh

and l-b, where 6, h are the circular points at infinity : but j>fc is notat right

angles to the tangent at J: of the right hyperbola. The harmonic ratio of the

latter pencil can, however, be independently demonstrated, and that of the

former can then be inferred. (Note that h is G in figure 88.)
_

If we may suppose the ellipse to project into an imaginary circle havmg

points at infinity, the imaginary radius of that circle may be supposed to bo

at right angles to the imaginary tangent. The right hyperbola, however, is

the real projection which takes the place of the circle in this and all similar

instances ; and it is only in the case of principal axes that the radius is at

I'ight angles to the tangent.

INVARIANTS AND COVARIANTS.

4936 Let u ={al>cfr/]tjxyzy, u' = {a'h'c'fg'h'Xxyzf

be two conies as in (4401) witli the notation of (1620).

The three values of /.-, for which ku+ n' = represents two

right lines, are the roots of the cubic equation

4937 AA:-^+0A--+0'A'+A' = 0,

4938 where A = uhc-\-'lfgh—af-— hg--ch\

4939 = Aa'^Bh'-^Cc'^2Ff'-^2Gg-^'lHh',

and A = bc-f\ F=gh-af, &c. (46(;5)

For the values of A' and 9' interchange a with a, h with h\

&c.

ka+a', kh + h', kg+ g'

kh + h', kh+h\ kf+f
Proof.—The discriminant of ku+ u, which

must vanish (4661), is evidently the determi-

nant here written, and it is equivalent to the

cubic in question.
• + g', ¥+f'^ ^"'+^'

4940 A, e, e', and a' are invariants of the conic ku-\-i('.

4 s
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That is, if the axes of coordinates be transformed in any

manner, the ratios of the four coefficients in (4937) are

unaltered.

Proof.—The transfoi-mation is effected by a linear substitution, as in

(1704). Let «, «' thus become v, v'. Then hu + u' becomes Icv + v', and

k is unaltered. If the equation ku + u' = represents two right lines, it will

continue to do so after transformation ; but the condition for this is the

vanishing of the cubic in h ; aud k being constant, the ratios of the coeffi-

cients must be unalterable.

4941 The equation of the six lines which join the four

points of intersection of the conies u and u is

Proof.—Eliminate k from (4937) by A-h + «' = 0.

4942 The condition that the conies ir and vf may touch is

(&&-9SAy = 4 (©•^-3A0')(0'--3A'0),

4943 or 4A0 3+4A'0^+27A2A'^-18AA'00-0-0^

PuoOF.—Two of the four points in (3941) must coincide. Hence two out

of the three pairs of lines must coincide. The cubic (4937) must therefore

have two equal roots. Let a, a, ft be the roots ; then the condition is the

result of eliminating a and ft from the equations

A ('2a +/-5) = -e, A (o- + 2a/3) = G', Aa'/S = -A' (400).

4944 The expression (4943) is the last term of the equation

whose roots are the squares of the differences of the roots of

the cubic in /.-, and when it is positive, the cubic in h has two
imaginary roots ; when it is negative, three real roots ; aud
when it vanishes, two equal roots.

Proof.—By (543) or (579). The last term of /(a;) in (543) is now
= 27F(a) F(ft), a, ft being the roots of 3Ax'+ 2ex + e' = 0. When this

term is positive, f(x) has a real negative root (409), and therefore F (x) has
then two imaginary roots ; for, if (a— &)'•' = —c, a— & = ic, and a and b are

both imaginai'y. When the last term of /(;c) is negative, all the roots of

/ (x) are positive, aud therefore the roots of F (.^) are all real.

INVARIANTS OF PARTICULAR CONICS.

4945 ^y\wn u = aiv^-\- by-+ cz^ and n = a^ -{- 1/- -\- :r

,

A = afjc, = bc-^-ca+ ab, 0' = a-{-b-{-c, A'= 1.
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4946 When u= {abr.fghXxijzy and u'=x'+i/^+ z\

e = A+ B-\-C, 0' = rt+6+e, A'=l.

4947 When u = x^+ if- r^ and n = {x- a)- + (// -(^f- s\

A = -r\ A' = -^s\

4948 The cubic for k reduces to

(k-^l) {s'k'+{r'+s'-a'-fi') k-{-r'} = 0.

4949 When

u = h\e'+ aY-a%'' and v' = (->'-«)'+ (^-/3)2-r%

A = - a'b\ = (rb' { a' +/3-- a'-W- r^ }

,

0' = u'^'-\-h'a^-a'¥-r' («'+6^), A' = -rl

4950 When u = if-4^mx and u' = {x-a)-^{y-^Y-r\

A = —^m\ = —4m (a+ m), 0' = P^—4ima—7'\ A'= — r'.

4951 When ?(,= {(^^(^fg^K^^^y^y and ?f' = ^^+ 2rt37/ cos w + ?/,

A, A'=0, 0=c(..+6)-f-g-+2(/g— c/0cos6>,

0' = (• sin^co.

Hence the following are invariants of the general conic,

the inclination of the coordinate axes being w.

4952 abc-\-2f{j:h-af'-bcr^-ch' ^ A p.
c shr 0) 0'

4953 c (a-\-b)-f--^'-\-2 ifg-ch) cos 6) ^ .2),

c siu" 0) 0'

4954 "^^
(3). and

"+b--^l"^-o^^
(4).

snroi snvQ)

For these are what (1) and (2) become when the axes are

transformed so as to remove /and g.
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If the origin be unaltered, c is invariable, and transforma-

tion of the axes will then leave invariable

4956 ^^ffA-qf-y- .^j^j .f+ff--^fffcos6)
^

siu" CO siu"- (t)

as appears by subtracting (3) from (1) and (2) from (4).

4958 Ex. (i.)—To find the evolute of the conic h'X'-{-ah/

= crlr. See also (4547).

Pkoof.—Denote tlie conic by n, and by u' the hyperbola c"xy -\-lh/o:— ci?x'y

(4335), which intersects « in the feet of the normals drawn from x'y'. Two of

these normals mnst always coincide if x'y' is to be on the evolute. ti, and n'

must therefore touch. We have

A = -a'h\ e = 0, e' = -ft-i" (aV + ty-c*), A'= -2a^h-c\vy.

Substitute in (4942), and the equation of the evolute is found to be

(a-x''+ bY-cy-h27a'h'o'xhf = 0.

4959 Ex. (ii.)—Similarly the evolute of the parabola is

obtained from

u = y-— 4<mx, u' = 2a;?/ + 2 {2m— x") y— imy',

A = —4<m\ e = 0, e' = -4 (2m— x), A' z= 4my,

producing the equation 27ruy- = 4 (x— 2my. See also (4540).

4960 Ex. (iii.)—The locus of the centre of a circle of radius
E, touching the conic h\'-\-(rif—a-h\ is called a paralld to
the conic. Its equation is

Ii;V-27^V {r (a'Hi'O + id'-2K-) x' + {2a'-V-) f]
+ R' [ c' (a"+ 4a-6- + h') - 2c- (a"- n^lr + 3&*) x-+ 2c- {^a'-a-V + V) i/

+ (a*- C)^'^+ G60 ;o' + {Cm'- Ga'b' + h') y'+ {(Sa'- lOcr't^ + (j?>0 xhf
}

+ E- {
- 2ar}rc' (rr + ^0 + 2c- (3rt'- a-h' + Z/') x-- 2r {a'-aV+ 3h') i/'

-{(ja'-10aV- + Gb'){b\c'+ dY) + {W^-6a*b--6a;'b'+ 4b'') xSf
+ 2 {a--2b') 6V+ 2 (&--2a') aV-2 {a'-a'b-^Zb') xSf
-2(3a*-a-/r + 6^).^y|

+ (/rV + aV--a'Z>-j-{(-«-c)'+ r} {(:i! + c)-+r} = 0.

PROor.—Tf the curves in (4940) be made to touch, o/5 will be a point on
the curve pai-allel to u at a distance r. Therefore put the values of A, O, 9',
and A' in equation (4042). Itiahnon, p. 325.
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4961 When u of (4936) represents two right lines. A'

vanishes, and

4962 0' = is the condition that the two lines should

intersect on u
;

4963 9 = is the condition that the two lines should be

conjugate with regard to u.

Proof.—Transform n' = into 2xy = 0, so that the axes x, y are the

right lines. This will not affect the invariants (4940). We now have, by

(4937), A' = 0, e = 2(/^-c70, e' = -c.

c = makes « pass through the origin xy
; fg = ch makes x and y conjugate.

For in (4671), if Xx + fxy + v becomes y = 0, then \ = v = 0, and the pole

is given by H : B : F. But a; = a = at the pole, therefore II =.

fg-ch = 0.

4964 The condition that either of the lines in u' should

touch u is, by (4943),

0^ = 4A0' or AB = 0,

with the above values of O and 9'.

4965 The equation of the two tangents to u, when Xa3 +^t^ + v

is the chord of contact, is, with the notation of (4665),

u^ (X, fjL, v) = {\a;-{-iii/-{-vzf A.

Proof.—The conic of double contact with u, ku + (\x + fiy + i'y- (4G99),

must now become two right lines. In (4937) A' = and Q' = 0, therefore

A-A + 6 = 0. But = <& (\, i-i, v). Hence eliminate Jc.

4966 Cor.—Taking the Hne at infinity <ix+ bjj+ C^, we obtain

the equation of the asymptotes (4685).

The invariant 9 of the conic l-u + u' vanishes

—

4967 (i-) Whenever an inscribed triangle of u is self-con-

jugate to u.

4968 (ii-) Whenever a circumscribed triangle of u is self-

conjugate to II .

4969 0' vanishes under similar conditions, transposing u

and li in (i.) and (ii.)

Proof.— (i.) u becomes ax-+ hy- + cz"- (47G5), and/= g = li — 0. There-

fore e in (4937) vanishes if a'=l'=c = (); i.e., if u' is of the form

f'yz+g'zx+h'xy (4724).
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(ii.) In this case, /'= 9'= h'= and vanishes if hr = /", &c., i.e., if

the line x = touches u, &c.

4970 If ?') u' be two conies, and if 6'^ = 4A9', any triangle

inscribed in u' will circumscribe w, and conversely.

Proof,—Let u = x^ + 1/ + z^—2yz— 2zx—2icy and u = 2fyz + 2gzx + 2hzi/,

both referred to the same triangle, (4739) and (4724). Then

A=-4, Q = 4.(f+g + ]i), Q'^-(f+g + hy, A'=2fg1i',

therefore 6^ = 4A6', a relation independent of the axes of reference (4940).

4971 Ex. (i.)—The locus of the centre of a circle of I'adius r, circum-

scribing a triangle which circumscribes the conic h-x-+a-i/ = a'b-, is

(x""+ 2/-- a-- Z>-+ r-)2+ 4 [ h'x-+ ahf- a-lr-r (ft- + b')} = 0,

from 9- = 4A9' and the values in (4949).

4972 Ex. (ii.)—The distance between the centres of the inscribed and
circumscribed circles of a triangle is thus found, by employing the values of

e, e', and A in (4947), to be D= ^/(/-±2jt'), as in (936).

4973 The tangential equation of the four points of intersec-

tion of the two conies u = 0, u = is

with the meanings

4974 U={ABCFGHJ\iivy; (4GG4)

U'= {A'B'C'F'G'H'JXiivf.

4976 V = {A"B"C"F"G"H"J\iivY.

4977 A = bc-f\ &c.; A' = h'c'-f\ &G.,

as in (4665), and

4978 A" = bc'+b'c-2fr, F"= gh'-\-<r'h-af-a%

4979 B"^ca'+c'a-2si^\ G"^hf^h'f-hi>:' -h'^,

4980 C" = ab'-\-a'b-2hh', H"=f<r'-\-fo'-cf/-c'h.

Proof.—The tangential equation is the condition that Xa + fip + yy may
pass through one of the four points of intersection of ?t and «'. The tan-

gential ecjuation of the conic u+ Jiit' is obtained by putting a + ha' for a, &c.
in U (4GG5), and is U+kV+ JrU' =: 0. The tangential equation of the
envelope of the system is V" = 4UU' (4911). This is the condition that the
line (\, /i, v) may pass through the consecutive intersections of the conies

obtained by varying A-. Put these conies always intersect in the same four
points. The above is thcrefoi'e the tangential equation of the four points.
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4981 The equation of the four commou tangents of two
conies a, u is

where F = (a"h"c"f"^"h" X ^^y)'->

and a'' = BC'-\-B'C-2FF\ &c.,

f" = GH-\-G'H-AF'-A'F, &c.,

as in (4978-81).

Proof.—This is the reciprocal of the last theorem. ZJ+^ZJ' is a conic

touching the four common tangents of the conies U and TJ'. The trilinear

equation formed from this will, by (4007), be u^-^-hT + k'u'iX' = 0. The
envelope of this system of conies is the equation above, which must therefore

represent the four common tangents.

The curve F passes through the points of contact of w and lo with the

locus represented by (4981).

4982 Hence the eight points of contact of the two conies

with their common tangents lie on the curve F.

4983 The reciprocal theorem from equation (4973) is

—

The eight tangents at the intersections of the conies envelope

the conic V.

4984 F = is the locus of a point from which the tangents
to the two given conies u, u' form a harmonic pencil.

Proof.— Putting 7 = in (4081), we get a quadratic of the form
ad' + 2]iu^+bl3^' = 0, which determines the two points in which the line y is

cut by tangents from o', /3', y'. Let the similar quadratic for the second conic

be a'cr + 2h'al3 + h'(3- = 0. Then, by (1064), ab' + a'b = 2hh' is the condition

that the four points may be in harmonic relation. This equation will be
found to pi'oduce F = 0.

4985 The actual values of a, h, h, suppressing the accents

on a', )3', y\ are

CP'-\-Bf-2Ffiy, G^y-^Fya-Ca^-Hy\

Af-\-Cd'-2Gya',

and similarly for a, h', h', with A' w^ritten for A, &c.

4986 If the anJictrmonic ratio of the pencil of four tangents

be given, the locus of the vertex will be F" = Jcuu'. If the

given ratio be infinity or zero, the locus becomes the four

common tangents in (4981).
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4987 V == is tlic envelope of a conic evciy tangent of

which is cut harmonically by the two conies u, u' ; i.e., the

equation is the condition that Xa+^/S + vy should be cut har-

monically by the two conies.

Proof.—Eliminate y between the line (\, /u, v), and the conies n and m'

separately, and let AiC + 2Hal^j + Bjy' = and A'a'+ 2ircily + ]l'ft- = stand

for the resulting equations. Then, by (10G4), AB' -\-A'1j = 21111' produces
the equation V = 0, which, by (4GGG), is the envelope of a conic.

4988 The actual values of A, H, B are respectively

and similarly for A\ H', B', with a' for a, &c.

4989 F'^ = 4AA'?n/ is a covariant (1629) of the conies u, u'.

For the four common tangents are independent of the axes of reference.

4990 C7=0 and V = (4973) are both contravariants

(1814) of u and n\

Proof.—For ?7= is the condition that Xo + /j/3 + ry = shall touch the
conic u ; and V = is the condition that the same lino shall be cut har-

monically by u and u'; and if all the equations be transformed by a recipro-

cal substitution (1813, '14), the right line and the conditions I'emain

unaltered.

4991 Any conic covariant with u and ii' can be expressed in

terms of u, u, and F ; and the tangential equation can be

expressed in terms of U, U' and V.

4992 Ex. (1).—The polar reciprocal of u with respect to u'

is Qn = F.

Proof.—Referring u, n' to their common self-conjugate triangle,

n = ax- + bij- + cz\ It' = .c'^ + y- + z-,

F = a(h + c) x'+ h (c + a) if+ c (» + h) z-.

The polar of ^, r], ^ with respect to «' is ^x+ riy + i^z, and the condition that

this may touch u is hc£i'^+ caTi^+ abi,'^ = (4664), or, which is the same
thing, (bc+ ca+ ab)(x^+ y^+z^) = P or Gw' = P (4945).

4993 Ex. (2).—The enveloping conic V in (4987) may also

be written
0//'+ 0'// = F.
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Proof.—With the same assumptions as in Ex. (1), V in (-i'.To) becomes
(b + c) X'+(c + a) fM-+ (a+ h) r- = 0. The triliuear equation is, therefore,

by (4667),
(c+ a) (a + b) X- + {a+b){b + c) if + (i + c) (c+ a) £' = U,

or (be + ca+ ab) {x- + if + z') -\- {a -{- b + c) (ax' + bif + cz") = P.

4994 Ex. (3).—The condition that F may become two right

hnes is AA' (00'-AA') = 0.

Proof.—Referring to Ex. (1), A = be, B = ca, C = ab, F= G = H=0,
A'= B'= C'= 1 ; therefore, in (4981), a" = B+ G = a(b+c), &c. Heuce

the discriminant A of F = ahc (b -{- c)(c+ a)(a-\-h),

or abc
|
(a+ & + c)(&c + ca + a?;) — ate

|
= the above, by (4945).

4995 To reduce the two conies u, u to the forms

By (4945), o, /3, y will be the roots of the cubic

AF-eF-l-e7.--A' = (1),

and cif, //, ?:^ will be found in terms of x, v' and F, by solving

the three equations ,1'-+ //-+ ::'^= n, a,r-f-/3y^ + yr == u and (by

4994), a(i3+ y).r+/3(7 + a)/ + y(«+|3)^:-^=:F (2).

4996 Ex. (1) : Given ;t;- + r + -2(/ + 2i^ + 3 = 0; a;-+ 2^H4;/ + 2a;+ 6 = ;

to be reduced as above. To compute the invariants, wef take

and

therefore

and

Therefore (4938, '9) A = 1, 6 = 6, 6'= 11, A'= 6. The roots of equa-

tion (1) are now 1, 2, 3. Therefore (2) becomes 5X- + 8r^ + 9Z- = T.

Computing P also by (4981) with the above values of A, B, &c., we get the

three equations as under, introducing z for the sake of symmetry,

X-+ Y-+ Z-= a;-+ 7/+ 32-+ 2//z+ 22a;,

X-+ 2r-+ 3;;-= xr + ^f+ 6.-'-+ 4(/2+ 2zx,

5X-+ 8YH9i^- = 5a!2+ 82/-+ 22r+ 16!/2 + 10za;,

The solution gives X=x+ \, Y = \j -\-l, Z = I, and the equations in the

forms required are (x + l)- + (y + iy+ l = 0, (a; + l)'' + 2 (^ + l)- + 3 = 0.

4997 Ex. (2).—To find the envelope of the base of a triangle inscribed

in a conic u so that two of its sides touch a.

4 T

a

= 1

= 1
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Let « = X- + If -\- z'— 2yz— 2zx— 2xy— 2hkxy,

and «' = 2fy3 + 2gzx+ 2hxy,

X and y being the sides touched by u. Then u + hi' will be a conic touched
by the third side z. By finding the invariants, it appears that 9^^—4Ae'
= 4AA'A;, whence k is determined, and the envelope becomes

Compare (4970).

4998 The tangential equation of the two circular points at

infinity (4717) is

Proof.—This is the condition that Xx+fuy + v should pass through either
of those points, since x:^iy = c is the general form of such a line.

4999 U = being the tangential equation of a conic, the

discriminant of h U-{- TJ' is

Proof.—The discriminant of hJI-^- TJ' is identical in form with (4937),
but the capitals and small letters must be interchanged. Let then the dis-

criminant be AA;HeA;H©'A;+ A' = 0. We have

A = A^ (4G70), e = (BG-F') A'+ &c. = A'ai\ + &c. (4668) = A0'.

Similarly 6' = A'G, A' = A'\

5000 If ©, 0' be the invariants of any conic U and the pair

of circular points X^+ ^t'^ (4998) ; then G = makes the conic

a parabola, and 9' = makes it an equilateral hyperbola.

Proof.— The discriminant of kU+X^+ in^ is k'^A' + k (a + h) A + ab-h\
For, as above, A = A^ ; Q = A'aA + B'bA = (a+ b) A since A' = B' = I,

C &c. = ; e' = {A'B'-m) G=G = ab-Jv'; and A' = 0. The rest fol-

lows from the conditions (4471) and (4474).

5001 The tangential equation of the circular points is, in

trilinear notation (see the note at 5030),

X-+/u,-4-»'"— 2/w,v cos A—2v\ cosB—2\fjL cos C.

Proof : A.^' + yir = 0, in Cartesians, shows that the perpendicular lot fall

from any point whatever upon any line passing through one of the points is

infinite. Therefore, by (4624).

5002 The conditions in (4689) and (4090), which make the
gcmoi-al conic a parabola or equilateral hyperbola, may be
obtained by forming 9 and 9' for the conic and equation

(5001) and applying (5000).
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5003 If 0'"' = 49, the conic passes througli one of the

circular points.

5004 When It in (4984) reduces to \^-\-ix\ that is, to the

circular points at infinity, F becomes the locus of intersec-

tion of tangents to n at right angles, and produces the equa-

tions of the director-circle (4693) and (4694).

5005 The tangential equation of a conic confocal with TJ is

5006 And if the left side, by varying k, be resolved into

two factors, it becomes the equation of the foci of the system.

Proof.—Since \^ + /x^ represents the two circular points at infinity (4998),

;^f/'_^\2-(.^2
_

Q^ jjy (4914), is the tangential equation of a conic touched by

the four imaginary tangents of Z7 from those points. But these tangents

intersect in two pairs in the foci of U (4720) ; and, for the same reason, in

the foci of ]cU+y-+iu-, which must therefore have the same foci.

If W + X^+fi^ consists of two factors, it represents two points which, by

(4913), are the intersections of the pairs of tangents just named, and are

therefore the foci.

5007 The general Cartesian equation of a conic confocal

with u = (4656) is

k'Au+k {C{a^'-^y')-2G.v-2Ft/-{-A+B}+l = 0.

Proof.—(5005) must be transformed. Written in full, by (4664), it

becomes (kA + 1) X^+ (kB+ l) fir + kCi''. Hence, by (4667), the trilinear

equation will be

{(l-B+ l) W-l-F'} a- + &c. = F- (BG-F') a-+ kCcr+ &c.

= k-a^cr + ]cCa' + &c., (4668)

and so on, finally writing x, y, 1 for ct, /3, y.

TO FIND THE FOCI OF THE GENERAL CONIC (4656).

(First Method.)

5008 Substitute in kU+ XHA^'^ eithrr root of its discriminant

k-A'+ k(a+ b) A+ab— h^ = (5000), and it becomes re-

solvable into tioo factors (XxiH-/iyi-fv)(Xx.2+/iy2H-v).
_

The

foci are Xiyi and x.^ya, real for one value of k and imaginary

for the other.

Proof.—By (5006) the two factors represent the two foci, consequently

the coordinates of the foci are the coefficients of X, /x, y in those factors.
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(^Second MetJiod.')

5009 ^^cf' xy 1)6 afocuii; then, by (4720), the equation of an
iinaginari) tangent through that point is (^—x)+i (»)— y) =
or ^-hirj— (x-f-iy) = 0. Therefore substitute, in the tangential

equation (4665), the coefficients A = 1, /ti = i, v = — (x+ iy),

and equate real and imaginarij parts to zero. The resultirig

equations for finding x and y are, with the notation of (4665),

5010 2(0.r-G)^ = A[..-6+v/{4/r+(«-6)'^}].

5011 2{Cn-Ff = ^[h~aJrV \^^^'^{^i-WW

5012 If the conic is a parabola, = 0, and the coordinates

of the focus are given by

(F2_,_ Q') cv = FH-\-l (A-B) G,

(F^+G^) y = GH-i (A-B) F.

5013 Ex. — To find the foci of 2x'+ 2xy + 2>/ + 2x = 0. By the first

method, we have

a, h, c, f, g, h '\ from which A = — 2. The quad-

= 2, 2, 0, 0, 1, 11 I'atic for k is

and A, B, (\ F, G, Hi /rA'H4^-A + 3 = (2^— 3)(2A— 1) = 0,

= 0, -1, 3, 1, —2, J therefore ^- = f or |.

Taking |, hU+X' + /Li' =
:] (-/+ 3.'- + 2At>'-4A) +X' + m' = 0,

or 2X'-12v\-^i- + 9y' + 6fiy = 0.

Solving for X, this is thrown into the factors

{
2\ + /xy2-3 (2+ v/2) V

}
{
2A-/iv/2-3 (2- x/2) y

}

.

Therefore the coordinates of the foci, after I'ationalizing the fractions, are

2- 72 v/2-1 , 2+72 72 + 1

8 ' 8- '^"'^ 3-' -T-
5014 Otlierwise, by the second method, equations (5010, '1) become, in

this instance, (3;i; + 2)^ = ± 2, (3/y— 1)- = ±2, the sohUion of which pro-

duces the same values of a; and y.

5015 When the axes are oblique, the coordinates x, y of a

focus are found from the equations

{C (.v+f/ c,oH(o)-F cosco-G]' = iA(\/i^-4./+2«-/)

[Cy-Ff Hiii^o) = \A (y/2_4./^2«+/),

where I ami J are the invariants (4955) and (4954) respec-
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tively. The equations may he solved for x' = x -\-y cos a> and

y = J sin w, mhiclh are the rectangular coordinates of the focus
with the same origin and x axis.

Proof.—Following' the method of (5009), the imaginary tangent thi'ough

the focus is, by (4721), £— .r-f- (»?— ;(/)(cos w + i sin w). The two equations
obtained from the tangential equation are, writing Aa for BG— F", &c.

(4668),

X^—Y'-= —A (a + h — 2h cos w— 2a sin^ w), XY = A (h sinw— a sin w cos w)
;

where X = G {x + y cosc») —F cosu — G and Y= (Gy— F) sin u).

5016 If the equation of the conic to oblique axes be

a.v^ -f 2hoci/+ hif -}- c = ,

the equations for determining the foci reduce to

y {cV-\-y cos a>) _ cv(i/-\-cr cosw) c

acos(o—h bcosQ)—h ~ ab— h^

5017 The condition that the line Xa?+^?/+ v^ may touch the

conic u-\-(X'x-{-fiy-\-vzY is

U-\-(l) {fxv—ii'v, v\'— v\, Xji'—X'/j) = 0. (4656, 4936, 74)

5018 or {A+u')U=n:\ (4938)

where 20 = \' l\-\-
fj,' [J^^v U,. (4674)

Proof.—Put a + \'^ for a, &c. in U of (4664). The second form follows

from the first through the identity

A^ (^/— /uV, &c.) = UU'— lP.

5019 Otherwise, let F = u,.,x-{-Uy,y+ u^,z, the polar of

X, y, z (4659), then the condition that P' may touch u-\-V"'^

becomes, in terms of the coordinates of the poles,

5020 (1+ "'') "' = ^^,x"^^,.y"^i>,,Z' (See 4657).

Pkoof.—If we put ;«^.,, »,,., u,,, from (4659), for \, ^, v in ?7 to obtain the

condition of touching, the result is A?^' ; and similar substitutions made in

n give A (0^,»"+ &c.), therefore (50l8) becomes (l4-^'")«' = {(\>^.x" -\-kc).

5021 The condition that the conies

u+ {}!x+ /t/+ v',<;)^ u+ {}!'x+/V+ v'zf

may touch each other is

(A+ r)(A+ V") = (A ± n)^ (49B8-74)
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Proof.—Make one of the common cbords

(X'x+ ix'y + v'z) ± (\"x + /u'V + v"z)

touch either conic by substituting X' ± X" for X, &c. in (5018). The result

is (A+ t7')(Z7'± 2Ii-\-TJ") = (U'± U)-, which reduces to the form above.

5022 The condition, in terms of the coordinates of the poles

of the two lines, is found from the last, as in (5019), and is

(l+«')(l+ <'") = ll±{<l>...v"+<t>,!/"+<l>..z")V-

5023 The Jacobian, J, of three conies it, v, iv, is the locus

of a point whose polars with respect to the conies all meet in

a point. Its equation is

(ha.^-\-h,i/-\-g\z, a2^+hi/+g2^, fh^+fhy-^g^z

Jh^v+b,ij-\-f\ z, Jh.v-\-b,i/+f, z, fh.v+b,2/-\-f, z

gi^'^-^fi!/+fi -» g2^v+fz!/+c.,z, g;^'-{-fij/+c, z

Proof.—The equation is the eliminant of the equations of the three

polai's passing thi'ough a point ^r)i, viz., ?tj.^+ ?t^7j + ««4 = 0, ViX + v^ri -{-i\i^ :=0,

wJ+w^f]-\-^tKi; = 0. See (4657) and (1600).

a^ B^ y^ fi y y a a /3

«! ^1 yl Ayi ricii ctiA

«2 ^2 yi ^lyz yi^i ^i^i

as 0:^ r' Ayij y-iO^i o.^^^

a! ^4 y\ ^174 74 a^ ^4^
a' ^5 75 A75 7n% ttoA

= 0.

5024 The equation of a

conic passing through five

points ai/3iyi, 00/3.270, &c. is

the determinant equation

annexed ; and the equation

of a conic touching five

right lines X,/tiVi, X^^iaVo, &c.

is the same in form, X, ^, v

taking the place of a, /3, -y.

Proof.—The determinant is the eliminant of six equations of the type

(4656) in the one case and (4665) in the otlier. By (583).

5025 If three conies have a common self-conjugate triangle,

their Jacobian is three right lines.

Proof.—The Jacobian oi aiX^-\-'b^if-'rc^z-, a^x' + h^^^f + Cf-, a.^x'-^-h.^^i' + c^z^

is, by (5023), x,jz = 0.

For the condition tliat three conies may have a common point, see
Salmons Conic<, 6th edit., Art. 389a, and rroc. Land. ISlalJi. Sec., Vol. iv.,

p. 404, /. /. Walker, M.A.
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5026 A system of two conies has four covariant forms

i(, n, F, •/, conneeted by the equation

-{-Fun {&&'-3AA')-AA''u'-A'Ahi''

-^A'uhi {2AQ'-&')-\-Au''h (2A'0-0'2).

Proof.—Form the Jacobian of u, u\ aud P. This will be the equation of

the sides of the common self-conjugate triangle (4992, 5025). Compare the

result with that obtained by the method of (4995).

5027 By parity of reasoning, there are four contravariant

forms t/, U' V, r where F is the tangential equivalent of */,

and represents the vertices of the self-conjugate triangle. Its

square is expressed in terms of U, f/', V and the invariants

precisely as J^ is expressed in (5026).

5028 The locus of the centre of a conic which always

touches four given lines is a right hue.

Proof.—Let IT = 0, 77' = be the tangential equations of two fixed

conies, each touching the four lines ; then, by (4914), TJ+kTJ' = is another

conic also touching the four lines. The coordinates of its centre will be

G±kG;_
^^^ ^1±M^, by (4402). The point is thus seen, by (4032), to lie

G-{-kG G-\-kC

on the line joining the centres of the two fixed conies and to divide that line

in the ratio hC' '. G.

5029 To find the locus of the focus of a conic touching four

given lines.

In the equations (5010, '1) for determining the coordinates of the focus,

write A-\-kA' for A, &c., and eliminate k. The i-esult in general is a cubic

curve. If 2, 2' be parabolas, S+ /v2' is a parabola having three tangents in

common with 2 and 2'. If (7 = 0'= the locus becomes a circle. If the

conies be concentric, they touch four sides of a parallelogram, and the locus

is a rectangular hyperbola.

Note on Tangential Coordinates.

5030 It must be borne in mind that a tangential equation in trilinear

notation (that is, when the variables ai-e the coefficients of o, /3, y in the

tangent line la + mlS + nY) will not agree with the equation of the same locus

expressed in the tangential coordinates \ fj.,
v of (4019). Thus, to convert

equation (5001), which, for distinctness, will now be written

l^-\-m^-Yn'— 'imn cos A—'2nl cos B— 2lm cos C* =
into tangential coordinates, we must substitute, by (4023), a\, &/u, c»' for

I, m, n. The equation then becomes

a-\'"+tV+ cV-26ccos^/xv-2cacos5^X-2aOcos(7A^ = 0.

Put 2tc COS J. = b^ + c^— a^, &c., and the result is the equation as presented

in (4905).

Corrigenda.—In (4678) and (4692) erase the coefficient 2 ; and in (4680) and (4903) supply

the factor 4 on the left of the equation.
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TANGENT AND NORMAL.

5100 Let P (Fig. 90) be a point on tlie curve AP ; FT, PN,

PG, the tangent, ordinate, and normal intercepted by the <k

axis of coordinates. See definitions in (1160). Let /.PTX

5101 tant/; = g,, by(1403); siuV' = J; cosr^ = g.

5104 Suh-taiigent NT = i/d\j, Sub-normal NG = i/y^.

5106 PT=i/V'OT^), pr=ciV(l +?/;).

5108 PG = i/x/(i^), PG' = uVii-\-4)-

Let OP = r (Fig. 91), n = r-\ AOP = e, OPT = ^ ;

Arc AP — s. Then, by infinitesimals,

lie . dr , _ J (je

dr5110 sin
(l)
= r—, cos <^ = j:* ^^^^ <^ = >'

5113 {d.vy-\-{duy = (ds)\ s., = x/(n-//a.

5114 tanV>^
^'-""^+ ^'""^

. (1768)

5115 lidercei)t6 of Normal OG = r~, OG = Vj-. (Fig.«JO)
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^^''''' ^^=^i^^PGN=^h:NPf-'l^-'^-

5116 se = ^/{r'+rl), s„ = y/{l+r%y

Proof.—By rOg = sin^ and tan^ = r8,. (5110).

EQUATIONS OF THE TANGENT AND NORMAL.

The equation of the curve beiug y =f{a') or u = (}>
{.r, y)

= 0, the equation of the tangent at oij is

5118 ^-^ = ^(^-.0, (4120)

5119 or ft/.,-^ = ^m^-i/^

5120 or ^w,+>;«, = .r?/,+//«,. (1708)

5121 If (p {a;, y) = i'» + f'«-i+ ••• +^o> where v„ is a liomogciicous function

of .« and y of bhe n^^ degree, the constant part forming the right member of

equation (5120) takes the value

— v„_i— 2y„_2— ... — («— 1)^1— ^%
By Euler's theorem (1621) and (p (x, y) = 0.

The equation of the normal at xij is

5122
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Let OY ~p be tlie perpendicular from the pole upon the

tangent, then

5129 ;> = r siu(^ = {nr-\-u'^-\ (5112)

5131 /n'7^, - ^!^^W^ -
(40G4&5119,'20)

OS, drawn at right angles to r to meet the tangent, is

called the 2^olar sub-tangent.

5133 Polar sub-tangent = r-6,. (5112)

RADIUS OF CURYATURE AND EVOLUTE.

Let ^, J/ be the centre of curvature for a point xy on the
curve, and p the radius of curvature ; then

5134 i.v-iy^{^j-yjy = p^ (1).

5135 {.v-$)-^(^-r})ii, = (2),

l+2/l+(//->?)z/2.= (3).

Proof.— (2) and (3) are obtained from (1) by differentiating for x, con-
sidering ^, T) constants.

The following are different values of p :

5137 ^ = (1+^^ ^Ft^^: ^ ^.

5139

5141 = J- ^ :!± ^_i^

5144 ^ (>''+/1)^ _ (^+t<D'^

5146 = .sv = y>+/),^ = >•>',,.

PuooFS.—For (5137), eliminate x— l and y~n between equations d),
(2), and (3).

1 W'
(5138) is obtained from the i)rcccding value by substituting for y^. and
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y.,^ the values (1708, '9). The equation of the curve is here supposed to be

of the form (x, y) = 0.

For (5139) ; change the variable to t. For (5140) ;
make t = s.

For (5141-3) ; let PQ=QE = ds (Fig. 92) be equal consecutive elements

of the curve. Draw the normals at P, Q, E, and the tangents at P and Q to

meet the normals at Q and E in T and S. Then, if FN be drawn parallel

and equal to QS, the point N will ultimately fall on the normal QO. Now
the difference of the projections of PT and PN upon OX is equal to the pro-

jection of TN. Projection of PT = dsx, ; that of PN or QS = ds (x,+ x.,,ds)

(1500); therefore the difference = dsx.,,ds = TN cos a. But TN : ds =
ds : p, therefore px.,g = cos a. Similarly pi/2s = sin a.

For (5144) ; change (5137) to r and 6, by (1768, '9).

(5145) is obtained from p = rr„ = - ''-^ and (5129) ;
or change (5144)

from r to u by r = n'^.

(5146.) In Fig. (93), PQ = p, PP' = ds, and PQP' = dx^.

(5147.) In Fig. (93), let PQ, P'Q be consecutive normals
;
PT, P'T'

consecutive tangents; OT, OT', ON, ON' perpendiculars from the origin

upon the tangents and normals. Then, putting p for OT = PN, q for

PT= ON, and d^ for Z TPT' = PQP', &c., we have

q = ^, QN=% and p = PQ = p + QN = p+p,.,.
dtf/ dip

(5148.) dp = r cos (p d\p and cos (p = r, .
Eliminate cos (p.

5149 Def.—The rvolnte of a curve is the locus of its centre

of curvature. Eegarding the evolute as the principal curve,

the original curve is called its involute.

5150 The normal of any curve is a tangent to its evolute.

Proof.—By differentiating equation (5135) on the hypothesis that ^ and

V are variables dependent upon x, and combining the result with (3), we

obtain i/^j/j = — 1.
^ , l r>

In (Fig. 94), the normal at P of the curve AP touches the evolute at Q.

Otherwise the evolute is the envelope of the normals of the given curve.

If xij and ^n are the points P, Q, we have the relations

5151 i=f.f+!^.,= .p, jS, =^ =
f-

Proof.—Take Qn = dk and ns = dr,, then Qs = dp. The projection of

Qn, ns gives dp in (5151) and proportion gives (5152).

5153 The evolute and involute are connected by the for-

mulae below, in which r\ /, s in the evolute correspond to

r, 2^i s in the involute.

5154 /)±*' = constant; p'' = r'-p'; r' = r'+p'-2pp.



700 THEORY OF PLANE CURVES.

Proof.—From Fig. (94), Jp = ±(?s', &c., s being tlie arc RQ measured

from a fixed point R. Hence, if a string is wrapped upon a given curve, the

free end describes an involute of the curve. (3155, 'G) from Fig. (93).

5157 To obtain tlie equation of the evolute; eliminate x and

ij from equations (5135, '6) and the equation of tlie curve.

5158 To obtain the polar equation of the evolute ; eliminate

r andp from (5156) and (5157) and the given equation of the

curve r = ^(lO-

5159 Ex.—To find the evolute of the catenary y = -^ (e' + c' '). Here

2/^=1 (e^-e''^) = ^^y'-"'')
; y.,^ = 1 {e^- + e"^) = ^ ; so that equations

c 2c c

(5135, '0) become

(a;-0 + (y-v)
^^-^'~''^ =0 and 1 +t^ + (2/-v) J = 0.

From these we find y=^, x = ^— j- •/{yf—4c-). Substituting in the

equation of the curve, we obtain the required equation in i, and rj.

INVEESE PROBLEM AND INTRINSIC EQUATION.

An inverse question occurs when the arc is a given func-

tion of the abscissa, say s = (p (x) ; the equation of the curve

in rectangular coordinates will then be

5160 «/ = J v/(4- 1) d.V. [From (5113).

5161 The intrinsic equation of a curve is an equation inde-

pendent of coordinate axes. Let y = <l>
{x) be the ordinary

equation, taking for origin a point on the curve (Fig. 95),

and the tangent at for x axis. Let s = arc OP, and xp the

inclination of the tangent at P ; then the intrinsic equation of

the curve is

5162 s = J sec t/».r^ (Ixfj ;

where x^, is found from tan x^ = <l>'{x).
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To obtain the Cartesian equation from the intrinsic equa-

tion :

5163 Let s = F(-^) be the intrinsic equation. Eliminate t//

between this and the equations

,v =
f
cos xff (Is, y = J sin xft ds.

5165 The intrinsic equation of the evolute obtained from
the intrinsic equation of the curve, s = F{\p), is

4^+*'=/, a constant. (5154)

5166 The intrinsic equation of the involute obtained from
s' = F(\p), the equation of the curve, is

For cl\l, is the same for both curves (Fig. 94), ^ only differing

by ^TT, and s =
^
pd^.

ASYMPTOTES.

5167 Def.—An asymptote of a curve is a straight line or

curve which the former continually approaches but never

reaches. {Vide 1185).

GENERAL RULES FOR RECTILINEAR ASYMPTOTES.

5168 Rule I.

—

Ascertain if y^ has a limiting value when

X = 00 . If it has, find the intercept on the x or y axis, that

is, X— yxy or y— xy^ (5104).

There toill be a.n asijmptote parallel to the y axis ivhen y^ is

infinite, and the x intercept finite, or one parallel to the x axis

ivhen y^ is zero and the y intercept finite.

5169 Rule II.—When the equation of the curve consists of

homogeneous functions of x and y, of the m*^, n^^, Si'c. degrees,

so that it may be written

Hf)Wi)+*'=- = » (^)
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put ^ix 4-/3/0?' y and expand <pUi+ - ), &c., hij (1500). Divide

(1) hy X™, and make x infinite; then ({> (^) = determines fi.

Next, put this value of /n in (1), divide hy x™~\ and malce x

infinite; thus |3f/)' (/i) +
-j^ (^) =: determines /3. Should the

last equation he indeterminate, then

gives two values for /3, and so on.

When n is <in— 1, /3 = 0, and luhen n is >m— 1, /3= oo .

5170 Rule III.

—

If </> (x, y) = he a rational integral equa-

tion, to discover asymptotes parallel to the axes, equate to zero

the coefficients of the highest powers of x and j, if those co-

efficients contain y or x respectively.

To find other asymptotes—Suhstitute |itx-|-|3 for y in the

original equation, and arrange according to powers of :k.. To

find fx, equate to zero the coefficient of the highest power ofx.

To find (3, equate to zero the coefficient of the next power of x,

or, if that equation be indeterminate, take the next coefficient in

order, and so on.

5171 Rule IV.

—

If the polar equation of the curve he v= i{0)

and if r^ CO makes the polar suhtangent v^Q^^q, a finite quan-

tity, there is an asymptote whose equation is r cos {0— a) = c ;

where a + ^tt = f~^ (00 ) = the value of B of the curve when r is

infinite.

5172 Asymptotic curves.—In these tlie difference of corres-

ponding ordinates continually diminishes as x increases.

As an example, the curves y = (^ {'•i') and y = <}> (^') H— are asymptotic.

5173 Ex. 1.—To find the asymptotes of the curve

(a + S.c)(x^ + f) = 4.c'^ (1).

The coefficient of 7/^, a + Sx = 0, gives an asymptote parallel to the 1/ axis.

Putting y = fix+ ft, (1) becomes

(a + 3x)(x- + i.'x- + 2fiilt + rr)-4x' = (2).

The coefficient of x\ 3 (1 +a^-)-4 = gives /i = ± -^. Substituting this
V "J

value of /J in (2), the coefficient of »' becomes - - ± —~ ; and this, equated

to zero, gives ft
= ^ . Hence the equations of two more asymptotes

are a^z/S = ± (3.c-2a).
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Ex. 2.—To find an asymptote of the curve r cos 6 =: a cos 2d. Here

^.2
de _ a^ cos 2d

dr a cos 20 sin — 2a sin 20 cos

When ?• = CO , d = lir, and rfl,. = —a. Hence the equation of the asymp-
tote is r cos = —a.

SINGULARITIES OF CURVES.

5174 Concavity and Convexity.—A curve is reckoned convex
or concave towards the axis of x according as yv/gx is positive

or negative.

POINTS OF INFLEXION.

5175 ^4, 2)oint of Injiexion (Fig. 96) exists where the tangent

has a Umiting position, and therefore where v/.^. takes a maxi-

mum or minimum vahie.

5176 Hence 7/2,, must vanish and change sign, as in (1832).

5177 Or, more generally, an even number of consecutive

derivatives of 7/ = ^ (,t) must vanish, and the curve will pass

from positive to negative, or from negative to positive, with

respect to the axis of re, according as the next derivative is

negative or positive. [See (1833).

MULTIPLE POINTS.

5178 ^ multiple jpoint, known also as a node or crunode,

exists when y^. has more than one value, as at B (Fig. 98), If

(}> {x, y) = be the curve, f ,. and (j>y must both vanish, by
(1713). Then, by (1704), two values of v/,. determining a

double point
J
will be given by the quadratic

<^2.^!.+ 2(^..^/..+ <^2,. = (1).

5179 If i>ij;, ^2</3 'Pxy also vanish; then, by (1705), three

values of y,., determining a triple jw Int, will be obtained from
the cubic

<l>Syyl+ ^2y.ryl-^H,^.I/.r-^<l>S. = (2).

5180 Generally, when all the derivatives of (p of an order
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less than n vanish, the equation for determining /^. (put = z)

may be written

(=;rf,+rf.,)«.^G,.,y) = 0.

Proof,—Let ah be the multiple point. Then, by (1512),

<p (a + /^, h + h) = -, Qid^+ hdyYcp {x, y)n \

+ terms of higher order which vanish when h and h ai'e small.

h (p„ dx
And -^ = — ®-^ = -^ in the limit,

CUSPS.

5181 When two branches of a curve have a common tan-

gent at a point, but do not pass through the point, they form
a cusj)i termed also a spinode or stationary jJoint.

5182 In the first sjiecies, or ceratoid cusp (Fig. 100), the

two values of ^j.^x have opposite signs.

5183 In the second species, or raniphoid cusp (Fig. 101),
they have the same sign.

CONJUGATE POINTS.

5184 A conjugate point, or acnode, is an isolated point whose
coordinates satisfy the equation of the curve. A necessary
condition for the existence of a conjugate point is that ^^. and
(j)y must both vanish.

Pkoof.—For the tangent at such a point may have any direction, there-

fore — is indeterminate (1713).

5185 There are four species of the trij^le point according as

it is formed by the union of

(i.) three crunodes, as in (Fig. 102)

;

(ii.) two crunodes and a cusp, as in (Fig. 103)

;

(iii.) a crunode and two cusps, as in (Fig. 104)

;

(iv.) when only one real tangent exists at the point.

5186 Ex.— The equation if = {x-a){,v-h){x-c)^ when
a -Ch <ic represents a curve, such as that drawn in (Fig. 07).

* Salmon's JUigher I'lauc Curves, Arts. 39, 40.
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When b = c the curve takes the form in (Fig. 98). But
if, instead, h = a, the oval shrinks into a point A (Fig. 99).

li a = b = c the point A becomes a cusp, as in (Fig. 100).

A geometrical method of investigating; singular points.

5187 Describe an elementary circle of radius r round the

point X, y on the curve (p {x, y) = 0, intersecting the curve in

the point x-\-h, y-\-h. Let h = r cos B, k = r sin 0. Expand

^ {x-\-h, y-\-h) = by (1512), and put «/>,, = ii siny, ^y =
K cos y. We thus obtain

K sin (y+ 0)-\-^ (<^2,, cos^ d+ 2./,.,^ sin cos + (p,^ sin- e)-\-— =0

Bj being put for the rest of the expansion (.')'

According as the quadratic in tan 0,

(^,.r+ 2(/),^^ tan +
(^2i/

tan- = 0,

has real, equal, or imaginary roots ; i.e., according as

i>ly
— hxi^iy is positive, zero, or negative, xy will be a crunode,

a cusp, or an acnode. By examining the sign of B, the

species of cusp and character of the curvature may be deter-

mined.
Figures (105) and (106), according as B and ^2^ liave

opposite or like signs, show the nature of a crunode ; and

figures (107) and (108) show a cusp.

Proof.—At an ordinary point the circle cuts the curve at the two points

given by 6 = —y, 9 = 7r — y. But, if
f^^

and ^^ both vanish, there is a

singular point. Writing A, B, G for <po^, f-,^, (poy, equation (1) now becomes

C'cos^^[tan-^0+^tane+||+^ = O (2).

(i.) If B^>AGy, this may be put in the form

G cos^ d (tan d - tan a) (tan 6- tan /3) + ^ = 0,

and the points of intersection with the circle are given by 6 = a, ft, tt + o,

and7r + /3. (Figs. 105 and 106.)

(ii.) When B^ = AG, we may write equation (1)
27?

(7cos'0(tan0-tana)-+^ = 0.

If B and G have opposite signs, there is a cusp with a for the inclination of

the tangent (Fig. 107). So also, if B and G have the .same sign, the inclina-

tion and direction being v+ a (Fig. 108). The cusps exist in this ca.se

because B changes its sign when tt is added to 6, B being a homogeneous

function of the third degree in sin 6 and cos 0.

(iii.) If B^< AG, there are no real points of intersection, and therefore xij

is an acnode.

4 X
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CONTACT OF CURVES.

5188 A contact of the n^^^ order exists between two curves

when n successive derivatives, y^., ... y^^ or Tg, ... r^g, corres-

pond. The curves cross at the point if n be even. No curve

can pass between them which has a contact of a lower order

with either.

Ex.—The curve y = <p («) has a contact of the n^^ order, at the point

where x = a, with the curve y = (f>
(a) + (x— a) ^'(a) -f ... + ^—~- ch" (a).

5189 Cor.—If the curve y =f(x) has n parameters, they
may be determined so that the curve shall have a contact of

the {n— iy^' order with y = (j> (x).

A contact of the first order between two curves implies a

common tangent, and a contact of the second order a common
radius of curvature.

Conic of closest contact with a given curve.

5190 Lemma.—In a central conic (Fig. of 1195),

tan CPG = 4 -^•
S ds

Proof.—Putting PCT=d, CrT=(p, GP = r, CD = R, wc have, by

(1211), r'' + R:' = a- + b\ .•.rr, = -RR, (i.).

Also ii-;- sin </) = a&, by (1194), .-. i2r0, = a&, by (-5110) (ii.).

Now tan CPG = -cot^) = - ^ (5112) = — *^ = ^, by (i.) and (ii.).

r rdg ab .

But p = ^ (4538), .-. -V ^ =^ = tan CPG.
ah S ds ab

5191 To find the conic having a contact of the fourth order

with a given curve at a given point P.
If be the conic' s centre, the radius r = OP, and the

angle v between r and the normal arc found from the equations

, 1 (/p vosp 1 (h
tail v= -f, =

o as r p as

and these determine the conic.
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Proof.—In Fig. 93, let be the centre of the conic and P the point of

contact. The five disposable constants of the general equation of a conic

will be determined by the following five data : two coordinates of 0, a com-
mon point P, a common tangent at P, and the same radius of curvature PQ.

Since V = POT, cW = POP', dx^ = TOT', and ds = PP', we have, in

passing from P to P', di' = P'OT—POT = d^P-dO. Now rdd = ds cos v,

therefore = -~- = — —
; and tan v has been found in the

lemma.
' ^'^ ^°'

^ P '^'

The squares of the semi-axes of the same conic are the

roots of the equation

{Q+b'Sacy.v'-Oa' {lS+2b'-3ac){9-\-b'-3ac) .v+7'29a'

= 0,

a, h, c being written for p, pg, p^g. The eccentricity is found

from
9(e^-2y _ (18+26^-3ae)^

1-e' ~ 9-\-b'-3ac '

Also the equation of the conic referred to the tangent and
normal at the point is

Aa'+2Bay-{-Cif = 2i/,

where A = ^, B = -^, c = ^ + ^-Pf.
p op p vp 6

Ed. Times, Math. Reprint, Vol. xxr., p. 87, where the demonstrations by
Prof. Wolstenholme will be found.

ENVELOPES.

5192 An envelope of a curve is the locus of the ultimate

intersections of the different curves of the same species, got

by varying continuously a parameter of the curve ; and the

envelope touches all the intersecting curves so obtained.

5193 Rule.—If F (x, y, a) = be a curve having the para-

meter a, the envelope is the curve obtained by eliminating a

betiveen the equations

F (a?, ?/, a) = and d^F (.i', y, a) = 0.
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Proof.—Let a change to a+ h. The coordinates of the point of intersec-

tion of F (x, y, a) = and F (:c, y, a + h) =0 satisfy the equation

F(x,y, a + h)-F(x, y, a) _
^^ ^^^^

(IF (x, y, a) _
^^ (1404)

h
' '

da

5194 If F{Xi y, a,h,c, ...) = be the equation of a curve

liavhig n parameters a, b, c, ... connected by n— 1 equations,

then, by varying the parameters, a series of intersecting

curves may be obtained. The envelope of these curves will

be found by differentiating all the equations with respect to

a, h, c, &c., and eliminating da, dh, ... and a^b, ...

Ol95 Ex.—In (2) of (5135), we have the equation of the normal of a

curve at a given point xy ; ^, >/ being the variable coordinates, and x, y the

parameters connected by the equation of the curve F (x, y) = 0. By differ-

entiating for X and y, (5136) is found, and the elimination as directed in

(5157) produces the equation of the evolute which, by (5194), is the envelope

of the curve.

INTEGRALS OF OUHVES AND AREAS.

FORMULA FOR THE LENGTH OF AN ARC S.

5196 s=^ds= [v/(l+Z/i-) d^^' =
J
\/l+iI% (5113)

5200 =
j v/K+2/?) dt = Jy(r+r^) cW (5116)

5201 = fv/(>'^^;+l) dr = r
J'!'' .,. . (5111)

5203 Legendre's formula, 5 = j>^H- \ pd"*^.

/»2Tr

5204 The whole contour of a closed curve = \ pdxf/.
Jo

Pkoof.—In figure (93), let P, P' be an element Js of the curve ; PT^ P'T'
tangents, and 07', 07'' the perpendiculars upon them from the origin ; OT=p
PT = q. Then ch + P'T'-PT = TL, i.e., ds + dg = pd^ ; therefore s + q
= lpd\p. But qdij/ = —dp; therefore s = p^+ jjfdi}/. Also, in integrating

all round the curve, P'T'—PT taken for every point vanishes in the summa-

tion, or dq = 0. Therefore I (?*• = I pd\p.
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FORMULA FOR PLANE AREAS.

5205 If y = 1^ (,^) t)e tlie equation of a curve, the area

bounded by the curve, two ordinates (x= a, x= h), and the x

axis, is, as in (1902).

A = rV {^^) dx-

5206 With polar coordinates the area included between two
radii (0= a, B = ^) and the curve is

Proof.—From figure (91) and the elemental area OPP'.

5209 The area bounded by two circles of radii «, h, and the

two curves = <^ (r), B = ^ (r) (Fig. 109).

rdrdd = \ r {^j^ (r) - <!> (r)} dr.
4> (r) J a

Here r{Tp{T) — ^{r)}dr is the elemental area between the

dotted circumferences.

5211 The area bounded by two radii of curvature, the curve,

and its evolute (Fig. 110).

^ = \\p^dy\i = l\pds.

Proof.—From figure (93) and the elemental area QPP'

.

INVERSE CURVES.

The following results may be added to those given in Arts. (1000-15).

5212 Let r, r be corresponding radii of a curve and its

inverse, so that rr' = F ; s, s' corresponding arcs, and ^, (p'

the angles between the radius and tangents, then

-—7 = —r and
<f)
=

<f>'.

ds r

Proof.—Let PQ be the element of ai-c ds, P'Q' the element els', and
the origin.

Then OP. OP' = OQ.OQ', therefore OPQ, OQ'P' are similar triangles;

therefore PQ : P'Q' :: OP : OQ' = r : r' ; also z OPQ = OQ'P'.
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5214 K p, p be the radii of curvature,
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PEDAL CURVES.

5220 The locus of tlie foot of the perpendicular from the

origin upon the tangent is called ^ jpeclal curve. The pedal of

the pedal curve is called the second pedal, and so on. Re-

versing the order, the envelope of the right lines drawn from
each point of a curve at right angles to the radius vector is

called t\ie first negative jpedal, and so on.

5221 The pedal and the reciprocal polar are inverse curves
(1000, 4844.)

AREA OF A PEDAL CURVE.

5222 Let C, P, Q be the respective areas of a closed curve,

the pedal of the curve, and the pedal of the evolute ; then

P-Q=C, P+Q = i jVv/t/f, 2P = C+iJ r'dxff.

Proof.—With figure (93) and the notation of (5204), we have, by (5206),

P = i
f
p-dij;, Q = il q'dxP ;

therefore P+ Q = U Ci'' + 5') ^'Z' = 5 I
'•'#•

Also, taking two consecutive positions of the triangle OPT = A, we get

OPT- OP'T' =hA = SG+ SQ-^P. Therefore, integrating all round,

[^clA = = G+Q-P.

5225 Steiner^s Theorem.—If P be the area of the pedal of a

closed curve when the pole is the origin, and P' the area of

the pedal when the pole is the point xy,

P'-P = ^{j,^J^^f)^ax-hy,

where a=\ ]3 cos Odd and h=\ 2^&m9d6;
Jo Jo

9 being the inclination of j9.

Proof.—(Fig. 111.) Let LM be a tangent, »S' the point xy, perpendiculars

OM=p and SB= 2/. Draw SN perpendicular to OM, and let ON = p^
-^

then p' = i [/-# = ^{(p-piy-# =
i J /f?^+ f

J

p;^^/'-
J
m^^^

= P+ ^ OS^- \p (x cos + 7/ sin 0) clB, by (4094), and dd = #.

And g Pld^ = twice the area of the circle whose diameter is OS.
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5226 Cor. 1.—If P' be given, the locus of .ri/ is a circle

whose equation is (5225), and the centre of this circle is the

same for all values of P', the coordinates of the centre being
a J b— and —

.

TT TT

5227 Corv. 2.—Let Q be the fixed centre referred to, and
let Q8 = c. Let P" be the area of the pedal whose origin is

Q; then P'-P" = ^c\

For a and h must vanish in (5225) when the origin is at the

centre Qj and ,7]^+ ?/^ then = c^

5228 CfoE. 3.—Hence P" is the minimum value of P'.*

ROULETTES.

5229 Def.—A Roulette is the locus of a point rigidly con-
nected with a curve which rolls upon a fixed right line or

curve.

AREA OF A ROULETTE.

5230 When a closed curve rolls upon a right line, the area

generated in one revolution by the normal to the roulette at

the generating point is twice the area of the pedal of the

rolling curve with respect to the generating point.

Proof.—(Fig- 112.) Let P be the point of contact of the rolling curve
and fixed straight line, Q the point which generates the roulette. Let B bo

a consecutive point, and when B comes into contact with the straight line,

let P'Q' be the position of itQ. Then PQ is a normal to the roulette at Q,
and P is the instantaneous centre of rotation. Draw (^N, QS perpendiculars

on the tangents at P and R. The elemental area PQQ'P', included between
the two normals QP, Q'P', is ultimately equal to PQB+QRQ'. But PQB
= dC, an element of the area of the curve swept over by the radius vector

QP or r round the pole Q ; and Q22Q' = ^r^d^^ ; therefore, whole area of

roulette = C+\ \''r'd^ = 2P, by (5224).

5231 Hence, by (5228), tliere is one point in any closed

curve for which the area of the corresponding roulette is a

* For a discuseion of the pedal curves of an ellipse by the Editor of the JSduc. Times and
others, see Ecpritit, Vol. i., p. 23 ; Vol. xvi., p. 77 ; Vol. xvii., p. 92 ; and Vol. xx., p. 106.
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minimum. Also the area of the roulette described by any
other point, distant c from the origin of the minimum roulette,

exceeds the area of the latter by wc^.

5232 When the line rolled upon is a curve, the whole area

generated in one revolution of the rolling curve becomes

Jo \ p '

where p, p are the radii of curvature of the rolling and fixed

curves, and G is the area of the former.

Proof.—(Fig. 113.) Instead of the angle d\j/, we now have^ie sum of

the angles of contingence at P of the rolling curve and fixed curve, viz.,

since pdvj/ =: ds = p'dijj', by (5146),

LENGTH OF THE ARC OF A ROULETTE.

5233 If (^ and I be corresponding arcs of the roulette and
the pedal whose origin is the generating point ; then, when
the fixed line is straight, a = I; and when it is a curve,

5234 ^da = ^{l+Pr)dC

Proof.— (Fig. 112.) Let B be the point which has just left the straight

line, Q the generating point, N, 8 consecutive points on the pedal curve.

Draw the circle circumscribing BQN8, of which BQ -— r is a diameter, and
let the diameter which bisects NS meet the circle in K. Then, when the

points P, B,, P' coincide, KN and BQ are diameters, and SKN = SPN = f/i/'

= QBQ' ; tlierefore SN or d^ = rdij/ = QQ' or da. When the fixed line is a

drr = rdif; (l+ ^), as in (5232).

RADIUS OF CURVATURE OF A ROULETTE.

5235 Let a (Fig. 113) be the angle between the generating

line r and the normal at the point of contact; p, p the radii

of curvature of the fixed and rolling curves, and E the radius

of curvature of the roulette ; then.

^^ cosa—

r

4 Y
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Proof.— Let consecutive normals of the roulette meet in ; then

OQ = li, PQ = r, MPT=u.
11— r PM ds cos a , , /7, , 7/'\ /ds,ds\
B QQ d<T

VTT/
\ p p /

from which B is obtained. If the curvature of the roulette is convex to-

wards P (Fig. 114), we must write B + r instead of B— r above.

5236 The curvature is convex towards P when B is posi-

tive, that isj wlien the carried point Q falls within the circle

whose diameter measured on the normal of the rolling curve

= ^^
,

. When Q falls without this circle, the curvature is

concave ; and when Q falls upon the circumference, the point

is one of inflexion. The circle has for this reason been called

the circle of inflexions.

5237 In figure (163) let PA= p, PB= p, PQ= r, OQ= R,

as in (5235). Draw PGD, the circle of inflexions, with its

diameter PG = -^^—„ and therefore PD = ^^
,
cos a. From

P-^P P-^P
these values and proportion it follows that BG : BP : BA and
QD : QP : QO. Also, if the circle on diameter PE = PG be
drawn, AE : AP : AB and OF : OP : OQ.

5238 A simple construction for the centre of curvature of

the roulette is the following. (Fig. 164, with letters as in

5237.) At P draw a perpendicular to PQ to meet QB in N.
Join NA, which will meet Q,P produced in 0, the required

point.

Pkoof.—From equation (5235), assuming to be the centre of curvature,

we can deduce the relation {BA : AP){PO : OQ)(QN : NB) = 1, therefore,

by (9G8), A, 0, N are collinear points.

THE ENVELOPE OF A CARRIED CURVE.

5239 When a curve is rigidly connected with a rolling

curve, it will have an envelope. The path of its point of

contact with the envelope is a tangent to both curves, and
therefore the normal, common to the carried curve and its

envelope, passes through the point of contact P of the rolling

and fixed curve.

5240 The centre of curvature of the envelope is obtained as

follows.
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In Fig. (163), from P draw a normal to the carried curve meeting it in

Q, and let 8 on PQ he the centre of curvature of the envelope for the point

Q ; and that of the cai'ried curve. Then PS is found from

P 9

DS a
f

\-
-—-

\PS PO J

5241 When the envelope is a right hne, the centre of curva-

ture lies on the circle of inflexions (5236). When the carried

curve is a right line, the same point lies on the circle PEF
(Fig. 163), and if the right line always passes through a fixed

point, that point lies on the circle PEF.

5242 If 2^ ^® ^^® perpendicular from a fixed point upon a

carried right line whose inclination to a fixed line is ^ ; the

radius of curvature of the envelope is p = jj+j;,^, by (5147).

INSTANTANEOUS CENTRE.

5243 When a plane figure moves in any manner in its own
plane, the instantaneous centre of rotation is the intersection

of the perpendiculars at two points to the directions in which
the points are moving; and a line from the instantaneous

centre to any point of the figure is the normal to the path of

that point.

Ex.—Let a triangle ABG slide with its vertices A, B always upon
the right lines OA, OB. The perpendiculars at J., B to OJ., OB meet in Q,

the instantaneous centre, and QC is the normal at G to the locus of G.

Since AB and the angle AOB are of constant magnitude, OQ, the

diameter of the circle circumscribing OAQB, is of constant magnitude.

Hence the locus of the instantaneous centre (^ is a circle of centre and

radius OQ.

5244 Holditch's Theorem.—If a chord of a given length LM
moves completely round a closed curve, the area enclosed

between the curve and the locus of a point P on the chord is

equal to ircc where c = LK, d = MK.

5245 If the ends of LM move on different closed curves

whose areas are X, /u, while the area described by K is /c, then

K = '-^T TTCC .

c-\-c

Proof.—(5244). Let the innermost oval in figure (134) be the envelope

of LM, € its area, and E the point of contact. Let EL = I, EM^ m,
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EK=.k, l+m = a = c + c' ; d, the inclination of LM. Then, integrating

in every case from to 2ir,

i^mHd = fJi-€^ Also J J(Z + »0 dd = 7ra\

.-. ahdd = 7rft- + \— /z (i.)- Similarly c^ldd= ttc' + X — k (ii.),

the last being obtained from ^ ^ (P—Jc-) dd = \— i^. k is then found by

eliminating the integral between (i.) and (ii.).

(5245.) If the curves X, fi coincide, \ = // and therefore \—k = ttcc'.

TRAJECTORIES.

5246 Def.—A trajectory is a curve which cuts according to

a given law a system of curves obtained by varying a single

parameter.

The differential equation of the trajectory which cuts at a

constant angle |3 the system of curves represented by

^ {x, y, c) = is obtained by ehminating c between the

equations

c/, Cv, y, c) = and tau jB = ^f^^\

the derivatives of <^ being partial, and y^ referring to the

trajectory.*

Proof.— At a point of intersection we have for the given curve

m = —0^-1-^^^, and for the trajectory m'= yx- Employ (4070).

If the trajectory is to be orthogonal, tan /3 = oo , and the

second equation becomes

Ex.—To find the curve which cuts at a constant angle all right linos

passing through the origin.

Let y = ex represent these lines by varying c ; then, writing n for tan ft,

the two equations become y— cx = and n (1+cy:,) = y^— c. Eliminating

c, ^Vx—y = '>i(yyx+ x)- Divide by x' + y^' and integrate; thus

tan-'l=7ilogy(.VHr) + 0,
X

which is equivalent to r = ae~>, the equation of the logarithmic spiral (5289).

* For a very full investigation of this problem, see Eulor, Novi Com. Fetrop., Vol. xiv.,

p. 46, XVII., p. '10f> ; and Nova Acta Petrop., Vol. i., p. 3.
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CURVES OP PURSUIT.

5247 Def.—A curve ofpursuit is the locus of a point wliich

moves with uniform velocity towards another point while the

latter describes a known curve also with uniform velocity.

Let f(x, 7/) = be the known curve, xy the moving point

upon it, ^rf the pursuing point, and n : 1 the ratio of their

velocities. The differential equation of the path of ^rj is

obtained by eHminating x and y between the equations

f{x,lj) = (i.), ij-^y} = 7}^{.v-i) (ii.),

^/{^l-\-yl) = n^/{l+v!) C^^-)-

Proof.— (ii.) expresses the fact that xy is always in the tangent of the

path of ^r].

(iii.) follows from 1 : ?i = •/(d^'^ + cW) : ^/{iW-\-cly') ; the elements of

arc described being proportional to the velocities.

Ex.—The simplest case, being the problem usually presented, is that in

which the point xy moves in a right line. Let x = a be this line, and let

the point ^i/ start from the origin when the point xy is on the x axis. The
equations (i.), (ii.), (iii.) now become, since x^ = 0,

x = a, y = rj + r}^(a—^), ?/, =«y(l + ?jp.

From the second y^= r/o^^ (a— ^), therefore (a—^) r}^ = n \/(l + 7;p.

Putting ,.=^, _^&__ = _ii^^-.

Integrating by (1928), we find

log {p-\- \/l+p^) = — ?ilog (a— |) + n log a,

so that p and i, vanish together at the origin
;

therefore \/\ +p'''-{-p = (——
)

, and therefore ^/l+p^^—p = f-—^j ;

the equation of the required locus, the constant being taken so that t = >/ =
together. If, however, w=l, the integral is

4<a
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CAUSTICS.

5248 Dep-—If right lines radiating from a point be reflected

from a given plane curve, the envelope of the reflected rays is

called the caustic by reflexion of the curve.

Let (p {x, y) = 0, xp(x, y) = be the equations of the

tangent and normal of the curve, and let 1th be the radiant

point; then the equation of the reflected ray will be

(^(/^,A•)VG^^;/)4-V'(/^,A:)(^G^^^/) = 0,

and the envelope obtained by varying the coordinates of the

point of incidence, as explained in (5194), will be the caustic

of the curve.

Ex.—To find the caustic by reflexion of the circle x" + i/ = r, the radiant

l^oint being hJc.

Taking for the tangent and normal, as in (4140), a; cos a + ?/ sin a = r,

and X sill a— y cos a = 0, the reflected ray is

(h cos a + Jc sin a—r)(:e sin a— y cos a)

+ (h sin a— A: cosa)(.i; cos a + y sin a— r) = 0.

Reducing this to the form

A cos2a + I> sin 2a + (7 sin a—D cos a = 0,

and differentiating for a,

-2^ sin 2a + 25 cos 2a+ 6' cos ct +D sin a = 0.

The result of eliminating a is

{4^(h' + k'){x'+ y')-r\x+ hy-r\y + hyy = 27 0cx-hi/y(x' + y'-h'-k'y,

the envelope and caustic required.

5249 QuetelcVs Theorem.—The caustic of a curve is the

evolute of the locus of the image of the radiant point with

respect to the tangent of the curve.

Thus, in the Fig. of (1178), if S bn the radiant point, W is the image in

the tangent at P. The locus of W is, hi this case, a circle, and the evolute

and caustic reduce to the single point S'.

Since the distance of the image from the radiant point is

twice the perpendicular on the tangent, it follows that the

locus of the image will always be got by substituting 2r for r

in the polar equation of the pedal, or ^ for r in the polar

equation of the reciprocal of the given curve with respect to

the radiant point and a circle of radius k.
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TRANSCENDENTAL AND OTHER CURVES.

THE CYCLOID.* (Fig. 115)

5250 Def.—A cycloid is the roulette generated by a circle

rolling upon a right line, the carried point being on the cir-

cumference. When the carried point is without the circum-
ference, the roulette is called ^ iwolate cycloid; and, when it is

within, a curtate cycloid.

5251 The equations of the cycloid are

,1-= a (^-f-sin ^), ?/ = a (1— cos ^),

where B is the angle rolled through, and a the radius of the

generating circle.

Proof.—(Fig. 115.) Let the circle KPT roll upon the line BE, the
point P meeting the line at D and again at E. Arc KP = KB ; therefore

arc FT = AK = OT. Also 6 = PGT, the angle rolled through from A, the

centre of the base EB. Then

x= OT+TN= ad + a sin d; y = FN = a-a cosd.

5253 If s be the arc OP and p the radius of curvature at P,

s = IPT = v/(8«//), p = 2PK.

Proof.— (i.) The element Pp = Bh = 2 (OB- Oh) ultimately; therefore,

by summation, s = 20B. Also OB = FT = ^{TK. TR) = ^/{2ay).

(ii.) Let two consecutive normals at P and p intersect in L. Then FL,
pi are parallel to BA, bA ; therefore PLp is similar to BAi. But Pp = 2Bi

;

therefore p or FL = 2BA = 2PK.

5255 CoE.—The locus of L, that is the evolute of the

cycloid, consists of two half-cycloids as shown in the diagram.

5256 The area of a cycloid is equal to three times the area
of the generating circle, and the curve length is four times
the diameter of the same circle.

Proof.— (i.) Area FpvN = FprR = BhqQ ultimately. Therefore, by
summation, DiJ.^0— cycloid = Tral But BE .AO = 2wa.2a = 47ra^; there-

fore cycloid = Stto,^.

(ii.) Total curve length = 8a, by (5253).

* The earliest notice of this curve la to bo found in a MSS. by Cardinal do Cusa, 1454
See Leibnitz, Opera, Vol. m., p. 96.
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5257 The intrinsic equation of the cycloid is

* = 4a sin t/>.

Proof : s = 2VT = 4a sin PET, and PKT = PTN = if/.*

THE COMPANION TO THE CYCLOID.

5258 This curve is the locus of the point 11 in Fig. (115).

Its equation is

^=a(l-cos^).

Pkoof.—From x = ad and y = a (1— cosS).

5259 The locus of ;S^, the intersection of the tangents at P
and B, is the involute of the circle ABO.

Proof : B8 = BP = arc OB.

PROLATE AND CURTATE CYCLOIDS. (5250)

5260 The equations in every case are

a: = a {6-\-7n siu 6), y = a (1—m cos 6).

The cycloid is prolate when m is > 1 (Fig. 116), and curtate

when m is < 1 (Fig. 117), m being the ratio of GP to the

radius a.

EPITROCHOIDS AND HYPOTROCHOIDS. (Fig. 118)

5262 These curves are the roulettes formed by a circle

rolling upon the convex or concave circumference respectively

of a fixed circle, and carrying a generating point either within

or without the rolling circle.

The equations of the epitrochoid are

5263 cr = {a-\-b) cos e-mO cos'-^ 6,

5264 // = (a-\-b) siu 6-nib siii^ 6,

* For other properties, sec Pascal, Uistoirc dc la Roulette ; Carlo Dati, History of the

Cycloid; Wallis, Traile de Cyclnidc ; Groningius, Ilistoria Cycloidis, Bibliuthcca Univ.; and
Lalouere, Gcomctria promota in sup/on dc Cycluidc liliris ; Bernoulli, Op., Vol. IV., p. 98

;

Eulor, Comm. I'et., 17G6 ; and Logondre, ]£xerc%ce du Calcul. Int., Tom. ii, p. 491.
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where a, h are the radii of the fixed and rolling circle

(Fig. 118), B is the angle OGX, Q is the generating point
initially in contact with the x axis, and m is the ratio OQ : b.

The dotted line shows the curve described. For the hypo-
trochoid change the sign of b.

Proof: x= CN+MQ; CN = (a + h) con B;

MQ = OQ cos OQM =-0Q cos (^ + 0), where (p = FOR, cand b(t> = aO.

5265 The length of the arc of an epitrochoid is

= («+^')J
l-{-m'-2mQ0s'^['(W,

which is expressed as an elliptic integral E (L; <p) by substi-

tuting a9 = 2b<p.

For the arc of a hypotrochoid, change the sign of b.

Proof : s = ^s,dd = J y(xl + yl) dd (5113). Find x, and y, from (5263-4).

EPICYCLOIDS AND HYPOCYCLOIDS. (Fig. 118)

5266 For the equations of these curves make 111 = 1, in

(5263, '4). P is then the generating point, and the curve is

shown by a solid line in Figure (118).*

5267 If 4" be the inclination of the tangent at a point P on
any of these curves,

/J
a-\-b acos u— 7)1 cos —-!— a

tau xjj = —-- = taii-^^^— 0, if m = 1.
• n • «+ «/) 'lbsm u—7n siu —~ u

5268 Hence, in the epicycloid, xjf = ^-^— 0,
Jib

and the equation of the tangent is

X sm ' 6—1/ COS
;

6= {a-\-2b) sm— t'.

5269 The equation of the normal will be

x cos —1^— G-\-y sm—In— u = a cos —- V.
2b ^ 2b 2b

* Prof. Wolstenholme has investigated these curves considered as the envelopes of u

chord whose extremities move on a fixed circle with uniform velocities in the ratio 111 : n or

m : {-n).—Proc. Lond. Math. 80c., Vol. iv., p. 321.

4 z
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5270 The length of the arc of an epicycloid or hypocycloid

included between two successive cusps is

— (u ih f>), ^nd the included area is — (3a± 26)

.

a ^ a ^

Proof.—Putting m = 1 into (5265) and aO = h(p, the length becomes

— (a ±6) sm-L-d(b = —(a±b).
a Jo 2 a

Otlierwise by (5234) ; the pedal being the cardioid whose perimeter = 8a

(5333).

(ii.) The area, by (5232), is 7r6- + i f
"^Z^' sin^l" (l+ ^^) # 5

since, in

Jo 2 \ ci

'

Fig. (118), dif/ of (5232) = dPOB = d<p and r = PB = 2h sin|-.

5271 The evolute of an epicycloid is a similar epicycloid.

Proof.—The equation of the tangent referred to an x axis drawn through

the summit of the curve will be (by turning axes through an angle hir — a),

X cos
'

d-\-y sin ^ 0= (a+ 2&) cos —0.

Comparing this with (5270), which is the equation of the tangent of the

evolute, we see that the epicycloid and its evolute are similar curves having

their parameters in the ratio a + 'lh : a; and that the radius drawn through

a cusp of either of the curves passes through a summit of the other.

5272 When h = —\a, the hypocycloid becomes a straight

line, namely, a diameter of the fixed circle.

THE CATENARY. (Fig. 119)

5273 Gharacteristic.—The perpendicular TP from the foot

of the ordinate upon the tangent is of a constant length c, and
therefore equal to OA, the perpendicular from the origin on

the tangent at the vertex, r is the parameter of the curve.

The equation is

5274 y = ^{e^+ e--c).

id Q

PuoOF: tanPCT =
f^
= —-f-— , .-. x = c ',

log (y + ^/,/ -cr) -log c}

(1928), since x = when ij = c. Therefore

e?=l (y+y(y/2_c^)} therefore e'^^ ~ {y- ^^Of- c')].
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5275 If s = arc AG, s = ^ {e^ -e"^) = CP.

Peoof: s = ^^(l + 7jl)dx (5197)

= \ij{l+-^)dx = ^'jdx = ^(e^-e-^)=y(f-c') = CP.

5276 The area OAGT = cs. (5205)

5277 The radius of curvature at G = — , and is therefore
c

equal to the tangent intercepted by the axis of ic.

Proof: 0051^ = —, .'. —s'm\l/ilyg = -Vg, .'. p = s^ = — (5146).
y r c

5278 The catenary derives its name from a chain, which,

when suspended from its extremities, takes the form of this

curve.

For the equation of the evolute of the catenary, see (5159).

THB TRACTRIX. (Fig. 119)

5279 Gharacteristlc.—The length of the tangent intercepted

by the x axis is constant. This curve is the involute of the

catenary, being the locus of P in Figure (119).

The equation of the tractrix is

5280 .r = c log {c-\-s/{c'-u')} -c \ogi/-^{c'-i/).

Proof.—Let the tangent FT = c, then the differential equation of the

curve is therefore yx^ = —\/G-— 'if. Substitute z — s/c'— y\ and integrate

by (1937).

5281 The area included by the four branches = 7^c^

Proof.—Area = 4 ?/(Z.c = — 4 /c-—y"-dy = 7^c^ by (1933).

THE SYNTRACTRIX.

5282 This curve is the locus of a point Q on the tangent of

the tractrix in Fig. (119). Let Q^ be equal to a given con-

stant length d ; then the equation of the syntractrix will be

5283 07 = clog {d+ s/id'-y')} -c logy-y/{d'-f).
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THE LOGARITHMIC CURVE.* (Fig. 120)

5284 Gharacteristic.—The subtangenfc is constant.

The equation of the curve is either

5285 y = aen, or x = n\og^,

where n = NT^ the constant subtangent, and a is the intercept

on the y axis.

5287 If ^i ^6 an even integer, y may take negative values.

The most general form of the equation may perhaps be

assumed to be

y = e^l cos \-i sm— ).t
\ n n J

THE EQUIANGULAR SPIRAL. (Fig. 121)

5288 Gharacteristic.—The angle OFS between the tangent

and radius is constant. The equation of the curve is either

- r
5289 r = ae^^ or = n log—

.

5291 tan (/) = n, s = r sec
<l>,

measuring s from the pole.

Proof.—By (5112) and (5200).

5293 Hence the length of the spiral measured from the pole

to a point P (Fig. 121) is equal to PS, the intercept on the

tangent made by the polar subtangent OS.

5294 The locus of S is a similar spiral, and is also an invo-

lute of the original curve.

5295 The pedal curve, which is the locus of Y, is also a

similar equiangular spiral.

Proof.—The constancy of the angle ^ makes the figure OPTS always
similar to itself. Therefore P, Y, and S describe similar curves. Hence, if

ST is the tangent to the locus of >S, OST = <p = OPS ; therefore PST is a

right angle ; therefore the locus of *S' is an involute of the original spiral. J

* Originated l)y James Gregory, Geometricv Pars Unit^crsalis, 1668.

t Sec Elder, Anal. Injin., Vol. ii., p. '290 ; Vincent, Aim. de Gergoiuie, Vol. xv., p. 1
;

Gregory, Camh. Math. Journal, Vol. i., i)p. 231, 264 ; Salmon, Uigher Plane Curvet, p. 274.

X For additional propertica, see Bernoulli, Opera, p. 497.
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THE SPIRAL OF ARCHIMEDES.* (Pig. 122)

5296 Gharacteristic.—The distance from the pole is propor-

tional to the angle described. Hence the equation is

5297 r = aO. Also tan (^ = ^. By (5112).

5299 The intercept, FQ, on any radius between two succes-

sive convolutions of the spiral, is constant and = 2<X7r.

5300 The area swept over by any radius is one third of the

corresponding circular sector of that radius.

5301 This curve is one of the class the general equation of

which is

Q
r = a0'\ with tan (j) = —

.

THE HYPERBOLIC OR RECIPROCAL SPIRAL. (Fig. 123)

5302 The equation is r=—-.
u

5303 An asymptote is the line ?/ = «. (51^1)

5304 The spiral is also an asymptote to itself.

For when the radius is of the first order of smallness, the distance

between two successive convolutions is of the second order. Hence the

distance to the pole measu.red along the curve is infinite.

The area between the radiants i\^ r.^ is = \a {vi—r.^.

5305 The equation of the Lituus is r =
^0

THE INVOLUTE OF THE CIRCLE. (Fig. 124)

5306 The equation is

Proof: ^ = OPY = cos-^- and ^(r'-a-) —BP = nxcAD = a (0 + 0).

5307 The pedal of the involute is the spiral of Archimedes.

*^Inveiited by Conon, b.c. 250.
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Proof.—Let ?•', 0' be the coordinates of Y on the pedal curve. Then
r'=J]P = arc .42?= a(d'+U). (See 5297).

5308 The reciprocal of the involute is the hyperbolic spiral.

Proof.—(Fig. 124.) Let P' on OY correspond to P, and let r', d' be the

polar coordinates of P'. Then ?•' = OP' = -—-.

But OY=BP = ^vcAB = a (6'+ i,7r), ..r' = —^—. See (5302).

THE CISSOID.* (Fig. 125)

5309 Characteristic.— A line drawn from the end, 0, of

a fixed diameter of a circle to the end, Q, of any perpendicular

ordinate intersects the parallel ordinate equidistant from the

centre in a point, P, whose locus is the cissoid. The equation

of the curve is

fiSlO tr(2a-v)-a.^' and ^(V _ {6a-2.v) ^w
b6W y {^a .1) - a. ana -^ - ^ ^{^a-.vf

'

Proof.—By similar triangles, y : x = \/{2ax—x-) : 2a— x. Two mean
proportionals between the radius a and OS are given by the curve, for it

appears that a^ : GT '.: GT : GS, and therefore a : GT : s/CS.GT : GS.

5311 The tangent of the circle at B, the other end of the

diameter, is an asymptote to both branches of the cissoid.

5312 The area between the curve and its asymptote is equal

to three times the area of the circle.

Proof: In ydx substitute x^2ashrd.
I>

THE CASSmiAlNr OR OVAL OF CASSINL (Fig. 126)

5313 Gharactcristic.—The product PA.PB of the distances

of any point on the curve from two fixed points A, B is con-

stant ; the equation is consequently

{i/^ia+xf} {i/+{a-af} = m^

or (.r-+7/-+«-)-— 4rt-.i'- = m\

where 2a = AB. The equation in polar coordinates is

r*—2aV cos 2^+a'— m* = 0.

* Pioclos, A.D. 600.
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5314 K a be > m, there are two ovals, as sliown in the

figure. In that case, the last equation shows that if OPP'

nfeets the curve in P and P', we have OP. OP' =^{a^—m'^)

;

and therefore the curve is its own inverse with respect to a

circle of radius = \/(a*— m^).

5315 being the centre, the normal PG makes the same

angle with PB that OP does with P.l.

Proof.—From {r + dr)(r'— dr') = vi' and r?-' = vi^ ;
therefore rdr' = r'dr

or r : r' = dr : dr' = sin : sin 6', if 6, d' be the angles between the normal

and r, r . But OP divides APB in a similar way in reverse order.

5316 Let OP = B, then the normal PG, and the radius of

curvature at P, are respectively equal to

THE LEMNISCATE.t (Fig. 126)

5317 Characteristic—This curve is what a Cassinian be-

comes when m = a. The above equations then reduce to

{.v^^i/y = 2rt' i^v^-f) and r'^ = 2a^ cos 26.

5318 The lemniscate is the pedal of the rectangular hyper-

bola, the centre being the pole.

5319 The area of each loop = a\ (5206)

THE CONCHOID. J (Fig. 127)

5320 Characteristic—If a radiant from a fixed point in-

tersects a fixed right line, the directrix, in P, and a constant

length, BB = J), be measured in either direction along the

radiant, the locus of P is a conchoid. If OB = a, be the per-

pendicular from upon the directrix, the equation of the

curve with B for the origin or for the pole is

5321 ^vY = {a+i/Y (b'-if) or r = a sec e±b.

* B. WiUiamson, M.A., Educ. Times Math., Vol. xxv., p. 81.

t Bernoulli, Opera, p. 609.

X Nicomedes, about a.d. 100.
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5323 When rt < &, there is a loop; when a = h, a cusp;

and when a > ^5 there are two points of inflexion.

5324 To draw the normal at any point of the curve, erect

perpendiculars, at B to the directrix, and at to OP. They
will meet in S the instantaneous centre, and SP will be the

normal at P (5242).

5325 To trisect a given angle BON by means of this curve,

make AB = 20N, and draw the conchoid, thus determining

Q; then AON = SAOQ.

Pkoof.—Bisect QT in S ;
QT = AB = 20N, therefore /S'^= SQ=ON;

therefore NOS = N80 = 2NQ0 = 2A0Q.

5326 The total area of the conchoid betwceu two radiants each making
an angle 6 with OA is

aHan0 + 26^9 + 3ay(&-— a^) or aHsxud + 2h'd,

according as h is or is not >a.

The area above the directrix 7 _ o 7 1 o- fm ( ^4- ~\ A-l-6
between the same radiants )

~
*= \ 4 2 /

The area of the loop which exists when 5 is >a is

b a— y(h^— a^)

THE LIMAgON.* (Fig. 128)

5327 Characteristic.—As in the conchoid, if, instead of the

fixed line for directrix, we take a fixed circle upon OB as

diameter. This curve is also the. inverse of a conic with

respect to the focus. The equation, with OB for the initial

line and axis of x is

5328 r = a cos 6:^b or (ci''-^+?/^— rt.r)' = b- {d^-\-/f),

where a = OB, h = PQ.

5330 With h > (/, is a conjugate point.

With /> < «, is a node. [For m = a, see (5332).

5331 The area = it {la'-\-l)').

AVliun a = 2h, the limaf;on has been called the Irlscctrix.

* Blaise Pascal, 1643.
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THE VERSIERA.* (Fig. 130)

{Or Witch of Agnesi.)

5335 Gharacterlstic.—If upon a diameter OA of a circle as

base a rectangle of variable altitude be drawn whose diagonal

cuts the circle in i?, the locus of P, the point in which the

perpendicular from B meets the side parallel to OA, is the

curve in question. Its equation is

5336 .17/ = 2a v/(2«.i'-cr2),

where a = 00 the radius.

5337 There are points of inflexion where x = f«.

The total area is four times the area of the circle.

THE QUADRATRIX.t (Fig. 131)

5338 Characteristic.—The curve is the locus of the inter-

section, P, of the radius OD and the ordinate QN, when these

move uniformly, so that x : a :: 9 : -J-tt, where x = ON,
a = OA, and = BOD. The equation is

= a^ tau ( . -J- ).

\ a 2/

5339 The curve effects the quadrature of the circle, for

OG : OB :: OB : arc ADB.

Proof: 00 : OB y. CP : BD. But CP= x in the limit when it is small,

therefore CP : BD :: a : ADB.

5340 The area enclosed above the x axis = 4rt'7r~^ log 2.

Proof.—In the integral x tan ( —
j
dx substitute tt (a— x) = 2ay,

and integrate yjj inn yihj by parts, using (1940). The integrated terms

produce log cos ^t— log cos ^^tt at the limit |7r, which vanishes though of

the form go— 00 . The remaining integral is j log cosydy, and will be found

at (2635).

THE CARTESIAN OVAL. (Fig. 131)

5341 Gharacteristic.—The sum or difference of certain fixed

multiples of the distances of a point F on the curve from two

* Donna Maria Agnosi, InstUiiziani Analitichc, 1748, Art. 238. t Dinostratus, 370 b.c.

5 A
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fixed points A, B, called tlie foci, is constant. The equations

of the inner and outer ovals are respectively

5342 im\-\-lr2 = /JCg, mr^— lr. = nc^,

where Vi = AP, rg= BP, c^= AB, and n > m > I.

534:3 ^° draw the curve, put — = ^ and —- =-a ; therefore r^^ /jir^ = a,
m m

where a is > AB and )u < 1 (1). Describe the circle centre A, and radius

AR = a. Draw any radiant AQ, and let P, Q be the points in which it cuts

the ovals, then, by (1),

5344 PR=fxPB and QR = fiQB (2).

Hence, by (932), we can draw the circle which will cut AR in the required

points F, Q. Thus any number of points on the oval may be found.

5345 By (2) and Euc. vi. 3, it follows that the chord BBr bisects the

angle PBQ.
Draw Ap thi^ough r, and lot PB, QB produced meet Ar in p and q. The

triangles PBR, qBr are similar, therefore qr = ju-qB ; therefore q is ou the

inner oval. Similarly p is on the outer oval. By Euc. vi. B., PB.QB
= PR. QR+ BRr therefore, by (2), (l-yu^) PB.QB = BR\ Combining
this with PB : Bq = BR : Br, from similar triangles, we get

5346 BQ.Bq = ^f^ =p4 (3).

5347 Draw QG to make Z BQG = BAq; therefore, A, Q, C, q
being concyclic, we have, by (3),

BQ.Bq = AB.BC =p^ (4).
1 —jM

Hence C can be found if a, /t, and the points yl, B are

given. G is the third focus of the ovals, and the equation of

either oval may be referred to any two of the three foci.

Putting BC = Ci, AG = c^, AB = c^, the equation between I, m, n is

obtained from (4) thus: c^Ci{l—fi^) = a^—cl; therefore Ci(cs+ Ci) = a' + frciCy

But C3+ C1 = a„ a = —-, u = —, and the result ism m

5348 l'c,-Jrn% = m% or l'BC-\-m'CA-\-7rAB = 0... (5),

where GA =—AG.

Putting 7',, r^, r.j for PA, PB, PG, the equations of the

curves arc as follows

—
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Inner Oval. Outer Oval.

5349 mri+ Zra =710^ ... (6), mr^—lr-^ = nc^ ... (7),

5351 nri+li's = mc.2 ... (8), nry-lr^ =mc2... (^0'

5353 mr^—nr.2=lci .-.(10), nri^mr^=lc^ ...(11).

That (6) and (7) are equations of the curve has been shown. To deduce

the other four, we have Z APB = AqB = ACQ (5347) ; therefore ACQ,
APB are similar triangles. But, by (6), mAP+ lBP = nAB, therefore

mAG+lGQ = 7iAQ or nAQ—WQ = mAG, wliich is equation (9). Again,

ABQ, APG are similar. But, by (7), mAQ-lBQ = nAB ; therefore

mAG-lGP = nAP or nAP+lGP = mAG, which is eqiiation (8).

Equations (10) and (11) are obtained by taking (G) from (8) and (7)

from (9), and employing (5).

5355 AP.AQ= AB.AC= coustaiit.

Proof.—Since A, Q, G, q are concyclic, Z QGA = QqA = ABB ;
there-

fore P, Q, G, B are concyclic; therefore AP.AQ = AB.AG = constant (12).

5356 CP. CP' =CA.CB = constant.

Proof: Z PGB = PQB = Bpq = BGq. Hence, if GP meets the inner

oval again in P', GBq, GBP' are similar triangles. Again, because Z BPG
= BQG = BAq = BAP', the points A, B, P', P are concyclic ;

therefore

CP.CP' =GA.GB = constant. Q. E. D.

Hence, by making P, P' coincide, we have the theorem :

—

5357 The tangent from the external focus to a series of tri-

confocal Cartesians is of constant length, and = ^{GB.GA).

5358 To draw the tangents to the ovals at P and Q. De-

scribe the circle round PQGB, and produce BB to meet the

circumference in T; then TP, TQ are the normals at P
and Q,.

The proof is obtained from the similar triangles TQB, TBQ, which show

that sinTQA : sin TQB = Z : w, by (2), and from differentiating equation (7),

which produces —^ :
—-? = Z : m*

as as

5359 The Semi-cubical parabola y^ = aoc^ is the evolute of a

parabola (4549). The length of its arc measured from the

origmis "=2>R^+4"'V"^r
* For the length of an arc of a Cartesian oval expressed by Elliptic Functions, see a paper

by S. Roberts, M.A., in Froc. Lond. Math. Soc, Vol. v., p. 6.
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5360 The FoJiinn of Descartes, .i^^— 3«,i7/+?/ = 0, has two

infinite brandies, and the asymptote ^v-\-i/+(i = 0.

For the lengths of arcs and for areas of conies, see (6015), et seq.

LINKAGES AND LINKWORK.

5400 A jjk?ir^ linkage, in its extended sense, consists of a

series of triangles in the same plane connected by hinges, so

as to have but one degree of freedom of motion ; that is, if

any two points of the figure be fixed, and a third point be

made to move in some path, every other point of the figure

will, in general, also describe a definite path. With two points

actually fixed, the hnkage is commonly called a piece-ivorlc,

and if straight bars take the place of the triangles, it is called

a linh-iDorlc.

THE FIVE-BAR LINKAGE.

5401 Mr. Kempe's fundamental five-bar linkage is shown

in Figure (135). A, B, D' are fixed pivots indicated by small

circles. G, I), B', C , in the same plane, are moveable pivots

indicated by dots. The lengths of the bars AB, BG, GD, DA
are denoted by a, b, c, d. The lengths of AB\ B'G\ G'D', D'A

are proportional to the former, and are equal to ha, kh, kc, Jed,

respectively. Hence ABGD, AB'G'D' are similar quadri-

laterals, and A AUG' = ADG. P being any assigned point

on BG and />'P = X, F' must be taken on D'G' so that

D'F' = A — . Draw FN, F'N' perpendiculars to AB. Then,
ah

throughout the motion of the linkage in one plane, NN' is a

constant length.

Proof: NN' = ]}D'-(BN+N'D'). But BB' = a-U, and

BN+N'B' = \ cos B-\ '^ cos B-^(2ah cos B-2ccl cosD)
ah 'lab

= _A_ („'^ + h^- c^- d') (702). Hence
2ab
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5402 NN' = u-kd- JL^{a'~J\-b'-c'-cP).
2(10

5403 Case I. -(Fig. 136.) If A = ^(^^;M)_^, then

NN' = -^ ; consequently, if tlie bars PO = BB and F'O =
F'B' be added, the point will move in the line AB.

If, in this case, d = ha and h = c, then X = h and F coin-

cides with G, P' with C, and B' with D, as before moving
in the line AB.

5404 Case IL — (Fig. 137.) If, in Case I., M = a and
a^-\-J)^ ^ c^^(p^ X is indeterminate; that is, P may then be
taken anywhere on BG. D' coincides with B, and NN' = 0.

PP' is now always perpendicular to AB. If the bars PO,
P'O be added, of lengths such that PO^-P'0'~ = PB--P'B\

will move in the line AB. If, on the other side of PP' , bars

P0'= P'B and P'O' = PB be attached, then 0' will move in a

perpendicular to AB through B.

5405 Case III.— (Fig. 138.) If, in Case I., U = «, h = d,

and G = — a, the figure ABCD is termed a contra-parallelogram.

BP = X is indeterminate, BC'=hc = -'^^^ and BP' = -X.

Hence BG' and BP' are measured in a reversed direction

;

PP' is always perpendicular to AB, and if any two equal bars

PO, P'O are added, Avill move in the line AB.

5406 If three or more similar contra-parallelograms be

added to the linkage in this way, as in Figure (139), having

the common pivot B and the bars BA, BG, BE, BG in geo-

metrical progression ; then, if the bars BA, BG are set to any
angle, the other bars will divide that angle into three or more
equal parts.

5407 If, in Figure (138), AD be fixed and DG describe an
angle ADG, then B'G' describes an equal angle in the opposite

direction. Mr, Kempe terms such an arrangement a recersor,

and the linkage in Figure (139) a multiplicator. With the aid
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of these, and with a translator (Fig. 140), for moving a bar

AB anywhere parallel to itself, he shows that any plane curve

of the 7^*'' degree may, theoretically, be constructed by link-

work.*

5408 Case IV. — (Fig. 141.) If, in the original linkage

(Fig. 135) M = a, D' coincides with B. Then, if the bars

BPO, RP'O' be added by pivots at P, F, and B ; and if

OP = PB = BP' and O'P' = P'B = BP ; the points 0, 0'

will move in perpendiculars to AB. For by projecting the

equal lines upon AB, we get jVL = BN' and BN = N'L\
therefore BL = BL' = NN' = a constant, by (5402).

5409 Case V.— (Fig. 142.) Make ha = d and X = h. Then
B' coincides witli D, P with G, and P' with G'. Replace B'G\
G'D by tlie bars DK, KD' equal and parallel to the former.

Also add the bars GO = DK and OK = CD. Draw the per-

pendiculars from 0, G and G' to AB. Then by projection,

NL = N'D' ; therefore BL = BN+NL = BN+N'U = BD'
—3/7V"'= constant. Hence the point will move perpendi-

cularly to AB.

5410 Case VI.—(Fig. 143.) In the last case take k = l.

Therefore d = a, U coincides with ,Z?, BK = BG, and GDKO
is a rhombus. This is Peaucellier's linkage.

5411 Casi^ VII.— (Fig. 144.) In the fundamental linkage

(Fig. 135), transfer the fixed pivots from A, B to P, 8, adding

the bar ^S^, so that PBHA shall be a parallelogram. Then,

since NN' is Constant (5 102), the point P' will move perpen-

dicularly to the fixed line PS.

5412 Join AG cutting PS in Z7, and draw UV parallel to AD.
Then UV : AD = PU : AB = GP : GB = constant ; there-

fore P?7 and f/Fare constant lengths. Hence it follows that

the parallelism of AB to itself may be secured by a fixed pivot

at U and a bar UV instead of the pivot S and bar SA.

5413 In Case VII. (Fig. 144), with fixed pivots P and 8

* Froc. of the Loud. Math. Soc, Vol. vii., p. 213.
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and bar SA, make h = a, d = c, ha = d, \ = h. Then B' coin-

cides with D, N' with N, F with G and L, and F' with G'

;

and we have Figure 145, DG, DG' are equal, and they are

equally inclined to AB or G8; because, in similar quadri-

laterals, it is obvious that AB and GD and the homologous

sides DG' and AD' include equal angles. Therefore GG' is

perpendicular to GS, and G' moves in that perpendicular only.

5414 If two equal hnkages like that in (5413), Figure (145),

but with the bars AS, GS removed, be joined at D (Fig. 146)

and constructed so that GDy, jDG' form two rigid bars, then

AB, a|3 will always be in one straight hue. Let A, B be made

fixed pivots, then, while G describes a circle, the motion of

the bar oj3 will be that of a carpenter's plane.

5415 On the other hand, if the linkage of Figure (145), with

AS and GS removed as before, be united to a similar inverted

Hnkage (Fig. 147), with DG, DG' common, then, with fixed

pivots A, B, D', the motion of the bar a/3 will be that of a Hft,

directly to and from AB.

5416 The crossing of the Hnks may be obviated by the

arrangement in Figure (148). Here the bars (7'/3, G'D, G'D'

are removed, and the bars FD, FE, FG added in parallel ruler

fashion.

5417 Case YIII.— (Fig. 149.) In Case YIL, substitute the

pivot TJ and the bar UV for S and SA. Make d = a, and

therefore Jv = l. Then h' = b and c = c, making BGDG' a

contra-parallelogram ; D' coincides with B, and B' with D.

The bars AB, AD are now superfluous. Take BF = X; then

BF' = X f ; therefore FF' is parallel to GG', therefore to BD,
h

therefore to FV (5412) ; therefore V, F, F' are_ always in one

right line. F' , as in Case VII., moves perpendicularly \>oFV

and AB. This arrangement is Hart's ^i;e-Z>ar Unhage.

5418 When a point F (Fig. 152) moves in a right line FS,

it is easy to connect to P a linkage which will make another

point move in any other given line we please in the same
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plane. Let QR he sucla a line cutting PS in Q. Make Q a

fixed pivot, and let 0(2, OF, OB be equal bars on a free pivot

0. Then, if the angle FOR be kept constant by the tie-bar

Fll, FQB, being one half of FOB (Euc. iii. 21), will also be
constant, and therefore, while F describes one line, B describes

the other.

If the bar FO carries a plane along with it, every point in

that plane on the circumference of the circle FQB will move
in a right line passing through Q.

THE SIX-BAR INVERTOR *

5419 If in the linkwork (5410, Fig. 143) the bar AD be
removed, and D be made to describe any curve, will describe

the inverse curve, just as, when D described a circle, moved
in a right line which is the inverse of a circle.

Proof.—Let BOD and CK intersect in E. Then BO.OD = BE-- OE'
= BG- — OC^- = a constant called the mochilus of the cell.

THE EIGHT-BAR DOUBLE INVERTOR.

5420 Two jointed rhombi (Fig. 150) having a common
diameter AB form a double Peaucellier cell termed positive

or negative according as P or Q is made the fulcrum. We
have P(2.PB = PQ.Q8 = AP^-AQ\ the constant modulus
of the cell.

THE FOUR-BAR DOUBLE INVERTOR.

5421 If, on the bars of a contra -parallelogram ABCD
(Fig. 151) four points j), q, r, s be taken in a line parallel to

Ac or BD, then in every deformation of the linkage, the

points 2h <h '' ^ ^^ill ^ic in a right line parallel to AG ; and
pq .pr = pq . q,^ = a constant modulus. Thus, if _p be a ful-

crum and r describes a curve, q will describe the inverse

curve. If q be the fulcrum, j? will describe the inverse curve.

Proof.—Let Ap = mAB, therefore pq = mBD, &nd pr = (I — m) AG,
thereiore pq.pr = m (1—w) AG.BD = m (l—m)(AD'—AB-) = constant.

* Since the curve described is the inverse and not the i^olar reciprocal of the guiding curve,
it seems bettor to call this linkage an invtrtor rather than a reciprocator.
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THE QUADRUPLANE, OR VERSOR INVERTOR.

5422 Let the bars of the contra-parallelogram invertor

(5421, Fig. 151) carry planes, and let P, Q, B, S be points in

the planes similarly situated with respect to the bars which

contain p, q, r, s respectively, so that /.PAp = QA<i and

AP : Ap = AQ : Aq; and similarly at G. Then, if P be the

fulcrum and B traces a curve, Q will trace the inverse curve

and the angle QPB will be constant.

PjjOof.—Let PA = nAB and PB = n'AB, therefore, by similar triangles,

PAQ, BAD, PQ = nBD. Also, by the triangles PBU, ABG, PB = n'AG

;

PA PTi
therefore PQ.PB - nn'AG.BD = ^^j~- (AD' - AB') , a constant.

Again, the inclination of PQ to BD = that of AP to AB, which is con-

stant. Similarly, by the triangles PBB, ABG, the inclination of PB to AG
= that of BB to BG, which is also constant ; therefore QPB, the sum of

these two inclinations, is a constant angle.

THE PENTOGRAPH, OR PROPORTIONATOR.

5423 Let ABGD (Fig. 153) be a jointed parallelogram, J, B
fixed pivots, q a tracer placed at any assigned point in BG
produced ; then a pencil at p will evidently reproduce any

figure traced by q diminished in linear proportions in the ratio

of Bq to BG.

THE PLAGIOGRAPH, OR VERSOR PROPORTIONATOR.

5424 In the same figure, make an angle qBQ = pBP,
BQ = Bq, and DP = Dp, and let a tracer Q and pencil P be

rigidly connected to the arms BG and DG. Then P will pro-

duce a similar reduced figure as before, but no longer similarly

situated. It will be turned round through an angle QBq.

This is Prof. Sylvester's Plagiograph.

Proof.—Let BG = h.Bq', therefore AD = kBQ, DP = kAB, and Z ABQ
= PDA ; therefore (Euc. vi. 6) AP = hAQ. Also PAQ is a constant angle,

for PAQ = BAD-BAQ-PAD = BAD-BAQ-BQA = BAD- (n-ABQ)
= BAD-TT+ABG+QBq = QBq.

THE ISOKLINOSTAT,* OR ANGLE-DIVIDER.

5425 This linkage (Fig. 154) accomplishes the division of

an angle into any desired number of equal parts. The dia-

* Invented and so named by Prof. Sylvester.

5 B
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gram shows the trisection of an angle by it. A number of

equal bars are hinged together end to end, and also pivoted

on their centres to the same number of equal bars which

radiate, fan-like, from a common pivot. The alternate radial

bars make equal angles with each other.

The same thing is accomplished in a different way by
Kempe's Multiplicator (5406, Fig. 139).

A LINKAGE FOR DRAWING AN ELLIPSE.

5426 In the arrangement of (5413, Fig. 145) the locus of

any point P, on DC, excepting D and G', is an ellipse.

Proof.—Take 08, 00' for x and y axes ; P the point xy ; SOB — 0,

and therefore ODC' = 29; PD = h. Then we have x = (c—h)cosO,

y = (c+ h) sinO, therefore
^ + -^

.^
= 1 is the equation of the locus.

(^C— ll) i^C-Tll)"

Any point on a plane carried by DC also describes an ellipse round ; but

if the point lies on a circle whose centre is D and radius DO, the ellipse be-

comes a right line passing through 0, as appears from (5418).

A LINKAGE FOR DRAWING A LIMAQON, AND ALSO A
BICIRCULAR QUARTIC.*

5427 (Fig. 155.) Let four bars AF, AQ\ BG, GD be

pivoted at A, B, G, D, and let AB = BG = BQ'= a ; AD
= DG = DP' = 6. Take a fulcrum F on BG, a tracer at P,

and a follower at Q, so that PQ is parallel to BD. Let FP = p,

FQ = r; then, if P traces out a circle passing through F, Q
will describe a lima9on.

Proof.—Let BQ = ma, therefore PD = mh ; r = 2?u . BN, p = {m. + 1) .DN
+ (1 -m) BN. Also BN^-DN^ =o?- h\ Eliminate BN and DN, and the

equation between r and p is

r+(l— m) rp— mp^ = m (ju+ l)'- (ci'— b-) = A;^

If P describes the circle p = c cos 0, Q describes the locus

r"+ (1 —m) cr cos B— mc- cos'- Q = Zr,

which is the inverse of a conic, that is, a limayon (5327).

If be made the fulcrum, the equation reduces to r—p^ = 4 (a-— h-).

5428 With the same fulcrum F, drawing FH parallel to

AG, if a tracer at II describes the circle, then a follower at K
on GD will trace out a bicircular quartic.

* W. Woolsey Johnson, Man. of Matli,, Vol. v., p. 15'.'.
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Proof.— Draw FL, LK parallel to BA, AD. Let FH = p, FK = r,

CK = /3, CF = a = nFB, and therefore CL = np. Now

2 (cc+ rr) = r+ny+ ("'-fy\
r'

Therefore, if H moves on the circle p = c cos 0, K will describe the curve

7-*+ vrcV- cos'0-2 (a-+/3') r+ (a-— /3'-)- = 0,

or (a;Hr)'+ Kc'-2a'--2/3^) x^-2 {a^-\-(i^) y'+ (a'-/?)- = 0.

A LINKAGE FOR SOLVING A CUBIC EQUATION.*

5429 Let the tliree-bar linkwork (Fig. 156) have the bars

AB, DC produced to cross each other. Let AB = AD = a,

BC ^h, CD = c ; and let b and c be adjustable lengths.

Suppose x^— qx-\-r = a given cubic equation.

Make <?=2"\/( '/+ — )? ^ — i\/(^~~)j ^^^n deform the

quadrilateral until EG = CD ; DE will then be equal to a real

root of the cubic.

Proof : conE = — = ^

—

--^-^—
,

2cie 4c {x + a)

from which .t3«-2 (r + &') ai + 2a {c'-lr) = 0.

Equate coefficients with the given cubic.f

ON THREE-BAR MOTION IN A PLANE.

5430 If a triangle ABG (Fig. 157) be connected by the

bars AO, BO' to the fulcra 0, &, the locus of G is called a

three-bar curve.

OA, O'B meet in Q, the instantaneous centre of rotation of

the triangle, since QA., QB are perpendicular to the movements
of J and B respectively. Therefore GQ is the normal to the

locus of G.

5431 If a triangle similar to ABG be placed upon 00'

(homologous to AB), the circum-circle of the triangle will

pass through the node, and the vertices of the triangle are

called the foci of the curve.

* M. Saint Loup, Comptcs Rendus, 1874.

t The foregoing account of linkages is taken chiefly from a paper by A. B. Kempe,
F.R.S., in the Proc. of the Eoyal Soc. for 1875, Vol. xxiii. Other results by the same author

will be found in the Froe. of the Lond. Math. Soc, Vol. ix., p. 133 ; and by H. Hart, M.A.,
ihid., Vol. VI., p. 137, and Vol. viii., p. 286. See also The Messenger of Mathematics, Vol. v.
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Figures (158) and (169) exhibit different varieties of the

curve according to the rehxtive proportions between the lengths

of the bars.*

MECHANICAL CALCULATORS.

The Mechanical Integrator.

i

5450 This instrument computes not only the area of any
closed plane curve, but the moment and also the moment of

inertia of the area about a fixed line. The principle of its

action is shown in Figure (160). OP is a bar carrying a

tracer at P, and a roller J at some point of its length. The
end is constrained to move in the fixed line ON. When
the tracer P moves round a closed curve, the length OP mul-

tiplied by the entire advance recorded by the roller is equal to

the area of the curve.

Proof.— Let the motion of the tracer from P to a consecutive point Q be

decomposed into PP' and P'(2 parallel and perpendicular to ON. Let
OP = a and PON = 6. When the pointer moves from P to P', the roll

accomplished is PP' sin 6. The roll due to the motion from P' to Q will be
neutralized by the exactly equal and opposite roll in the motion of the pointer

from q to ^j', since the bar will there have again the same inclination. Con-
sequently the product of the entire roll and the length a is equal to the sum
of such terms as aPP' sin d. But this is the area OPP'O' = NPP'N'. The
algebraic addition of such rectangles gives the entire area, and the instru-

ment effects this, for the area SN is subtracted, by the motion of the roller,

from the area QN which is added.

5451 The instrument itself is shown in Figure (161). A
frame moving parallel to OX by means of the guide BB
carries two equal horizontal wheels geared to a central wheel
which has two circumferences, such that its rate of angular

motion is half that of the lower wheel and one third of that of

the upper. The latter wheels carry two rollers, M and I, on
horizontal axles ; and the middle wheel carries an arm OP, a

pointer at P, and a roller A. In the initial position, the

* Tho curve is a tricircular trinodal sextic, and is completely discussed by S. Roberts,

F.R.S., and Prof. Cayley, in the rruc. of the Lond. Math. Soc, Vol. vii., pp. 14, 136.

t Invented and manufactured by Mr. J. Amsler-Laflbn, of Schaflfhauson. The demon-
strations (which in clearness and elegance cannot bo surpassed) of the action of this instru-

ment, and of the rianimetcr which follows, were communicated to the author by Mr. J.

Macfarlane Gray, of the Board of Trade.
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rollers J and /are parallel, while M is at right angles to A.

The frame is thus supported above the paper on the three

rollers ; and if the arm OP be moved through an angle AOA',
the axles of the rollers M and I will describe twice and three

times that angle respectively. Putting OP = a as above, and
A, My and I for the linear circumferential advances recorded

by the three equal rollers respectively, we have the following

results

—

I.

—

The area traced out by the pointer P = Aa.

II.—The moment of the area about OX = M a-

III.—The moment of inertia about OX = (3^4+ /)--.

Proof.—I. Since moves in the line OX, while the pointerP moves round
a curve, the roller A will, as shown above, make the rolling 2A. sin 6, where
Ji = PP' in Figure (160), and the area of the curve = a'^h sin or a X roll.

II. The moment of the area about OX

= 2 (a/i sin X ^^^) =
-^

(2/i-2/i cos 2^).

Now 2A vanishes when P returns to the starting point, and — 2/; cos 2d is the

roll recorded by M. For, when OP makes an angle with OX, the axis of

31 will make an angle — (90^+ 26) with OX. In this position, while P makes a
parallel movement h, the roll produced thereby in M will be —h sin (90° + 2^)

= —Ji COS 20. Therefore — X roll of M = moment of area.
4

III. Lastly, the moment of inertia of the area about OX

= :^( ah sin ex^-~^\ = ~%{Shsind-hsm^d).

Now, when OP makes an angle 6 with OX, the axis of I makes —30 ; there-

fore — 2/t sin 30 is the entire roll of I. Hence the moment of inertia

= -^ X roll oiA+^x roll of I.
4 12

The Planimeter. (Fig. 162)

5452 This instrument * is a simpler form of area computer.

is a fixed pivot ; OA, AP are two rods having a free pivot

at ^ ; (7 is the roller, and P the pointer. The area of a closed

curve traced by the pointer is equal to the total roll multiplied

by the length AP.

* Like The Integrator, the invention of Mr. Amsler.
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Proof.—Decompose the elementary motion PQ of the pointer into PP',
effected with a constant radius OP, and P'Q ah^ig the radius OP', and so all

round the curve. The roll of G accomplished while P moves from P' to Q
will be neutralized by the equal contrary roll when P moves from q to j:)' on
the radius Op' = OP. Thus the total roll recorded will be the sum of the

rolls due to the movements PP', QQ', &c.

Draw OB perpendicular to AP, and, when P comes to P, let B' be the

altered position of B. The area PQSP = \{0P-- OR-) w, where u, = POQ.
But 0P^= A' + PA--2PA.AG-2PA.bg (Euc. ii. 13) ; therefore, since

BG is the only varying length on the right, we have PQSR = PA{BG^BG')u).
But BGio is the roll of G due to the angular motion w of the rigid frame OAP,
and the subtraction of the area OSR from 0P(^ is effected by the instrument,

since when the pointer moves from 8 to R the direction of the roll must be

reversed. Hence the total area = PA x the total recorded roll.

APPENDIX ON BIANGULAR COORDINATES.*

5453 In the figure of (1178), the biangular coordinates of a
point P are defined to be ^ = F88' and <p = PS'S, or

a = cot B and /3 = cot ^.

5454 The equation of a right Hne YY' is

aa-\-b^ = 1,

where a = cot SYS' and h = cot SY'S'.

Proof.—Supplying the oi'dinate PN in the tigure and denoting the angle

S'SY by i/', the equation is obtained from GN cos \p+PN sinif/ = p the per-

pendicular on the tangent, SS' &\n\j/ =. YY' and SS' cos '4' = SY—S'Y'.

5455 cot xjj = a— b.

5456 Equation of a hne through G : a— /8 = const.

5457 Equation of the fine at infinity : a-\-fi = 0.

5458 Let >S^/S" = c, then the distance between two points

aji„ a,/3, is

* Quarterly Journal of Mathematics, Vole, 9 and 13 ; W. Walton, M.A,
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5459 The equation of a line tlirougli tlie two points is

;8-A ~ A-A"

5460 The length of the perpendicular from a'/3' upon the

line aa-^h[i = I is

a'+A Vl(«-6y^+i}'

5461 Cor.—The perpendiculars from the poles S, S' are

therefore

^/{{a-by+ly ^{{a-by+l}'

5463 When the point a (5' is on SS' at a distance h from 8,

_ (a— b) h-\-bc
^'~

v^{{a-by-\-iy

With two lines aa-\-h^ = 1, aa-{-b'(5 = 1, the condition

5464 of parallelism is a—b=^a—b',

5465 of perpendicularity {a— b){a—b')-]-l = 0.

5466 The equation of the line bisecting the angle between
the same lines is

aa-\-bfi-l a'a-\-b'^-l

s/{{a-by-^l] V{{a'-b'y-\-l\

5467 The equation of the tangent at a point a^' on the

curve F{a, jS) = is

5468 And the equation of the normal is

a-

a

_ ^—^'
{a^'-l) F,.+ (l+ a^) F, = (gA-1) F, + (1+^^) F,:

5469 The equation of a circle through /S', 8' is

a^-l = m(a+/8),

where m = cot 8P8' the angle of the segment.
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5470 If G be the centre, tlie equation becomes

a/3= 1.

5471 And, in this case, the equations of the tangent and
normal at a (5' are respectively

4 +4 = 2 and a-y8 = a'-/8'.
a p

5472 The equation of the radical axis of two circles whose
centres are S, S\ and radii a, b, is

uating the tangents from a/3 to the

actively

Proof.— By equating the tangents from a/3 to the two circles, their
lengths being respectively

5473 To find the equation of the asymptotes of a curve
when they exist,

—

Eliminate a and j3 between the equations of the line at

infinity a+)8 = 0,

the curve F (a, y8) = 0,

and the tangent (a— a ) F,,-\-{^—^') F^> = 0.

Ex.—The hyperbola a^ + ft' = vi" lias, for the equation of its asj-mptotes,
a— /> = ± m \/2.
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SYSTEMS OF COORDINATES.

CARTESIAN OR THREE -PLANE COORDINATES.

5501 The position of a point P in this system (Fig. 168) is

determined by its distances, x = PA, y = PB, z = PC, from
three fixed planes YOZ, ZOX, XOY, the distances being

measured parallel to the mutual intersections OX, OY, OZ of

the planes, which intersections constitute the axes of coordi-

nates. The point P is referred to as the point xyz, and in

the drawing x, y, % are all reckoned positive, ZOX being the

plane of the paper and P being situated in front of it, to the

right of YOZ and above XOY. If P be taken on the other

side of any of these planes, its coordinate distance from that

plane is reckoned negative.

FOUR.PLANE COORDINATES.

5502 In this system the position of a point is determined

by four coordinates a, j3, y, I, which are its perpendicular

distances from four fixed planes constituting a tetrahedron of

reference. The system is in Solid Geometry precisely what
trilinear coordinates are in Plane. The relation between the

coordinates of a point corresponding to (4007) in trilinears is

5503 ^a+i^yg+Cy+DS = 3F,

where A,B,G,D are the areas of the faces of the tetrahedron

of reference, and V is its volume.

TETRAHEDRAL COORDINATES.

5504 In this system the coordinates of a point are the

volumes of the pyramids of which the point is the vertex and
5 c
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tliG faces of tliG tetrahedron of reference the bases : viz., ^Aa,

\B^, \Cyi -^D^. The relation between them is

5505 a'+i8'+y+8'= V.

POLAR COORDINATES.

5506 Let be the origin (Fig. 168), XOZ the plane of

reference in rectangular coordinates, then the polar coordi-

nates of a point P are r, B, (/>, such that r = OP, = LPOZ^
and = Z XOO between the planes of X^OZ and POZ.

THE RIGHT LINE.

5507 The coordinates of the point dividing in a given ratio

the distance between two given points are as in (4032), with a

similar value for the third coordinate t-

5508 The distance P, Q between the two points xijz^ x'y'z is

PQ =^{(^aj-w'f^-{y-yj^-{z-^j}. (Euc.i.47).

5509 The same with oblique axes, the angles between the

axes being X, /t, v.

PQ = y {(.^^_.^.7+(^,_,y7+(^-^7+2 {y-2j){z-z') cosX

+ 2 {z-z%v-.v) cos/x+2 {x-a'){y-ij) cos v\ .
(By 702).

5510 The same in polar coordinates, the given points being

PQ = y[r2+/^-2r/ [cos 6 cos ^'+sin 6 sin & cos (<^-f) } ].

Proof.—Let P, Q be the points, the origin. Describe a sphere cutting

OF, OQ in 1J,C and the z axis in A; then, by (702), PQ- = OF'+OQ^
— 20P. OQ cos FOQ and cos POQ, or cos a in the spherical triangle ABC, is

given by formula (882), since b = 6, c = d', and A = <p— <p'.

DIRECTION RATIOS.

5511 Through any point Q on a right line QP (Fig. 169),

draw lines QL, QM, QN parallel to the axes, and through any-

other point P on the line draw planes parallel to the coordi-
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nate planes cutting the lines just drawn in L, M, N; then the

direction ratios of the line OP are

5512 /-^ m-^ n-^
The angles PQL, PQM, PQN are denoted by a, j3, y ; and the

angles YOZ, ZOX, XOY between the axes by X, in, v.

5513 When X, ^, v are right angles, the axes are called

rectangular, and the direction -ratios are called direction-

cosines, being in that case severally equal to cos a, cos/3,

cosy.

5514 When L, M, N are the direction-ratios (or numbers
proportional to them) of a line which passes through a point

abc, the line may be referred to as the line {LMN, ale), or, if

direction only is concerned, merely the line LMN.

EQUATIONS BETWEEN THE CONSTANTS OF A LINE.

5515 The relation between the constants of a line with

rectangular axes is

Z'^+m^+n- = 1 ;

and with oblique axes, it is

5516 / cos a+m cos /8+71 cosy = 1.

Proof.—The first by (Euc. i. 47). The second by projecting the bent

Hue QLGP (Fig. 169) upon PQ, thus PQ = QL cosa + LOcos/^+OPcosy,
and QL = PQ.l, &c., by (5512).

5517 Also, when the axes are oblique,

cos a = Z+m cos v-\- n cos fi,

cos^ = m+ w cos X+ Zcosv,

cosy= n-\- Z cos ju,-|-m cosX.

Peoof.—By projecting QP in figure (169) and the bent line Q,LGP upon

each axis in turn, and equating results; thus PQcosa= QL+LG cos(3

+ GP cos y, applying (5512).

5518 The relation between I, m, n and X, ^t, v is

P-{-m^-\-n^+2mn cosX+2/i/ cos/ut-f 2/m cos v = 1.

Proof.—By eliminating cos a, cob/3, cosy between (5516) and (5517).
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5519 The relation between cos a, cos/3, cosy and X, ^, v is

cos^ a siii^ X+cos^ /8 siu" ft+cos^ 7 siir v

+2 cos fi cos y (cos /a cos v— cos X)

+2 cosy cos a (cos V cos X— cos /a)

+2 cos a cos y8 (cos X cos /x— cos i/)

= 1— cos"X— cos'/x— COS-1/+2 cosX cos ft cos V.

Pkoof.—By eliminating I, vi, n between the four equations in (5516) and
(5517).

5520 The angle Q between two right lines Imn, I'm'n, the
axes being rectangular

:

cos 6 =: ll'-\-7nm-{-nti.

Proof.—In Figure (160), let QP be a segment of the line Imn. The
projection of QP upon the line I'm'n will be QP cos 6. And this will also
be equal to the projection of the bent line QLCP, upon I'm'n, for, if

planes be drawn through Q, L, C, and P, at right angles to the second line

I'm'n, the segment on that line intercepted between the first and last plane
will be = QP cosQ, and the three segments which compose this will be
severally equal to QL .1' , LG.m, CP.n, the projections of QL, LG, GP.
Then, by (5512), QL = QP.l, &c.

5521 sin^ e = (mn'-m'ny-\-{nl'- n'iy-Y{lm'-I'mf.

Proof.—From
l-cos-0 = {l' + m''+ n^){r'^m'-^n'-)-{ll'+ mm' + nu')- (5515, '20).

5522 With oblique axes,

cos 6 = ll'-\-7n7u-^nn-\-{7n)i-\-inn) cosX

-\-{7iV-\-nl) cos/x+(/m'+rm) cos v.

Proof.—As in (5520), substituting from (5517) the values of cos a, &c.

EQUATIONS OF THE RIGHT LINE.

5523 ^^ = U^ = ^^ or .iz:i^^.y^^£^c
L M N I m ?i

Here abc is a datum point on the line, and if r be put for the
value of each of the fractions, r is the distance to a variable
point xyz. L, M, N are proportional to the direction ratios of
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the line, which ratios must therefore have the values

5524 /= ..... ,\r., ^.^ ^ri=
^^

- ^

5525 Note.—Instead of <x, b, c in the equation we may use

IcL+ a^ ]cM-\-b, Jd + c, where h is an arbitrary constant.

5526 The equations of a line may also be written in the

forms .1' = \z-\-a, y = iiz-\-^.

5527 These are the equations of the traces on the planes of

xz and yz, and are equivalent to

A -a _ ;/-/8 _ £-0
X ~ ^ ~ 1

5528 If the line is determined as the intersection of the two
planes Ax-{-Bij-{-Cz = D and A'xi-B'y+ C'z = V, we may
write equations (5523) by taking

L = BC'-B'C, M= CA'-C'A, N= AB-A'B,

DB'-D'B ^ DA-DA
N ' N = 0.

Proof. — Eliminate z between the equations of the planes, then the
reciprocals of the coefficients of x and y will be L and M.

5529 The projection of the line joining the points xyz and
ahc upon the line Imn is

I {.v-a)-{-7n (y—b)+n (z—c).

5530 Hence, when the line passes through ahc, the square
of the perpendicular from xyz upon it is equal to

5531 Condition of parallelism of two lines LMN, L'M'N'

:
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5532 Condition of perpendicularity :

LL'-^MM'-{-NN' = 0. (5520)

5533 Condition of the intersection of the lines (LMN, ahc)

and (L'M'N\ a'h'cf) (5514) :

{a-a'){MN'-M'N)^{h-h'){NL'-N'L)
J^{c-c')(LM'-L'M) = 0.

Proof.—Eliminate x, y, z between the equations

X—a _ y— h _ z — c_ , x— a'_ y— h' _z— c /

by subtracting in pairs, and then eliminate r and r'

.

5534 The shortest distance between the same lines is

{a-a'){M}^'-M'N)^{h-h'){NL'-N'L)-\-{c-c'){LM'-L'M)

^{{MN'-M'NY-^{NL'-N'LY-\-{LM'-L'My\

Pkoof.—Assume A, n, v for the div-cos. of the shortest distance. Then,
by projecting the line joining ahc, a'h'c upon the shortest distance, we get
pz=z {^a-a)\ + ih-l') ix + {G— c')y. Also, by (5520), iX + iU/x + iV.' = and
L'X+ M'n + N'v = 0, giving the ratios X : /n : y = MN'—M'N : NL'—N'L
: LM'—L'M; and (5524) then gives the values of \, n, v.

5535 The equation of the line of shortest distance between
the lines {Imn, ahc) and {I'lii'ii , a'h'c) is given by the inter-

section of the two planes

l{^^-a)+m(y-b)+ n(s,-y) = 'l±4^ (i.),

I {x-a)-\-m {y-h)-\rn {z-y) = -_L___ ... (n.),

where it = I {a'— a)-\-m {b'— h)-\-n {c'— c),

u'=I'(a— a')-{- m' {b— h') + n {c— c)

,

and cos 6 = 11' -{-nini' -\- nn'

.

Proof.— (Fig. 170.) Let be the point xyz on the line of shortest dis-

tance AB ; P, Q the points abc, a'h'c on the given lines AP, BQ. Draw BR
and PR parallel to AP and AB ; RT perpendicular to BQ ; and QN, TM per-

pendicular to BR. Then Z RBQ = d, RN = u, QT = «', therefore NM
= u'cosi6 and RM = RN+NM = 7t + u' cos 6, and in the right-angled tri-

angle RTB, RM cosGc^d = RB, the projection of OP upon AP, that is, the
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left member of equation (i.). Similarly for equation (ii.). It should be
observed that (i.) and (ii.) represent planes through AB respectively per-

pendicular to the given lines AP and BQ.

5536 Otherwise, the line of shortest distance is the inter-

section of the two planes whose equations are

I {w—a)-\-m{y— b)-\-n (^— c)

^ I (.r- (Q+m {ii-h')-\-n (z-c)
i {.V— a)-\-m {y— h') -\-n {z— c)

'

For these equations state that cos is the ratio of the projections of OP
or of OQ upon the given lines, and this fact is apparent from the figure.

5537 Equations of the line passing through the two points

ahc, a'h'c :

x— a __ y— h _ !z— c

a— a h~b' c— c

5538 A line passing through the point ahc and intersecting

at right angles the line Imn :

w— a _ y—h
L ~~ M ~ N '

where L = Im {b— b')-\-nl(c— c)— {m^-\-n^){a— a),

and symmetrical values exist forM and N.

Proof.—The condition of perpendicularity to Inm is

Ll + Mvi+Nn = 0; (5520)

and the condition of intersecting the line is

(a-a)(iMn-mN) + {b-b')(Nl-iiL) + (c-c')(Lm-m) = 0.

These equations determine the ratios L : M : N.

5539 Equations of the line passing through the point abc,

parallel to the plane Lx-\-My-\-Nz = D, and intersecting the

line (I'm'n, a'h'c) :

00— a _ y—b s—c
I m w '

where l, m, n are found, as in the last, from

LI+Mm+ iV/i = 0, and

{a-a'){7nn' -m'n)-\-{b-b'){nl' -n'l)-\-{c-c'){lm' -I'm) = 0.
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5540 Equations of the bisector of the angle between the

two lines htn-^ii-^^ li>ihn2 :

cC _ y
Ix+h >Wl+?% **1+W2

Proof.— Taking the intersection of tlie lines for origin, let x-^y-^Zi, 3522/2^2 ^^
points on the given lines equidistant from the origin ; then, if xijz be a point

on the bisector midway between the former points, x = ^(x-i+ x^), &c.

(403o) ; and the direction-cosines of a line through the origin are propor-

tional to the coordinates.

5541 The equations of a right line in four plane coordinates

are = Ci

—

lLz=z^—^= (i.),

L M N R ^
^'

where a/SyS is a variable point, and a'fi'^'^' a fixed point on
the line. The relation between L, M, JSf, B is

5542 AL-^BM^CN+DR=^Q (ii.).

Proof.—For, since equation (5503) holds for a/3y^ and also for afi'y'(i\

we have A (a-a') +-B (/3-/3') + G (y-y') +-D (^-^') = 0.

Substitute from (i.) a — a = rL, /?— /3' = rM, &c.

5543 In tetrahedral coordinates the same equation (i.) sub-

sists, but the relation between L, M, N^ R becomes, by-

changing Aa into a, &c.,

5544 L-{-M+N-\-R = 0.

THE PLANE.

5545 General equation of a plane :

A.v-}-Bi/+Cz-\-D = 0.

5546 Equation in terms of the intercepts on the axes :

a ' b ^ c

5547 Equation in terms of p, the perpendicular from the

origin upon the plane, and /, m, n, the direction-cosines of p :

Lv-\-mi/-\-7iz = p.
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Proof.—If P be any point xyz upon the plane, and the origin, the pro-

jection of OP upon the normal through is j^ itself; but this projection is

Ix + my + nz, as in (5520).

5548 The values of I, m, n, j; for the general equation

(5545) are

j_ A _ -D

Proof.—Similar to that for (4060-2) : by equating coefficients in (5545)

and (5547) and employing V' -\- i)V -\- v? = 1.

5550 The equation of a plane in four-plane coordinates is

•XL / «i A yi ^1
with / : /« : w : r = —!- : -^ :

-i-!-
: —

,

Pi Ih Ih Ih

where a^, jSj, yi, S^ are the perpendiculars upon the plane from

A, B, G, D, the vertices of the tetrahedron of reference, and

i^i) P-Zi psi pi ^1'® the perpendiculars from the same points upon

the opposite faces of the tetrahedron.

Proof.—Put y = ri = for the point where the plane cuts an edge of the

tetrahedron, and then determine tlie ratio I : in by proportion.

See Frost and Wolstenholme, Art. 81.

5551 The equation of a plane in tetrahedral coordinates is

also of the form in (5550), but the ratios are, in that case,

/ : m : n : r = a^ : /8i : 71 : S^.

The relation between the three-plane and four-plane coor-

dinates is a = 79—Lv—my— n&

.

5552 The equation of a plane in polar coordinates is

r {cos Q cos ^+siu Q siu & cos (<^— <^')} = p.

Proof.—Here jj is the perpendicular from the origin on the plane, and

p, 0', 0' the polar coordinates of the foot of the perpendicular. Then, if ^ is

the angle between p and r, we have ^ = r cos i/' and cos i// from (882).

5553 The angle between two planes

Ix+my -\'7iz=: p and I'x+my+ 11 z = p
5 D
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is given by formula (5520), and the conditions of parallelism

and perpendicularity by (5531) and (5532), since the mutual
inclination of the planes is the same as that of their normals.

5554 The length of the perpendicular from the point x'l/z'

upon the plane Ax -{-Bi/-\-Gz-{-D = is

Proof.—As in (4094).

5556 The same in oblique coordinates

= ^^ !—i^-! ! i- = p—x COS a—?/ cosp—z cosy,
P

where p is found from (5519) by putting A, Bj G for p cos a,

P cos |3, p cos y. This gives

( A'sm^X + B'- &'ur n + C'^ sin' p + 2BG(cosfJ. cos i^— cosX)

CKKQ 2_ (.
+26'J. (cos V cos \— cos /x) + 2^-5 (cos \ cos /i— cos y)

1 — cos^X— cos^/x— cos"''i' + 2 cosX cos^cosj'

5559 The distance r of the point ici/z from the plane

Ax+ By-{-Gz-\-D = 0, measured in the direction Imn, the axes

being oblique

:

_Aa^;±W±C^±D
Al-\-Bm+ Cn

Proof.—By determining r from the simultaneous equations of the line

and the plane, viz.,

'-i^ = y-~-L = tZlll = r and Ax + B>j-\-Cz +D = 0.

I m n

Otherwise, by dividing the perpendicular from x'lj'z' (5554) by the cosine of

its inchnation to Imn, viz., ——^—-^.

EQUATIONS OF PLANES UNDER GIVEN CONDITIONS.

5560 A plane passing through the point aJ>c and pcrpen-

diculai- to the direction Imi} -.

/(.r-«)+m (//-/>)+ // {z-v) = 0.
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5561 A plane passing througli two points ahc, ctl/c :

^
7+^r—77+v 7 = 0,

5562 with X+/t+v = 0.

PuoOF.—By eliminating n between the equations

l{x—a)+m{y— 'b)-\-n{z— c) =0, l(a— a')^-mil)— h')-\-n{c— c)-=0,

and altering the arbitrary constant.

5563 A plane passing througli the point of intersection of

the three planes tt = 0, y = 0, -zy = :

lu-\-mv-\-nw = 0.

5564 A plane passing through the line of intersection of the

two planes u = (), ?; = :

lu-\-mv = 0.

5565 A plane passing through the two points given by
7t = 0, -y = 0, H' = and u = a, v= h, w= c:

lu-\-mv-{-nw = with la-i-mb-\-tic = 0.

.V y z 1

a.\ 7/1 Zy 1

•^2 yi ^i -'-

^t's Ih -3 1

= 0.

5566 The equation of a plane passing

through the three points x^ij^z^^, x.^j.f..^, 9'zy-^z^

or A, B, G, is given by the determinant

annexed, in which the coefficients of x, y, z

represent twice the projections of the

area ABG upon the coordinate planes.

Peoof.—The determinant is the eliminant of Ax + Bt/ + Gz =. l, and
three similar equations. Expanded it becomes

^ (2/2^3-2/3^2 + 1/8-1-2/123+ 2/1^2— 2/2-1 ) + ?/
(&c.) + z (&c.)+:r,?/./3— &c. = 0.

Hence, by (4036), we see that the coefficients are twice the projections of

ABC, as stated.

5567 The sum of squares of the coefficients is equal to

four times the square of the area ABG.

Proof.—For, if I, m, n are the dir-cos. of the plane, and ABC = S, the

coefficients are = 2Sl, 2Sm, 2Sn, by projection.

5568 The determinant {xi, y^, ^3), that is, the absolute term
in equation (5566), represents six times the volume of the

tetrahedron OABG, where is the origin.
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Proof.—Writing the equation of the plane ABC, Ax-^-By + Gz-\-I) = 0,

we have for the perpendicular from the origin, disregarding sign,

B

therefore B = 22jS = G X the tetrahedron OABG.

5569 If 0:njz be a fourtli point, P, not in tlie plane of ABG,
the determinant in (6566) represents six times the volume of

the tetrahedron PABG.

Proof.—By the last theorem the four component determinants represent
six times (OBCP+OCAB+OABB+ OABC) for an origin within the
tetrahedron.

5570 A plane passing through the points ahc, a'b'c\ and
parallel to the direction Imn

:

= 0.

A—

a
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5573 A plane passing tlirougli the line {abc, Imn) and per-

pendicular to the plane l'x-\-my-\-nz —
i^

:

The equation is that in (5571).

For proof, assume X, fi, v for dir-cos. of the normal of the required plane,

and write the conditions that the plane may pass thi'ough abc and that the

normal may be perpendicular to the given line and to the normal of the

given plane.

TRANSFORMATION OF COORDINATES.

5574 To change any axes of reference to new axes parallel

to the old ones :

Let the coordinates of the new origin referred to the old

axes be a,l,c', xyz and xy'z, the same point referred to the

old and new axes respectively ; then

5575 To change rectangular axes of reference to new
rectangular axes with the same origin

:

Let OX, or, OZ be the original axes, and OX, OF, OZ'

the new ones,

k mi ni the dir-cos. of OX' referred to OX, OY, OZ,

km.^n.2 do. OY' do. do.

liin^ih do. OZ' do. do.

xyz, int the same point referred to the old and new axes

respectively. Then the equations of transformation are

5576 A^=k^+ky)^hi (i-)>

y = m^^-\-m.{q-\-m.X (ii-)^

% = ih^^-n,r)-\-n,t, (iii.).

And the nine constants are connected by the six equations

5577 /:+ m?+w!= l...(iv.), l,h^-m,m,-Vn,ih = ^ ... (vii.),

Z^+m^+n^ = 1 ... (v.), yiH-m3r?ii+«3«i = ... (viii.),

tl-^-irh^-k-thi = 1 ...(vi.), /i/,+mim2+ni«2 = ... (ix.),

so that three constants are independent.
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Proof.—By (5515) and (5532), since OX', 0Y\ 0^' are mutually at

right angles.

5578 The relations (iv. to ix.) may also be expressed thus

—

' '"^ 5i— =±1 (x.),

= ±1 (xi.)
1

1

m.i n.i

= ±1 (xii.).

Obtained by eliminating the third term from any two of equations

(vii.—IX.). Also, by squaring each fraction in (x.) and adding numerators
and denominators, we get

(z;+m;+7.;)(z;+m^+rip-(/,/3+^v«.+'¥'3)~ '

^^''''^

5579 If the transformation above is rotational, that is, if it

can be effected by a rotation about a fixed axis, the position

of that axis and the angle of rotation are found from the

equations 2 cos^ = l^-^-m.i-^-n^,—!,

Kcop. cos^a __ cos'yS 00 s^ y

where a, /3, y are the angles which the axis makes with the

original coordinate axes.

Proof.— (Fig. 171.) Let the original rectangular axes and the axis of

rotation cut tlie surface of a sphere, whose centre is the origin 0, in the

points X, y, z, and I respectively. Then, if the altered axes cut the sphere in

i, n, I, we shall have 6 = Z xR in the spherical triangle ; Ix = I^ =. u ; ly =
Ji; = /3 ; Jz = 7; = y, and by (882) applied to the isosceles spherical triangles

xlk, &c., 7j = cos xl = cos" a + sin' a cos d, vi., = cos yrj = cos"/3 + sin'"' /5 cos 6,

Wg = cos ciC = COS" y + sin'- y cos 0. From these cos y, coso, cos/3, and cosy
are found.

5581 Transformation of rectangular coordinates to oblique :

Equations (i. to vi.) apply as before, but (vii. to ix.) no
longer hold, so that there are now six independent constants.
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THE SPHERE.

5582 The equation of a sphere when the point ahc is the

centre and r is the radius,

5583 The general equation is

a;'+i/-^z'+A.v+Bi/+Cz+D = 0.

The coordinates of the centre are then — ^5 — lyi ~
~o'*

and the radius =^^{A'+ B'+ G'- 4D)

.

Proof.—By equating coeflBcients with (5582).

5584 If <''//2! be a point not on the sphere, the value of

{x— ay'-^{y— hy^+ {z— cy^— r is the product of the segments
of any right line drawn through xijz to cut the sphere.

Proof.—From Euc. iii., 35, .36.

THE RADICAL PLANE.

5585 The radical planes of the two spheres whose equations

are u = 0, u = 0, is

U— l(' =z 0.

5586 The radical planes of three spheres have a common
section, and the radical planes of four spheres intersect in the

same point.

Proof.—By adding their equations, and by the principle of (4608)
extended to the equations of planes.

POLES OF SIMILITUDE.

5587 T)ef.—A 2)ole of shwUitiLcle is a point such that the

tangents from it to two spheres are proportional to the radii.

5588 The external and internal ]}oles of similitude are the

vertices of the common enveloping cones.
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5589 Tlio locus of the pole of similitude of two spheres is a
sphere whose diameter contains tlie centres and is divided
harmonically by them.

CYLINDRICAL AND CONICAL SURFACES.

5590 Def.—A conical surface is generated by a right line

which passes through a fixed point called the vertex and
moves in any manner.

5591 If the point be at infinity, the line moves always
parallel to itself and generates a cylindrical surface.

5592 Any section of the surface by a plane may be taken
for the guiding curve.

5593 To find the equation of a cylindrical or conical surface.

Rule.—EJiininojte xyz from tlie equations of the guiding

curve and the equations ^^ = llzE = — of any generating

line ; and in the result put for the variahle parameters of
the line their values in terms of x, y, and z.

5594: Ex. 1.— To find the equation of the cylindrical surface whose
generating lines have the direction Inm, and whose guiding' curve is sriven

hy bV+ay = a'b' ?ind z = 0.

At the point where the line ^Zlf = y~h> _ ^ meets the ellipse, 2 = 0,
I m n 1 »

>

a; = a, y=ft. Therefore tV+ a^/3^ = a'i". Substitute in this, for the

variable parameters, a, /3, a = x -, /3 = i/— — ; and we get, for the
n n

cylindrical surface h"^ (nx— lzy- + d-()iy — mzy- = d'h-n-.

5595 A conical surface whose vertex is the origin and
guiding curve the ellipse lrx--{-dhf = a~b", z = c, is

«- o' c~

Proof.—Here the generating lino is — = -^ = — . At the point of inter-
I m n
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^. . ,, ,. J Ic VIC .
fc-/V

,
a m c _ .,,

section of the line and curve z = c, x = —, y = — ; .. —7,—r t- — a u .

n n 'It' n

Substitute for the variable parameters I : m : n the values x : y : z, and the

result is obtained.

CIRCULAR SECTIONS.

5596 Rule.—To find the circular sections of a qaadrlc curve,

express the equation in the form A (x'^+/+ z'^+ c^)-t-&c. = 0.

If the remaining terms can be resolved into tivo factors, the

circular sections are defined by the intersection of a sphere and

two planes.

5597 Generally the two quadrics

ai<r+ bif+ G:^-\-2fyz+ 2gzx-{-2Jixy = 1

and {a -\-X)x^+ {b-\-X) f-{-ic-\-X) z'+ 2fyz+ 2yzx+ 2hxy = 1

have the same circular sections.

Pkoof.—Let r, p be coincident radii of the two surfaces having hm for a

common direction. Then — = aP + h»r+ or + 2fmn + 2gnli-2Mm and —
r P

= the same +\. Therefore, if r has a constant value throughout any

section, p is also constant throughout that section.

5598 Ex.—An oblique circular cone whose vertex is the point a, 0, h,

and guiding curve the circle x'^ + if = c"' ; z = ; is

{az-hx)- + bh/' = c- {::-h)-.

The equation may be written

h^(x'' + y^ + z'-c") = z {2ahx + (h'' + c''-n') z-2hc''},

and therefore the cone has two series of parallel circular sections, z = h and

2abx + {b^+ c''-a^) z-2bc^ = f (5583). {Frost and WolstenlxolmeS)

CONICOIDS.

5599 Defs.—A conicold is a surface every plane section of

which is a conic.

The varieties are the ellipsoid, the one-fold and two-fold

hyperbololds, the eUlptic and hyperbolic
_

paraboloids, the

spheroid of revolution, the cone, and the cylinder.

5 E
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In any of the following equations of a conicoid, by making one of the

variables constant, the equation of a section parallel to a coordinate plane is

obtained, and the equation of the surface is by that means verified. Thus,

in the equations of (5600) or (5617), Figs. (172) and (173), if z be put
= ON, we get the equation of the elliptic section BPQ, the semi-axes of

which are NQ = - V(c'-ON') and NR = ^y{c'-ON% a, b, c being the
c c

principal semi-axes of the conicoid ; that is, OA, OB, OC in the figure.

THE ELLIPSOID.

5600 The equation referred to tlie principal axes of the

figure is

^ + T^ +^= 1- (Fig. 172)

5601 There are two planes of circular section whose
equations are

with ayhyc.

is a cone having a common section with the conicoid and a sphere of radius

r. If the common section be plane, one of the three terms must vanish

in order that the rest may be resolved into two factors.

Since a >b > c, the only possible solution for real factors is got by
making r = b.

5602 Sections by planes parallel to the above are also

circles, and any other sections are ellipses.

5603 The umbilici of the ellipsoid (see -)777) are the points

whose coordinates are

V u—r ^ tr—e"

Proof.—The points of intersection of the planes (56' >1) and the ellipsoid

(5600) on the xz plane are given by x = =b a * / ''.,
.„

2' = ± c \ —
r,

•

Since, by (5602) the vanishing circular sections are at the points in the xs

plane conjugate to x and 2', we have, by (4352), x = -/, z = x .
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5604 If a = h, in (5600), the figure becomes a spheroid, and
every plane parallel to tij makes a circular section. Hence
the spheroid is a surface of revolution. It is called prolate

or oblate according as the ellipse is made to revolve about its

major or minor axis.

THE HYPERBOLOID.

5605 The equation of a one-fold hyperboloid referred to its

principal axes is

£1_|-J^_4 = 1. (Fig. 173)
(t fr cr

5606 The planes of circular section, when ayhyr, are all

parallel to one or other of the planes whose equations are

Proof.—As in (5(501), putting r = a.

5607 The generating lines of this surface belong to two
parallel systems (i.) and (ii.) beloAV, with all values of 9.

5608

^= cos^+ — sin ^/ — = cos^— — sin ^
/

4- = sill ^- - cos ^ \
4-= sill 6-^ — cos e

b ^ ) ^ f'

For the coordinates which satisfy either pair of equations,

(i.) or (ii.), satisfy also the equation of the surface. The
equations may also be put in the forms

5610
.1 — rt cos Q _ ij— h sin Q

a sin
~~

5612 If ?-' = 0, 33 = (/. cos 9 and //
= h sin 9. Hence 9 is

the eccentric angle of the point in wliich the lines (i.) and (ii.)

intersect in the ;/'^ plane.

5613 Any two generating lines of opposite systems intersect,

but no two of the same system do.
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5614 If two genei-ating lines of opposite systems be drawn
through the two points in the principal elliptic section whose
eccentric angles are 0-\-a, d—a, a being constant, the coordi-

nates of the point of intersection will be

ii = a cos 6 sec a, ?/ = b sin 6 sec a, z = ^c tan a,

and the locus of the point, as 9 varies, will be the ellipse

5615 -,-^+j-^=l; z = ±ciaua.
(r sec^ a o- sec" a

Pkoof.—From (i.) and (ii.), patting 6±o for 6*

5616 The asymptotic cone is the surface given in (5595).

Proof.—Any plane through the z axis whose equation is ?/ = mx cuts the

hyperboloid and this cone in an hyperbola and its asymptotes respectively.

5617 The equation of a two-fold hyperboloid is

il_|l_4 = l. (Fig. 174)
a^ ¥ c^

and the equation of its asymptotic cone is

5618 4-€--4 = 0.
a^ ¥ c^

Pkoof.—Any plane thi'ough the x axis, whose equation is y = mz, cuts
the hyperboloid and this cone in an hyperbola and its asymptotes respec-
tively.

There are two surfaces, one the image of the other with regard to the
plane of yz. One only of these is shown in the diagram.

5619 The planes of circular section when & is > c are all

parallel to one or other of the planes whose joint equation is

Pkoof.—As in (5G01), putting r- = —h'-.

5620 If ?> = '", the figure becomes an hyperboloid of revo-

lution.

THP] PARABOLOID.

5621 Tliis surface is generated by a parabola which moves
with its vertex always on another parabola ; the axes of the
two curves being parallel and their planes at right angles.

* The surface of a oiic-fold hyporboloid, as generated by right lines, may frequently be
seen in the foot-stool or work-basket constructed entirely of straight rods of cane or wicker.
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The paraboloid is cUipfic or hyperholw according as the

axes of tlie two parabolas extend in the same or opposite

directions.

5622 The equation of the elliptic paraboloid is

h c

h and c being the Jatera recta of the two parabolas.

Proof : QM' = h.OM; FN' = c.QN; .-. ^^ +^ = 0M-\- QN=x.
h c

li h = c, the figure becomes the paraholold of revolution.

K-^^ = .v, (Fig. 175)

5623 Similarly the equation of the hyperbolic paraboloid iIS

^_-^ = .l-. (Fig. 176)*

5624 The equations of the generating Unes of this surface

are JL±-l- = m and -1^^-^ = —

,

the upper signs giving one system of generators and the lower
signs another system.

5625 The equations of the asymptotic planes are

CENTRAL QUADEIC SURFACE.

TANGENT AND DIAMETRAL PLANES.

5626 Taking the equation of a central quadric %,-\-j7,-\- -,,

ar Ir c.

= 1 to include both the ellipsoid and the two hyperboloids

* The curvature of this sui-face is antklastlc, a sort of curvature, which may be seen in
the saddle of a mountain ; for instance, on the smooth sward of some parts of the
Malvern HUls, Worcestershire,



766 SOLID GEOMETRY.

according to the signs of li' and (r, the equation of tlie tangent

l^lane at xy:: is

By (r.G79).

5627 If 2^ be the length of the perpendicular from the origin

upon the tangent plane at xijz,

p'
"

a'
"^

b'
"^

c'

'

Proof.—From (5549) applied to (5G2G).

5628 The length of the perpendicular let fall from any
point ^1)1 upon the tangent plane at xi/?: is

(5554 & 5027)

5629 Direction cosines of the normal of the tangent plane

, 7 P'^' PV P^at xyz, I = ^—, m = -^, n = ^.
a^ b^ c-

Proof.—By (5548) applied to (562G) and the value in (5G27).

5630 If ^ '''ij *i are the direction cosines of j),

J)
=z Iv+ i)K/ 4- n^ and jr = irP -f b^))r-^c-}i^.

Proof.— (5GoO) By projecting- the three coordinates x, y, z upon p.

(5631) By substituting the values of ^, y, z, obtained from (5G20), in

(5G30).

5632 The equation of tlie normal at xi/z is

(f-^)-2l=(,-,y)-^=(^-^)f,
lL If <v

since the dir-cos. are tlie same as those of tlie tangent plane

at (5626).

5633 Each term of the above equations

or
J)

niuU i[)lied into the length of the normal.
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Proof.—Each term squared = (LJEI! = ilLJll = iL^.
£1 yl ii
a' b* c*

Add numerators and denominators, and employ (5627).

5634 Equation (5681) is the condition that the plane

h-\-my-\-nz = 2) may touch the conicoid ; and if j; = 0, we
have for the condition of the plane lx-\-iiii/-\-nz = touching

the cone ^^^ + t^ + ^ = 0,
cr Ir c^

5635 «-/-+6-m'+r/r = 0.

5636 The section of the quadric made by a diametral plane

conjugate to the diameter through the point ,rp has for its

equation ^ 4.M_^^ = (). By (5688).
^

(r Ir c

5637 Hence the relation betAveen the direction cosines of

two conjugate diameters is

It mm nn __ ^
cr b^ c'^

ECCENTRIC VALUES OF THE COORDINATES.

5638 These are defined to be

,r = «X, ?/ = bjj., z = cv, with \--}-ijl--\-v~ = 1.

5640 ^, i^h V are the dir-cos. of a line called the eccentric

line; and ^ = r\, rj = tjh, l=rv are the coordinates of the

corresponding point upon an auxiliary sphere of radius r.

5641 The eccentric lines of two conjugate semi-diameters

are at right angles. By (563 7).

5642 The sum of the squares of three conjugate semi-

diameters is constant and = a'^ -{-
b''

-\-
c'\

Proof.— Let a', h', o be tbe semi-diameters, and
.('i.'/,^i, ^hVi^i^ ^H-.i^z their

extremities. Put the eccentric values in the equations ^'^\'^y\'^^\ = ^'i <^^->

and add. By (5641), Aj + X'^ + X', == 1, &c.
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5643 Tlie sum of the squares of the reciprocals of the same
is also constant.

Proof.—Put 9\ cos a^, i\ cos ft^, r, cos yj for x^, y^, z^ in the equation of the
quadric. So for x^, y^, z^ and ajj, //g, z.^. Divide by r,, r.,, r^, and add the results.

5644 The sum of squares of reciprocals of perpendiculars
on three conjugate tangent planes is constant.

Proof.—For each perpendicular take (5G27), and substitute the eccentric

values as in (5642).

5645 The sum of the squares of the areas of three con-
jugate parallelograms is constant.

Proof.—By the constant volume of the parallelepiped v^A, = p.,A., = r\A.,

(5648) and by (56M).
l

1
i'l i 7 . .

ia s,

5646 The sum of the squares of the projections of three
conjugate semi-diameters upon a fixed line or plane is

constant.

Proof.—With the same notation as in (5642), let (Inin) be the given line.

Substitute the eccentric values (5638) in {lx^-\-mii^-\-nzJ-+{lx.-\-mD.^-\-Hz.,)'-

+ (?«'3 + "'//3 + "^a)'- In the case of the plane we shall have

a"'—{h\ + mij-^ + ?(^i)' + &c.

5647 CoK.— The extremities of three conjugate semi-

diameters being x^y-^z^,
'^•iV-^-i^ ^'zil-ihy it follows that, hy pro-

jecting upon each axis in turn,

•^•i+'* 2+^*3 = «'
' y\+iil^Hl = ^'

' -i+-2+-3 = ^''•

5648 The parallelopiped contained by three conjugate semi-

diameters is of constant volume = abc.

Pkoof.—By (5508), the volume = .\\ y^ -j I
= abc

\ \ yu, v^

\

A y. ^. '

\ K F-: ".

•*'»
'Ji ~3 I \ A'a ''3

by the eccentric values (5638). But the last determinant =1 by
(584, I.).

5649 Cor.—If a, //, c' are the semi-conjugate diameters,
w the angle between a and h\ and ^^ the perpendicular from
the origin upon the tangent plane parallel to (f'h', the volume
of the parallelopiped is ^>a'/^' sin w = dhr.
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5650 Hence tlie area of a central section in the plane of ab'

/,/ . abc= tra b sin co = tt .

5651 Quadratic for the semi-axis of a central section of the

quadric ^ +
"/-i
+ "i = 1 made by the plane lx-\-my-{-nz = :

crP b'nr

a^—r^ 6-— r- c'—

r

.4-
cw

Proof. — The equation is the condition, by (5G35), that the plane

Ix + rny -tnz = may tonch the cone

as in the Proof of (5600). For another method, see (1863).

a—

b-1- f = 0.

c ~ n

5652 When the equation of the quadric is presented in the

form
(Lv'-}-bi/'-]-c^'-{-2fi/::^+2g-z.v+2Juvi/ = 1,

the quadratic for r takes 1

the form of the determi-

nant equation annexed.

Or, by expanding, and

writing A' for the same
determinant, with the ^ J

fraction — erased, the / m

equation becomes

^'r^j^ [{j)j^c)l'-\-{c-^u)m--^(a-^b)ir-2fmn-2^nl-2ldm] 1-

—f— m'^— w'^ = 0.

Pi^OOF.— The equation of the cone of intersection of the sphere and

quadric now becomes

and the condition of touching (5700) produces the determinant equation.

5 F
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5654 To find the axes of a non-central section of the

quadric ~ -[- ^- + ^ = 1.
a- b- c^

Let PNQ (Fig. 177) be the cutting plane. Take a parallel

central section BOG, axes OB, OG, and draw NP, NQ parallel

to them. These will be the axes of the section PNQ, and NQ
will be found from the equation v^^,, + ^^^~ = 1.

^ OA- OC-

5655 The area of the same section

ibcTrabc ( i _p''\

where j^' and p are the perpendiculars from upon the cutting-

plane and the parallel tangent plane.

Proof.—The area = ttNP.NQ = tt^.OB.OG

= - (l-^ OB. 00 = "^ (l- ^,^)' by (5650).

SPHERO-CONICS.

Def.—A splicro-conic is the curve of intersection of the

surface of a sphere with any conical surface of the second
degree whose vertex is the centre of the sphere.

Properties of cones of the second degree may be investi-

gated by sphero-conics, and are analogous to the properties

of conies.

A collection of fonnulaj will be found at page 562 of Roath's Rigid
Dynamics, 3rd edition.

CONFOCAL QUADRICS.

5656 Deitnition.—The two quadrics wliose equations are

^ + |;+ |: = l and -^+JL^ +^^1,
are confocal. We shall assume a>by r.

5657 As X decreases from being large and positive, the
third axis of the confocal ellipsoid diminishes relatively to the
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others until X = —c^, wlien the surface merges into the

focal elHpse on the xy plane,

b'-c^

X still diminishing, a series of one-fold hyperboloids appear

until X = —li\ when the surface coincides with the focal

hyperbola on the zx plane,

r^. = 1.
.2 A2b' Ir-(r

The surface afterwards developes into a series of two-fold

hyperboloids until \ = —a\ when it becomes an imaginary

focal ellipse on tlie yz plane.

5658 Through any point xyz three confocal quadrics can be

drawn according to the three values of X furnished by the

second equation in (5656). That equation, cleared of frac-

tions, becomes

5659 \^^{a'^b'+c'-.v''-jf-^') \'

-\-a-b-c---b-r.i''—c-a^f/— a'b-z^ = 0.

These three confocals are respectively an ellipsoid, a one-

fold hyperboloid, and a two-fold hyperboloid. See Figure

(178); P is the point xyz; the lines of intersection of the

ellipsoid with the two hyperboloids are DFE and FPG, and

the two hyperboloids themselves intersect in HPK.

Proof.— Substitute for X successively in (5659) a', b', c\ — cc ; and the

left member of the equation will be found to take the signs + , — , + ,
—

accordingly. Consequently there are real roots between cr and l'-, Ir and r,

G' and —00 .

5660 Two confocal quadrics of different species cut each

other everywhere at right angles.

Proof.—Let a,h,G; a', l/, c be the semi-axes of the two quadrics ;
then,

at the line of intersection of the surfaces, we shall have
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"which, since a"'— d- = I/'— h' := c'— cr = X, becomes the condition of per-

pendicu^larity of the normals by the values in (5629). Thus, in (Fig. 178),

the tangents at P to the three lines of intersection of the surfaces are

mutually at right angles.

5661 If P be the point of intersection of three quadrics

aJ)^Ci, ajjx.,, a.Jj.^c^ confocal with the quaclric abc ; the squares

of the semi-axes, rfg, d^, of the diametral section conjugate to

P in the first quadric are (considering a^ > a.2 > a.^, and writing

the suffixes in circular order)
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2 2 2 1.2 72 I 2

2 __ «1<<2% 2 _ O1O2O3

2 2 2

^1^203

- («;_ci)(6?-eD'

The denominators may be in terms of any of tlie confocals

since a\—hl = cC—K = cil— ^35 &c.

Proof.—The equation of a coufocal may be written ~ H—^f

—

— +

= 1, producing a cubic in or, the product of whose roots a-, a'-, «- g'ives £'

5663 The perpendiculars from the origin upon the tangent

planes of the three confocal quadrics being jj^, jJo, J)^ :

2722 27 2 2

«lt>i^l 2 _ (l-lOiC^i

IK = /..2 J^ J .,2^ » P
{al-al){al-aiy ^

(«J-«^)(«^-«5)'

Pi

27.2 2

Proof.—By (5649), 2hd->dz = aibiC^ ; then by the values in (5661).

RECIPROCAL AND ENVELOPING CONES.

5664 Def.—A right line drawn through a fixed point always

perpendicular to the tangent plane of a cone generates the

reciprocal cone.

The enveloping cone of a quadric is the locus of all

tangents to the surface which pass through a fixed point

called the vertex.

5665 The equations of a cone and its reciprocal are respec-

tively

.Ar=+%=+6V = (i.), and i^ +l +^ = (ii.).

Proof.—The equations of the tangent plane of (i.) at any point xyz, and
of the perpendicular to it from the origin, are

Axl+ Byn + Cz^ = (iii.), and £ =^ =
J-

(iy.).

Eliminate x, y, z between (i.), (iii.)) ^^(^ (iv.)-

5667 The reciprocals of confocal cones are concyclic ; that
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is, liave the same circular section ; and the reciprocals of con-

cjclic cones are confocal.

Proof.—A series of concyclic cones is given by

A:e'+ By-+ Cz'+ \{x'+ if+ r') =
by varying X ; and the recipi'ocal cone is

5668 The reciprocals of the enveloping cones of the series

of confocal quadrics / ^ + ,./ ^
-\- ^^ = 1 , with /)//? for

ft^+ A 6^+ A r+ A

the common vertex, P, of the cones, are given by the equation

Proof.—Let hnn be the direction of the perpendicular jj from the origin
upon the tangent plane drawn from F to the quadric. Equate the ordinary
value of j3^ at (5G31) with that found by projecting OP upon p ; thus

(a-+ X) I- + (Z>- -I- X) m- + (c-+ X) u' = (fl + gm + hn)-.

"Now p generates with vertex a cone similar and similarly situated to the
reciprocal cone with vertex P, and Z, m, n are proportional to .*, y, z, the
coordinates of any point on the former cone. Therefore, by transferring the
origin to P, the equation of the reciprocal cone is as stated.

5669 Cor.— These reciprocal cones are concyclic ; and
therefore the enveloping cones are confocal (5667).

5670 The reciprocal cones in (5668) are all coaxal.

Proof.—Transform the cone given by the terms in (.5068) without X to

its principal axes
; and its equation becomes Ax- + Pij''+Cz- = 0. Now, if

the whole equation, including terms in X, be f-o transformed, .(' + ?/' + ,r will

not be altered. Therefoi'e we shall obtain

(A + \)x'+(n + X)if + (C+ X);r = 0,

a series of coaxal cones.

5671 The axes of the enveloping cone are the three normals
to the three confocals passing through its vertex.

Proof.—The enveloping cone becomes the tangent plane at P for a con-

focal through P, and one axis in this case is the normal through P. Also
tliis axis is common to all the enveloping cones with the same vertex, by
(5670). But there are three confocals through P (5658), and therefore

three normals which must be the three axes of the enveloping cone.

5672 The equation of the enveloping cone of the quadric
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-f^ \- —^ \- — = 1 is, when transformed to its prm-
a'-\-\ h^+ X c^+ X

cipal axes,

x-Xi ' x-x, ' x-x, X' ' x'+^/:; x'+^/;

where X^, \,, Xg are the values of X for the three confocals

through P, the vertex, and cli, cl^ are the semi-axes of the

diametral section of P in the first confocal (5661).

Proof.—Transform equation (5G68) of the reciprocal of the enveloping

cone to its principal axes, as in (5G70). Let Xj, X.,, \ be the values o£ A

which make the quadric become in turn the three confocal quadrics through

P. Then the reciprocal (A+X) x'+(B + X) if + {G+ X) z^ = must become

a right line in each case because the enveloping cone becomes a plane.

Therefore one coefficient of x'', y^', or ,:'•' must vanish. Hence A + X^ = 0,

B i-X.^ = 0, (7+ X3 = 0. Therefore the reciprocal cone becomes

(x-x,) x'+(x-x.;) ,f+(x-x,) z' = 0,

and therefore the enveloping cone is

-^ + -jI--+ ""' =0.
X_\^^ \-X., x-x.

THE GENERAL EQUATION OF A QUADRIC.

5673 This equation will be referred to as f{x, y, ^) = or

U = Of and, Avritten in full, is

ax'+by^+cz^-{-2fi/z-{-2gzaj-\-2Jhvi/-\-22hv-\-2qi/-]-2rz-\-d = 0.

By introducing a fourth quasi variable ^ = I, the equation

may be put in the homogeneous form

5674 cLv'+btf-^cz'-{-dtv'-\-2fi/z+2gz.v-\-2h.vij

-\-2]Kvt+2qi/t-\-2rzt = 0,

abbreviated into

(a, b, c, d,f, g', h,j), q, rjcf, i/, z, f)- = 0,

as in (1620).

Transforming to an origin xyz and coordinate axes

parallel to the original ones, by substituting x -^^, //+ »?,
^'

-{-I

for X, y, and z, the equation becomes, by (1514),
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5675 fie'+br+d'+2f7iC+2^ii+mv

where U = f{x\ //', z) (omitting the accents).

5676 The quadratic for r, the intercept between the point
xyz and the quadric surface measured on a right line drawn
from xy':/ in the direction Imn, is

r^ (al'--^b})r-\- c}r-\-2fmn-\-2gnl-\-2hhn)

+ r {UJ,-Jr-mUy-\-nU,)-^U= 0.

Obtained by putting ^ = rl, n = rm^ I = rn in (5674).

5677 The tangents from any external point to a quadric are

proportional to the diameters parallel to them.

Proof.—From (5676), as in (1215) and (4317).

5678 The equation of the tangent plane at a point xijz on
the quadric is

(S-.V) t/,,.+(r,-//) u,Ml-~) V. =
5679 or ^ll+r,U,+Ca+TU, = 0,

with T and t made equal to unity after differentiating.

Proof.—From (5676). Since xyz is a point on tbe surface, one root of

the quadratic vanishes. In order that the line may now toucJi the surface,

the other root must also vanish; therefore lU^ +mU„+ 7ilL ^= 0. Put
rl = ^— x, rm = r]— i/, rn = '(—z; ^tji^ being now a variable point on the

line, and therefore on the tangent plane.

5680 Again, xU^ + yU,+ zU, + tU, = -lU, hy (l&2^^),

therefore x JJ^,+ y U,, + z F. = —tUf,

which establishes the second form (5679).

5681 Equation (5679) also represents tlio polar plane of

any point xjjz not Ij^ing on the quadric surface. Written in

full it l)ecomes

i (,u-\-hj/+ii'Z-{-p) or ,r {ai+hrj+ o-^-^p)

+17 (A.r+/>//+ /i+ ry) +// {^J^hr)+ ^fZ-^q)
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5683 That is, the forms

iU,+y]U^-]-CU,+ U=0 and .vU,-\-i/U^-JrzU,-{- U= d

are convertible, U standing for / (r, ?/, z) in the first, and for

/(^, V, t) in the second.

5685 The intersection of the polar planes of two points is

called the^oZar line of the points.

5686 The polar plane of the vertex is the plane of contact

of the tangent cone.

Proof.— If ^ijii be the vertex and xyz the point of contact, equation
(5683) is satisfied. If x, y, z be the variables and l,ii'C constant, the second
form of that equation shows that the points of contact all lie on the polar
plane of the point i,r]ii.

5687 Every line through the vertex is divided harmonically
by the quadric and the polar plane.

Proof.—In equation (5684) put x = i.+ Bl, y = r}-\-Bm, s = i^+Bn to

determine B, the distance from the vertex to the polar plane. This gives

B = —- — —
-, emplovinff (5680).

lU^+mU^ + nU^ t J to V ^

Now, if r, r' are the roots of the quadratic (5676), with |, tj, c, written for

X, y, z, it appears that ——- = E, which proves the theorem,
r+ r

5688 Every line {hnn) drawn through a point xyz parallel

to the polar plane of that point is bisected at the point, and
the condition of bisection is

Proof.—The equation is the condition for equal roots of opposite si^ns in

the quadratic (56/6). Since I, m, n are the dir. cos. of the line and U^, TJy,

U^ those of the normal of the polar plane (5683), the equation shows that

the line and the normal are at right angles (5532).

5689 The last, when x, y, z are the variables, is also the

equation of the diametral plane conjugate to the direction Imn.

Expanded it becomes

{al-\-hm-\-gn) d'-\-{hl-\-bm-\-J)i) ij-\-{gl-\-fm-\-cn) z

•\-l)l-\-qm-\-rn = 0.

5 G
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For the point xyz moves, when x, //, z are variable, so that every diameter
di'awn through it parallel to hnn is bisected by it, and the locus is, by the

form of the equation, a plane.

If the origin be at the centre of the quadric, p, q, and r of course vanish.

5690 The coordinates of tlie centre of the general quadric

U=0 (5673) are

A' A' A'

2^' " 2A- = 2i'
'^^

Proof.—Every line through xyz, the centre, is bisected by it. The condi-

tion for this, in (5688), is Uj.= 0, Uy= 0, and Z7, = 0, in order to be inde-

pendent of Inm. The three equations in full are

h g pax+ Jiy + gz-\-p =
hx+hy+fz+ q =
gx+fy + cz + r =

Solve by (582).

and A'
h h f q

g f r

p q r d
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the squares of the axes of the quadric surface. Let the central equation of

the surface be ^ + ^ + ^ = 1. Therefore \ = — ^, &c., producing
a- b' c- a- A ^ °

the equation above.

5694 The equations of the new axis of x referred to the old

axes of ^5 Vi t are

(i^+a/) .V = (G+ao-) ,/ = {H-\-ah)z;

and similar equations with j3 and y for the y and z axes.

Proof.—When Imn, in (5689), is a principal diameter of the quadric, the
diametral plane becomes perpendicular to it, and therefore the coefficients of
X, y, z must be proportional to I, m, n. Putting them equal to El, Em, En
respectively, we have the equations

(a—B)l+ hm + gn = (1)"^ The eliminant of these equations is

hl+(b—B)m+fn = (2) / . the discriminating cubic in E al-

gl+fm-{- (c—B) n = (3) ) ready obtained in (5693).

From (1) and (2), I: m = hf-g (h-E) : gh-f(a-E),
and from (2) and (3), m : n =fg— h(c— E) : hf—g (b— E)

;

therefore (gh-af+Ef) I = (hf-bg + Eg) m = (fg-ch+Eh) n,

which establish the equations, since x : y : z = I : m : n and F = gh— af,

&c., as in (4665).

5695 The direction cosines of the axes of the quadric.

If the discriminating cubic be denoted by </> (E) = 0, and
its roots by a, |3, y ; the direction cosines of the first axis are

JZiM, jZAM, JZES
For the second and third axes write /3 and y in the place of a.

Proof.—Let F+af=L, G+ ag = M, H+ah = N (i.),

(a— b)(a— c)—f- = \, (a — G)(a — a) — g'- = fx, (a— a)(a — b) — li' = v...(ii.).

Then the equation (a) = may be put in either of the forms

L- = fiv, M^ = i>\, N' = Xfi (iii.).

Now the dir. cos. of the first axis are, by (5694), proportional to

Their values are, therefore,

y^ ^/u y^'

^{X+ ^ + rY y(\+ /i+v)' ^{X+ fx + ry

But X =_^iM and X+ M + v = ^^'^fr\ by actual diflFerentiation of the
da da

cubic in (5693).
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5696 Cauchy's proof that the roots of the discriminating cubic (5693)
ai'e all real will be found at (1850).

5697 The equation of the enveloping cone, vertex cri/z, of

the general quadric surface U =0 (5673) is

4 {abcfghXlmnfU = {lU,-{-mU,-]-nU,y\

-ttdth ^—x, v — y, ^— ^ substituted for /, m, 7i.

Proof.—The generating line through xijz moves so as to touch the

quadric. Hence the quadratic in r (5676) must have equal roots. The equa-
tion admits of some reduction.

5698 When U takes the form aa^-\-hi/-\-cz^^ = 1, equation

(5697) becomes

{aP-\-btn^-{-cn^){a.v--{-bif-^cz-— l) = (aLv-\-bmi/-\-cnzy.

5699 The condition that the general quadric equation may-

represent a cone is A'=0; that is, the discriminant of the

quaternary quadric, (5674) or (1644), must vanish.

Proof.—By (5692). Otherwise A' = is the eliminant of the four

equations ?7^ = 0, Z7j, = 0, U, = 0, U = 0, the condition that equation

(6675) may represent a cone.

5700 The condition that the plane
h-\-my-\-nz = may touch the cone
{ahcf(jli^:ciiz)'^ = is the determinant
equation on the right.

a
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5702 If the origin is at tlie centre, 2) = q = r = 0. In that

case, transposing tlie last two rows and last two columns, the

determinant becomes

a
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RULES FOR RECIPROCATING.

5705 ^ ijlane becomes a jjoint.

5706 ^ plane at infinity becomes the origin.

5707 Several ijoints on a straight line become as many 'planes

passing through another straight line. These lines are called

reciprocal lines.

5708 Points lying on a plane become planes passing through

a pointy the pole of the plane.

5709 Points lying on a surface become ptlanes enveloping the

reciprocal surface.

5710 Therefore, by rules (5708) and (5709), the points in

the intersection of the plane and a surface become planes

passing through the pole of the jjlane and enveloped both by

the reciprocal surface and by its tangent cone.

5711 When the intersecting plane is at infinity, the vertex

of the tangent cone is the origin.

5712 Therefore the asymptotic cone of any surface is

orthogonal to the tangent cone drawn from the origin to the

reciprocal surface. The cones are therefore reciprocal.

5713 The reciprocal surface of the guadric is a hyperboloid,

an ellipsoid, or a paraboloid, according as the origin is without,

within, or upon the quadric surface.

5714 The angle subtended at the origin by ttoo points is equal

to the angle between their corresponding planes.

5715 The reciprocal of a sphere is a surface of revolution of

the second order.

5716 The shortest distance betweeit two reciprocal lines

passes through the origin.

5717 The reciprocal surface of the general quadric

{abcdfghpqr\xy::\y = (5074), the auxiliary sphere being

x^+ y'^+ z^ = Jr, is

= 0,

a
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Proof.—The polar plane of the point hjC with respect to the sphere is

^.T+ r/^ + 4z— A;^ = 0. This must touch the given surface, and the condition is

given in (5701).

5718 The reciprocal surface of the central quadric

^- + ^-f—=1, when the origin of reciprocation is the
o?' Ir c^

point xy'z , is

or, with the origin at the centre,

5719 «^f+6V+cT = A^'.

Proof.—Let _p be the perpendicular from x'y'z' upon a tangent plane of

the quadric, and ^ril the point where p produced, intersects the reciprocal

sui'face at a distance p from x'y'z' . Then

lY^=p = W + my'+ nz - ^(aH'+ h\v+ c'w^). (5030)

Multiplying by p produces the desired equation.

THEOEY OF TORTUOUS CUEVES.

5721 Definitions.—The osculating plane at any point of a

curve of double curvature, or tortuous ciirve,^ is the plane

containing either two consecutive tangents or three consecu-

tive points.

5722 The princiiml normal is the normal in the osculating

plane. The radius of circular curvature coincides with this

normal in direction.

5723 The binomial is the normal perpendicular both to the

tangent and principal normal at the point.

5724 The osculating circle is the circle of curvature in the

osculating plane, and its centre, which is the centre of circular

curvature, is the point in which the osculating plane intersects

two consecutive normal planes of the curve.

5725 The angle of contingence, d^, is the angle between two

consecutive tangents or principal normals. The angle of torsion,

cIt, is the angle between two consecutive osculating planes.

* otherwise named " space curve."
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5726 The rcdifiiing plane at any point on the curve is per-

pendicular to the principal normal ; and the intersection of

two consecutive rectifying planes is the rectifying line and
axis of the osculating cone.

5727 The osculating cone is a circular cone touching three

consecutive osculating planes and having its vertex at their

point of intersection.

The rectifying developable is the envelope of the rectifying

planes, and is so named because the curve, being a geodesic

on this surface, would become a straight line if the surface

were developed into a plane.

'&

5728 The polar developable is the envelope of the normal
planes, being the locus of the line of intersection of two con-

secutive normal planes. Three consecutive normal jjlanes

intersect in a point which is the centre of spherical curvature :

for a sphere having that centre may be described passing-

through four consecutive points of the curve.

5729 The edge of regression is the locus of the centre of

spherical curvature.

5730 The rectifying surface is the surface of centres (5773)

of the polar developable.

5731 An evolute of a curve is a geodesic line on the polar

developable. It is the line in which a free string would lie if

stretched between two points, one on the curve and one any-

where on the smooth surface of the polar developable.

5732 In Figure (180) A, A', A", A'" are consecutive points on a curve.

The normal planes drawn through A and A' intersect in GE ; those thruugli

A' and A" in G'E', and those through A" and A'" in G"E". GE meets G'E'

in E, and G'E' meets G"E" iu E'. The principal normals in tlie normal
planes are AG, A'G', A"G", and these are also the radii of curvature at

A, A', A", while G, G', G" are the centres of curvature. Z. AGA' = dij/ and

CA'G' =dT.
The surface EGG'G"E' is the polar developable, GG'G" being the locus

of the centres of curvature, and EE'E" is the edge of regression.

EA is tiie radius and E the centre of spherical curvatui-e for the point

A. hll, nil', WW are elemental choi-ds of an evolute of the curve, AhS
being a normal at A, and A'lIW a normal at A' , and so on. The first

normal drawn is arbitrary, but it determines the position of all the rest.
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PROPERTIES OF A TORTUOUS CURVE.

5733 The equation of tlie osculating plane at a point xyz on

the curve is

(f_,,)X+(,-y)^i+«-~)^ = 0.

5734 ^, f-h V are the direction cosines of the binorrual, and

their complete values are

5735 The angle of contingence

Proof.—Let the direction of a tangent be Imn, and that of a consecutive

tangent l+ dl, ni+ dm, n + dn. Since the normal of the plane must be per-

pendicular to both these lines, we shall have, by (5532),

l\+ vifx + nv = () and {l-\-dl)\ + (m + dm) fx + (n + dn) v = 0,

therefore \ :
fj.

: v = mdn— ndm : ndl—ldn '. Idm—mdl,

and the denominator in the complete values of A, n, v is

^/{(?)uZn — ?itZHi)^ + &c.] = sinfZt/',

by (5521) ; that is, = c?i//. Also ?, m, n = a-,, y^, z^ and dl = x.>sds, &c.

Therefore X = {y^z.^-y^uZs)-—- Similarly, /tx and »/; and s^ — p, by (5146).

5736 The radius of curvature /o at a point xyz.

1 _ ^2 . ^,2 , .2 _ -i.+^2.+4-4
P ^t

Proof : d^p = ^{(ysh-y-zs^.Y-^- &c.} ds, in (5735),

therefore i^, = ^ {
(x]+ yl+ zl) (x^+ y^+ z^) - (x^x.,+ y.y.,,+ z,Zo,y

]

= V'(a^L + 2/L +4) 5
^^^<^® ^s + y' + ^s = 1 5

and differentiating this equation makes XgX2s + &'0. = 0.

Otherwise, geometrically, precisely as in the proof of (5141), we find the

direction cosines of the principal normal to be

5737 cos a = pd\„ COS ^ = pifisy COS y = px^^-

Therefore p"' (a-'-^+ y^s+ 'D — cos^ a + cos^ )S + cos" y = 1.

The change to the independent variable t is made by (1762).

5738 The angle of torsion, in terms of A, ^t, v of (5734), is

5 H
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Proof.—By (5745), we have (dry = {dxy + idfiy+ichy (i.),

which gives the first form. The third reduces to this by the method in

(5736). For the secoad form put u — ygZ^^— yisZ,, &c., then

\ i_i V 1 ds ,f,y.r),\ ^^ dii udK „-=- = — = -p = 77 (5/'34), d\ =— ----, &c.

Substitute in (i.), reducing by K' = ii/ + v"-\-io- and KdK — udu + vdv + wdio.

CURVATURE AND TORTUOSITY.

5739 Radius of curv., p = -^; CurYature = — = ^.
^ dxjj p (Is

Radius of torsion, <r = ^; Tortuosity = — = -^.
(It cr (Is

If Tg changes sign while passing through the values

zero or infinity, there is a point of inflected torsion or

a cuspidal 2')oint, respeGtivelj. If t^, without changing sign,

passes through zero or infinity, there is a point of suspended

torsion or infinite torsion respectively.

If Tg is zero, identically, the curve is plane.

5740 The radius of spherical curvature,

R = Vip'^Pr)'

Proof.—In Fig. (180) B'^ = p- + EG'^ and EC = Pt by analogy with q=i>^
n a plane curve (see proof of 5147).

5741 T^he element of arc of the locus of centres of circular

curvature is

ds = RdT, and therefore R = s'^.

Proof.—In Fig. (180) ds = CG' = pdr sec<p = Edr.

5742 The radius of curvature of the edge of regression

= S': = RR, = p+p, ,

S'' being the arc of the edge of regression.

Proof.—An inspection of Figure (180) shows that R and p stand in the

same relation to the edge of regression that r and p occupy with regard to a

curve in the standard formula. In fact we may .substitute li for r, p for p,
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(p for 0, T for i(/, and <p remains (p. Tlie chosen line of reference AB being
always parallel to the tangent EC, then AEC = BAE = <p. Also the angle
of contingence CEC = GAC = dr, by the right angles at C and C. Ac-
cordingly, we have the formula p = s^ = r7'p=p+2h^ from (5146-8), and the

values above corresponding to them.

5743 ^ method of estimating the variation in direction of a

right line ivhose position is given as de'pending upon the form
of a tortuous curve at every point.

Let X, y, % be tlie direction cosines of tlie line referred to a

fixed principal normal, tangent, and binormal of the curve

[«;, y, % may either be constants with respect to the varying
principal normal, tangent, and binormal, or they may be func-

tions of the angle between the binormal and the spherical

radius]

.

5744 The complete changes in x, y, r^, with respect to the

fixed origin and axes, will be

S/y = dif—xdxjj,

S:^ = dz-\-xdT.

Peoof.—In Figure (180) AC, AB are the fixed axes of a; and z. Let a

line AL of unit length be drawn always parallel to the line in question ; then,

if X, y, z be the coordinates of L, x, y, z will also be the direction cosines of

AL, and therefore of the given line.

Now, suppose A to move to A', and consequently AL to take the position

A'L' . Then the changes in x, y, z will be the changes dx, dy, dz relatively to

the moving axes, plus the changes due to the rotations dxj; round the

binormal and dr round the tangent. With the usual notation, we shall have

^x = dx + w^z— Wj?/, hj = dy + w^x— w^z, cz = dz + w^y— u).^x,

with Wj = 0, w., = —dr, Wj = —d\j/.

5745 If (^x ^® ^^® angular change in the direction of the

right line.

For dx = LL' since AL is a unit length.

Examples.

5746 The angle between two consecutive radii of circular

{d.y = (d^y+Ciry.
curvature being de
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Proof.—Here, in (5744), a' = 1, ?/ = 0, z = 0, therefore Sx = 0, cy z=—d\p,

Sz = dr. Substitute these values in (5745).

5747 The angle, dv, between two consecutive radii of

spherical curvature, ^ being the inclination to the binormal,

(d-qY = (dxlt.smct>Y-\-(d(l>-dTy:

Proof.—In (5744) the direction cosines of R (Fig. 180) are x = sin (p,

y = 0, z = cos (p,

therefore ^x = cos f (dijt — dr), Sy = —dij/ sin f, cz = — sin^ (dcp — dr).

Substitute in (5745).

5748 The angle of contingence of the locus of the centres

of circular curvature,

Proof.—The dir. cos. of the tangent at G to the locus (Fig. 177) are

X = cos 0, y = 0, 2 = sin
(f) ;

therefore ^x = — sin ^ (df + dr), Sy = —d\p cos (p, ^z = cos (df + dr).

Substitute in (5745).

5749 The osculating plane of the same curve has its

direction cosines in the ratios

dxb . , 1 / d(b , dr \ dxb ., ,—^ sill 6 cos (p : —( —-^ _L—— : x cos-^ 6.

(h \^iX dx' dx

Proof.—As in the Proof of (5735), the dir. cos. of the normal to this

plane are proportional to ijlz— z^y., zLv—xSz, xcy— ycx. Substitute the

values in last proof.

5750 The angle of torsion of the same curve is found from
(5745) and (5744) as above, x, t/, z being in this case the dir.

cos. of the normal of the osculating plane as given in (5749).

5751 The direction cosines of the rectifying line are

^. dr dijj

' ^' lu-

Proof.—The rectifying plane at A' (Fig. 180) is perpendicular to the

noi'mal A'G'. Therefore its equation is .r — yd{j/+ zdr ^= 0. Th(^ ultimate

intersection of this plane with the rectifying plane at A (that is, the plane

of yz) is the rectifying line. Hence the equation of the latter is yd\p = zdr
;

and the dir. cosines reduce to the above by (574G).
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5752 Cor.—Tlie vertical angle of the osculating cone

= 2 tan-' '4*.
(IT

5753 The angle of torsion of the involute of the curve is

Proof.—This angle is also the angle between two consecutive rectifying

lines. Therefore, taking the dir. cosines from (5751), we must put in (5744)

-^ de' de
'

therefore dx = ^-^ dib—^ dr = ; Ey = r^de • h = \}j.,Ae.
de de '' ^e

'
^ -^

5754 The angle of torsion of an evolute of the curve

= d\lf siu (a— r).

Peoof.— (Fig. 180.) Let ER'H" be an evolute of the curve, AE the
tangent to it in the normal plane of the original curve at A, and let a = GAE,
the inclination of AE to the principal normal. At any other point E" of

the evolute, where its tangent is A"E'E", let the corresponding angle be
= G"A"S". Then = a— r, r being the sum of the angles of torsion

between A and A", or the total amount of twist of the osculating plane. Now
the normal of the osculating plane of the evolute at E",is perpendicular to

EE' and E'E", two consecutive tangents. Therefore its dir. cosines in

(5744) must be

a; = — sin (o— -), y = 0, z = cos (a— r) ;

therefore ^x = cos (a— r) dr + — cos (a — r) dr = 0,

hj = sin (a— r) d\p ; cz = sin (a— r) fZr— sin (a - r) dr = 0.

Hence the angle required =: cy = dij/ sin (a— r).

5755 Approximate values of the coordinates of a point on a

tortuous curve near to the origin in terms of the arc, the axes

of X, y, z being the principal normal, tangent, and binormal,

and the arc s being measured from the origin

:

6/0^ 8/0^ hpa z4\/oo- pa/

p and <y being respectively the radii of circular curvature and
torsion.
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Proof.—By Taylor's theorem (1500), since x, y, z, s are the same as

dx, cly, dz, ds initially, we have x = x^-\-\x2aS- + \x3gS^+ &c., and similar ex-

pansions for y and z. The dir. cosines of the principal normal at the point

xyz will be, from (5737),

cos ( - vp) = p.'-o,, cos
^^ + «//

j = py.„ cos
(I
- 7 ] = pz,,,

;

»// = cZi/' and t = dr being estimated positive as drawn in Figure (180) for

positive values of x, y, z.

Differentiate these equations for s, and iu the results put the initial values

a\ = Zg = 0, ys= '^, \p = T = 0, i(/^, = —, r, = — , &c.,

p '^

to determine the derivatives in the above expansions.

THE HELIX.

5756 Tlie lielix is a curve traced on a c^^lincler of radius a,

so that its tangent preserves a constant inclination, = Itt— a,

to the axis. Taking the axis of the cylinder for the z axis of

coordinates, the equations of the helix are

jr = a cos 6, y = a sin 6, js = ad tau a.

5757 The radius of curvature p = a sec^a.

5758 The radius of torsion a = 2a cosec 2a.

Proof.—p from (5806) ; since pj = a, p^ = x , and 6 = a at every point.

By (5739), a = s^. But dz = dssiua and adr ^ dz cos a.

5759 The helix of closest contact with a given curve may
be found as follows.

Determine the constants a and a from equations (5757-8), with the

known values of p and a for the given curve ; then place tlie lielix to have a
common tangent with the curve at the point, and make the osculating planes

coincide.

GENERAL THEORY OF SURFACES.

5770 Definitions.—A tangent plane passes through three

consecutive points on a surface which are not in the same
right line.

5771 The nonna.J at any point of a surface is perpendicular

to the tangent plane.
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5772 A normal plane is any plane through the normal.

5773 A line of curvature on a surface is a line along which
consecutive normals to the surface intersect. At every point

of a surface there are usually two lines of curvature at right

angles to each other ; and to these correspond two principal

radii of curvature. The two lines of curvature coincide with
the principal axes of the indicatrix at the point. See (5778).

5774 The surface of centres is the locus of the centres

of principal curvature. There are two such surfaces, for

there are two centres on each normal, and the normal is a

tangent to both surfaces. Either surface may be regarded as

generated by the evolutes of the lines of principal curvature.

5775 A geodesic is a line traced on a surface along which
the osculating plane at every point contains the normal to

the surface. See (5779).

5776 The radius of geodesic curvature * of a curve traced

on a surface is measured by the ratio of the element of arc of

the curve to the angle between consecutive normal sections

of the surface drawn through consecutive tangents of the

curve. Geodesic curvature, being the reciprocal of this, is

therefore the rate of angular deviation of the normal section

per unit length of the curve.

5777 An umhiUcus is a point on a surface where a section

parallel to and close to the tangent plane is a circle ; in other

words, the indicatrix is a circle.

For a definition of Indicatrix, see (5795).

5778 In Figure (182) OCT) is the normal at to a curved surface;

AOA', BOB' are the lines of curvature, therefore the normals to the surface

at J. and intersect in the centre of curvature radius pi (5773), and the

normals at B and 0, in the centre, radius pi. The normals to the line of

curvature BOB' at B and 0, drawn in the osculating plane BOB', intersect in

K, and those at B' and intersect in H. HOD is the angle between the

osculating plane of the line of curvature and the plane of normal section.

Similarly for the line of curvature AOA'.

5779 If POP' be a geodesic, its osculating plane POP' contains OD the

normal to the surface at 0, and therefore p = OD, the radius of curvature
of this section at ; but PE, the normal to the surface at P, does not inter-

sect OD, the consecutive normal at 0, unless the geodesic coincides with one
of the lines of curvatui-e, OA or OB. The angle DPE is the angle of torsion

which vanishes in the latter case.

* Not to be confounded with the radius of curvature of a geodesic.
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GENERAL EQUATION OF A SURFACE.

5780 Let the general equation of a surface be represented
by {x, y, z) = 0.

5781 The equations of any tangent at a point cTi/z are

tz£ = rLZlL = ^i:£^ with l6,-\-md>^+ncb,=:{).

Peoof.—At an adjacent point x-\-rl, y+ rm, z + rn, we have

(j)(x + rl, y-\-rm, z + rn) = 0,

therefore, by (1514), {x, y, z) +r (/0^4-??z^,, + ?i^,) = 0,

the rest vanishing in the limit. But f (x, y, z) = 0, therefore

l(l)^-\-m^,,+ n(p, = 0.

But I, m, n are the direction cosines of the line joining the two points, which
becomes a tangent in the limit ; and if kr}!!, be any point on this line distant p
from xyz, ^—x = pl, r}—y = pin, ^—z = pn, &c.

5782 The equation of the tangent plane at xijz is

Proof.—Eliminate I, m, n from Ifj. + 7n(j>y + 7i(j>, = by ^— x = pi, &c., as
above.

TANGENT LINE AND CONE AT A SINGULAR POINT.

5783 If, in the expansion in (5781) by Taylor's theorem, all the deriva-
tives of (x, y, z) of an order up to n inclusive vanish, we have

(j) (x + rl, y + rm , z + rn) = (x, y,z) + ~—- {Jd^+ m<J,, + n cL) " *
' ^ (a', y, z) = 0.

There are in this case n + 2 coincident points at xyz in the direction linn,

and since the equation (Id^+ mdy+ nd,)"*^
cp
(x,y, z) = is of the n+ V^

degree in l,m,n; n + 1 tangents to the surface at a-y:; can, in general, be
drawn in any given plane through that point. This equation now takes the
place of the conditional equation in (5781),

5784 Equation (5782) is now replaced by

{{i-.v) cL^-iri-il) ^/.+ (^-^) ^/J-X.r, //, -) = 0,

the equation of the locus of all tangents at the point ,<7/.v, and
representing a conical surface generated by the motion of

those tangents.

5785 The equation of the normal at xyz is

^k ~~ ~Zl— — "^I
—

•

(o/«-)
9^' % 9.
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5786 The equation of the tangent at a point xy^ on the

curve of intersection of the tangent plane at xijz with the

surface is

X jU, V '

with the two conditions

For these are the conditions of perpendicularity to the normals of the

tangent planes at xyz and x'y'z' respectively.

There are three exceptional cases in which the ratios

\ : 1^1 : V have more than one set of values ; namely

—

giygty
I,—When f,, «^^„ <p. vanish simultaneously, there is a

tangent cone at xijz.

5788 II.—When .^.,., <l>y.,
(/)-/ vanish simultaneously, x'y'z is

a singular point on the surface.

5789 III.—When ^ = h = h. In this case the point
tv %' i>^'

xyz coincides with xyz, and the tangent there meets the curve

in more than two coincident points, the condition for which is

(X^/,+K/+»'^y'<^('*''//'-) = (i.).

with X(^,+/x(^,4-»'<^„^ = (ii.).

These equations furnish two sets of values of the ratios

X : /ti : V, giving thereby the directions of two inflexio7ial

tangents (tangents to the curve of intersection) at xyz, each

meeting the surface in three coincident points. If all the

derivatives of an order less than n vanish at xyz, equation (i.)

will be replaced by {'Xd,+ i.ul,j^-^vLL)"(p {x, y, z) = 0, which,

together with (ii.), will determine n inflexional tangents at

the point.

5790 The polar equation of the tangent plane at the point

rdcj), r, 0', r/)' being the variables, is, writing u for r~\

II z={u{ios6—UgSm6) (ios6'-\-{u sm0-{-UgGOs6)GOs {<!>'— (t>)sm6'

-^u^ cosec siu {(!>'—
(f>)

siu 6'.

5 I
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Proof.—Write the polar equation of the phine through p"/3, the foot of

the perpendicular on the plane from the origin ; thus

pto = cos fi cos a + sin sin a cos (0-/3).

Differentiate for B and to find pug and jm., and eliminate jh ", ^^^ ft- This

elimination is troublesome.

5791 The length of the perpendicular from the origin upon
the tangent plane at xijz,

.r^.+!/<t>„+ ~'l>. or ^-^-^ -,, (5782,5549)

the second form being the value of jj when the equation of

the surface is <j) (x, y,z) = c, a constant, and when «^ is a

homogeneous function of the n"' degree (1624).

5793 In polar coordinates,

1 9 , 9 ,
•> za r'+r^+r! cosec'^^

—r = ir-\-u;-{-tii cosec a = ——2_!—2
.

Proof.—Add together the values of the squares of pu, pug, and. jm, found
in (5790).

For a geometrical proof, see Frost and Wolstenholme, Art. (314).

THE INDICATRIX CONIC.

5795 Dei\—The indicatrix at any point of a surface is the

curve in which the surface is intersected by a plane drawn
parallel to the tangent plane at that point and infinitely near

to it.

5796 The following abbreviations will be employed

—

The derivatives of (p {x, y, z), </>,.,, (j>,^, (p,,, (p^,, <j>,^,, </>.,„ </),., <^„ <p„

will be denoted by a, h, r, /, g, h, I, m, n.

5797 PiJOP.— The indicatrix at a point xyz of a surface

<l>
(x, y,z) = is the conic in which the elementary quadric

surface

5798 I.

R'

is intersected by the tangent plane at ,«;//:;, whose equation is

5799 II. l^-{-mri+nC+iN=0.
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The origin of coordinates is the point cvijz in both equa-

tions. B is an indefinitely small radius from the centre of

the quadric (I.) to a point ivt on the indicatrix, and p is the

radius of curvature of the section of the surface </> by a normal

plane drawn through B ; the ratio B'^ : p being constant for

all such planes.

Proof.—Let 0, in Fi^. (181), be the point xyz on the surface (p; x+ E,

2/
+ r/, 2+ C an adjacent point P. Then

<p(x+ ^,y + V, z + 0=(p(x, y, z) + ^^+ m»; + «^+i(a^H...+2//^^»^)+&c.

With xyz for origin, draw the quadric surface

ae + hrf^ce+2frj-C^2ga+ 2Ur^ = N (i.)

and the plane ll+m^i + nli^^N = (ii.)-

Since I, V, <r are very small, N is likewise. Also the unwritten terms in the

above expansion may be neglected in the limit. Hence, any point ^?y4 lying

on the intersection of the quadric (i.) and the plane (ii.) will also lie on the

original surface f (x + t„ y + ii, ^ + = ^•

To determine N, we have the perpendicular from a-y,? upon the plane (ii.),

'-^ (5549). The radius of curvature of the section of the
^ 2 ^(P+ m'+ n')

surface made by a normal plane at drawn through P being p, we have

P = —, and therefore N = - — ^Q' + m'+ n').

2p p

In the Figure, B = OP, p = OL, and the intersection of (i.) and (ii.) is

the conic PSQ. Since p is indefinitely small, we may put N=0 in equa-

tion (ii.). This amounts to taking the parallel section of the quadric by the

tangent plane at instead of the section PSQ. But these two will be equal

in all respects, since the section of the quadric is a central one.

5800 If m = 0, equation (II.) becomes l^-^nl = 0, and if

the inchnation of the indicatrix plane to the plane of xy be a,

tan a = — — . To obtain, in this case, the equation of the
n

indicatrix in its own plane, put ^ = ^' cos a, 1 = t sin a, and

7, = 77', in equation (I.).

5801 When none of the three constants /, m, n are zero,

the quadric (I.) simplifies as follows

—

From (II.) we have /^+m»} = —nl and two similar equa-

tions. Square these, and by the results ehminate the terms

in nl, II, h] from (I.), which then becomes

5802 III. i/f+AV+^r = A^,

where H = a+~ Qf-mg— nh), K=h+^ (mg-nh-If),
mn ni

L = c-\-^ (nh-lf-mg).
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This is the equation of another quadric intersecting the

plane (II.) in the indicatrix.

5803 The equation of a surface for points near an origin

(Fig. 182), the normal at being taken for z axis, is

^ + ^=2^,
Pi ' P2

where pi, p., are the radii of curvature of the normal sections

through the x and y axes, and those sections will be proved to

be the lines of curvature at 0.

Proof.—Let AG=i a and BG = 1 he. the semi-axes of the indicatrix conic
at a small distance z from (5795). The equation of the conic will there-

fore be — + ^ = 1 ; but — = 2pi and — = 2p2, giving the equation

required.

Secondly, on a line of curvature, the normal to the surface at a point xyz
will intersect the z axis (5773). The condition for this, by (5533) [with
xyz for abc, the origin for a'h'c,

L, M, N = <p^, f,j, f, (5785) = — , % -2, and L', M', N'= 0,0,1'],
Pi ' Pi

-^

gives xy
{

) = 0, thei-efore x = or ?/ = on a line of curvature.
^P^ ^^' Q.E.D.

5804 If the equation of the surface with the same axes be

,;' = ax^ -\-2hxij -\-l)y- -{-2pjz -\-2gzx-{- cz"^ -\-\\\g\\eY powers,

then p. = ^^, p, = |.

Proof.—Put y = and divide by c, therefore \ = a~ -\-2gx-\-cz-\-&:c.

When X and z vanish, we have 1 = 2api.

5805 For a normal section making an angle with AC,

— = 2{a cos' e^2h siu 6 cos O-^h siir 6).
P

Proof.—Turning the axes in (5804) through the angle by (4049), the
coefficient of x'- becomes a cos" + as above.

5806 Euler's Theorem.—If p be the radius of curvature of
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any other normal section at 0, making an angle ACP= witli

AC (Fig. 182),

1 _ cos' 6 sill' 6

P
~

Pi Pi
'

Pboof.—Let r = CP ; then x = r cos 0, y =r sin 6, and r^ = 2pz, which
substitute in (5793),

5807 Cor.— The sum of the curvatures of two normal
sections at right angles to each other is constant; or, if p, p
be the radii of curvature for those sections, and p„, p,j the

radii for the principal sections,

P P pa Pb

5808 The radius of curvature of a normal section varies as

the square of the radius of the indicatrix in that section.

Proof.—From r- = 2pz, in Figure (182).

5809 Meunier's Theorem.—The radius of curvature of an
oblique section of a surface is equal to the radius of curvature

of the normal section through the same tangent multiplied by
the cosine of the inclination of the planes.

T3 /t:.- 10o^ ' FN' PN^ ,T n 9 NO
PHOOP.-(F.g. 183.) p=—,p=^, therefore ^ =

-^
when NO and NO vanish.

cos 0,

5810 Quadratic for ?/^. at a point on the surface z = (p {,v, y)

giving the direction of the principal normal sections, and,

therefore, of the lines of curvature (notation 1815).

+ {(l+ir)s-pqr}=0.

Proof.— (i.) The equations of the normals at the consecutive points xyz

and x + dx, y + dy, z+ dz of the surface f (x, y, z) ^ are

l-x __7i-y _i:-z _^T ^-(x+ dx) ^ v- (y + dy) ^ ^- (^+ dz)
and

5811 The condition of intersection is, by (5533),

dx dy

'Px ^y

d<t>^ d<j)y

dz

= 0, or

1

P
r + sy:c

Vx

+tyx

p+qy^
-1
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by dividing the first vow by dx, and putting z^=. (Px + 9/l/xj (^fx= 'P^x+ ^xyVxt
&c. The form of <p (x, y, z) being, in this case, (j) {x, y) — z, f, becomes —1,
and df^ becomes zero. The determinant equation produces the quadratic.

(ii.) Otherivise.—Consider ^»;4 the point of intersection of consecutive

normals. The equations of a normal being

tl^ = ^^y=^ or ^-x=2^(z-0 and r,-y = g (z-O-
p q -I

Differentiate both equations for x, considering ^, r], i^ constant and p, q func-

tions of X and y ; the results ai-e

l + (r + syx)(z-O+p(p+ qyx) = and yx+(s+ tyx)(z-i;) + q{p + qy;) = 0.

Eliminate z— ii to obtain the quadratic in y^..

Ool2 If the equation of the surface be in the form f (x, y, z) = 0, the

quadratic for y^ may be obtained in the same way. The requisite substitu-

tions in the first determinant are found from fx'^fi/Vx'^i'z^x = Oj giving ^'x'>

d<Px = ^2x + 0a-;/2/x + 0.r^2x! <^c., and with the notation of (5796) the determin-

ant equation and quadratic for y^ becomes

n nyx -G+ myx)

I in n = 0.

an—gl+(hn— gm) yx hn—fl+ (hn—fm) yx gn —cl+ (fn— cm) i/x

Oolu The above determinant, or the corresponding one in (5810), is the

differential equation of the lines of curvature.

5814 The radii of curvature of the principal normal sections

of the surface (p {x, y, z) =: at a point xyz are given by the
following quadratic, in which A' is the bordered determinant
in (5700), and the notation is that of (5796) and (1620).

where P = l^-{-m^-]-n^.

Proof.—The quadratic in (5653) applied to a section of the quadric (I.)

(5798) by the plane (II.), becomes

A'B'+ {(b + c) l'+(c + a) vr + (a + h) n'-2fmn-2gnl-2hlm] NB'
-(l'-\-m' + 7i')N'= 0,

whose roots, being the two values of ii', are the squares of the principal

semi-axes of the indicatrix. Put B' = -^ , as in the Proof of (5797).

5815 Otherwise, the quadratic in (5651) might be applied to a section of
the (piadric (III.) (5802) by the plane (I.).

5816 If the equation of the surface be given iu the form
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z = (j) (^x, y), tlie quadratic becomes [writing, as in (1815),

J), (J,
V, S, t tor ::j., Zy, Z^xi ^xyi ^2y]i

where Jc^ = f"+ ^-"^ + 1

.

Otherwise, this equation may be found from the two equations obtained

in the second proof of (5810), by eliminating ij^ instead of z—C

5817 The radius of curvature at a point xijz on the surface

(^ (,(', 7/, z) =0 of the normal section whose tangent has the

direction cosines A, ^ii, v is, with the notation of (5796) and

(1620),
^ y(P+„t'+„^)

Proof.—From equation (I.) (5798), since ^, ri, i are respectively equal

to R\, Rfi, and Rv.

5818 The curvature at any point of a surface (p{x, y,z) =
is termed ellvptic or synclastic, liyperholic or anticlasfic, and

paraholic or cylindrical, according as the indicatrix is an

elhpse, hyperbola, or two parallel right lines, or according as

the principal curvatures have the same signs, opposite signs,

or one of them vanishes ; and this will be according as the

determinant A', in (5814), or s^—rt, in (5816), is negative,

positive, or zero.

Proof.—The i-ule follows at once from the consideration that the two

values of p in the quadratic of (5814) must have the same sign in the first

case, different signs in the second, and that one value must be infinite in the

third case.

5819 The condition for an umbilicus is that the indicatrix

must be a circle ; therefore, either (III.) (5802) must be a

sphere, or, if it be a quadric surface, the plane (II.) must

make a circular section of it, and therefore either /, m, or n

must vanish.

5820 Otherwise, the quadratic in (5814) or (5816) must

have equal roots.

5821 Otherwise, the conditions for an umbiUcus on the sur-

face (x, y, z) = are the two equations

hn^-\-cm"~-2fmn _ cP-\-an^ — 2gnl _ a})V-\-bP—2hlm
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Proof.—The radius of the indicatrix, and therefore also p in (5817), is

constant for all values of X, ju, v. Now, by (5817),

P

.-. (a- -) \--f (Z*- -) f^'+ (c--) ^' + 2fi^y + 2gvX-\-2hXfx = 0,

and l\ + iufx + ni' = 0, since X/^v is always tangential, and Inm is normal to

the surface. As these equations are true for all values of X, n, v, the second

expression must be a factor of the first. The quotient, by division, is there-

fore („_l)4+(6_i)ii + (._A)L.
\ p I I \ p I m \ pin

Equating to zero each of the three coefficients of the remainder, and elimi-

nating p, we obtain the above conditions.

5822 If a common factor of the three fractions m (5821)

exists, that factor equated to zero is the differential equation

of a line of spherical curvature at every point of which there

is an umbihcus. If the fractions are identically equal, the

surface has an umbilicus at every point, and must therefore

be a sphere.

5823 The number of umbilici on a surface of the n^^^ degree

cannot exceed n{10n^—2hn-\-lQi). Sahnon, -p. 208.

5824 The condition that the indicatrix may be a rectangular

hyperbola is

{a-\-b+c){l^-\-7ri'-\-n') = {ahcfgh\lmnY.

Proof.—The quadratic in (5814) must have equal roots of opposite

signs.

Similarly, when z = (p (x, y) is the equation of the quadric, the condition

becomes 0-+P^) t-2pqs+(l + q^) r =0. (5816)

5825 The condition that the indicatrix may become two
coinciding lines.

Here equation I. (5798) must represent a cone, and the plane (TI.)

must touch it. Hence N = 0, and, if ^ be eliminated, the quadratic for the

ratio ^ : ?/ obtained is

(an^+ cP— 2gnl) ^'+ 2 (clm—fnl—gmn + hn-) ^T] + (bn- + c)n-— 2fmii) »/" = 0,

and this must have equal roots.

CURVATURE OF A SURFACE.

5826 Defs.—Integral curvature of a closed surface is equal

to the area of that part of the surface of a sphere of unit

radius which is intercepted by radii drawn parallel to the
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normals at all points of the given surface. This area also

measures the solid angle of the cone generated by the radii.

The curve on the sphere is called the liorogrcqjli of the curve

on the original surface. In other words, integral curvature

of a closed surface is the area of the horograph of its

boundary.

5827 Average curvature is the integral curvature divided by

the area of the surface.

Specific curvature is the average curvature of a small

(dsY 9 1
element at the point ; i.e., -

'^
-:- {ds}'^ = .

pipi Pip2

5828 The last is the usual measure of curvature at a point,

and its value in coordinates of the point is given by

1 ^'
or

^'^'•^''

, (5796)

according as .^ (.v,
i/," ^)

= or z = <^ {e, y) is the form of the

equation to the surface.

Proof.—From the product of roots of the quadratics in (5814) and

(5816).

5829 In a plane curve integral curvature is the plane angle

contained by the terminal normals, and average curvature is

the integral curvature divided by the length of the curve.

5830 Another measure of curvature at a given point of a

surface is the ratio of the area of the indicatrix to the area of

the indicatrix cut off by the same plane on a sphere of unit

radius .which touches the surface internally at the point. This

measure is = \/piP2-

Proof.—Putting AC = R„ BC = R,, in Fig. (182), and OC = z, the area

of the indicatrix of the surface is kR^U,^ at an elhpsoidal point. But

B\ - 2p^s and Rl = 2p,z, therefore ttR.R, = 27rz /(piP.,). Also the indicatrix

of the sphere = 27rz s'ince Pi = p. = 1 for the sphere.

5831 The radius of curvature of any normal section at a

point P of an elhpsoid (Fig. 184) is equal to the square of

the semi-diameter parallel to the tangent of that section,

5 K
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divided by the perpendicular from P upon the diametral

plane conjugate to OP.

Proof.— Let AOB be the plane parallel to the tangent plane at P;
OA = d, the semi-diameter in it parallel to the given tangent PT. Draw
PB perpendicular to OA and PN^p perpendicular to the plane AOB. The

radius of curvature at P of the elliptic section PA = ~- (4536). Therefore,

by (5809), the radius of curvature of the normal section through the same

tangent PT, will ^e P =^ X || = ^.

5832 The principal radii of curvature at P, viz. p^, p.2, are

found from their sum and product thus : putting y for OP,
and a, h, c for the semi-axes of the ellipsoid,

P,+P.= -^—^ ^-, p^p, = —r-.

Proof.—Let a, /3 be the serai-axes of the section AOB (Fig. 184), then
„2+ /32^y2_^2^^2^g2 (-5642) siud paP = ahc (5648). By these values

eliminate a, ft from Pi+Pa = — ^"^^ P1P2 = 2* (^831).

5833 The lines of curvature on a quadric surface are its

intersections with the confocal quadrics.

Proof.— Let the quadric and confocal be the ellipsoid and one-fold

hyperboloid in (Fig. 178) intersecting in the line DPE, and let their equa-

tions be, as in (5656),

^+•^ + 7=1 (^-^ -^ ?fx + E4n-4=^ (">•

At any point P on the line of intersection x, y, z satisfy the three following

equations :

—

First, the differential of (ii.), 4^ + ,4% + "^ = ^

Second, the difference of (i.) and (ii.),

2! + t + ?! =
d' (ai'+ X) h' (b'+ X) c' (cHX)

Third, the difference of their differentials,

xdx , y di/ zdz _
^

a- (d- + X) Ii' {V -j- X) c- (c-+X)~
The eliminant of these equations in x, y, z pro-

duces the determinant equation here annexed, which,

by (5811), is the condition for the intersection of con- ^r b"^ c" = 0.

secutive normals. Hence this condition holds for

every point of the line of intersection of (i.) and (ii.).

dx
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The general method of determining the lines of cnrvature

of a surface from the differential equation in (5811) is here

exemplijB.ed in the case of an ellipsoid.

5834: The determinant just written gives for the differential equation of

the lines of curvature

(b'-c')xdi/dz+{c''-a')ijchcU + (a'-b')zdxdy = (i.).

To solve this, multiply by -^ and substitute for z and dz from the equation

of tbe quadric. The result is of the form

Axyyl+(x--Ajf-B) y^-xy = 0,

in which A =t^% B = ^1^^^ ; or, multiplying by ^,
¥{a-— c-) ci'— c- X

A'^ {xyy^-y-)-B'& +{xyy^-f) = 0,
X X

which is of the form in (3236). Solving by that method, we find that the

two equations ^ = a and xyy^—y^ = /3 have the common pinmitive
X

ax^—y^ = fi, which, with the relation Aa^-Ba-^fi = 0, constitutes the

solution. The result is that the projections of the lines of curvature upon

the xy plane are a series of conies coaxal with the principal section of the

ellipsoid, and having their axes a, 6 varying according to the equation

At an umbilicus ^^ = 0, therefore, equation (i.) becomes \_{h-— c^) xdz

+ (a^ — 6') zdx'] dy = 0. Here dy = 0, being a solution, gives y = G = 0,

showing that the plane of zx contains a line of cnrvature. The other

factor, equated to zero, taken with the differential equation of the curve

cKxdx + a^zdz = 0, gives the coordinates of the umbilicus, as in (5603).

OSCULATING PLANE OF A LINE OF CURVATURE.

5835 Let
(f>
be the angle between the osculating plane and

the normal section through the same line of curvature, ds^ an

element of the other line of curvature, and p, p their radii of

curvature respectively : then

as p —p
Pkoof.—Fig. (185). Let OA, OB be the lines of curvature; OP, AP

consecutive normals along OA ; and OS, BS the same along OB. Also, let

BQ, CQ be consecutive normals along the line of curvature BG. Then,

ultimately, OP= p, OS = p', BQ = p + dp. Also, let QP produced meet the

osculating plane of ^0 in R. Join BO and RA, and draw QN at right angles

to PS. Since the tangent to ^0 at is perpendicular to the plane 0B(2P

and that at A to AG(2P, it follows that both tangents are perpendicular to

QP, which must therefore be perpendicular to the osculating plane ARO.
Hence (j> or ROP = PQN.
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Now ^ = 1^ = P'-^r''
,

.-. tan ^ =^ =t . f- ultimately.
ds SB p NQ, ds p —p

5836 At every point on a line of curvature of a central

conicoid _/jf? is constant, where d is the semi-diameter parallel

to the tangent at the point and j9 is the perpendicular from
the centre upon the tangent plane.

Pkoof.—Let the first and third confooals in (56G1) be fixed, and there-

fore «! and a.^ constant. Draw the second confocal through the point of

contact P of the tangent plane (Fig. 178). Then, by (5668), ^:>,fZ3 and pgf?!

are constant along the line of intersection of the first and third surface,

because, by (5661), d^ = a\—a^ and d\ = O3— flg-

GEODESIC LINES.

5837 The equations of a geodesic on the surface ^ (x, y, z) =
cVo, y.,s z.^s

9.V 9y 9z

Proof.—The osculating plane of the curve contains the normal to the

surface (5775) ; therefore, by (5737) and (5785).

5838 A geodesic is a line of maximum or minimum distance

along the surface between two points.

Proof.—The curve drawn in the osculating plane from one point to a

contiguous point is shorter than any other by Meunier's theorem (5809),

for any oblique section has a shorter radius of curvature and therefore a

longer arc. A succession of minimum arcs, however, may constitute a maxi-

mum curve distance between the extreme points ; for example, two points on

a sphere can be joined by either of two arcs of a great circle, the one being

a minimum and the other a maximum geodesic.

5839 A surface of revolution such as the terrestrial globe affords a good

illustration. A meridian and a parallel of latitude drawn through a point

near the pole are the two lines of curvature at the point. The meridian is

also a geodesic, but the parallel is evidently not, for its plane does not

contain the normal to the surface.

5840 A geodesic is the line in which a string would lie if

stretched over the convex side of a smootli surface between
two fixed points.

Proof.—Any small arc of the string POP' (Fig. 182) is acted upon by
tensions along the tangents at P and P', and by the normal reaction of the

surface at 0. But these three forces act in the osculating plane (5775) ;

therefore the string will rest in equilibrium on the surface in that plane.
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CoE.—Two equal geodesies drawn from a point and in-

definitely near to each other are at right angles to the line

which joins their extremities.

5841 If a geodesic has a constant inclination to a fixed line,

the normals along it will be at right angles to that line.

Proof.—Let Imn be the fixed line and a the constant angle ; then

Ixg+ mj/g+ nzg = cos a, and therefore lx2s+ my2s+ nzos = 0.

Therefore, by (5837), the principal normal is at right angles to Imn.

Example.—The helix, the axis being the fixed line.

5842 On any central conicoid 2^d is constant along a geo-

desic, where p is the perpendicular from the centre upon the

tangent plane and d is the semi-diameter parallel to the

tangent of the geodesic.

Proof.—(Fig. 186.) Let AT, BT be the tangents at the two extremities

of a small geodesic arc AB, and let the tangent planes at A and B be ABC
and BOB. AT and BT make equal angles with GB, by the property of

shortest distance, for if the plane BOB be turned about GB until it coincides

with the plane ABG, ATB will become a straight line, and therefore

/.ATB = BTG = i, say.

Let w be the angle between the tangent planes ; let the perpendiculars

upon those planes from A, B be AM ~ q, BN= q, and from the centre of the

quadric p, p ; and let xyz and x'y'z' be the points A, B. Then

q = ATsmiBinu), q' = BT sin i sin u), :. q : q — AT : BT (i.),

therefore q '. q = p' '• p (ii-)-

Again, let d, d' be the semi-diametei^s pai-allel to AT and BT. Then, by

(5677), AT : BT = d : d' ; therefore p' : p = d : d' or pd=p'd' ; that is,

pd is constant.

5843 If a line of curvature be plane, that plane makes a

constant angle with the tangent plane to the surface.

Proof.—Let PQ, QB, BS be equal consecutive elements of the line of

curvature. The consecutive normals to the surface bisect PQ and QB and
meet in a point. Therefore they are equally inclined to the plane PQB.
Similarly the second and third normals are equally inclined to the plane QBS,
and so on. Hence, if the curve be plane, all the normals are equally inclined

to its plane. Hence also the following theorem.

5844 Lancrefs Theorem.—The variation in the angle be-

tween the tangent plane and the osculating plane of a line of
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curvature is equal to the angle between consecutive osculating

planes.

5845 CoE.—-If a geodesic be either a line of curvature or a

plane curve, it is both, but a plane line of curvature, as in

(5839), is not necessarily a geodesic.

GEODESIC CURVATURE.

Theorem.—The square of the curvature at any point of a

curve traced on a surface is equal to the sum of the squares

of the normal and geodesic curvatures (5776), or

5846 7 = ?5+ P^'

where p is the radius of curvature of the normal section and
p" the radius of geodesic curvature. Also, if <^ be the angle

between the plane of normal section and the osculating plane,

5847 p — p" sin ^ = p cos <^-

Proof.—Let FQ = QU (Fig. 187) be consecutive elements of any curve

traced on a surface. Prodace FQ to ,S', making Q8 = FQ. Let QT = FQ
be the consecutive elements of the section of the surface drawn through

FQS and the normal at Q. Join ES, ST, TE. FQSB is the osculating

plane of the curve FQE. FQST is the plane of normal section, and there-

fore FQT is a geodesic. QET is the tangent plane, and STE is a right

angle.

Then, putting *SQ7i; = #, SQT=d^', EQT=d^l^", EST = cp, we have

ds / ds „ ds ,f,.._,.

Therefore 4. = ^^ = l?i = ^" *••

p ds.dxp Eb

Also -^ = ^^T = 1^ = ^°« •?'' ^« "^ (^S09).
p as . a\j/ oil

Thus both theorems are proved. Note that p' is the radius of curvature of

the geodesic FQT, while p" is the radius of geodesic curvature of FQE.

I

RADIUS OF TORSION OF A GEODESIC.

5848 If ^ he the angle between the geodesic and one of the

lines of curvature ; p^, p.. the principal radii of normal curva-

ture, and <T the radius of torsion.

J-z=f— -iVsiii(9eos6'.
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Proof.—(Fig. 182.) Let OP = ds be the geodesic, OA, OB the lines of

curvature, and ~ AGP. The angle of torsion ch measures the rotation of

the normal to the surface round OP = ds. But this angle is equal to the

sum of the rotations of the normal round OA and OB resolved along ds.

For, in travelling along each of the lines GN and NP, which are iu the direc-

tions of the lines of curvature, the normal rotates only about the other.

Therefore, if Wj, Wj be the rotations round OA, OB, dr = w^ cos 9+ Wj sin 0.

Tj 4.
^-5 sin 6 ds cos d .1 dr _ ( 1 1 \ . „ ^

But Wi = , Wj = ; . . — = "7~ =
I

sin cos o.

p2 Pi tr ds \ pi P2

1

5849 The product _2^fZ lias tlie same value for all geodesies

which touch the same line of curvature.

Proof.—By theorems (5836) and (5842), since the product where they

touch it must be the same as that for the line of curvature.

5850 The product j)d has the same value for all geodesies

drawn through any umbilicus on a conicoid.

Proof.—The semi-diameter d, in this case, is the radius of a circular

section, and therefore equal to the mean semi-axis h for all the geodesies

;

andp is the same for all.

5851 The geodesies drawn through any point on a conicoid

to two umbilici make equal angles with either line of curva-

ture through the point.

Proof.— ipd is the same for each geodesic, by the last, and p is the same
for each ; thei'efore d is the same, that is, the diameters parallel to the two
geodesies at the point ai-e equal ; therefore they are equally inclined to each

axis of their section ; but these axes are parallel to the lines of curvature

(5803) ; therefore, &c.

5852 Hence the geodesies joining any point to two opposite

umbilici lying on the same diameter are continuations of each

other.

5853 The sum of the distances of any point on a line of

curvature from two interior umbilici is constant ; and the

difference of the distances from one interior and one exterior

umbilicus is constant.

Proof.—Geometrically, as in the analogous theorem for the focal distances

in a conic, if r, r' are the distances and r-\-dr, r' \-dr' the distances for a

consecutive point on the line of curvature, it follows from (5851) that

dr = —dr for interior umbilici and dr = dr' for exterior ones.

5854 A system of lines of curvature and the umbilici on a
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quadric surface has therefore analogous properties with a

system of cod focal conies and their foci in a plane, the geo-
desies corresponding to straight lines.

5855 111 tlie same way, every surface has a geodesic geo-

metry proper to itself ; spherical trigonometry, for instance,

being the geodesic geometry of the sphere.

INVAEIANTS.

INVARIANTS OF A SINGLE FUNCTION.

5856 The constancy of the ratio B^ : p in equation (5798)
gives rise to the following invariant forms. Since the quadric

surface I and the tangent plane II are the same for all posi-

tions of the coordinate axes, they have been called respec-

tively the invariable quadric and the invariable ]jlane. As a

consequence,

5857 <lyr-^4>l+i^

is an invariant of (j) {x, ij, z)

.

Proof.—By (5791), since iho perpendicnlar from the origin upou tlie

invariable plane is constant. Also, the coefficients of the discriminating

cubic (5693) of the invariable quadric will not be altered by transformation

of axes. Therefore the following are also invariant forms :

—

5858 <^..+«^.>.+<^2.,

5859 4>.A^,-\-^,A,^-\-4>.A^-4^.-^s-<l>i,.

5860 <^2.r ^-ly <l>2z+^^z i^z.v 4*xy" <^2.r <t>l,
" 4>ty <^lr" 4>lz i>ly •

5861 A similar theorem applied to a function (p (x, ?/) of

two variables gives the invariable conic and invariable line;

namely,

r<^,,+2£7;<^,,+f<^,, = l and i<l>,,-^yj<l>,
= 1

;

and from these the invariants,

5863 4r.+<t^, <^..+<3^.., i>.A^-<tc,,

5866 .v(l>y-ij<t>,,, <<<^,+//<^.,.
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Proof.—The last two invariants are obtained from the cosine of the

angle between the invariable line (5862) and the fixed line y'^— x>] = 0,

joining the point xij with the origin, or the fixed line x^+ yt} = 0.

INVARIANTS OF TWO FUNCTIONS.

5868 An invariant of tlie two functions ^ {x, y), \p {x, y) is

Proof.— Form the cosine of the angle between the invariable lines

^^x+ Vfi/= 1 and t,4'j;-\- r,\}/^ = 1, observing (5863).

Also tlie two following expressions are invariants,

5869 4,,,xj,,,,+^,,,f,,-2,l>...„xl..,„,

5870 .^,../.,„.+<^„^,,+2f,,.|.„,.

Proof.—From the invariable conies (5861) of ^ and ij/, we get

invariable for any value of X. Hence the coefficients of the several powers

of X in the invariant

(02.+ Af,.) i<p,,+ H;,) - if.,+ H.,y
are also invariants. This gives (5869). Subtracting the latter from the

invariant i<p2x+ f2!,)(4'2x + ^2i/)
produces (5870).

INTEGRALS FOR VOLUMES AND SURFACES.

5871 If y be the volume included between tlie surface

z = (p{x,y), three rectangular coordinate planes, the cylindri-

cal surface y = 4' G^Oj ^^^^ *^® plane x = a, Fig. of (1906)

5872 V =
JJJdi

f/^rf;. =
JP^/^f/^.

For the limits and demonstration, see (1906).

5874 The area of the surface
i>

{x, y, z) = or z =f{x, y)

will be

5 L



810 SOLID GEOMETRY.

Proof.—The area of the element whose projection is dxdy will be

dxdij secy, where y is its inclination to the plane of xy, and therefore the

angle between the normal and the z axis. Therefore

secy = ^(cpl+ (i>l
+ <pi)-^cl>, = y(l +4 + 4), by (1708).

5875 Let the equation of a surface APB (Fig. 188) in polar

coordinates be r=f{d,({>), and let V be the volume of the

sector contained by the planes AOB, AOP, including an angle

(f)

= PEG, the given surface APB, and the portion OPB of

the surface of a right cone whose vertex is 0, axis OA, and

semi-vertical an^le 9 = AOB or AOP; then"&'

V= 1nV siu ^rf^f?<^.
Jo Jo

Proof.—Through P, any point on the surface, describe a spherical sur-

face PGD, with centre and radius r = OP. The volume of the elemental

pyramid, vertex 0, base Pe, = ^r.Pf.Pg = \r.rdd .r sin ddif). Here the

error of the small portions, like PE, ultimately disappears in the summation,

since the volume of P-E/, being equal to ^dr .rdd .r sin ddcp, is of the third

order of small quantities ; and so in similar instances.

5876 The area of the same surface APB (Fig. 188) is

Jo Jo

Proof.—Let the perpendicular from upon the tangent plane at P to

the given surface be ON = p. The element of

area Pi; = areaPe.^^= rdd.r sin Odcp.— = ':^^^d6dx{,.
ON p p

Substitute the value of p in (5793).

SURFACE OF REVOLUTION.

If 7/ =/('') (Fig. 90) be the generating curve, and the x

axis the axis of revolution, Fthe volume, and 8 the surface

included between the planes x = a, .< = h ;

5877 y = ^'vf(Lv, s = ("2n,f y(1 +;/:.) d.v.

Proof.—The volume of the elemental cylinder of radius y and height tZic

is ny'\lx. The element of the surface of revolution is

2iryds = 'lirySj.dx = 2wy \/{l+yl) dx. (5113)
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Guldin's Rules.—When the generating curve of a surface

of revolution is a closed curve, and does not cut the axis of

revolution, a solid annulus, or ring, is formed.

5879 I^ULE I.

—

The volume of the solid ring is equal to the

area of the generating curve multiplied hij the circumference of

the circle described by the centroid* of the area.

5880 Rule II. — The surface of the ring is equal to the

perimeter of the generating curve multiplied by the circum-

ference described by the centroid of the perimeter.

Proof.—Let A be the area of the closed curve, and dA any element of A
at a distance y from the axis of revolution. The volume generated

=z\2TrydA = 2TT\ydA = 2nyA,

by the definition of the centroid (5885), y being its distance from the axis.

Similarly, if P be the perimeter, writing P instead of A.

Quadrature of surfaces bounded by lines of constant

gradient,

5881 Defining the curve (7) as the locus of a point on the

given surface at which the normal has the constant inclina-

tion 7 to the z axis ; let F {y) be the projection of the area

bounded by the curve (7) upon the xy plane ; then the area

itself will be found from the formula,

I sec 7^(7) dy.
Jo

Proof.—The element of area between two consecutive curves (y) and

(y + (Zy) projected on the xy plane will be dF {y) = F' {y) dy
;
and, since the

slope is the same throughout the curve (y), this projected element must be

equal to the corresponding element of the surface multiplied by cos y.

5882 Rule. — Equate coefficients of the equation of the

tangent p)lane ivith those of fe+ mrj+ nZ; = p, and eliminate I

and mfrom P-fm^+n^ = 1. The result will be an equation in

X, y and n = cos 7, representing the projection of the curve (7)

upon the xy plane. From this F (7) must be found.

5883 Ex.— Taking the elliptic paraboloid ^ + ^ = 2z ; the tangent

plane at rc^/z is ^ +^ — ^ = -• Equating coefScients of the last with

l^+ mrj+ nl^ =p, and substituting for I and m in V + m^ + n'^ = 1, we obtain

for the projection on the xy plane, ^ + j^
= tan^y. The area of this ellipse

Centre of mass, or gravity.
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is F (y) = Trah tan'-y, and therefore F' (y) — 27rah tany sec^. Consequently,

by (5881), S = lirah Ttan y sec'^ycZy = fraJ (sec»y-l).

CENTRE OF MASS.

5884 Definitions.—The moment of a body witli respect to a

plane is the sum of the products of each element of mass of

the body and the distance of the element from the plane.

5885 The distance (denoted by x) of the centre of mass *

from the same plane is equal to the moment of the body
divided by its mass.

5886 WoTE.—If the body be of nniform density, as is supposed to be the

case in all the following examples, assume unity for the density, and read

volume instead of mass in the above definitions.

The definition gives the following formulas for the position

of the centre of mass of a uniform body :

5887 For a p/a7ie curve,

- _ J ^d^ ^ J-^ v^(l +in) da; ^ jr cos 6 ^{r'^+r^ dS

ids i^(lJri/l)d.v i^(r^+rl)de

For y, change x into y and cos d into sin d ; but observe that in all cases,

if the body be symmetrical about the axis of x, [/ vanishes. The formula

gives the centre of volume of the portion of the curve included between the

limits of integration.

For a 2^f-cine area,

5890
-J[.vd.rd,,^[^^

)li(l'><ll/ J.
'/'/•»

The area is bounded by the curve, the a; axis, and the ordinates x = a,

a; = fc, if such be the limits of integration.

For a, jyiane sectorial area bounded by two radii SP = r,

SP' = t' (Fig. 28) and the curve r = P{^Q)\

* Al80 called centre of gravity or inertia, and more recently centroid.
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5892

5894 y

- _ ff*''
cos edOdr __

Ijr^cos^rfg

_ JJr^ sin ^^/^f/r _ |Jr^sm^(/^

l^rdOdr ~ li-dB

The second forms for x and y give the centroid of an area like SPP'
(Fig. 28). The double integrals applied to that figure require the limits of

the integration for r to be from to F{d), aiicl afterwards for 0, from

01 = ASP to 02 = ASP'. But, if applied to the area in (Fig. 109), the order

of integration must be reversed, as explained in (6209).

For a surface of revolution round the x axis,

KOQfi
- _ J.r// v/(l+;/I.) (Iv Ji- sill e cos6> v/(r^+0 dO
""

iyViX-^y^da^- j'rsiii^y(r^+rDrf^

Proof.—Bj (5885), for the moment = \x. 'Zmjcls and the area = ^iryds
;

the second form by (5116). If a;= «, a; = 6 are the limits of integration, the

surface is bounded by the parallel planes x = a, x = h; and in the second

form, the corresponding values of are the limits defining the same parallel

planes.

For any surface,

5898 ^ =^r^!^??f? - ''''''

^\^{l-^z:.+z;)dajdi/

For a solid of revolution round the x axis,

_ _ J .ri/'d.v __ \\ r^ siu cos 6d9dr
^^^^

'""'Jfd^^^' ^\7-^mededr '

Proof.— By (5885), for the moment =\x.7ryhlx and the voUime

=
j
Try'^dx. The limits as in (5896).

5901 For any solid figure bounded as described in (5871),

the coordinates of the centroid are given by

F.r =
I
U .V dx dijdz = \\ xzdx dy,

Vy = \{[ ydxdydz = U yzdxdy,

Vz=Wzdxdydz = lA{^'dxdy,
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wliere V= M
j
d.vdi/dz = 1 i zdxdy,

as in (5872-3), and the limits are as defined in (190G).

5902 For the wedge ^Imiiecl solid {OAPB, Fig. 188) defined

by the polar coordinates r, 0, <^, as in (5875),

V.v = I J
j\-^ sin'^ e cos

<f> d0d(l>,

Wf = l((r' siii^ 6 sin 4>ded<t>,

Vz = i nV* sin 6 cos ed0d<l>,

where 7=1 ((r' sin eded<f>.

Proof.—By (5875); multiplying the elementary pyramid ^r^ sinddddf
separately by the distances of its centroid from the coordinate planes ; viz.,

|r sin d cos 0, |r sin sin <p, and |r cos 6.

MOMENTS AND PRODUCTS OF INERTIA.

5903 Definitions.—The moment of inertia of a body about
a given right line or axis is the sum of the products of each
element of mass and the square of its distance from the line.

5904 The square of the radius of (juration of the body about
the given line is equal to the moment of inertia of the body
divided by its mass.

5905 The moment of inertia of a body witli respect to a
plane or point- is the sum of the products of each element of

mass and the square of its distance from the plane or point.

5906 The prodiiet of inertia of a body \vith respect to two
rectangular coordinate planes is the sum of the products of

each element of mass and its distances from the two planes.

5907 I^et A, B, G be the moments of inertia of a body
about three rectangular axes ; A\ B\ C the moments of

inertia with respect to the three planes of yz, zx, and xy ; and
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F, G, H the products of inertia witli respect to the second
and third planes, the third and first, and the first and second
respectively. F, (i, H are more frequently called the products
of inertia about the axes of yz, zx, and xij respectively.

By the definitions we have the values

5908 A = Sm if+z'), F = tmi/z,

B = "^m {z^-\-,v-), G = %mza;,

C = Xtn {d^+tf)i H = Xnicvy.

5914 A^=%.n^=:S-A^
,,^,,,s = ^-t^±^,

B' = Xmif = S-B
C = tmz'= S-C

2

= tm{.v'+i/-\-z%

5920 Theorem- 1.—The M. I. of a lamina about an axis per-

pendicular to its plane is equal to the sum of the two M. I.

about any two axes in its plane drawn through the foot of the

perpendicular axis and at right angles to each other.

Proof.—By the definition (5903), and Euc. i. 47.

5921 Theorem 11.—The M. I. of a body about a given axis,

plane, or point is equal to the M. I. about a parallel axis or

plane through the centroid, or about the centroid itself

respectively, plus the M. I. of the whole mass, supposed col-

lected at the centroid, about the given axis, plane, or point.

Proof.—In the figure, p. 168, let the given axis be perpendicular to the

paper at B; let J. be the centroid, and m an element of mass at G ; then, for

every thin section of the solid parallel to the paper,

M.I. = %n.BG' = %m{ACr-+ AB--^AB.Al))
= %m .AG' + -$7n.AW-2AB .2m . AD.

But ^vi.AD = 0, by (5885), since ^1 is the centroid of the body, which
proves the proposition. Similarly for the plane or point.

Cor. I.—Hence, if the M. I. about any axis is known, that

about any parallel axis can be found without integration. For,

let Ii be the M. I. about a given axis, whose distance from
the centroid is a, and let Ig be the required M. I. about an
axis whose distance from the centroid is b ; then, by Theorem

JL, I, = I,-m{a'-b').
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Cor. II.—The M. I. has the same value for all parallel

axes at the same distance from the centroid.

5922 Theorem, III.—The iiroduct of inertia for two assigned
axes is equal to the product for two parallel axes through the
centroid of the body plus the product taken for the whole
mass collected at the centroid with respect to the assigned
axes.

Proof.—Let x = x+ x', y = y + y' he the coordinates of an element of the
body with respect to the assigned axes ; ^, y being the coordinates of the
centroid, and x', y' the coordinates of the same element with respect to

parallel axes through the centroid, all axes being parallel to z. Then

"Lmxy = ^in (x+ x')(ij + y') = d-y'S,m+'S:,mx'y'+ xl.my' + yllmx'

= xyl^ni+'Simx'y'.

Since Swa;' and ^my' vanish by the definition of the centroid.

5923 The M. I. of a body with respect to a point is equal
to the M. I. for any plane through the point plus the M. I.

about the normal to the plane through the point.

Proof.—For the origin and yz plane,

•^mx' + %m (y' + z') = %mr\ (5908, '14, '19)

5924 G-iven the moments and products of inertia, A, B, G,
F, G, H, as above, about three rectangular axes, the moment
of inertia of the body about a line through the origin, whose
direction cosines are /, i)i, n, will be

/ = AP-{-B7n^+Cn^-2Fmn-^2Gnl-i-2Hhn.

Proof.—(Fig. 11.) Let xyz be a point P of the body, 021 the line Imn,

and PM the perpendicular upon it. Then the M. 1. about OM
= ^m (OP'- OM') = %m

{
{x' + 2/H z'){l'+ m" + n^) -{Ix + viy + nzf ] (5530)

producing the above result, by (5908-13).

ELLIPSOIDS OF INERTIA.

5925 The equation of the Momental Ellipsoid is

AaP-+Bif^Cz^-2Fijz-2Gzx'-2mij = Me\

obtained by putting Ir^= 71ft*. M being the mass of the body,
and £* a constant to make the equation homogeneous. Hence the

square of the radiuf^ of the momental cllip><oidfor anijiwint varies

inversely as the moment of inertia of the body about that radius.
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5926 If the products of inertia vanish, the axes are called

the princijKd axes of the body.

5927 At every point of a body there are always three

principal rectangular axes.

Proof.—These are evidently tbe princij^al fixes of tlie momental ellipsoid

of the point ; for if the coordinate axes be made to coincide with the former,

F, G, H will vanish.

5928 The equation of the momental ellipsoid referred to its

principal axes will be

5929 The moment of inertia about a line hmi will now be

I=Af+Bm'-^CnK

THE ELLIPSOID OF GYRATION.

5930 The equation of the Ellipsoid of Gyration referred to

principal axes is
,2 2 ^2 1

T'^^'^IT'^ IT

It is the reciprocal surface of the momental ellipsoid (5719),

and its property is

—

5931 The moment of inertia about the ^perpendicular from

the origin upon the tangent plane varies as the square of the

perpendicular.

5932 For any other rectangular axes through the point, the

equation of the ellipsoid of gyration is, by (5717),

= 0, being the reciprocal surface of

the momental ellipsoid,

{A,B,G, -F, -G, -HXxyzy
= M,

with the radius of the sphere of

reciprocation = 1. The equation when expanded becomes

A -H -G X

-H B -F y

-G -F G z

1

y ' M

5933 (BC-F')a^+...+2{FG+CH).vy= H B F ^.

A H
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LEGENDRE'S EQUI-MOMBNTAL ELLIPSOID.

5934 The equation is

with the values in (5914).

5935 The mass of this elKpsoid is taken equal to that of

the body, and it has the same principal moments of inertia.

THE MOMENTAL ELLIPSOID FOR A PLANE.

5936 If -l'> I^\ G' be the moments of inertia for the three

coordinate planes, as in (5914), the M. I. for a plane through

the origin whose dir. cos. are /, in, n, will be

r = A'l'-\-BV+C'rr+2Fmn-i-2Gnl+2Hlm.

Proof : I' = 2//i (Iv + my + nzf — %nx- . l~ + &c. = AT-+ &c.

5937 The momenta! ellipsoid for this plane will be

A\v'-\-By+C'z'+2Fi/z-\-2Gz.v-]-2Kvi/ = 3h\

and its property is

—

5938 27ie M. I. for any ijJane passing tltroiujh the centre of

the ellipsoid is equal to the inoerse square of the radius per-

pendicular to the plane.

5939 If ''* be a radius of this ellipsoid, and a, b, c its semi-

axes, the M. I. about r

Proof.— (Fig. IL) M. I. about /•, plus M. I. for tlic plane OM perpen-

dicular to 7-

= 2mOP' = •2,mx' + :S,my' + :^mz' = ^ + ^ + 4, by (5938).

EQULMOMENTAL CONE.

5940 The equation of the equi-momental cone at any point

of a body, referred to principal axes of the body at the point.
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is (A-I),r^-^{B-I)y^-^{C-I)z'=0.

its property being that

5941 The generating line passes through the given point, and

moves so that the M. I. about it is a constant = I.

Pkoof.—Let hn7i be the generating line in (me position, then

Al^ + Bvt}+ C?r = I{1'+ in' + ir) . Therefore, &c.

5942 Theorem.—If two systems have tlie same mass, the

same centroid, principal axes and principal moments of inertia

at the centroid, they have equal moments of inertia about any

right line whatever, and are termed equi-moniental. By (5906)

and (5929).

5943 If two bodies are equi-momental, their projections are

equi-momental.

Peoof.—If the projection be from the xy plane in the ratio 1 : n, the

coordinates x, ?/, 2 of a particle become x, y, nz, and the mass m becomes nm.

The conditions in (5942) will then be fulfilled.

MOMENT OF INERTIA OF A TRIANGLE.

5944 The M. I. of a triangle ABD (Fig. 190) about a side

BD, distant jj from the opposite vertex A, is

J
mp^

(5

Proof.—Let BD^a and EF-^y; I = if^'^in^V = '^ = -^{

5945 The M. I. of a triangle ABC (Fig. 190) about a

straight line BD passing through a vertex B, and distant p
and q from the vertices A and C, is

Proof.—By (5944), taking difference of M. I. of the triangles ABD, GBD.

5946 The M.I. of a triangle ABC about an axis through

its centroid parallel to BD, is

/ = ,„itH+i'. By (6921)
lo
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5947 Cor.— If the triangle be isosceles, so that j^ = q, the

last two moments of inertia become

5949 The M. I. of the triangle about axes perpendicular to

ABC through B and through the centroid, respectively, are

m ^ ^^ and ?/i^ ^-^—^. (5920)

5951 The M. I. about GF of the trapezoid ACGF (Fig.

190), is

^ 6 •

5952 The moments and products of inertia of a triangle

about any axes are the same for three equal particles, each

one-third of the mass of the triangle, placed at the mid-points

of its sides.

Proof.—(Fig. 190.) The M. I. of the three particles at the mid-points

of AB, BG, CA about BB, any line through a vertex, will be

3 [ 4 ^ 4 ^ 4 )

'

which is equal to that of the triangle, by (5945).

MOMENTAL ELLIPSE.

5953 If a, i3 be the radii of gyration of a plane area to

principal axes Ox, Oy, where is the centroid, the equation

of the momental ellipse for the point will be

5954 Also the area is equi-momental with three equal

particles, each one one-third of its mass placed anywhere on

the ellipse so that may be theii' centroid.

Proof.—Let xy, x'y', x"y" be the coordinates of three equi-momental

particles : then

^ {x' + x" -f x") = 7»/3- ;
''i (2/- + y"+ y'") = ma' xy + x'y' ^- x"y" = ;

o o
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and the two systems have the same centroid ; therefore

x+ x'-\-x"=.0 and y' -\-y" -\-jj"' = 0.

Eliminating x', y', x", y" between the five equations, we find the equation of

(5953) for the locus of xy.

5955 The momental ellipse for the centroid of a triangle is

the inscribed ellipse touching the sides at their mid-points.

Proof.—(Fig. 189.) The inscribed ellipse, which touches two sides at their

mid-points, also touches the third side at its mid-point, by Carnot's theorem
(4779). Now Di^ is parallel to AG, the tangent at E ; therefore BE, which
bisects DF, passes through the centre of the ellipse. Similarly, AT)
passes through it; therefore is the centroid of the triangle.

Let OE = a , and let h' be the semi-diameter parallel to AC; then

9^ + Ml = \, But ON = ~, therefore FN' = U'\ The M. I. about

OE, by (5954), = |-?nf6'^sin^w = m—;5-, where a, h are the semi-axes.

Hence the M. I. about OD, OE, OF varies inversely as the squares of those
lines, and therefore the ellipse in the diagram is a momental ellipse, since it

has six points which fulfil the requirements.

5956 The projections of a plane area and its momental
ellipse form another plane area and its momental ellipse. (5943)

5957 The M. I. of a tetrahedron ABGD about any plane

through A is

where a, /3, y are the perpendiculars on the plane from B, G, D.

5958 The tetrahedron is also equi-momental with four

particles, each one - twentieth of the mass, placed at the

vertices, and a particle equal to the remaining mass placed at

the centroid (5942).

5959 The equi-momental ellipsoid of a tetrahedron has the

same centroid, and touches each edge at its middle point.

Peoof.— By projecting a regular tetrahedron and its equi-momental
sphere (for the centroid) of radius = ,/3 X radius of inscribed sphere.

5960 To find the point, if it exists, in a given right line at

which the line is a principal axis, and to find the other prin-

cipal axes at the point.
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Let be a datum point in the line. Take this for origin,

the given line for axis of z, and OX, OY for the other axes.

Then, if h be the distance from to the required point 0',

and the angle between OX and the principal axis O'X',

5961 'i = ^ • = -^; and tan 2u
^tny 'ZntcV A—B

where A, B, H are the moments and product of inertia about
OX, OY.

Proof.— At the point 0, 0, //, ^m (z-h) x = Xm (z-h)y = 0, from
which h is found ; and the equation for 6 is that for determining the prin-

cipal axes of the elliptic section of the momental ellipsoid, whose equation

is Ax^+ 2Hxy + B7/ = Me*, as in (4408).

5964 The equality of the two ratios in (5961) is the condi-

tion that the ,^ axis should be a principal axis at some point of

its length.

5965 If an axis be a principal axis at more than one point

of its length, it passes through the centroid of the system;
and, conversely, if it be a principal axis at the centroid, it is

so at every point of its length.

Proof.—For h mnst be indeterminate in (5901). Therefore 2myz = 0,

I,my = 0, "^.mzx = 0, SjHic = 0.

5966 The principal axes O'X', O'Y' arc parallel to the

principal axes of the projection of the body in the original

plane of xy. By (5962-3).

5967 Given the principal axes of a body at its centroid, to

find the principal axes and moments of inertia at any point in

the principal plane of xy.

Let G in the Figure of (1171) be the centroid, GX, GY
principal axes. A, B the M. I. about them, and P the given

point. Find two points 8, S', called /o^i of inertia, such that

the X and Y moments of inertia there are equal, and therefore

B+ m.GS'' = A
;

giving 08 = 08' = yJ'^~Jl... (i.).

The internal and external bisectors of the angle 8r8' will be
two of the princi[)al axes at /', and the third will be the normal
to the plane.
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Proof.—The X and Y principal moments being equal at *S', the moment

about every line through />' in this plane is the same. [For I = Al'+ Bm'^

+ Gn^ and n = and A = B, therefore I = vl.] Therefore the moments

about 8F and 8'P are equal. Therefore the bisectors PT, PG of the angles

at P will be principal axes.

5968 Let 8Y, 8'Y' be the perpendiculars on PT, and 8Z,

S'Z' those upon PG ; then the M. I. about PT and PG will be

respectively,

SP-^&P
2

SP-S'PY

A+ mSY.S'Y' = B-\-7ni^^^

A-mSZ.S'Z' = B-\-m(

Peoof.—Draw GR perpendicular to SY. The M. I. about GR (« = SGR^)

= Acos'e+ Bshrd (5929) = ^-(^-P) sin-e

= A-m GS' sin' d (by i.) = A-mSR'.

Therefore M. I. about PT = A-mSR' + viRY' (5921)

= A +m(RY+8R)(RY-SR)=A + mSY.S'Y'

= A + mBG' (1178) = B+ viAG' (by i.) = B + m
[^^X^^

)'-

Similarly for the M. I. about PG.

5969 Hence, if an elhpse or hyperbola be described with

S, S' for foci, the tangent and normal at any point of the

curve are principal axes, and the M. I. about either is constant

for that curve.

5970 Similarly, for a point P in amj plane through the

centroid 0, it may be shown that the same construction will

give the axes Pf, PG about which the product of inertia

vanishes, OX, OY being the axes at in the given plane about

which the product of inertia vanishes.

5971 The condition for the existence of a point in a body

at which the M. I. about every axis through it shall be the

same, is

—

There must be two princifal axes of equal moment at the

centroid, and the M. I. aljout each must he less than the third

principal moment.

Two such points will then exist situated on the axis of

unequal moment, and equi-distant from the centroid.
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5972 Given the principal axes at the centroid of a body and
the moments of inertia about them, to find the principal axes

and moments at any other point.

[See (5975) for the result.]

Let A, B, G be the given principal moments, and let the

mass of the body be unity. Then the ellipsoid of gyration at

the centroid 0, and a quadric confocal with it, will be

5973 Prop. 1.—The M. I. is constant for all tangent planes

of the confocal, and is equal to the

M. I. for the origin -{-\ = S+\. (5919)

Proof.—Let I, m, n be the dir. cos. of the tangent plane of the confocal,

p the jaeipendicular on the plane from 0. The M. I. for this plane

= M. I. for a parallel plane through 0+p^ (5921)

= A'r + B'm- + C'n'+p- (5936)

= (8-A) P+(S-B) m' + (S-C) n'+ (A + X) r+(B + \) m'+(C+ K) n'

(5914, 5G31) = S+ X, which is independent of I, m, n.

5974 Pi^OP. II.—All these planes are principal planes at

their points of contact, and if the three confocals be drawn
through any point P, the tangent planes at P to the confocal

ellipsoid, two-fold hyperboloid, and one-fold hyperboloid, are

respectively the principal planes of greatest, least, and mean
moments of inertia. The normal to the confocal ellipsoid is

the axis of least moment, and the normal to the two-fold

hyperboloid is the axis of greatest moment.

Proof.—Draw any other plane through P. The perpendicular on it

from is less than the perpendicular on the parallel tangent plane to the

confocal ellipse, and greater in the case of the two-fold hyperbola. Then,

by (5921).

The solution of the problem at (5972) is now given by Proposition III.

5975 Prop. III.—The principal moments of inertia at P are

0P'^— \^, 0P^— \, OP'^— Xs, and the normals to the three con-

focals at P are the principal axes.

PuooF.—The M. I. about the x axis at P
= M. I. for the origin P— M. I. for the yz plane

= S+0F'-iS+ \) = OP'-X, (5921-73).



MOMENTS OF INEBTIA. 825

5976 The principal moments of inertia above, expressed in

terms of X^ of the confocal ellipsoid and d^, d^, its principal

semi-diameters conjugate to OP, will, by (5661), become

OP'-K, OP'-\+dl OP'-\,-\-dl.

5977 The condition that the line abc, hmi, referred to prin-

cipal axes at the centroid, may itself be a principal axis at

some point of its length, is

(lb h c f^ f^

I in m n n I __ 1

A-B ~ B-C ~ C-A "
2^

'

Here abc is any point on the Hne, and if a confocal quadric

of the ellipsoid of gyration at the centroid be drawn through

the stated principal point of the given line, p is the perpen-

dicular from the origin upon the tangent plane of the confocal

at that point.

_ mi • T x— a y— h z— c r\
PiiOOF.—The given hue --— = ^ = {}•)

I m n

must be a normal to the confocal ~~- + ^r—r + tttt = 1 ("•)•

Therefore, by (5629), ^ = ^p^' '" ^^' '^ ^
'gH

^''^'^'

Eliminate x, y, z from (i.) by means of (iii.), and from the resulting equa-

tions eliminate p, and the condition above is obtained.

Also, by (5631),

f = (A + X) r + (J?+ X) m^+(G+ X) n' = AP+ Bm^+ Gv? + \ . . .
(iv.).

The principal point xyz is now found by eliminating \ and p from equa-

tions (iii.)> by means of (iv.) and (5977).

INTEGRALS FOR MOMENTS OF INERTIA.

By the definition (5903), the following indefinite integrals

for moments of inertia are obtained :

—

5978 For a plane curve, y =f{x), the M. I. about the x and

y coordinate axes are

y^ds and x^ds; and therefore (x^+ y^) ds = r^ds

5 N
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is the M. I. about an axis perpendicular to both the former
through the origin (5920).

5980 Observe that ds may be changed into dx, dy, or dO

by the substitution formulae (5113, '16).

5981 For a plane area bounded by the coordinate axes, the

ordinate y and the curve y =f(^x), the M. I. about the x and

2/ axes are

1 1 u^dAdy = 1 1 y^d.v and \ I x"d.vdy = \ x-ydx.

5983 And the M. I. about an axis perpendicular to both
the former drawn through the origin,

= JJ(.v^+/) dxdy = ((r'drdd = J {r'dS,

but in the last two integrals the area has the boundaries
described in (5894).

5986 The M. I. of a solid bounded by three rectangular
coordinate planes and the surface z =f{x, y) about the z axis,

will be

JT(.^^2+/) zdxdy =\\\r' siii=^ ddrddd^i,

but in the last integral the solid is bounded as described in

(5875).

5988 The volume, which represents the mass in all these

cases, has already been expressed (5205, 5871) ; and by
dividing by the volume, the square of the radius of gyration
of the solid is found (5904).

Proofs.— FormulsE (5981-3) are directly obtainable by geometry from
figures 90 and 91, and formulae (6986-7) from figares 168 and 188. The
transition to polar coordinates may also be eifected by the formula of

(2774).

D9o9 In expressing moments of inertia, the factor m will stand for the
mass of the body, and the remaining factor will therefore bo the value of the

square of the radius of gyration.
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PERIMETERS, AREAS, VOLUMES,
CENTRES OF MASS, AND MOMENTS OF INERTIA

OF VARIOUS FIGURES.

RECTANGULAR LAMINA AND RIGHT SOLID.*

For a rectangle whose sides are a, h, the momenta of inertia

about the sides, and an axis perpendicular to both where they

meet, are respectively

6015 wi-^, m— , "*—3—

Proof : ^'ax' dx = ~= m ^. The third by (5920)

.

Jo "

6018 Hence, for a right solid, whose dimensions are 2a,

2b, 2c,

M. I. about the axis of fio^ure 2c = m.—i:
—

.

ARC OF A CIRCLE.

6019 Let AB (Fig. 191) be the arc of a circle whose centre

is and radius /*. Let the angle AOB = Q ; then

Length of arc AB = r6. (601)

6020 Huygens' Approximation.

—

Rule.—From 8 times the

chord of half the arc take the chord of the whole arc, and divide

the remainder by 3.

Proof.—The rule gives ~
( 16 sin — — 2 sin — j

.

°
3 \ 4 2/

Expand the sines by (764) as far as 0^ and the result is rd.

6021 Taking an axis OX through the mid-point of the arc

with origin 0, the centroid of the arc is given by (5889)

2rsiui^ TT r- • •,„!. - _ 2r
cV = J_. Hence for a semi-circle cV =

e IT

For M. I. of a triangle, see (5944-52).
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6023 Also, for the centroid of BX, y = ^^' ^"^' ^^

where a = /_ XOB.

6025 The M. I. of the arc AB about OX and OY are

mr^/^ sin6\ -, mr^/^ . sin ^\_^l-__) and -2-(H-^). (5978)

6027 M. I. about axes perpendicular to XOY, through and
X the mid-point of the arc respectively, are

mr^ and m.2r'(l-^^^\ (5979)

6029 CoE.— The if. I. of a") _ /w^f

circular ring about a diameter j 2

SECTOR OF CIRCLE. AOB (Fig. 191)

6030 Area = -^, .v= -^^- . ForXO^, y = —^.

Proof.—^, y are respectively f of x, y in (6021, '3) ; since the centroid

of eacli elemental sector is distant fr from 0. Otherwise, by (5893, '5).

6033 The M. I. about OX and OY are

Proof.—By (5981-2) ; or integrate (6025-G) for r from to r.

SEGMENT OF CIRCLE. ABX (Fig. 191)

6035 ^«a=-(<»-smO), ^=
^^g_^^gy

6037 For CCZ, 7
'•(2-3cosa+cos»a)
o (a—sma cos a)

Proofs.—From the sector and triangle ; otherwise, the centroid, by
(5893, '5).
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6038 M. I. about OX and OY, (5981-2)

^ (3^-4 sin ^+sin 6 cos ^) and ^ (^-siu ^ cos 6).

6040 CoE.—Hence, for a semi-circle^ w = ——

.

6041 Also, tlie M. I. of a circle about a diameter, and about

a central axis perpendicular to its plane, are respectively

??^' and =:'. (6920)
4 2

THE RIGHT CONE.

If li be the height, r the radius of the base, and I the slant,

6043 Curved surface = irrl. Volume = \7rrV1.

6045 Distance of centroid from vertex = |/t.

6046 M. I. about axis of figm-e = m i^rl

6047 ^' I' about cross axes through the vertex and centroid

respectively.

7n^o{r'+^h') and 7n-io{4^r'+h').

FRUSTUM OF CYLINDER.

Let 6 be the inclination of the cutting plane to the base,

and c the length of the axis intercepted.

6048 The distance of the centroid from the axis is

- a' tan 6
X •=

4c
.2

6049 The M. I. about the axis = m— , being the same as

that of a cylinder of height c. Hence, by (5921) and the value

of X above, the M. I. about any line parallel to the axis can be

found.
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SEGMENT OF SPHERICAL SURFACE. (Fig. 191)

Let be tlie origin of coordinates ; OA = r the radius

;

and 00= x tlie abscissa of AB tlie plane of section.

6050 The curved area of AB = 2trr {r—x) = the area of its

projection on the enveloping cylinder of the sphere.

Proof: Area, =
\
2-mj —dx = 27rr(r—x). (5878)

Jx y

6051 For centroid of surface, a = ^ (r-\-cv).

6052 The M. I. about the axes OX, OY are

^ {2r'-ra?-A^') and ^ (4^y^^r.v-{.a;').
o o

HEMISPHERICAL SURFACE.

6054 ^rea = 2'irr\ ^^= ^' (6050-1)

6056 -M". I. about OX or or = m |rl (6052-3)

SEGMENT OF SPHERE.

6057 Volmne = -^ (2r+.v)ir-.vy\ a} = ^^^±^.

6059 M. I. about OX = ^ (r-.vy (8r^+9r.r+ar).

6060 il/. I. about OY

Proof.—As in (0146-7) ; or put a = h = c in the results.

HEMISPHERE.

6061 Volume = |1^r^ .v = ^r. (6064)

Proof.—Vol. = surface (6054) x -, by elemental pyramids having their

common vertex at the centre of the sphere. Otherwise, make x = in

(6057).
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6063 M. I. about OX or OY = m frl (6059-GO)

SECTOR OF SPHERE.

6064 Volume = Ittt^ (r—h), ^= i {r+h).

Proof.—Vol. = surface (6050) X — . x = ^ oi x in (6051), since the
o

centi^oid of each elemental pyramid is distant'fths of r from the centre.

6066 For the M. I. add together the M. I. of the cone and
segment (6046, '59).

THE PARABOLA, y^ = 4ax. (Fig. of 1220)

6067 Rad. of citrv. p =^^ = 2a (^1+ |)l (4542)

6069 Coordinates of centre of curvature

3ci^+2«, ^^,. (4545)

6071 ArcAP^s = ^{ax^ar)^a\og ^'''+ v^(^+-^^)
.

\/ u

6072 = a [cot e cosec ^+log cot {10)'].

Proof: s=[^(l+'j^)dx. (5197,4206)

Substitute ^x, and integrate by (1931).

6073 Arc AL = a^2^-a\og{l^^2).

Centroid of arc AP with above value of s.

6074 *.r = ?£+f y(..^+«..)+^log
2^+«+2y(-^'+«.»-)

.

4 o tt

6075 ^^/ = f{^/«(^+«r-«^}.

6076 For centroid of arc AL, putting x = a,

. _ 6^/2 + log(3 + 2^/2) 4 (2v/2-l)a

^~8{v/2+log(l + y2)} ' ^ 3 •

v/2 + log(l+y2)-
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Half-segment of parabola ANP.

6078 Area = fa;?/, <r = fct% ^ = |?/.

6081 The ilf. I. about the .i; and ?/ axes are

m fa.r and 7n j,v^.

THE ELLIPSE.

6083 The equation being h\r+ a-jf = a^Ir, the length of the

arc AP (Fig. of 1205), putting <^ for the eccentric angle

of P, is

Jo

Proof. — lu {dsf = {dxf -\- {d^if (5113), substitute dx = —a sin 0f?0,

% = & cos fdcp, by (4276), and use" (4260).

6084 The length of the elliptic quadrant AB is

2 I 4 2! 2! 2* 3! 3! 2« 4! 4! 2« )
*

Proof.—Expand the binomial surd above, and employ (2454) and (2472).

Similarly, from (5887) and (5978) the three following values are found.

6085 For the ccntroid of the same quadrant,

1^2 1 ^4

cV = — .
-—Y"-^

—

~-^ approximately.

6086 The M. I. about the x and y axes are approximately,

and
m^ l-je'—i^e' , ma' 1

2 -l-ie'—Ae'4^ 64'

6088 Fagnani's Theorem.—(Fig. 192.) Let P be any point

on the ellipse, GY the perpendicular on the tangent at P;
/_ACY=^d; (2 the point whose eccentric angle =-|7r— 0.

Then

6089 PY-\-AP = a(^{l-e' siu'd) dS = BQ

;

and in the hyperbola (Fig. 193)

6090 PY-AP = a I \/(l-6- siu'^) (W.
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6091 Cor. — The difference between the lengths of the

infinite curve and asymptote =: a\ ^(l — c^siird)dd, where
, a •'«

tan a =--.
b

Proofs.—By (5203),

AP+FY or s+q=[pde=a[ ^/(l-e' &{iv 6) iW = BQ, by (6083).

In the hyperbola we have q—s=-
j

6092 Draw the tangent at Q and the perpendicular GU upon
it. Let X, X be the abscissae of P, Q. The following relations

subsist,

PY= "-^ = QU, CY.CU=ab, CP'+CU' = (r+bK

Proof.—Let tp = the eccentric angle of P, and let AGU = ti'. Then

tau(b = ^ = - tan 0. (4276-80)
ox a

Similarly for Q, tan ( -r — ) = cot = — tan 6',

therefore tan^ = cotfl' or f = ,^

~^'
('•)•

The relation therefore between P and Q is reciprocal. Now FY = e^x sin d

(4296) and x' = a sin 6, therefore PF = —— = Q?7, by the reciprocity.

Again, Cf/"' = cr cos" ^' + fc'^ siu'^ 0' (4372) = «'' sin" ^ + Z>'^ cos" ^ (ii.).

Put f in terms of by the above, and we find

pjp a'h' _ d'b'-

^^^"^^^0+T''sin^0 ~ CY''

Lastly, CP-+ C U'^ = .r + 7/ -\- a- sin' f + b"' cos' 0, by (ii) , = a' + U' (42 76-7).

6095 When P coincides with Q, the point is called '

' Fagnani's

point," GY= V{ah), PY = a-b, and x = ci} {a-\-b)-^.

6096 Oriffith>^' Theorciih.*— If an ellipse of eccentricity e,

and a hyperbola of eccentricity e~S be placed as in the figure

of 1205 (the circle representing the ellipse), P^p being con-

sidered corresponding points ; then, calling PQ, in (6088), a

Fagnanian arc, we have the following theorem :

—

* J. Griffiths, M.A., Proc. Lond. Math. Soc, Vol. v., p. 95.

5
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The ratio of tlie difference of two FagnaDian arcs on the

ellipse to the difference of the two corresponding arcs on the

hyperbola is equal to the product of e'- and the four abscissae

of the points on the ellipse.

SECTOR AND SEGMENT OF ELLIPSE.

6097 The formulae for the sector and segment of a circle

may be adapted to the ellipse by writing a for r and multi-

plying linear dimensions parallel to the minor axis by b : a.

But a will then represent the eccentric angle of the semi-arc,

and B twice that angle. Thus, in the figure of (1205), if

AGP be the half sector, a = AGp, = 2AGp.

Sector of ellipse {2AGP in fig. of 1205)

:

6098 Area = '^, 1' = *^^^, y = ^1^, ^0-2)

the last being for the half sector AGP. The M. I. about the

X and y axes are

(6033)r^Mnt mh' I ^ sill ^\ T
ina^ /\ ,

sin ^\
6101 -TV--r) ""* -T\^+-r}

Segment of ellipse {2ANP in same figure)

:

6103 Area = '-!^{e-sme), ^ = ^^^^^. (6035-6)

6105 For ~y of the half segment ANP, and for the M. I.

about the x and y axes, replace r by b in (6037-8) and by a

in (6039).

6108 For the whole ellipse, the area = nab. (6103)

6109 For the half ellipse, .T = |^. (6104)
OTT

6110 The M. I. about the x and // axes, and a third central

axis perpendicular to both,

and ^ .'—^. (6041-2)
4 4 4
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6113 The area of the ellipse whose equation is

(abcfghla-yiy=ii, is =
^(^ft_ft.)3

"r
^/c^-

Proof.—If a, /3 be the semi-axes of the conic, the area 7ra/3 takes this

value, by (4414) and (4407).

6114 Lamherfs Theorem.—The area of a focal sector of an

ellipse, as P8P' (Fig. 28), in terms of f, <^', the eccentric

angles of P, P\ is

^ {<^-f-e(sin(^-siiif)} = Y^^"^"^'"''^"''''^'^^-

In the second value, sin ^ and sin^- are =iJ =—

respectively, where r = SP, r = 8F, and c = PP\* a result

of use in Astronomy.

THE HYPERBOLA.

6115 The length of an arc of the hyperbola hy-ahf = a^
and the abscissa of its centroid may be approximated to, as in

(6084) for the arc of an ellipse, by the substitutions from

(4278),

j
(h- = a

j
see (^ ^/(f- sec'^ <ji— l)d(l>

and I ,rds = er
j
sec' <^ \/(t'" sec'- <^— 1) dcji.

6117 Landen's Theoreni.—This theorem gives any arc of an

hyperbola in terms of the arcs of two ellipses, as follows :

^^/{(r-\-b'-\-2ab cos C) dC =

^^{a'-b'shvA)dA-^^y(b'-(rs\n'B)dB-{-2asmB+coiist,
«- *

that is—Arc of elUfse tcliose semi-axes are a-^b and a— b

= Arc of ellipse whose major axis is 2a and eccentricity b : a

+ difference between a right line and the arc of an liijperhola

whose major axis is b and eccentricity a : &.t

* Williamson's hiteg. Calc, Art. 137. t Ibid., Art. 157.
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6118 Arm ANP (Fig-, of 1188) bounded by rr, ^, and tlie

curve

= " ) A^^{a--(r)-a- \og'^-:L^ ^^ . (1931)

(4271)6119 =i [.r//-r/Hog(|+ |)(.

6120 Area of i^ector between CA, CF and the curve

6121 Area between tivo ordinate^ //i, ij.,, when the asymptotes
are the coordinate axes

ah 1 Xo

Proof : sin 2.4(70
| .j dx = -^ j^ ^. (4387)

6122 The centroid of ANP, A being the area (6118), is

given by

6124 The M. I. of ANP about the x and // axes are

6125 A(2,,.'_„-,.) y(.,.^-,r)- !f
i.,g^±^t!!=I^),

THE ELLIPTIC PARABOLOID.

6126 T^nuation, '}l^!L = 2z.

6127 I 'ol. of ,njmril f = 77^ (^^ft) .-', -^ = ^-

6129 ^1^. P about the axes of ,r, //, J^nd ;: respectively^

/(iz
,

;::-\ /ft;::
, rJ\
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6132 The surface S of the same segment may be found from

6133 If the surface of the paraboloid be bounded by a

curve of constant gradient y (5881), the area becomes

S = i7rab{sec'y-1). (5883)

THE PARABOLOID OF REVOLUTION.

6134 Equation, .v^-\-y^ = 2az or r'- = 2az.

6136 Surface of segment, S = §77 ^a {
(2z+(f)^-a^} . (5880)

6137 Volume = miz' = i7rr% z = ^z. (5887, '99)

6140 M. I. about axis of figure = '-^ (6131)

6141 For M. I. about OX and OY put a = h in (6129-30).

THE ELLIPSOID.

6142 Equation, :^ + |^ +^ = 1, semi-axes a, b, c (5600).

6143 The surface of the segment cut off by the plane whose

abscissa is x, will be found from

Proof.—By (5874) and (6629, 7), eliminating z by means of the equa-

tion of the surface.

6144 The volume of the solid segment and the centroid are

given by

^-^^^^^^ ^' 4(2«+.r)-

Proofs.—Let (Fig. 177) represent one octant of the ellipsoid; OA, OB,

OC being the principal semi-axes. The elemental section

4PNQ = TrNF.NQdx = tt— v/a'-a;' — s/d'-x-dx.

Therefore Vol.

;

'^ {\a'-x') dx = ^ (2a«-3a-^a; + .-') = &c.
(I J -p

ofl
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The moment with respect to the plane of yz

a" J 3, 4a"

and division by the volume gives £' as above.

6146 Tlie M. J. of the solid segment about the axis a

Trhc (6''+r)

ma'
Proof.—(Fig. 177.)

(rt-.r)'^(8r<^+9«.r+av-).

M. J. = [\nP.NQ:^^^±^cU (G112) =-M^ f'V,^-.r^^/. = &o.

6147 The M. I. about the axis h

^^ 5 4 («-.r)'(8«2+9«.*^+3cV-)+ 2«'^-5«V+ai'= ?

.

15a- ( (r )

Proof : il/. I. = {"ttNP.NQ(^ + OnA dx (5921)

= ^—^ (a-—x-y^dx+ '^ (a^— .^-) a:-t?.« = &c.
4a.* Jx ti Jx

6148 The volnme of the whole ellipsoid = ^trahc.

Proof.—By making a; = in (6144).

Otherwise : Let kiqi:, be the point on the auxiliary sphere of radius r cor-

responding to xyz on the ellipsoid. By (5638-9), rx = a^, ry-= hr], rz = ci^.

Therefore
[
dx dy dz = '^[ dk dr}di: =^ iirr\ (6061)

6149 For the ccntroid of tlie semi-eUipsoid .r = '—. (6145)
8

6150 The M. I. about the axis a = »J^'+^") . (6146)
o

6151 The volume of a segment cut off by an)/ plaue PNQ
(Fig. 177), where 0A^=(1 is the semi-conjugate diameter, and

V — ttahv—\—rK—-•

Proof.—Taking the area of tlie section from (5655), tlic vdlunie of the

segment will be

T^ahc sin

-J>-^ )'• "'"- -"" = 5-
V

being ilie inclination of <l to the cutting ])lanf'. Integrate, and put

x = d-l>.
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PROLATE SPHEROID.

Put c = b in equation (6142) of the ellipsoid ; then a will

be the semi-axis of revolution.

6152 The surface of the zone between the plane of ij'i and a

parallel plane at a distance x is

L e a a

Proof.—Bj (5878). ,S' = "^ ^J (^ - xA dx.

Then by (1933). Otherwise, make h = c in (6143), and reduce.

6153 CoK.—The whole surface = 2ir6 (6+— sin~^e
j.

6154 The centrolcl of the surface of the zone in (6152) is

Proof.—From ^i>V(f-«')-

6155 The M. I. of the same zone is

6156 And for the whole surface, by making x = a and
doubling,

/ 9 i \ /I
if. I. = .aV (^ - i) sm-V+.ft'(l+ ^,

Proof : M. I

IV^? "''") *'" °^'
\ "V(7 ""') '"

The first integral by (1933). For the second, by Rule VI. 2048, we obtain

the formula

6157 |.^V(«— ^«0 dx = ^ sin-i| + ^^^^ ^/(a'-x^),

in which — must now be written for a.
e

6158 For the volume, moment of inertia, and abscissa of

centroid of the solid prolate spheroid, make c = b in (6144-51),

a being the axis of revolution.
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OBLATE SPHEROID.

6159 Piit b = a in the equation (6142) of the elhpsoid

;

then c will be the semi-axis of revolution.

The surface of the zone between the plane of xij and a
parallel plane at a distance z, is

4> Tra // 4 , 9 9 o\
I

ire- 1 at';;;4--v/(c*4-«W)

c" e &

Proof.—By (5878). /b' = ^^^ ^ iL^^j^A dz. Then by (1931).

6160 C.)K.—The whole surface = 2mr-\- !!^loff 3L±^.
e 1—e

6161 The centroid of the surface of the zone in (6159) is

given by
-_27ra\eU c^ At c^

I

Proof.—As in (6154). z for the surface of half the spheroid is obtained
in this case by making 2 = c, but in (6154) put x = a.

6162 The M. I. of the same zone is

6163 And for the whole surface, by making :: = c and
doubling,

nr r t/i c' \ ,
TTC" (4«'-— iV") , a(l-\-e)

PKOor: J/. I. = 2.|.y (l +g) <b = 2^"^ |(.=_.») ^(_^£L +.) ....

The first integral involved is given at (1931), and the second is obtained in

the same way as in the Proof of (6155), giving

6164 \^' v/;?T^</,. =^^^ VCr+ cr)- I log {x+ ,/(.oHaO}.

6165 For the ruin me, inomeiif of inertia^ and ahscis.^a of
rnilrui.d of the solid oblate spheroid, make h = a in (6144-51),

c being the axis of revolution.
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KEY TO THE INDEX.

Prefixed to each title will be found the symbol by which the work is

referred to ill the Index. The words ''with Vol." or '' ivith Year," signify

that any number following the symbol in the Index denotes, respectively,

the Volume or Year of the journal. The year is given in all cases in which

the work consists of more than one series of volumes. In order to connect

the volumes with the years of publication, a Chronological Table is prefixed

to the Index ; in which table successive series of numbers in any column

indicate successive series of volumes of the publication.

A. with Vol.—Avchiv dcr Mathematik; 1843 to 1884; 70 vols.

[B. M. C. : P.P. 1580.] *

Ac. 7vith Vol.—Acta Mathematica, Zeitschrift Journal, herausgegeben

von G. Mittag-Leffler; Stockholm, 1882 to 1885; 7 vols.

AJ. with Vol.—American Journal of Mathematics ; Baltimore. Editor :

J. J. Sylvester, F.R.S.; 1878 to 1885; 7 vols. [B. M. C. :

P.P. 1575.6.]

An. with Year.—Annali di Scienze Matematiche e Fisiche, compilati da

Prof. Barnaba Tortolini ; Eome, 1850-57; afterwards—Annali

di Matematiche pura et applica; Rome, 1858-65. Series II.,

Annali di Matematiche pura et applica, compilati da F. Brioschi

e L. Cremona; Milan, 1868-85 ; 23 vols, in all. [B. M. C. :

P.P. 1573 and 952.]

At. with Year.—Att'i della Reale Accademia delle Scienze di Napoli;

1819 to 1878; 15 vols. [B. M. C. : for 1819-55, 8 vols.,

Acad. 2813 ; for 1863 to 1878, 7 vols., Acad. 96.]

C. with Fo/.—Comptes rendus hebdomadaires des seances de rAcaderaie

des Sciences; Paris, 1835 to 1885; 100 vols. [B. M. C.

:

Acad. 424 and B.B. 2099. c] t

CD. luith Vol.—Cambridge and Dublin Mathematical Journal. Editor,

W. Thomson, B.A. ; 1846 to 1854; 9 vols. [B. M. C.

:

P.P. 1565.]

CM. ivith Vol. — Cambridge Mathematical Journal; 1839 to 1845;

4 vols. [B. M. C. : P.P. 1565.]

CP. ivith Fo/.—Cambridge Philosophical Transactions; 1822 to 1881
;

13 vols. [B. M. C. : Acad. 3008.]

* i.e., British Museum Catalogue, Pressmark F.P. 1580.

t Ji.E. signifies Reading-Room volumes ivithin reach.
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E. with Vol.—Educational Times Reprint of Mathematical Questions

and Solutions, with additional p:ipevs ; London, half-yearly,

1863 to 1885; 44 vols. Editor: W. J. C. Miller, B.A.

[B. M. C. : 2242. c]

G. ivith Vol.—Giornale di Matematichead uso degli studenti delle univer-

sita Italiane, pubblicato per cura del professore G. Battaglini
;

Naples, 1863-85; 23 vols. [B. M. C. : P.P. 1572.]

I. with Vol.—Journal of the Institute of Actuaries, or. The Assurance

Magazine; London, 1850-84; 24 vols. [B. M. 0.: P.P.

U2S.g.g. and 126.]

J. ^vith Vol.— Journal fiir die reine und angewandte Mathematik,

herausgegeben von A. L. Crelle ; 1826-1856 ; and Journal

alsFortsctzung des von A. L. Crelle gregrundeten Journals von

C. W. Borchardt; Berlin, 1856-1884- 97 vols. [B. M. C. :

P.P. 1585 and B.R. 2022. g.]

JP. 'With Vol. — Journal de I'Ecole Polytechnique ; Paris, 1796 to

1884 ; 34 vols. [B. M. C. : T.G. l.h.]

L. with Year.—Journal de Mathematiques pures et appliquees, ou

Eecueil mensuel de raemoires sur les diverses parties des

Mathematiques, publie par Joseph Liouville; Paris, 1836 to

1884; 49 vols. [B. M. C. : P.P. 1575 and R.B. 2022.(7.]

LM. with Vol.—London Mathematical Society^s Proceedings; 1866 to

1885 ; 16 vols. [B. M. C : Acad. 4265, 2.]

M. ivith Vol.—Mathematische Annalen, in Verbindung mit C. Neumann
begriindet durch R. F. A. Clebsch unter Mitwirkung dcr

Herren Prof. P. Gordan, Prof. C. Neumann, Vols. 1-9 ; and

Prof. K. V. Miihl, gegenwartig herausgegeben von Prof. F.

Klein und Prof. A. Mayer, Vols. 10, &c. Leipsig, 1869-1885
;

25 vols. [B. M. C. : P.P. 1581.6.]

Man. ivith Year.—Manchester Memoirs, or. Memoirs of the Literary

and Philosophical Society of Manchester; 1805 to 1884;

23 vols. [B. M. 0. : 255.fZ., 9-12, and Acad. 1360.]

Me. ivith Year.—The Oxford, Cambridge, and Dublin Messenger of

Mathematics; 1862 to 1871; 5 vols. Continued as—The

Messenger of Mathematics. Editors : W. A. Whitworth,

M.A., C. Taylor, D.D., R. Pendlobury, M.A., J. W. L.

Glaisher, F.R.S. ; Cambridge, 1872 to 1885; 14 vols.

[B. M. C. : P.P. 1565.6. and 463.]

Mel. ivith Vol.—Melanges mathematiques de I'Academie des Sciences

do Saint Petersburg; 1849 to 1883; 6 vols. [B. M. C. :

Arad. 1125/9.]

Mem. with Year.—Memoires do TAcadomio Imperialo des Sciences do
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Saint Petersburg; 1809 to 1883; 51 vols. [B. M. 0.:

1809-30, T.O. 9.a., 14-20; 1831-59, Acad. 1125/2; 1859-83,

Acad. 1125/3.]

Mo. ivitk Year.—Monatsbericht der Koniglich-Preussiclien Akademie

der Wissensobaften zu Berlin; 1856 to 1881 ; continued as—
Sitzungsbericbte der Koniglicb, &c. ; 1881 to 1885; 30 vols.

[B. M. C. : Acad. 855.]

N. 'With Year.—Nouvelles Annales de Mathematiques. Journal des

Candidats aux Ecoles Polytechnique et Normal. Redige par

MM. Terquem et Gerono ; Paris, 1842 to 1882; 41 vols.

[B. M. 0. : P.P. 1544.]

No. with Year.—Nova Acta Regise Societatis Scientiarura Upsalieusis
;

1775 to 1884; 26 vols. [B. M. C. : for 1775-1850, 14 vols.,

T.O. 6.b., 13-19; for 1851-1884, 12 vols., Acad. 1076.]

P. luith Year.—The Pliilosopbical Transactions of the Royal Society of

London; 1781 to 1884; 104 vols: i.e., vols. 71 to 174.

[B. M. C. : B.B. 2021. r/.]

Pr. ivith Vol.—Proceedings of the Royal Society of London ; 1800 to

1885; 39 vols. [B. M. C. : for vols. 1 to 23, Acad. 3025, 21 ;

for vols. 24, &c., B.B. 2101. cL]

Q. tuith Fo?.—Quarterly Journal of Mathematics; 20 vols. Cambridge,

1857-78; Editors: J.J. Sylvester, F.R.S., N. M. Ferrers,

F.R.S., G. G. Stokes, F.R.S., A. Cayley, F.R.S., M. Hermite,

F.R.S. ; 1878-85, N. M. Ferrers, F.R.S., A. Cayley, F.R.S.,

J. W. L. Glaishcr, F.R.S. [B. M. C. : P.P. 1566 and 25L]

TA. with FoL—Transactions of the American Philosophical Society

;

Philadelphia, 1818-71; 14 vols. [B. M. C. : Acad. 1830/3

and T.G. I8.h. 11.]

TB. ivith Fo?.—Transactions of the Royal Society of Edinburgh ; 1788

to 1880 ; 29 vols. [B. M. C. : T.O. 15.6. 1 and B.B. 2099.^.]

Tl. ivith Fo/..—Transactions of the Royal Irish Academy; 1786 to

1879; 26 vols. [B. M. C. : Acad. 1540 and BB. 2099. g.]

TN. with Fo/.—Transactions of the Royal Society of New South Wales
;

Sydney, 1867-83; 17 vols. [B. M. C. : Acad. 1971.]
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Abacus of the Pythagoreans : L.39.

AbeUan cubics and symmetrical ei( na-

tions : Q.5.

of class x/(-31) Mo.82.

Abelian eqnations : A.68: C.95: J.93 :

M.18: Mo.77,92.

Abelian functions : see " H-yper-elliptic

functions."

*Abel's formula for F{x+i7i)+F{x—!y):
2705. Me.73.

*Abel's theorems: 1572: C.94: J.9,24.,

61,90: LM.12: M.8,17: P.81,

83 : Pr.30,34.

cj> {x)+(i> (2/)
= ^/^ {xf{y)+ yf{x)] : An.

57.

*Abscissa: 1160.

Acceleration: Me.tr 65.

*Algebra: 1—380: A.tr 20.

application to geometry : JP.4-.

foundation, limitations : AJ.6 : CP.7,

8,: Q.6.

history of, in Germany : Mo. 67, 70.

Algebraic: Calculus: N.81.

definitions: C.37.

forms: C.84,94: M.15.^

coordination of : J. 76.

whoseHessian vanishes identically

:

M.IO.
in theory of cubics : M.8.

formulaj: G.12 : Q.5.

functions: A.10,31 : J.92 : L.50,51 :

M.IO : N.62.
applied to geometry : G.22 : M.7.

number of constants : J.64.

as partial fractions : Z.9.

rationalization of : A.69.

representation by : J. 77,78.

resolution into factors : A.46.
theorems: J.82 : M.1,6.

synthesis : C.I63.

Algorithmic geometry : N.57.

Algorithm : re definition of ( -^ ) :

J.27. ^ ^ ^

of higher analysis : Mo. 75.

of arithmetical functions : G.23.

Alternants of 4th order, co-factors of :

AJ.7.
Alternate numbers : LM.lOo.
Alternating functions : AJ.7 : C.12,

22 : J.83 (.Vandermond's) : Me.
82.

Altitudes, determination of: A.12,19:
Mem.l5: ISr.45.

Amicable numbers : A.70.
Anallagmatic curves and surfaces :

C.87 : N.64 (quartic surface).

Anallagmatic pavements : E.IO.

Analysis : A.l : An..50 : C.3,11,12 :

J.f7: P.14: Q.6,7.

ap to geometry : G.23 : JP.4.

Analytical : aphorisms : A.5 : J.IO.

combination theorem : J.ll.

functions : Ac.6 : thsAn.82 : La-
grange, trJP.3.

system of, and series from it: An.
tr 84.,.

* geometry : 4001—6165 : A.2,11,38

:

C.6: JP.9: L.72: M.2 : Mem.
13: Z.9: tr 11,12.

theoremsand problems :A.8,52:J.46.

plane and solid in homogeneous co-

ordinates : Z. 15,16.

of three dimensions : CM.4.
metrics : Q.7,8.

theorems: A. 8. treatise: C.13.

Angles : conterminal : Me. 74.

* of a central conin : 4375.

division into n and n+ 1 parts : A.70.

of five circles or six spheres : Me. 79.

* of two circles : 4180.

problems on : P.1791.

two relations between five : A.20.
* trisection of: 5325: A.4,34 : C.2,66,

81 : G.15 : Me.72 : N.56,76.

Anharmonics : LM.2,3.
*Anharmonic pencils of conies : 4809

—21.
*Anharmonic ratio: 1052,4648: GM.12.

corresponding to roots of a biquad-
ratic : N.60.

* of a conic: Q.4: of four tangents: 4986.

5 Q
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Auharmouic ratio {eoiitlnued)

:

of 5 liues iu space : Me.76.

of 4 points in a plane : A.l : C.77.

sextic : LM.2,60 : Q.37,38.

systems : cnM.lO.
*Aunuities: 302: A.22: Ac.l : CP.3

:

J.83 : 1.1—24: P.1788, -89, -91,

-94, 1800, -10 : N.47.

Auticaustic (by refraction) ofaparabola

:

N.83,85.

*Anticlastic surface: 5623,5818.

Aplauatic liues, lemniscates, caustics,

&c. : thL.50: N.45.

Apolarity of rational curves : M.21.
Apollonius's problem : A.37 : M.6.

Approximation : J.13 : N.66.
algebraic : J.76.

to functions represented by integrals :

C.20o.

of several variables : C.70.

successive : Mem.38.
Apsidal surfaces : Q.16.

Arabs, mathematics of: 0.39,60.

Arbitrary constants : C.15 : L.80 : in

d.e and f.d.e, TI.13.

*Ai'C, area, &c. : quantification of :

1244, 5205, 5874, 6U15.

relations of: G.16 : C.80,94: L.46.

Arcs with a rectifiable difference and
areas with a quadrable difference

:

L.46.

*Areas : and volumes in t.c and q.c :

4688 : Q.2.
* approximation by ordinates : 2991— 7:

C.78: CD.9.
* between 3 lines : 4038 : Me.75.

ext. of meaning : CD. 5.

Arithmetic : A.5,18 : L.59.

ancient : C.71 : N.51.

degenre, ext. of the notion : C.94.

higher : J.85.

history of: C.17.

of Ibn-Esra : trL.4L
of Nicomaque de Gerase : An.57.

Arithmetico-geometric mean : Mo.58 :

Z.20.

*Arithmetic mean : 91 : CD.6 : of n
({uantities : 332 : L.39.

*Arithmetical progression : 79 : tliL.

39: Pr.lO.

and g. p when n (the number of terms)

is a fraction : A.35.

when the terms are only known ap-

proximately : C.96.

Arithmetical theorems : A.IO: 0.93,97.:

0D.6: G.7,18: L.63 : of 1. c. m",

N.57 : Genjunne, 0.5.

Ai'ithmetical theory of algebraic forms :

J.92,93.

Arithmographe polychrome : 0.51,53.

Arithmometer : I. 16—18.

Aronhold, theorems of : gzJ.73.

Associated forms : systems of :

gzAJ.l : 0.86 : Op.6.
and spherical harmonics : Me.85.

Astroid of a conic : A.64.

^Astronomical distances : p 5.

*Asymptotes: 5167: A.p.c 15,17: OM.
4 : M.ll : N.68 : thsN.48, and
73.

* of conies : 1 182, 4490, t.c 4683 : tg. c

4904, -66 : Me.71 : Q.3,8.

of intersections of quadrics : N.73.

of imaginary branches of curves

:

0M.2.
Asymptotic : chords : A.12.

* cone of a quadric : 5616 : E.30, g.e 34.

* curves : 5172.

lines of surfaces : A.60,61 : R.84,

law of some functions : Mo.65.

methods: M.8o.
* planes of a paraboloid : 5625.

planes and surfaces : 0D.3.

Atomic theory and graphical represen-

tation of invariants and covari-

ants of binary quantics : AJ.I2.

Attraction : of confocal ellipsoids :

Me.82.
of ellipsoids: OD.4,9: J. 12,20,26,31

:

JP.15: L.40,45: M.IO: N.76

:

Q.2,7,17.

of ellipsoidal shell : J.12 : JP.15 : Q.17.

of paraboloids : L.57.

of polyhedra : J. 66.

of a right line and of an elliptic arc :

An.59 : 0D.3.
of a ring and of elUptic and circular

plates : G.21 : Z.ll.

of spheroids : J.Pi : JP.8 : L.76 :

ML'ni.31 : l?.{Ivory) 12.

of solids of revolution, &c. : An.56 :

0D.2.
solid of maximum : TE.6.

theorems : Q.4,17.

theory of : L.44,6.

*Auxiliary circle : 1160.

Averages : 1.7,9.

*Axes : of a conic : gn.eq4687 : A.30 :

E.36: G.12: Q.q.c4; t.c 5,8,15

and 20 : Me.a.c 64,71 : N.43,48,58:

t.cQ.12.
* construction of : 1252 : Me.66._,.

* en. from conj. diameters: 1253:

A.13,20 : Me.82 : N.67,78.
* of a cjuadric : 5695 : A.30 : An.77 :

G.9 : J.2,64,82 : N.43,51, en 6S,

69,74.
* rectangular, nine direction cosines

for two systems : 6577—8 :

L.44,.
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*Axis : of perspective or homology :

975.
* of reflexion : 1007.
* of similitude : 1046, 4177.

Axonometry and projective collineation

in space: M.25 : Z.12,21.

Babbage's calculating machine : C.992.

Barycentric calculus and right line con-

struction : J.28.

Battement de Monge : L.82.

Beltrami's theorem : A.44.

*Bernoulli's numbers : 1539 : A.3 :

AJ.5,7: An.59,77: C.64.,583,81.

:

G.9: J.20,21 ,28,58,81,84,85 (first

62),88,92 : LM.42,7,9 : Me.75 :

gzMem.83: K76 : Q.6,22.
_

application to series : see " Series."

and interpolation : C.86.

and their first 250 logarithms : CP.12.

and secant series: A. 1,3,35: C.4,32.

bibliography of : AJ.5.

indeterminate representation of: Z.

19.

new theory of : C.83.

theorems on : E.2,8 : lSf.77.

Bernoulli's series : 1510.

Bessel's functions (see also " Integrals

of circular functions ")
: J. 75 :

M.3,4,9,14,16 : Q.20,21.

representation of arbitrary functions

by : M.6.
squares and products : M.2.

tables : Z.2.

Bonnet, two formulae of: G.4.

Bicircular quartics: LM.3,99 : P.77

:

Pr.25 : Q.19.: : TI.24.

focal conies of : LM.ll.
with coUinear triple and double foci

:

LM.12,14.
nodal, mechanical en. of : LM.3.

Bifocal variable system : M.16.

Bihnear forms: J.68o,84,86 : L.74:

Mo.66,682,74.

congruent transformation of : Mo.
74.

four variables : G.21 : Mo.83.
relation between two and their

quadricandquartic system: M.l.

reciprocals : G.22.

reduction of : C.78,92.

Bilinear functions : GM.ll.
polynomials : C.77.

trilinear and quadrilinear systems :

E..5.

Billiards, theory of : L.83.

Bimodular congruences : G.21.

Binary and ternary quadratics: N.G4,65.

*Biuary cubics : 1631 : A.17 : C.92 : G.r7 :

J.27,53,41 : Q.1,11.

Binary cubics

—

{continued)

:

automorphic transf. of : LM.14.
and quadratic forms : G.21.

system of two : E.7 : G.17 : LM.13 :

M.7.
resultant : Q.6.

tables and classification of : A.31.

transformation by linear substitution

:

J.38.

Binary forms: Au.56,77 : At.65 : G.

2,3,10,160: J.74: M.2,3,20: Q.14.

and their covariants, geo. : M.23.

ap. to anal, geometry : L.75.

ap. to elliptic functions : AJ.5.

ap. to Eulei''s integrals : C.47.

canonical : J.54 : M.21

.

evectant : Q.ll.

geo. interpretation or ap. : C.78 : G.

17 : M.9,22..

having the same Jacobian : C.94.

having similar polar forms : M.S.

in a cubic space-curve : J.86.

in two conj u gate indeterminates : C .97.

most general case of linear equations

in: C.99.

(q) groups of: M.23.

with related coefficients : M.12.

transference of, when not of a prime
degree: M.21.

transformation of : M.4,9.

typical representation of : An.68,69.
Binary homographics represented by

points in space, applied to the

rotation of a sphere : M.22.

Binary nonics, ground forms : AJ.2.

Binary octics : thC.96 : M.17;.

Binary quadrics : C.47 : G.3 : J.27 :

L.59,77 : M.15,172.

construction of, through a symboli-

cal formula : C.57.

indeterminate, integral sol. : J.45.

for a negative determinant : No.Sl :

C.60 (table): L.57 : M.172,21,2.5.

partition table : AJ.4.

representing the same numbers: L..59.

transformation of: 0.41.

with two conjugate indeterminates :

C.96.

*Binary quantics : 1636 : An.56 : C.52 :

CD.9.
(2h— l)-ic, canonical form of : Q.20.

derivatives of: Q.15.
* discriminant of: 1638 : Q.IO.

reduction of : J.36 : L..52 : Q.7.

transformation of : CM.l : thE.23.

in two polynomials U, V, prime to

each other and of the same de-

gree : N.85.

Binary quartics : and their invari-

ants • A.18 : G .14 : J.41 : M.19 : Q.7.
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Binary quartics

—

{continued)

:

condition for perfect square: E.36.

or quintics, with three equal roots or

two pairs of equal roots : P.68.

and ternary cubic, correlation be-

tween: An. 76.

Binary quintic : G-.14.

canonical form for : Q.19.

Binary sextics : taAJ.4: 0.64,87,96;,:

G.14: M.2,76,77.

syzygies of: AJ.7.
Binet's function : L.76.

Binodal quartic with elliptic function

coordinates : A J. 5.

*Binomial : coefficients : 283,366—7 :

A.1,2: G.14: Mem.24: N.th60,

61,70,85: Z.25.

sum of selected : Mo.85.
* equations : 480 : A.IO : At.65,68

:

C.10,44: G.S-aO: L.57: LM.ll,
12,16.

irreducible factors of : An.69.

a;''— 1 = : see " Roots of unity."

equivalences to any modulus : C.25.
* theorem: 126—36: A.8,geo.61: C.

45: CD.7: CM.3: G.12: J.1,4,5,

28,65: Me.71: N.423,47,50,71,78

:

P.16,16,95,96: TI.12.

generalization of : J.l : N.572.

*Binormal : 5723.

Bipartite functions and determinants :

LM.16.
Bipartition, repeated : Mel.4.

*Biquadratic : equation (see also

"Cubic and biquadratic"): 492
—501: A.1,12,16,23,31,39,40,41,

45,69: AJ.l: CM.1,46..,47: G.5
—7,13,21: J.90:Me.62:N.44,582,
59,60,63,78,81,83: Q.7,28: Z.6,8,

18.

cond. for two equal roots : E.44.

and elliptic functions : C.57 : L.58.

reduction to canonical form : G.5.

reduction to a reciprocal equation :

L.63.

solution of: A.51,56 : C.49,82 : L.

73: Q.19: numerical, C.61: with-

out eliminating the 2nd term,

A.39 : 4 variables, J.27: trigono-

metrical, A.19,70.

and sextic efjs. in the theory of

conies and ([uadrics : J.53.

* values which make it a s(]Uare :

496: G.7: E.22.

function with four variables: An. 59.

involutions : C.98.

Bi(|uaternions : AJ.7: LlNl.l.

Biternary forms with contiMgredient
variaijles : M.l.

Borchardt's functions : J.82.

*Brachistochrone : 3037, 3044 : L.48 :

Man .31: Mc.80 : Mem.22 : N.
77,80.

Brahmins, trigonometrical tables of the

:

TE.4.
*Brianchon's theorem: 4783: A.53 : C.

82: CM.4: G.2: J.84,93: gzN.
82 : Z.6.

and analogues : CD.7 : Q.9.

on a quadric surface : C.98 : E.19.

on a sphere : A. 60.
*Brocard circle and Lemoine's point

:

4754c : gzN.85.
*Burchardt's factor tables p. 7 : erra-

tum, A.23.

*Burmann's theorem, d.c : 1559.

Calciilating machine : Pr.37.

Calculus: algebraic, which includes

the calculus of imaginaries and
quaternions: C.91.

of chemical operations : Pr.25.

of direction and position : AJ.6 : M.
pr 6.

of enlargement : AJ.2.

of equivalent statements : see"Logic."

of forms (Invariant theory) : CD. 72,

8,9..

of infinitesimals, third branch of

:

viz., given i/ and y^, to find a;:

TE.24.
of limits, ap. to a system of d.e : C.156.

of Victorius : Z.16.

of other subjects : see the subject.

Calendar : J.3,9,prs 22.

Jewish: J.f28.

Canal surfaces : A.1,10.

Cauon-arithmeticus of Jacobi . C.39,63 :

L.54.

Cantor's theorem : M.22.
*Cardioid: h=a. in 5328, Fig.129

:

A.59,63,68: LM.4: Me.64: N.81.

and ellipses : Pr.6.

*Carnot's theorem : 4778.

*Cartesian oval : 5341—5358 : A.69 : C.

97 : LM.1,3.,,99 : Me.75 : Q.l : Me.
74: Q.12,cnl5.

area of: E.21.

eq. with triple focus as origin : E.9,23.

foci: E.7.

functional images : Q.18.

mechanically drawn : LM.5,6 : Q.13.

])erimeter: E.21.

rectific. by ellip. functions : C.80,87 :

LM.5.
through 4 points on a circle : LM.12.
witli 2 imaginary axial foci: LM.3.

*(^assinian oval: 5313: Me.77,83: N.57.

analogous surfaces : An.61.
radial of : E.26.
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Cassinoid with n foci, rectif , of : L.48.

Catacaustic and diacaustic of a sphere :

JP.17.

Catalecticant of a binary quantic : E.

37,38.

Catenary: 6273: Me.64,66,68.

by parabolic trigonometry : Pr.8.

revolving: E.22.

*Cauchy's formula i.c : 2712.

closed curve theorem : Mo.85.
various formulas : C.27io.

*Caustics : 5248-9 : Ac.4 : L.46 : P.57,

67: Pr.8,14,15: Q.l,2,3cn8,9,12.

by successive reflexion from spheres :

J.13.

identity with pedals : Z.14.

of a cardioid : Me.83.
* of a circle : 5248 : CD.2.

of a cycloid : A.30.
of an ellipse, focus at centre : J.44.

of infinitely thin pencils : J.98.

of refraction at a plane surface : N.47.
radii of curvature : lSr.65.

surfaces and singularities : J. 76.

Cells of bees : N..56 : Q.2.

Cell structure : LM.16.
Centimetre - gramme - second system :

p.l.

Centrals, theory of : J.243.

Centre of: curves and surfaces : L.

46 : Q.IO.

a circle touching two : A.24.

geometrical figures : A.16.
harmonic mean : J.3.

mean distance of curves and surfaces :

N.ths85: Q.33.

mean distance of points of contact of

parallel tangents, est. of th.: L.
44.

* similarity : 947.
* similitude: 1037.
* similitude of 3 circles : 1046 : 4176.

similitude of 2 quadrics each of which
circumscribes the same quadric :

J.31.

Centres, theory of : J.24.

Centro-baric methods in anal, geometry

:

J.5-2.

*Centroid : formulas for : 5884—5902,
6015: JP.26: L.43.

and its use in stereometry : A.39.
of common points of two conies : A.3.

* of circular arc : 6021 : E.13.

of a dice : lsr.63.

* of frustrums : 6048, &c. : A.33.
of a gauche curve after development

on a right line, locus of: C.88.

of algebraic curves and surfaces:

An .68.

of a frustrum of a prism : L.39.

Centroid

—

{continued) .-

of a frustrum of a pyramid : Me.79 :

N. 76,.

of oblique frustrum of a cone : E.33.

of a perimeter : A. 51.

* of plane curves : 5887: J.21 : G.12.
* of spherical and other areas : 5898,

6051: J.50: L.39,422.
* of surface and solid of revolution

:

5896—9: AJ.3: L.39.

of a trapezium : Q.9.
* of a triangle: 951: A.52,58.

*Cliange of independent variable : 1760

—

1816 : AJ.3 : CM.l : G.2 : L.40,58 :

Q.1,2,10: Z.17.
* from x, y to r, 6: 1768.
* from .V, y, ;; to r, 6, : 1783.
* in a definite multiple integral : 2774

—

9: A.22,41.

in transcendent definite integrals

:

C.23.

in the theory of isotropic means : C.34.

Characteristics : E.5 : J.71 : M.6.

of conies : A.l : C.67,72,76,83. : JP.28 :

LM.9: M.15: ISr.666,71.

of conies of 5-point contact : E.27.

of cubic systems : 0.74-2.

of curves and surfaces : C.73.

of quadrics : C.67 : JP.28 : N.68.

relation between two characteristics

in a system of curves of any de-

gree : C.62.

surface groups defined by two : C.79 :

;x = l, v = \, C.78.

Chart construction: Mel.2: ]Sr.60,78,-i.

Chemico-algebraic theory : AJ.l.

Chemico-graphs : AJ.l.

Chess board, ths and prs : A.56 : E.34,

42,44.

Chessmen, relative value of: E.39

:

Mel.3.

Chinese arithmetic and algebra : C.51

:

N.63.
*Chord : joining two points on a

circle: 4157: A.43,44: E.22.
* of contact for two circles : 4172.

Chronology : J.26.

*Circle: 4136—90c.c: A.l,3th 4,9,2-5,27,

th47: C.94: J.14,17: Q.19: TE.
th6.

* approximate rectification and quadra-
ture: 6019, &c: A.2,6,geol3,14,

43: J.32: Me.75,85: N.45,47

:

Q.4.

arc of : see Circular arc.

area of segment: 6035: A.27,39,44.
* chord of: 4157—8.
* chord of contact : 1017 : 4138,-72.
* coaxal: 1021—36: A.23.

configuration of : C.932.



854 INDEX.

Circle

—

{continued) .-

* en. from 3 conditions : 937 : JP.9.
* Cotes's properties : 821: A.ll,ext.to

ellipse 30: P.13 : TI.7.
* cutting? three at given angles : 4185 :

LM.3,5: N.83..

division of: A.27,37,41 : At.l9 : E.l,

31: G.6: C.85,93: J.27,54,56:

N.53,54.

and theory of numbers : J.30,842,87

:

N.56.
ths. on sum of sqs. of perpendicu-

lars, &G. : 1094—8.
* eight circles touching three, en

:

4189 : Mel.3 : _Q.5.

eight through 6 points of intersection

of 3 conies : Q.IO.
* equation of: 4136—48, p.e 4151

:

Pr.27: TI.26.
* general eq. : t.e, 4691,4761 : tg.c,

4906.

Euler's th. extended to ellipse : A.51.

five-point th. : E.5.

four pairs of circles through 6 points

common to 3 circles : Q.9.

four points concyclic, condition : A.
44: N.84.

geometry of: A.67 : Z.24.

groups of points on : A. 14.

in tri-metric point-coordinates : Z.27.

* and in-quadrilateral : 733 : CD.9.
lines of equi-difterent powers in two

circles : A.19.
* of curvature : 1254,5134: A.31,63: J.

45: p.cN.84.
* polar of x'y' : 4138,—64.

rectangles of: Z.14.

ring of, touching two fixed : J.39 :

Me.78.
six points th. : Q.8.

and self-conj. triangle: A.41.

and sphere, geo. : Mo.82.

system through a point on a plane or

sphere: G.16.
* tangents : 4137—43,4160 : L.56 : P.14.

common to a circle and conic

:

cnA.69.
* common to two circles: 953,4171:

en A.34.
* locus of a point, the tangents from

which to two circles have a given
ratio : geo.965—6.

* three: 997—9,1036,1046—51,4183—7.
* prs.{Gerf/onne) : 1049 : At.l9 : L.46.

tlu'ough mid-points of sides of a tri-

angle : see Nine-point circle.

* tlirougli 3 points : 4156,4738.

through 3 points on a conic: A.2

:

J .39.

touchintr iicoiiic twice : J.5<) : N.65.

Circle

—

{continued)

:

* touching 3 circles, en : 946,1049

:

A.24,26,28,35 : An.68: C.60: Me.
62 : N.63,65,66,84 : Q.8.

touching the 4 circles which touch
the sides of a spherical triangle

:

A.4.

and triangle, ths and prs : A.30,57

:

LM.15: Q.4.
* two; eq. for angle of intersection:

4180—1.
* theorems: 984—1046: Q.ll : see

" Radical axis " and " Coaxal cir-

cles."

and two points ; Alhazen's pr : AJ.4.

Circulants: final expansion of: Me.85.

of odd order : Q.18.

*Circular : arc : length, centroid, &c.

:

6019.

with real tangents : Z.l.

gi'aphic rectification and trans-

position of : Z.2.

cubics, involution of : LM.1,7.
chord of curvature of : E. en 36.

and elliptic functions in continued
fractions : CD.4.

* functions: 606: A.17: J.16.

points at infinity : see " Imaginary
ditto."

relation of Mobius : LM.8 : N.76 : Q.2.
* segment : arc, chord and area : 6035 :

^

N.63.
Circulating functions : P.18.

*Circum-centre of a triangle : 4642 : tg.

eq 4883.

*Circum-circle : of a triangle : 713,

4738: tg.eq4895: A.51,58.

coordinates of centre : 4642.

hypocycloidic envelope of Ferrers :

N.70.
and in-conic : N.79.

* of a polygon: 746—8: A. 19.

* of a quadrilateral : 733 : ISr.79.

Circum-cone of a quadric, locus of

vertex : N.52.
*Circum-conic : of a triangle : 4724 :

tg.cq4892: An.57.
* of a (piadrilateral : 4697 : At. 54.

locus of centre : E.l.

Circum cubic of a complete ((uadri-

lateral: G.IO: Q.5.

*Circum - parallelogram of an ellipse:

4367.

Circum-pentagon of a conic : M.5 : N.67.

Cireum - polygon : of a circle :

746—
8

': CD.l : Mc.80: N.66.

of a conic : !M.25.

of a parabola : CJ\r.2.

of a eusjiidiil cubic: TiTM.l:!: ditto

([uartic : JiM.14.
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Circum-quadrilateral : oi: a circle :

E.35: N.48.

of two circles : N.C7.

Circum-rhombus of au equil. triangle :

AAo.
Circum-triaugle : of a conic : N.70.

* locus of vertex : -iSOO : E.35.

of a triangle : J.30.

*Cissoid: 5309—12: A.62,69 : N.43,85.

tangents of : LM.2.
^

Cissoidal curves : A.56.

Clairaut's function and equations: Pr.

25.

Clinant geometry : Pr.l0,ll2,12,15.

Closed ciirves : Me.77 : geo tli QA.^
* and moving chord,Holditch's tb: 5244

:

gzMe.78: Q.2.

ext. to surfaces : Me.81.

quadrature of : A.61 : lsr.43 : Crofton's

tbsA.55: C.65,68: E.36;.

^^B^clvdy, t = 0, t' = being the

tangents from x)j : LM.2.
* rectification of : 5204.

Closed surfaces : JP.21.

*Coaxal circles : 1021—36 : 4161—70 : Q.

52 : reciprocated, 4558.

Poncelet's limiting points: 4165:

thJ.86.

Coaxal conies : Q.lO.

Cochleoid, {;c^+ y~) tan" ' ^ = Tvry : A.70.

*Coefficients : detached: 28.

* differential: 1402.
* indeterminate : 232.

*Cogredients : 1653.

*Collinear and concurrent systems of

points and lines : 967 : A.69 : G.21.

Collineation and correlation : M.22 :

prM.lO.
and reciprocity : M.23.
" gleichstimmigkeit " of, in space :

Z.24,28.

multiple c. of two triangles : A.2,70.

of plane figures, ground forms : J. 74.

paradox : Z.28.

*Combinations : 94—107 : trA.15 : CP.8 :

G.18 : J..5,13,21.,34,38,th53 : M.5

:

Z.2.

ap. to determinants : JP.28.

complete, i.e., with repetitious : C.92 :

N.42,74.

compound : Man. 79.

* C {n, r) an integer : 366 : L.42.

G {n, r) when n is fractional : A.70.

* C in,r) = C {n-l,r-l)+ C {n-l,r)

:

102.

C {m+m',p) = 2'^ C {m, r) . C {m,ij—r) :

L.42.

Combinations

—

{continued)

:

^ problem or theorem : 105—7 : A.21 :

C.97: CD.2,4,7,8.2: L5 : J.3,45,56 :

L.38:Mem.ll: N.53,73 : Z.15.

of Euler and its use in an eq. : L.39.

of 1,2, ... n, each c. having a sum
>a: G.19,20.

of dominoes: An.73.

of n dice each with jj faces : TE.21.

of n points in space : L.40.

of observations : L.50.

of planes through a system of

points : N.57.

Combinatorial : products : A.34.

systems : L.56.

Combinatory analysis : A.2,50,70 : J.ll,

22: Mera.50: K80.
Commensurable quadratic divisors : N.

47.

Commensurables : TE.23.

*Commutative law : 1489.

*Companion to the cycloid : 5258.

Complanation formula : A.48.

Complementary functions: C.19 : J.ll.

Complete functions : C.86 : J.48i.

Complete numbers : Mo.62.

[

*Complete primitive : 3163.

Complex axes of a quadric : Z.19.

Complexes : L.44,47 : M.2,4.

of axes of a quadric : N.83.

in combinations and permutations :

A.21.
of 1st and 2nd degrees and linear

congruences : Au.76 : L.51 : M.2,

9: N.85: trZ.27.

linear: N.85 : Z.18: of an in-conic of

a quadrilateral : G.21.

of 2nd degree: G.8,17,18: cnJ.93:

M.7 : N.72e.

of 2nd degree with a centre : L.82.

of 2nd degree of right lines which cut

two quadrics harmonically : M.23.

quadratic ray- & web-complexes : J.98.

of nth degr-ee, singularities : M.12.

and congruences, spherical of 2nd
degree, their circles and cyclides

:

J.99.

and spherical complexes, ap. to linear

p. d. e : M.S.

tetrahedral in point space: Z.22.

Complex numbers: A.28: C.90,99: G.ll:

J.22,35,67,93: L.54,75,80: M.22:
Mo.70: Q.4.

from the 31st roots of unity : Mo.70.

from the nth roots of unity : J.40 :

Mo.70.
index and base of a power, geo : Z.5.

prime and from roots of unity : J.35 :

taMo.75.
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Complex numbers

—

{continued)

:

prime and from the 5th roots of unity:

Mo.ta 59.

resolution of A"+B"+ C" = 0, and
when n = 5: L.47.

from the roots of unity ; class num-
bers : J.65: Mo.61,632,70.

in theory of residues of 5th, 8th, and
12th powers : L.43.

Complex unities : C.96,99 : J.53.

Klein's groups : J.50.

Complex roots of an algebraical eq

:

M.l: N.443: oix"= 1, M0.57.

Complex variables, functions of: An.
59,68,712,82,83: G.3,6 : J.54,73,83 :

M.19: Z.82,10.

especially of integrals of d.c : J.

75,76.

Composite functions of a higher order :

G.2.

Composite numbers : for construc-

tion of factor tables : A.45.

groups of : J. 78 : LM.8 : Me.79.
" Compteurs logarithmiques "

: C.40.

*Concavity and convexity: 5174.

Concentric circles : LM.14.
3 quadrics, intersection of : E.39.

*Conchoid: 5320: A.55 : N.432.

Concomitants of a ternary cubic

:

AJ.4.
*Concurrent lines and collinear points

967-76: A.69.

th. on conic and triangle : E.35.

*Concyclic conicoids : 995 : Q.ll.

*Cone : 1150—59, 6043 : A.16 : L.61 : Me.
62.

and cylinder, superfices, tr : An. 57.

general d.e of : E.18.

intersection of two : N.64.
* oblique: eq5598: J.2 : Me.80.
* sections of: 1150—9.
* and sphere : 5652 : thsMe.64.

superfices of oblique frustruni : J.2.

through m points and touching 6

—

in

lines: LM.4.
volume of frustrum : Ac.41 : N.13.

Configuration of 16 points and 16 planes

:

J.86.

(3, 3),o and unicursal curves : M.21.

*Confocal conies : 4550—8, 5007, tg.e

5005: J.54: LM.12,13 : Me.66,68,

73 : N.80 : Q.IO : TE.24 : Z.3.

* Graves' theorem: 4555: Griffitli's ext.

LM.15.
* tangents of: 4555.

*Confoc'al (luadrics : 5656—72: A.3 : CD.
4,5,92: G.16: M.18: thMc.72: Q.3.

relation to curves and cones : CD.4,9.

volume bounded by three and the co-

ord, planes : A.36.

M.
Confocal surfaces : Me.66.

Conformable figures : A.59 : LM.IO:
19:Z.17.

Congruences : C.51,88 : th and ap.T.19 :

thMe.75: N.50: P.61.

binomial : AJ.3 : C.61 : expon. to base

3, M0I.4.

classification of roots : C.63.

Cremonian : LM.14.
irreducible : J.40.

and irreducible modular functions

:

C.61.

linear: LM.4: of circles in space : C.93.

numerical : An.60 ; multiphcation of,

61.

of 1st degree : A.32.

in several unknowns : L.59.

sol. by binomial factorial : Mem.44.
transformation of modulus : Mel.

2: N.59.
with composite modulus : E.30.

of 2nd degree: C.622: Mem.31 : re-

duced forms : C.74.

of 3rd order and class : LM.16.
higher, with real prime modulus :

An.83: J.31,54,99.

resultant of systems of linear

:

and trigonometrical functions

;

x^+'if^l {mod.p): J.19.

aj' = 1 (mod. jj) : J.31.

Congruent divisors of a number,
A.37.

Conical functions : M.18,19.

*Conical surfaces : 5590 : A.63 :

LM.32: M.3.
through 6 points, locus of vertex : J.92.

*Conicoids : 5599 : A.48 : Q.tg.c 9, q.c

and t.c 10.

50-point : Me.66.
*Conics: 4032—5030: A.l2,5,17,31,32,60,

68: C.83: G.1,2,3,21: J.20,30,32,

45,69,86: M.17,19: N.42,435,44.,,

45,71.>,752,82 : P.62 : Q.8,tg.c9:

Z.18,21,23.

anharmonic correspondents, problem
of 5 conies and 5 lines : N.56.

of ApoUonius : L.58.
* angles coiuiected with : 4375.

arcs similar to: N.44.
* areas of (see also " Sectors ")

: 4688,

6097—6121 : N.46 : t.cQ.2.

* auxiliary cii'cle : 1160.
* centre : coordinates of 4402, 4267,

t.c 4733 and 4742 : tg.eci of 4901

:

ths and prs N.45.
* locus of 4520, 5028.
* chords of: 4315,4322; p.c 4337 and

CD.l: Mc.66: see also " Focal."

cutting an ellipse at a given angle :"

E.28.

C.88.

J.19.

of:

Ac.5;
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Conies : chords of

—

[continued)

:

* intersecting: 1214, 4ol7.

moving round an ellipse : A.43,44

:

* chord of contact: 4124,4281; 4699—
4721.

* and circle, intersection th : 12G3:

A.&9: N.64.

collinear relation to circle : Z.l.

and companion quadrie : An.60 : JP.7.

conjoint lines of : L.oSo.

* conjugate diameters: 1193— 1213,

4346 ; ths 1278—85 : CM.l : L.37 :

N.42, ths 44,69 : Q.3.
* parallelogram on : 1194: 4367.

relation to ellipse when equal : A.18.
conjugate points : Q.8.

* construction of: 1245,4822: A.28,43:

E.29: Q.4: N.59,73: with help of

circle of curv. A.24.
* from conj. diameters : 1253: A. 52.

* contact of : 4527—33 : A.1,60 : C.78 :

Pr.34.

at 2 points : Q.3 : N.74.
* do. with each of 2 conies or circles :

4803-6: CD.5,6: E.31,34.

4-pointic with a quartic : M.12.
* 5-pointic : 6190-1 : C.78o : E.5.,,23 :

J.21: P.59.

with surfaces : 0.91-: : P. 70, 74.

convexity from focal pi'operty : N.56.

criterion of Mobius : J.89.

* criterion of species: 4464— 77; t.c

4689: 5000.
* curvative: centre and radius of:

4534—49 : geo 1254—66 : thsMe.
73: N.79,85.

* geo on: 1265: A.17.
* chord of: 1259,-64: Q.6 : locus of

mid-point A.70.

as curves in space : tr A.37 : M.64.
* definitions : 1160.

degenerate forms : LM.22.
* diameters : 1214,—35 : eq 4458 : en

Me.66 : N.65.
* director circle : geo 1217, eq 4693— 5 :

o.cE.40: LM.13: N.79.
* directrices: 1160: trA.63 : LM.ll.
* eccentric values of coordinates : 4275 :

CM.4.
* eccentricity: 1151,4200.

elementary formula : G.9.
* ellipse and hyperbola : 4250— 96.

* equations of: 4251,4273; p.c 4336;
tg.c 4663,4870 : J.2.

* general: 4400,4714,4719; t.c 4755
and 4765; tg.c 4664 and 4872;
p.c 4493 : t.c A.51 : CP.4,5 : t.c

G.6,7: Mem.52: N.43,45,65. (See

also " Conies, general equation.")

Conies : equations of

—

{continued)

:

* intercept: 4498.
'^ equations of parabola : 4201 ; t.c

4775; p.c 4336.
* general : 1430,4713 ; t.c 4656 with

4689 ; tg.c 4974 with 5000.
* ay:= A/SS and derived equations : 4697

—4719: Q.4.
* ay = h(3'' or LM= B^ : 4699, 4784 : N.

44: S+L' = 0,&G.: 4707.
«= La"+3II3-+Ny'= 0: 4756, '65 : Me.62.

equation in p and p : Q.13.
^ equi-conjugates, gen.eq: 4491.

formute: J.39 : N.62.

from oblique cone : L.38.
* general equation ; cond. for a circle :

* 4467: t.c 4691 and Me.68 : Q.2

:

from eq. of axes : JSr.67.

* cond. for an ellipse : 4464 ; t.c 4689.
* cond. for a hyperbola : 4468 ; t.c

4689: A.39.
* cond. for a rectangular hyperbola:

4737 ; t.c 4690 ; tg.c 5000.
* cond. for a parabola : 4430 ; t.c 4696,

4735, 4746 and 4776 ; tg.c 5000.
* cond. for two right lines : 4469,

4475, t.c 4662.

generation of : N.75 : Z.23.

by a moving chord of a circle : A.34.
* Maclaurin's method : 4830 : LM.4.
* Newton's method : 4829.

graphic problems : N.80.

Halley's pr : N.76.
harmonically in- and circum-scribed :

Q.18.

intersecting in 4 points : J.23.

intersecting a surface in 6 points :

C.63.

with Jacobian = : M.15.
limiting cases : 4465—77 : Me.684.

* normals: 1171,sd5629—32 :A.16,24,32,

en 43,47 : An. en 64,78 : C.72,84 :

J. en 48,56,62 : Me.66 : Mel.2 : N.
70,81: Q.8: Z.11,18,26.

circle through feet of: N.80.

cutting off the min. or mas. arc or

area : N.44.
dividing ellipse most unequally :

E.29.
* eccentric angles of the feet of four,

th: 4334.
* equations of : 4286, 4483, 4512.
* intercepts : 4294 : segments ; 4309,

4486.

least distance between two : A.21,38.

number of real : J.59 : N.70,722.

number cut by 8 lines in space : J.

68.

number under double conditions : C.

59.

5 R
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Conies

—

{continued)

:

octagrara : LM.2.
* passing throngh given points and

touching given lines : en 4831—
40.

6 points : en 4831, eq 5024: A.27 :

A.9,24,64: An.50: N.57.

4 foci of a conic : Q.5.

4 points: l!i.6Q: Q.2,8: Z.9.

4 points, envelop of: E.28 : Do. of

axes, N.79.
* 4 points, locus of pole of a line :

4770.
* 4 points and touching a line : en

4833 : A.65.

3 points and touching a circle

twice: N.80.

3 points and touching a line : Q.6.

3 points with given focus : en A..54.

2 points and toucliing a line : Q.2.

2 points and touching 2 lines, locus

of centre : G.7.

four such conies, th : Q.8.

1 point and touching 3 lines : Q.8.

parameter of : N.43.
* perpendicular from centre on tan-

gent : 1195, 4366—73.
* ditto from foci : 1178, 4300.

of 8 points : J.65.

of 9 points : A.43 : G.l.

of 9 points and 9 lines : G.7,8.

of 14 points : Me.66.

pencil of : M.19.

and polar, Desarques' th: N.64.
* i^ole of chord joining Xiy^, x.2y-2 : 4326 :

parabola, 4218.
* properties of: 1274: A.4,25,70 : p.cJ.

38.

quadrature of : TE.6.

and quadrics : A.30 : L.42 : N.58.,,66,,

ths 73 : geo interpretation of

variables, 1^.66.

* rectification of: 6071, 6084: P.2

:

TI.16: Z.2.

* reduction of it, u' to the forms
x-+y'+z^= 0, ax^+^y'+yz- = :

4995.

series of : A. en 67 and 68.

* seven points of: C.94.
* similar : 4522.

six points of : A.62 : J.92.

systems of : C.62,65 : M.6 : liiM : of 2,

Q.7 : of 4, L.54.

and orthogonal lines : N.71.

aiid quadrics : Z.6.

* tangents or polar : 1167—9, 4280—5,
4790: gn.eq 4478: A.61 : enCD.
3: CM.l,p.eq4: K79.

intercepts on the axes : 4292.
* two at the origin, eq : 4489.

Conies : tangents

—

(continued)

:

* two from x'y' : 4311 : gn.eq 4488,

4965, A.57 : t.e 4680—2, en 1181:

A.53...

* do. for parabola: 4216, en 1232:
ratio of lengths, 1243.

* quadratic for on : 4313 : paral^ola,

4220.
* quadratic for abscissas of points of

contact : 4312 : parabola, 4216.
* subtend equal angles at focus

:

1181, 1234 : CM.2.
locus of x'y' : A.69.

* segments of : 4307.
* at the points n, tan ^, ficot(f):

4799.

tangent curves of : Z.15.

* theorems: 1267: A.54 : J.16 : L.44:

M.3 : N.4.55,483,72,84 : Q.4,6,,7 t.c :

by Pascal, Desarques, Carnot, and
Chasles, A.53.

conic and triangle, Q.5.

3 circles touch a eonic in A,B,C and
all cut it in D; A,B,C,D are

concj^clie, J.36.

* three : 4707, 4710 ; in contact, 4803.
* Jaeobian of : 5023.
* touching : a conic and line, eond.

:

5017.

a curve twice : J.45.

curves of any order : C.59.

five curves : C.SSj.
* four lines: 4804: locus of centre,

4772, 5028 : locus of focus, 5029 :

N.45,67.

n lines : N.61.

a group of lines, and having a given
characteristic and focus : A.49.

a quintic curve in 5 points, no. of :

'NM.
* two circles twice : 4806.
* two conies twice : 4803.
* two sides of the trigon : 4784

—

4808.

transformation of : G.IO.
* two : 4936-5030 : N.58.
* with common chords or tangents :

4700—5.
* common elements, en : A.68.
* with common points and tangents:

4701—7 : LM.14 : Z.18.

* at infinity : 4715—6.

* common pole and polar, en : 4762.
* condition of touching : 4942, t.c

5021.
* intersecting in 4 points : 4700 : A.

32: atoc, A. 16.

* ])oiiits of interseetiou : tg.e 4973 :

en A.69.

reciprocal properties : E.29,
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Conies : two

—

{continued)

:

* reduction to x-+y^+z-^=0 and
a.v-+l3if-+yz'-=0: 4995.

* six chords of, eq : 4941.
* tangents of, four: eq 4981 : J.75:Q.3.
* under 5 conditions : 4822—43 : L.10,59.

6 conditions, en : 0.59.

7 conditions in space : 0.61.

Coniufjate : functions : apLM.12 :

TI.17.

lines of surfaces : CD.9.
* points : 1066, 5184 : in ellipse, A.38.

point-jtair of a conic : Z.17.

tetrahedrons of a quadric, each ver-

tex being the pole of the opposite

side: N.60,88.

triangle of a conic : N.88.

Connexes (1, ?^) corresponding to d.e

:

A.69.

in space : Mel. 6.

Hnear: M.15.
of 1st order and class in simple invo-

lution: G.20.

of 2nd order and class : G.19.

analoguein anal. geo. of space: M.14.

Cono-cunei : A. 2.

Constant coefficients, theory : 1.23.

Constant functions and their deriva-

tives : A.15.

*Contact and circle of curvature : 4527,

5188, 5134 : A.30.

^Contact of curves : 5188 : cir. of curv.

A.53 : C.32 : J.66 : P.62 : Pr.ll :

Q.7.

with a parabola : Z.2.

with faisceaux of doubly infinite

curves : C.83.

with surfaces : L.78 : with triangles,

M.7.

Contact : of lines with surfaces : L.

37: Q.1,17: Z.12.

of an implexe with an alg. surface :

C.84.

of quadrics : LM.5.
4-pointic on an algebraic surface : M.9.

of spheres : JP.2.

of surfaces: J.4 : JP.15: P.72,74,76

:

Q.12.

of 3rd order between 2 surfaces : C.74;.

problem: of Apollonius, A.66 : spheri-

cal, At.19.2.

transformation : C.85 : M.23.

Contingence angle of : see " Torsion."

Continuants : AJ.l : Me.79.

*Continued fractions : 160—87: A.18,33,

66,69 : An.51 : gzC.99 : CM.4 : th

E.30 : G.10,15 : J.6,8,ll4 and ap,

18,53,80 : L.50,58,66 : LM.5 : Me.
77: Mem.aptoi.c9,13:Mo.66:N.
42,tr49,56,66 : Q.4 : geoZ.r2.

Continued iractions— {continued)

:

11 1 1 1 1 1 A JO T C5and
:;

-—--
: A.42 : J .6.

a+ a+ a+ h+ a+ b+
b h+l

a+a+l+ a-\-2+&c.
h>a+l: Mel.l.

.v+x+ l-\- X+ 2+
1 1

and

A.3O2
•2.v+l+2x+3+2x+5+

2+LL ^'^^ ^+-x-^= ^•3^'^^-
2+2+ q+q+

ascending: A.60 : Z.21.

* algorithm ]i>i ^= (f-l^n i+ ^2'"-2 : 168 : J.

69,76.

do. ap. to solution of trinomial eq:

A.66.

combinator representation of the ap-

proximation : A. 18.

development: Ac.4 : C.87: Mem.9.
for e^ and log (1+^) : CM.4.
for e exp. a+ h,v+cx'+ : C.87.

for
x-'-.^-'+x-'-x-^'+

. J 27,28.
l—x'''-+x~*—x'^+

for UsinjB+VcosJB+W; U,V,W,
polynomials in x : J.76.

for {m-\-Vn)-7-'p: N.45.

for powers of binomials : CM.4 : Mem.
18.

infinite : A.SSa.

numerical values : Q.13.

Eisenstein's, TE.28: Wallis's, Mem.
15.

periodic : A.19 (2 periods), 33 : G.16 :

J.53 : K42,43,45,462.

reduction of : J.46.

* reduction of a square root to a : 195 :

A.64: J.31.

do. of a cube root : A.8.

do. of an nth root : A.64.

Contingence, angle of : 5725.

Continuity, principle of : CP.8 : in rela-

tion to Taylor's and Maclaurin's

theorems, L.47.

*Continuous functions : 1401 : A.l 5 :

Ac.5., : C.18,20, and discontinuous

40, of integrals of d.e 23 : TA.7.

Continuous manifoldness of 2 dimen-
sions : LM.8.

*Contragredients : 1813.

Contraposition : E.29.

*Contravariants : 1814 : G.12, of 6th deg
19.

* of two conies : 4990 and 5027.

*Convergeuts : 160—87 : gzC.98 : CD.5 :

J.37,57,58: N.46.

Convex polygon, intersection of diags :

N.80.
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*Coordinates, transformation of : 4048

—

61,4871,5574-81.
*Coordinatc systems: 4001—31, 5453,

5501—6 : G.16 : J.5,45,50 : LM.12.
ap. to caustics : An.69.

* areal : 4013 : Me.80,82, gn cq 81.

axial : N.844,85 : Q.IO.
* biangular: 5453—73: Q.9,8,13.
* bilinear : ap 5341 : A.32.

bipolar : N.82.
bipunctual : AJ.l.

Boothian : see tangential.
* Cartesian : 4001.

dual inversion of c.c and t.c : Q.17.

central: Z.20.

curvilinear : A.34 : An.57,64,683,70,

73: C.48,54: CP.12 : G.IO, and
i.c 15 : L.40,51,82 : Mem.65 : Q.19 :

on a surface and in space, An.692,

71,73: including any angle, J.58.

* eccentric values of : 4275, 5638 : CM.4.
elliptic: A.34,40o: J.85 : Q.7 : Z.20.

Puchsian functions of a parameter :

C.92.

hyperelliptic coordinates : J.65.

* one-point intercept : 4026.
* two-point intercept : 4025.

linear : Z.21.

mixed coordinates : A.13.
parabolic : C.50.

parallel: N.84,,85.

pedal : Me.66.
pentahedral : Me.66.
of a plane curve in space : LM.13.

* polar : 4003,sd5506 : Me. 76.

polar linear in a plane : Z.21.

quadrilinear : Me.62,64o.
* quadriplanar or tetrahedral : sd5502,

apA.53: Q.4.

surface: C.65,81.
* tangential: 4019,4870—4915,5030:

Me.81 : Pr.9 : Q.2,8.
* tangential rectangular, or Boothian :

4028.

tetrahedral point coordinates : Z.8.

triaxial : A. 64.

trigonal: G.14 : Q.9.
* trilinear : 4006 : A.39 : Me.62,64 : N.

63: Q.4,6,6 : conversion to tan-
gential, 4876.

trimetrical point : A.67.
Coplanation : Z.ll.

of central quadric surfaces : Z.8.

of pedal surfaces : Z.8.

Coresolvcnts : Q.6,10,14 : non-linear,

TN.67.
Correlation of planes : J. 70 : An.75,77 :

LM.5,6,8,10.

Correlative figures, focal properties:
LM.3.

Correlative or reciprocal pencils : M.12.
Correspondence : principle of : geo

thAn.71 : extC.78,80,ex83,852

:

N.46.
of algebraic figures : M.2,8.

application to Bezout's th C.81 ; to

curves, C.72 ; to elimination, N.
73 ; to evolute and caustic, N.71.

complementary theorem to : C.81.

determination of the class of the en-

velope and of the caustic of a
curve : C.72.

determination of the degree of the
envelope of a curve or surface of

n parameters with n—2 relations

:

C.83,.

determination of no. of points of inter-

section of 2 curves at a finite

distance: L.73 : C.75.

determination of the number of solu-

tions of n simultaneous algebraic
equations : C.78.

determination of the order of a geo-
metrical locus defined by alge-

braic conditions : C.82,842.

forms : M.7.
multiple in 2 dimensions : G.IO.

of curves: C.62 : P.68 : Q.15.
of two planes : LM.9.
of points : LM.2 : C.62 on a curve :

Q.ll on a conic : M.18 on two
surfaces.

for groups of n points and n rays :

M.12.
of two variables (2,2) : Q.12.

of 2nd deg. between 2 simply infinite

systems : An. 71.

Correspondent values, method of : P.

1789.

Corresponding points : in some in-

volutions : LM.3.
on two curves : M.3.

on two surfaces : C.70.

Corresponding surface elements : M.ll.
Cosmography, graphic method: N.82,79.

*Cotes"s theorem: circle, 821; areas, 2996.

analogous ths : CM. 3.

Counter-pedal surfaceof ellipsoid: AJ.4.

Coupures of functions : C.99.

*Covariants : 1629, 4936-5030 : C.80,81,

th90: G.1,20: Q.5,16: J.47,87,

90 : thM.5 : N.59., : ap to i.c C.66.

binary : G.2.

of binary forms : An.58 : C.82,86,87 :

G.17: L.76,79: M.22.

of binary quadrics, cubics, and (juar-

tics : An.65: J.50 : Q.IO.

of binary quantics : E.31 : Q.4,5,17.

of abinaryquartic: J.53: quintics.An.

00.
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Covariants

—

(continued) :

and coiitravariants of a system of

simultaneous forms in n varia-

bles ; to find the number of: C.84.

of quantics : An.58 : binary, Me. 79.

of a septic, irreducible : C.87.

sextic : G.19.

of a system of binary cubo-biquadra-

tics ; number of irreducible co-

variants : C.872.

of a system of 2 binary quadratic

forms ; number of : 0.84.

of ternary forms : G.19o.

* of two conies : 4989, 5026 : of three,

Q.IO.

Covariants and invariants : An.60.

of binary forms : An.58,59,61,83 : 0.

66,69 : reciprocity law, C.86.

of a binary octic, irreducible system :

0.86,93.

of a binary quintic : 0.96.

of a binary sextic : 0.96.j.

as criteria of roots of equations : An.
68.

Oribrum or sieve of Eratosthenes : N.
43,49.

Critical functions : see" Seminvariants."

Criticoids and synthetical solution : E.

9,26,32.

*Cubature of solids : see " Volumes."
Cube numbers, graphic en of: E.43 :

Me.85 : tables to 12000, J.42.

Cube root extraction: A.22,64: J.ll

:

N.44,583: TI.l.

*Oube roots, table of (2 to 30) : p.6.

Cubes of sums of numbers : N.71.

Cube surfaces : Pr.l7.

Cubical parabola : Q.6,9.

metrical properties : M.26.

*Oubic and biquadratic equations : 483

—

501 : A.45 : No.1780 : An.58:
O.geo41,90: JP.85: L.59 : M.3 :

N.79 : Z.8; Arabic and Indian

methods, 15.

Sturmian constants for : Q.4.

mechanical construction : LM.22.

Cubic and biquadratic problems : Au.702.

Cubic classes which belong to a deter-

mining quadratic class, number
of: A.19.

Cubic curves : An.7o : AJ.5,15,27 : 0.

37: thCD.7: CP.ll: G.l.;,2,14,

23 : J.ll,32,34,ths42,63,geo78,90

:

L.13,44,45 : M.15 : t.cMe.64 : Mo.
geo56: ]Sr.50,67,geo723 : P.67,58 :

Pr.8,9: Q.4.,5: Z.geol5,22.

classification of: Q.16.

and conies which touch them : J.36.

coordinates, explicit functions of a

parameter : J.82.

Cubic curves

—

{continued) .-

48 coordinates of: P.Slii.

with cusps : A.68.
degeneration of : A.4: M.18,15.
derivation of points : LM.2.
with a double point : M.6 : with two,

M.3.
with double and single foci : Q.14.
Geiser's : J.77>

generation of : G.ll : J.36 : M.5o,6 :

by a conic pencil and a projective
ray pencil, Z.23 : linear, J.52.

and higher curves : A. 70.

mechanical construction of : LM.4.
number of cubic classes which belong

to a determining quadratic class:

A.19.
nodal, tangents of : LM.12.
of third class with 3 single foci : Q.

14,160.

18 points on : E.4.

inflexion points of : J.38 : M.2,5 : N.
73,th83,85.

12 lines on which they lie in threes :

E.29.

rational : A.58 : G.9.

referred to a tetrad of corresponding
points : Q.15.

represented by elhptic functions

:

JP.34.

and residual points : E.34o.

resolved into 3 right lines : M.14.
and right lines depending on given

parameters : J.55.

16 cotangential chords of : Q.9.

and surfaces : J.89.

synthetic treatment : Z.21.

tangential of: P.58 : Pr.9.

tangents to : cnE.25—7,ths28 : LM.3 :

Q.3.

with a double point or cusp : M.l.

forming an involution pencil : LM.
132.

their intersections with cubics or

conies : 0.41 : TI.26.

through 9 points : O.C!i36,37 : L.54 :

two cubics do., OD.62.

through 8 points : Q.5.

through 2 circularpointsat 00 : cnZ.14.

transformations of : 0.91.

*Oubic equations: 483—91 : A.1,3—7,11,
22, 25o, 32, 37,41,42,44,, prs47, 68 :

An,55: 0.num46,85: CD.4,6 : E.
35: G.12,16: J.27,56,90: LM.8

:

M.3 : Mem.26 : N.45,th52,th56,64,

66,703,75,78,81,84: TE.24: TI.7.

See also " Cubic and biquadratic
equations."

and division of angles : A.15.
in a homographic pr of Ohasles : 0.54.
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Cubic equations

—

{continued) :

irreducible case: A.30,39,41,42: No.
1799: AJ.l,: C.58: J.2,7: L.79:

N.67 : in real values, A.49 : by
continued fractions, A. 2.

roots : condition of equality : E.30.

definition of: thA.31.

geometrical construction of: C.44,

45: Arab, m.s.s, J.40j.

integral : N.75o.

power-sums of : 0.54,55.

sq uares of diiSerences of : An.56 : Q.3.

* solution of: Cardan's formula:

484: A.14,40,gz22 : Me.85.

Cockle's : CM.2,3.
* trigonometrical : 489 : A.19 : N.61,

07,71 : TE.5.

by differences of roots : J.42.

by continued fractions : A.10,39.

by logarithms : C.66.

by a; = — +/t: C.60.
z

* mechanical : 5429 or C.79.

numerical : C.44.

Cubic forms (see also " Binary cubics "):

thsJ.27.

ternary: J.28,29 : JP.31,32.

quaternary : transfJ.58 : P.60 : Pr.lO :

division into five, J. 78.

Cubic surfaces : Ac. 3,5 : thsAn.55 : C.

97.,98 : G.22 : J.63,65,68,69,88,89 :

M.6 : Mo.56 : N.69 : P.69 : Z.20.

classification of : M.14.
double sixers of : Q.IO.

with 4 double points : M.5.

"gobbe": G.14,17,21.

hypcrboloidal projection : G.2.

27 linesof: C.52,68,70: J.62 : L.69 :

M.23 : Q.2.

27 lines and 45 triple tangent planes

of: An.84: and 36 double sixers

Q.18.

locus of centre of quadric through 8

points : Me.85o.

model of: CP.12.
polar systems : M.20.
properties of situation : M.S.

in quaternions : AJ.2.

reciprocal of Steincr's surface: N.72o,

73.

singular points of : P.63.

tri|)le tangent planes : 00.40.

Cubo-biquadratic eqs., no. of irreducible

forms: 0.87.

*Ourvature: 1254—8: 5134,5174: A.l,

28,43 : J.81 : Me.62,,f6-|.,72,75 :

N.th60,69: Q.t.c8,12.

* circle of: 1254—5, 5134: A.cn30,37

:

J.08.

Curvature

—

(continued)

:

* at a cusp : 5182 : N.71.
* at a double point : 5187 : Q.3.

dual, evohite and involute: Q.IO.

of an evolute of a surface : 0.80.

of higher multiplicity (Riemann) :

Z.20,24.
* of higher order : 5188—91 : M.7,16.

of third order : 0.2G.

of intersection of 2 quadrics : An.63.

mean : 0.92.
* at a multiple point : 5187 : 0.68.

of orthogonal lines : JP.24.
* parabolic : 5818.

of a plane section of a surface : 0.78 :

Z.17.

spherical : A.25.

*Ourvature of surfaces : 5818—26 : A.4,

20,41,57: An.fandths61,64: 0.

th 25, 49, 60;,ths66,67,68,geo74,84 :

J. 1,3,7,8: JP.13: L.44,72o: p.c

Me.71 : Mel.3 : Q.12 : Z.27.
* average, specific, integral, &c. : 5826

—30.
axis of curvature of envelope of a dis-

placed plane : 0.70.

approach of 2 axes of finite neigh-
bouring curves : 0.86.

circular and spherical: see "Tortuous
curves."

constant : J.88 : G.3 : mean, 0.76, L.

41,53; neg.,O.60,M.16; pos.,G.20;

total, 0.972.

Euler's theorem : gzO.79.

Gauss's thO.42: analogy M.21: Q.

16.

ap. to aneroid barometers : 0.86.

indeterminate : CD. 7.

and inflexion : trA.19.
* integral : 5826.

and lines : An. 53,59 : L.41.

mean = zero throughout : Mo.66.

and pencils of normals : 0.70.

and orthogonal surfaces : P. 73.

of revolution : L.41 : Z.21,22.

skew : Z.26.

sphere of mean curvature of ellipsoid :

A.43.
*Ourvcs (sec also "Curves algebraic"

and " Curves and surfaces ")

5100: A.2,1 6,32,66: An.53,54v-

O.geo72,91 : J.14,31,34,,63,64,,70

L.38,44,ths57 and 61 : M.16 : N
p.c61, 71,77,803 en from p.c.

from Abel's functions, p = 2 : M.l.

Aoust's problem : A. 2,66.

arcs of, compared with lengths : JP
23.

of " aliineamento" : G.21.

analytical method : L]\l.9,16.
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Curves

—

{continued)

:

whose arcs and coordinates are con-

nected by a cjuadratic equation :

J.62.

whose arcs are expressible by elliptic

or hyperelliptic functions of the
1st kind: Z.-25.

argument of points on a plane curve :

LM.15.
bicursal : LM.4,7.
with branches : imaginary, CM.1,Q.7:

infinite, Q.3.

2 characteristics defining a system
of algebraic or transcendental

curves : C.78.

least chord through a given point :

A.23.
class, diminution of : N.G?.

closed : see '" Closed curve."

of 2-point contact with a pencil of

curves : M.S.

of 3-point contact with a triply infinite

pencil of curves : M.IO : 4-point

do., LM.8.
whose coordinates are functions of a

variable parameter : Me.85 : ellip-

tic, SM : N.68.

cutting others in given angles or in

angles whose bisectors have a

given direction : C.68,83.

and derived surflices : An. 59,61.

derived from an ellipse : A.IO.

determination from their curvature

:

P.83,84.

from property of tangents : A. 51.

determination of the number of curves

of degree r which have a contact

of degree 9i<'nir, with an wt-tic,

and which satisfy | r (r+oj—ii
other conditions, and similar

problems : C.GSg.

defined by a differential equation : C.

81,90,93,98: L.81,82.

do. algebraic and an analogous

space theorem : L.762.

^;,+0oy = 0, Pr.l5 : p oc r~, Mem.
24 : p" = yl sin co, N.76.

diameters of : L.49 : N.71 : and sur-

face, C.60.

eq obtained from tangent : N.45.

whose equations are : y = \/x, A.14,

16: v^ — u (tt—!)'(«— i«) C«— 2/)j

a; and ?/ constants, C.93.
* r (^ = a sin (/), A.48 : y =ir(i«). 2323.

linear functions of the coordinates :

N.65.
equidistant, tangents to : cnZ.28.

whose evolute and involute are equal

:

C.84.

extension to space : C.85.

Curves

—

{continued) :

a family of: N.72.
four, with two common points : Q.9.

generation of : geoJ.58,71 : M.18.
by intersections of given curves :

Z.14.

by collinear ray-systems : Z.19.

geometrical : A.37 : two laws, 0.84.

relation to harmonic axes : C.734.
" gobbe": of zero kind, G-.ll : rational,

G.9,12.

higher plane : A.70 : L.61,63.

homofocal : N.81.
defined by intersecting conies : C.37.

intrinsic equation : CP.8 : Q.5.

joining two points : pr L.63.

with multiple points : C.62 : L.69.

with three of higher degrees, en
An.58.

n-tic with m.p of li—1th order : C.

80: K76.
network of : C.67.

pencils of: A.65 : of 3rd order, Z.13.

p+P2^ = S4r: E.ll.

with a constant polar subtangent : IST.

62.

with several " points d'arret "
: N.

60.

in a power-series of sines : J.3.

* of pursuit : 5247 : C.973 : N.83.

of " raccordement "
: JP.12.

rational: A.56 : G.thl5,16: M.9,18.

generation of : C12.
reciprocal of: J. 42.

rpd.

J 11

of section: A.43.

of a series of groups of points, ths

G.73a.

with similar evolutes : Me.66.

* singularities of: 5187: Au.71 : C.78

80 : CP.9 : J.64 : JP.7 : L.37,45

LM.6 : M.8—10.,16 : N.50,80,8l3

Q,2,7 : higher singularities, J.64

:

L.70.

of the species 1 : C.973.

sextactic points of : P. 65.

on surfaces : see " Surface curves."

systems of: An.61 : G.13 : Mo.82 :

theory, C.632,94.

and surfaces : A. 73 : Ac. 7 : L.65.

tangential polar eq of : Q.l.

theorems or problems : A.prl,3l3.prs

37 and 42: G.L: J.l : M.14: Q.3.

re arc CP and chords GP, PM, CM
Mem.lO.

to describe curves which shall have
equal arcs cut off by a fixed pen-

cil of lines : Mem.lO.

J.l.
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Carvca—{continued)

:

re lines drawn at all points of a

curve at the same inclination to

it: C.74..

tracing apparatus : LM.4.
transformation of : CD.8 : LM.l :

scalene Q.13 : M.4,20,21 : of 1-i-

ics which cut a quartic in the
points of contact of its double
tangents : J.52.

and transversals : J.47.

under given conditions : P.68.

Curves algebraic (see also " Curves and
surfaces ") : C.99,ths60 and 80 :

CM.4 : G.1,4,5 : J.12,47,59 : N.50 ,

81,cn83.

represented by arcs of circles : JP.20.

with axes of symmetry : N.80.

of 2nd class and 2ud order : G.l.

of 3rd class and 4th order : G.4.

of 3rd class and curves of 3rd order :

J.38 : L.78.

of 4th class with a triple and a single

focus: Q.20,.

of 6th class : Ac. 2.

of class n and order m, two laws :

C.85.

common points, a system of : J. 54.

generation by right lines : J.42.

and homothetic conies, ths : J.63.

lemniscatic : An.58.

manifoldness of : M.IO.
* mechanical construction of an «-tic :

5407: LM.7.
with a mid-point : J.47.

number of points of contact : C.82.

number of intersections : C.76 : M.15.

projective involution : M.3.

remarkable group of : M.16.
species determined : M.23.
symmetrical expression of constants :

Q.5.

theorems : two metric, M.ll : Mac-
laurin's, N.50.

Curves and surfaces : M.8 : N.59 :

gnthsC.45 and G.4 : algebraic,

An.77 ; J.49 and L.55.
" arguisianc ": G.12.

curves having the same principal

normals and the surface which
the normals form : C.852.

of same degree, a common property :

G.8.

satisfying conditions of double con-

tact: C.89.

Curvilinear angles, ths : L.44,45.

Curvilinear triangles : A.Gl.j : N.45.
Curvital functions : C.60.

(Jurvo-graph : A.l.

*Cusps: 5181: Mem.22 : Q.IO.

Cusps

—

[continued)

:

construction of 8 cusps of 3 quadric

surfaces when 7 are given : J.26.

* keratoid: 5182.
* ramphoid : 5183.

Cyclic : curves : A.37 : Z.cn2,26,27.

functions : A. 09, and hyperbolic 37.

interchanges (higher algebra) : Man.
62.

projective groups of points : M.13,20.

number of do. in a space transf. :

C.90.

surfaces : Z.14.

s^'stems : C.76.

Cyclides : N.66,70 : Pr.l9 : Q.9,12.

reducible: LM.2.
and sphero-quartics : P. 71.

*Cycloids : 5250 : A.13 : N.52,82.

and trochoids on surface of sphere :

Mem.22 : Q.19.

surface of, th of Archimedes : Me.
84.

Cycloidal curves : Z.9.

Cyclosis in lines : LM.2.
Cyclotomic functions : C.9O3:

*Cylinder, frustrum of : 6048.

circumscribing a torus of revolution:

C.45.

and cones, intersection by spheres,

ths : J. 54.

and hemisphere : P.12.

Cylindrical functions : A.56 : An.73 :

M.5,16 : and d.i M.8.

of 1st and 2nd class : M.l.

/ (.!') analogous to the spherical func-

tion P" (cos 6) u : M.3.

representing a function of 2 variables

:

M.5.
*Cylindrical surfaces : 5591 : LM.32.

quadratua-e of : A. 9.

Cylindroids : At.19,39 : Me.80 : Z.25.

Decimal fractions : approximation
by : N.51.

error in addition of non-terminating :

C.40: K56.
repeating: A.16,33,56 : G.9: Me.85:

Mel.5 : N.42,49,74.

- where w is one of the first 1500

primes : A.3.

Definite integrals : sec " Integrals."

Deformation : of conies : Z.26.

of a cache-pot* N.81.

of a one-fold hyperboloid: E.30.

of surfaces : C.68,70 : G.16 : jr.22 :

L.60.

*Do Moivre's theorem : 756: A.6,n.
Demonstrations, reduction to simplest

form: C.83.
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prsDerivation : applied to geo
An.54.

of analytical functions, gz : G.22o.
of a curve : An. 52.

Derivatives : see " Differential coeffi-

cient."
* Arbogast's: 1536: CD.6 : 1.12: L

82 : extMe.78: P.Ol : Pr.ll : Q.
4,7.

Schvrarzian : CP.IS^.
Descriptive Geometry : An. 63 : L.39 •

N.52,,56.

*Detached coefficients : 28.

Determinants : 554 : A.44,56,65 : apAn.
57 : J.22,tr5l2,72,73,74,89

: C.86 :

CP.8: G.1,4,8,9,10: L.84: LM.
10: Me.62,78,794,83 : N.51,69,ap
70: Pr.8: Q.8 : TE.28: Z.16.

and algebraic " clefs "
: 0.36.

of alternate numbers : LM.ll.
application to : algebra and

geometry, A.5l,50,5o.
contact of circles and spheres : N.

60.

cylindrical surfaces : A.58.
equations : Q.19.
geometry : J. 403,490,77.

surfaces of revolution : A.58o.
arithmetical: G.23 : LM.IO : "Me.78-

Pr.l5.

of binomial coefficients : Z.24.
catalogue of papers and treatises : Q.

18.

of Cauchy ("aleph"): G.17n.
combination of : CD. 8.

combinatory analysis of : C.86.
* composite : 555 : J.88,89.
* compound: 555: AJ.6 : LM.14 : Me.

82.

in conies : J.89,92.

with continued fractions : J.69.
cubic : G.6 : LM.13 : and higher, 11.
cycle of equations : G.ll.
of definite integrals : L.52 : Z.ll.
development of: An.58 : N.85 : in

binomials, G.IO: in polynomials,
G.13,15: and ap to resultant of
2 eqs, G.21.

division problems : A.59.
double orthosymmetric : Z.26.
and duadic disynthemes : AJ.22.
elements of : G.10,15.
equation in which Opg = a^p -. C.41.
of even order, analogy between a class

of: J.52.

of figurate numbers : G.9.
functional: CD.9 : J.22,69,70,77,84 :

M.1,18 : Me.80 : Q.l : of binary
forms, C.92 : of a system of func-
tions, L.51.

Determinants

—

{continued):
function in analysis for a certain de-

terminant of n quantities : C.70.
gauche (a^, = —a,,,) -. C.88,89o : CD.9 :

J.32,38,50,th55 : L.54.

involving ^1, &c. : Q.15,16,17.
of lower determinants : J.61.
of minors of given determinant: C.86.

* minor : 554 : G.l.
* multiplication of : 562,570- A 14 59 •

L.52.

number of terms in : LM.IO.
partial: C.97.

persymmetric : Me.82.
with polynomial elements : Me. 85.
of jjowers : AJ.4.
quadratic forms of : J.53,89 : L.56 •

K52.
ditto of negative dets. : J.37 : L.60 •

M.22: Mo.62,75.
of rational fractions : Me.82.
resolution into quadratic factors of a

det. formed from two circulants :

Me.82.
of the 16 lines joining the vertices of

two tetrahedrons : J.62.

of sixth order : Me.84.
* signs of the terms : 557 : E.29 : Me.

80.

skew: Q.8,18.

of squares of distances of points : Q.
11.

Sylvester's det. and Euler's resultant:
An.59.

symmetrical : G.l : J.82 : M.16 : th
Me. 85: Q.14,18.

and Lagrange's interpolation : LM.
13.

ap to a pr in geo : Z.20.
of nth. order and «.—1th power x

sq. of a similar determinant

:

AJ.4.
theorems and problems : AJ.3 : An.

pr60: G.2,4,6o,12,16 : J.pr66,pr
84 : L.51,54 : M.13 : Me.79 : N.65

:

Q.l,pr2,15 : Z.7,prsl8.

transformation of: An.73: G.10,fl6:
of product, L.60.

unimodular, en : Z.21.

for verifying a system of d.e : 0.23.
with a diagonal of zeros : Me. 73.

Developable cylinders, motion of : Man.
84.

Developable surfaces : A.69 : M.18 : Me.
17: Q.6.

circumscribing given surfaces : Z.13,
15.

circumscribing 2 quadrics: C.67,ths
54,gz63 : CD.5.

5 s
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Developable surfaces

—

(continued) :

of a conical screw : A.69.
edge of regression : L.72.

of first 7 degrees : J.64.

througii a given curve which develops

into a circular arc : L.56.

through a gauche curve : C.97.

mutual : J.19.

quintic: C.54 : CD.6 : G.S..

of surfaces having principal lines of

curvature plane : C.36.

Development of tortuous curves : prs

Mem,
Diacaustic of a plane : N.75.
Diagonal scales : LM.6.
Diametral curves : CM.2.

of constant sectional area, prs : N.43.

Didon, proposition of : C.86.

Differences : and differential-quo-

tients : A.49,53 : N.69.
equations of mixed : JP.6 : N.85.
parameters of functions : C.95.

*Differential Calculus: 1400—1868: J.

11,,12,133,14„15,,16 : Me.66,: Q.4.

reciprocal methods : CD. 7,8.

*Differential coefficients or differential

quotients or derivatives (see also
" Differentiation ") : 1402, 1422—
46: Pr.l2.

of algebraic functions : Mel.l.

of log X and a' : A.l ; of x" and a'' : N.
63.

of {fix)]" : M.3 ; of y exp {z') : A.22.

calculated from differentials : AJ.16.
* of a composite function : 1420 : nth,

G.13.
* of exponentials and logarithms : 1422

—7 : A.11 : N.50,52,85.
* of a function of a function : 1415 : A.9

:

in terms of derivative of inverse
function, Mem. 57.

of a function of two independent
variables : 1815.

of irrational functions : P. 16.

of products whose factors arc con-
secutive terms of a series : Me.31.

ratio to the function at the limit oo :

J.74.

successive or of «th order : 1405, 1460
—72, 2852—91 : A.l,4,7 : An.57 :

G.18: M.4: Z.3.
* of a sum, product, or quotient: 1411.

independent repres. of: M.4.
* of a function of a function : G.13 :

« = 4, 1419.

of functions of several variables :

C.93.

of a logaritliniic! function : A.8.
of a product : 1460, 1472.
and summation symbols : J.33,ths32.

Differential coefficients of nth order

—

[contimced)

:

* of (a^'+a-^)": 2860; ^, 1467.

* (l-a;2)"-J (Jacobi): 1471, A.4

;

y(a2_feV), A.3.

* -i_:U69;-^, 1470, J.8;
1+X^ 1+ .X'2

* ia+bx+cx-)'\ 2858;
{x''-+ax+b)-"\ A.8.

* tana: A.12 ; cos"'.c, A.9; ^^^^ ax,

1461, N.62.

* ^^"
icS, 2862 ; sin-'«, 2854—5

;

cos '

* tan-^aj, 1468, apN.9.
* e"-', e'"'y : 1463—4 ; e^'ic"*, CM.2.
* e""' : 2861, A.30 ; e"' cos bx, 1465.

* .c"-! logce : 1406 ; e^^^'^cos {x sin a),

2856.

of nth order with fc= in the result

:

* tan-'..', sm--\c, (sin-'fc)2, 2865—9
;

* ^°'
»tsin-'.v, ^^'mcos-ifts 2871-7;

sui ' sm

* (l+cc2)±f ^"^ mtau-'x, 2883-7
;

^ ' '' cos

* -^^, ofe'-'-cosbx, 2889—91
;

e^—

1

sin (x or i/)-|-cosa; i o

l+ 2y cos x+y^
*Differential equations (D.E.) : p.460,

3150 — 3637: A.1,52,67: AJ.4

:

An.502: C.8,15,23,29,42,54,70,83 :

CM.3: E.9: J.1,36,58,64,66,74,76,

76,78,86,91 : L.38,52,56: LM.4.10 :

M.8,12,25 : Man.79 : Me.81 : M^m.
30 : Mo.84 : N.72,80 : Pr.7 : TI.13 :

Z.4,16,27.

Abel's theorem : J.90.

algebraic : An. 79 : C.86.

with algebraic integrals : J.84..

approximate solution : C.5.

by equations of differences : L.37.

* by Taylor's theorem : 3289.

of astronomy: C.9,29 : P.4.

asymptotic methods : C.94: Q.5.

Bessel's numerical solution : Z.25.

* Complete primitive : 3163—6 : J.25.

no. of constants : CP.9.

with complex variables : Mo.85.

of a conic : E.38.

continuous and discontinuous integ-

rals of : C.29.

for a conical pendulum : A.84.

relation between its constants and
the constants of a particular

solution: C.92.
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D. E.

—

{continued) :

of curves having the same polar sui'-

face : An. 76.

* depression of order by unity : 3262—9.

with different, total integrals : L.84.

of dynamics: 0.5,26,40..: CD.2 : G.l,

4: L.37,49,52,5.53, 72,74: M.2,17,

25: Mel.4: Pr.l22: P.54,55,63.

ap. to engineering : JP.4.

and elliptic functions : L.49.

elliptic: G.19: M.21.
elliptic multiplier : M.21.

* exact : 3187, 3270—5 : G.12 : C.1,10,11.

of families of surfaces : Me. 77.

with fractional indices : JP.15.

of functions of elliptic cylinders : M.
22.

general methods : L.81.
* generation of : 3150.

geometrical meaning of : Q.14.
* homogeneous: 3186, 3234, 3262—8:

C.13 : CM.4 : J.86.

hyperelliptic : J.32,55 : Mo.62.
of hypergeometrioal series : J. 56,572,

73.

integrability of : Z.12 : immediate,
C.82.

whose integrals satisfy relations of

the form Fl(px^ = fx Fx -. C.93.

whose integrals are satisfied by the

periodicity modulus of elliptic

integrals of the first kind : J.83.

integrating factors : pp468 — 471,

3394: C.68.,97.

ofPdx+Qdy'+Ech: Q.2.

integration : by Bessel's function

:

Me.80.
by Gamma function : TE.20.

* by definite integrals : 3617—28 :

C.17 : J. 74.

by differentials of any index : C.17 :

L.44.

by elimination : CP.9.

by elUptic functions : An.79,82 : C.

41: JP.21.

by separation of operative symbols :

Z.15.
* by series : 3604—16 : C.10,94 : LM.

6: Me.79: Q.19: TI.7.

by theta-functions : C.90.

irreducibility of: J.92.

isoperimeters, pr : Mem. 50.

of Lame : J.89.

of hght : M.l.

in linear geometry : M.5.

of motion : C.55 : of elastic solids,

Q.13 : of fluids, CP.7 : of a point,

C.26.

with integrals " monochrome and
monogene "

: C.40.

D. E.

—

{continued)

:

'• Parseval's theorem : 3628.

and p.d.e of first order : J.23.

particular integrals of : CM.2 : alge-

braic, C.86.

relations of the constants : C.93 :

J.IO: JP.6.

in problem of n bodies : An.83.

of perturbation theory : Mem.83.
with quadratic integrals : J.99.

for roots of algebraic equations : P.

64: Pr.l3.
^ rule for equivalence of two solutions

3167.
* singular solution of : 3169-78, 3301—

6, 3401-3 : C.19,94 : CM.2 : JP.

18 : M.22 : Man.83,84 : Q.12,14.

of sources : A J. 75.

of a surface : G.2.

satisfied by the series l±2r^+ 2q'^±

2q^+&c. . 2Vq+2V(f+2i/T'+
&c. : L.49 : J.36.

satisfying Gauss's function F (a,^,y,a•)

:

L.82.

synectic integrals of : C.40.

and tortuous curves : L.53.

transformation of : An.52 : CD.9 : in

curvilinear coords : J.85.

D. E. linear : A.28,35,40,41,43,45,46,53,

59,65,69 : Ac.3 : AJ.7 : An.50,85 :

At.75 : C.7o,293,58,73,84,88,903,9l3,

92o,94: CD.3,4.2,9: CP.9,10 : G.

15 : J.23,24,25,40,42,55,63,70,76,

79,80,81,83,87,88,91,98 : L.38,64

:

M.5,11,12 : Me.75 : P.48,50,51

:

Pr.55,18,,193,20 : Q.8: Z.3,7,9.

without absolute term, condition of

solutions in common: C.95.

with algebraic integrals : C.96,97 : J.

80,90: M.21.
determination of arbitrary constant :

At.65: q.l9-2.

argument & parameter interchanged

in the integral : J.78.

bibliography of : AJ.7.

with "coefficients that are algebraic

functions ofan independent varia-

ble : C.92,94.
* with constant coefficients : 3238—50 :

An.64: CM.1.V2: E.34 : JP.33 :

L.42: N.47,84.

with periodic coefficients : C.91,92 :

doubly periodic : C.902,92,982 : J.

90.

with rational coefficients, algebraic

integrals of : C.96 : JP.32,34.

with rational coefficients, upon
whose solution depends the quad-

rature of an irrational algebraic

product : C.9I3, 922.
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D. E. linear

—

{continued)

:

with variable coeflficients : C.92 :

J.66,68,76: L.80,81.

•which connect a complete function of

the 1st kind with the modulus :

C.86.

homogeneous: Ac.l : J.90 : Mo.82.

integrating factors of : C.97,98.

integration by Abelian functions, C.

92 : J. 73 ; by finite differences,

Q.l ; by series, J. 76.

which admit of integrals whose loga-

rithmic differentials are doubly
periodic functions : L.78.

whose particular integrals are the

products of those of two given
linear d.e : A.41.

irreducibility of: J. 76.

Landen's substitution, geo : J.91.

Malmsten's theorem : J.40.

singular solution : J. 73,83,84.

transformation of : C.91,96.
* n variables, 1st order : 3320—32 : C.

14,15 : G.13 : J.20,80 : L.38.

n variables, 2nd order : L.37 : 2 varia-

bles, C.70.

n variables, any order : Mem.13.

* Pdx+Qdy+Edz = 0:P,Q.,Bmwo\Yir\g

X, y, z, 3320 ;
geoM.16 ; Z.20 : P,

Q, B, integral functions of x- only,

Q.19n: P = (rta;"+ 6a'''-'+ &c.)"",

Q, B similarly with y and z, Q.20o.

* Xd,(+ Ydy+Zdz+ Tdt = : condition

of being an exact differential,

3330.

iedt+ydx+ zdy+ tdz = : A.30.

*D. E. of first order, linear : p4G7 : C.86 :

G.13 : algG.18 ; M.23.
* exact: 3187.
* homogeneous: 3186.

integration by a particular integral :

C.86.

reduction to a continued fraction of a

fraction which satisfies a: C.98.
* separation of variables : 3185: CM.l.

* Mdx+Ndy = : 3184 : N.74,77.

* {ax+ by+ c) dx+ {ax+ h'y+ c')dij ^0:
3205,p471: L.59.

{ax+ hy+ c)'>dx+ {a'x+ h'y+ c'ydy : A.
64.

^^^L = o. r^Q being quartics in
vP \/Q

X, y : C.66 : LM.8 : ME.79.

/(;,;) dx . f(y)dy ^ . / (,.•) of 1st dcg..

F{x)
"^

F{y) ' F(-..')of5thdcg.-

C.92.

D.E. of first order, linear

—

(contimied)

:

P,d'C+P,dy+Q {xdy-y dx) = ; P„
P..> being homogeneous and of the

2)ih deg. in a-, y ; Q homogeneous
and of the ^th deg. : 3212.

Pi, Po, Q dif!erent linear functions

of X, y : C.78,83 : L.45

yr-\-Py = Q, where P, Q
only: 3210.

2/.+-P!/ = Qy": 3211.

yy -\-Py+Q- Mem .11.

y^+y~ =

J.24.

nvolve X,

where P,
{P+2Qx+Bx

Q, B are functions of x : Mem .11.

yr+a+ hy+y^ = 0: J.25.

y,V{m+x)=\yym—x: A.42.

y, =f{y) : J.9 '; y. =f{x, y) : An.73 :

y.+fix) sin y+F{x) cos y+cfiix) = :

L.46.

* '!(;,+6zt2 = ca''" (Riccati's eq.) : 3214:

A.40: C. 11,85: (m = -6)E.7:
ext28 : JP.14 : L.41 : P.81 : Q.7,

11,16.

allied eqs : L.51 : Me.78 : Q.12.

sol. by continued fractions: Mem.18.

by definite integrals : J.12.

transformation of : Me.83.

*D. E. of first order : 3221—36 : A.29 :

C.40,45,66 : M.3.

two variables : An.76 : J.40 : Mem.
62 : N.50 : singular solution, J.88.

* Clairaut's equation, 9/ = j),v+/(p)

:

3230: CM.3i: Me.77.

integration by second order d.e: A.46.

homogeneous in x and y : 3234.

reduction to alinear form with respect

to the derivatives of an unknown
function : C.87.

related transcendents : Ac. 3.

separation of variables : CD. 9.

* singular solution : 3230 : A.56,58 :

CP.9: J.48: Me.73,77.
* solution by differentiation : 3236.
* solution by factors : 3222.

transf. by elliptic coords : J.65.

verified by a recipi'ocal relation be-

tween two systems of values of

variables : C.15.

dx-+d)i'^ =z ds~ and analogou.s eqs :

L73.
* adx+ hdy = ds: 3287.

dx"~+dy"~+dz^ = ds^: L.48.
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D. E. of first order

—

(contwued)

:

die^+ d>f~+ dz"- = X (£Za2+ f7/iJ2+ f?y2): L.

60.

F {u, u,) = : C.93.

* xct>{p)+yylr{p) = xip)- 3226.

D. E. of second order, linear : A.29,

32.55,64 : An.63,79,823 : C.82o,90,

91,93o,97 : J.51,74 : L.36 : Me.14

:

M.ll : Mo.64 : Z.5.

with algebraic integrals : C.90 : J.81,

85: L.76.

witli doubly periodic coefHcients

:

Ac.2.

homogeneous : M.22.

integration by Gauss's series : Z.19.

transformation of : An.62.

* y" = a: 3288.

y" = Py : C.9.

* y"^cfiy = Q : 3522,'5 : geoMe.66 :

Q = cos nx, 3626 : Q = 0, 3623—4.

y" = Ay {a+2bx+cx^)-" : L.44.

* y" — ax+hy. 3281.

xy" = y : Z.2.

(l=Fa;2) y"± my = 0, &c. : OM.32.

x^{y"+q^) =p{p-l) y : CM.2.

1/" = {h+n {n+1) lc^sn"x} y (Lame's

eq.) : C.85.

qj" = ^o+#i+i/02+&c., when (p^&c.

are trigonometrical series : C.98.

,/' = 2/(e-+e--)-2: L.46.

y" + ax'^y =/(m) : E.6.

y" = ay+yj/' {x) : A.45.

* y"=f{y): 3257.

* y" =f{x, y) (Jacobi) : 3286.

y" + ^y'-^ry = : 0.86,90 : Q.19.

y" = xhj'—nxy : A.63.

xy" -\-my' -\-nxy = : L.45,78.

xy"+y'+Aie"'y = : C.39.

x^'+rxy' = (bx'^+s) y : An.51 : CD.
5.

x^y"+2xiy'+f{y) = : A.28,30.

y"+f{«^)y'+F{y)y'"~ = 0: 3284: L.42.

* {a+lx) y"+ {c+ dx)y'+ {e+fa)y = :

A.58.

{a+bx")x?ij"+ (c+ex») xy'+ if+gx")

y = Q (Pfaff) : 3598 : J.2,.54 : and
like eqs., Z.2,3 : with h = 0, A.38.

a;2 (a—bx) y"— 2x {2a— bx) y'

+2 {2>a-bx) y = 6a3 : A.28,30.

^y"+ y'+y {x+A) = 0: Me.81,84.

xy"+y'+ y{^c-A)=d.^^^^:Me.

82.

a.2y"_ 2xi/+2y = xhjf-^^ : A.28,30.

D. E. of 2nd order, Wwe^r—icontirtucd)

:

si/"+ (r+gr.')iy'+ (2'+ '*'^'+ W''-'~) ^J = ^ :

A.23: Z.8,9.

* (1— a;2) y"— xy'+ q~y = : 3282.

* (1 +ax^)y"+axy'±q^y = 0: 3283,3694.

2x {l-x^)y"—y''+n{n+l)y = 0: Q.18.

X (l-a-) y"+ i-ix) 7/'+-;« 1/ = : Me.

82: Q.17.

im+x) {n+x)y"+ {m—n)y'
-\Hm+x-fy = 0: A.42.

{ynx^+nx+p) y"+ (qx+r) y'+sy = :

JP.13: Z.4.

\fiy"-\-A\y'-\-Biiy = 0, fiy"+A'Ky'

+B'Kfiy = 0, and ixy"+AXij'+BiJL

= 0; with \^a+lx+cx'^ and

^ = b-\-2cx: A.423.

dr {{x—x^) yr}—xy — : L.54.

* y"+Py^+Qy+B = 0, P, Q, B being

functions of x : 3280.

Py"+Qy'+By = 0: Ac.l.

zy"2.+azyy"^.+f{y) = : Me.71.

D. E. of second order : Ac.l : An.79 :

JP.29 : C.67,69,80,91 : J.90: L.39:

LM.n,12,13,16: Z.16.

with algebraic integrals : C.82.

derived from hnear eq : Me. 73.

with elliptic function coefficients :

Ac.3o.

iutheneighbourhoodofcriticalpoints:

C.87.'

polynomials which verify : Ac.6.

solution by definite integrals : A.27.

by factors : C.68.

by ChaUis's method, and application

to Oalc. of Yariations : A. 66,66.

yy" = hp+^Py"- ^'^^

Myy"+Ny'"-=f{x): N.79.

* y"+Py'+ Qy'^ = 0, P,Q functions of

X : 3276.

* y"+Py'+Qy"' = 0: 3278.

* y"+ Py'-^+Q.y"' = 0: 3279.

* y"+ Q,j'-2-^B = 0: 3277.

J^j,-f — I^-|-I= 0, where I is Bessel's

function : J. 56.

of third order, linear: C.88-2: Q.

7,8,14 : M.24.

-y'": JP.16: Ut=^U3.r: C.3.

"—y = 0: Z.8.

= 3ma;V'+ 6wi(M+2)ay+ 3m(/i+2)

{lM+l)y: A.42.

= x"'{Axhj"+Bxy'+ Cy): A.68.

third order: An.832: C.98o: M.23.

of higher order, linear : 3237—60

:

A.65 : C.972 : J.16 : M.4 : Q.18.

D. B.

y'-

xy
y'"'

y'"

D. E.

*D. E.
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D. E. of liigher order, linear

—

[cont.) :

of ordei's p and vi-\~j), th : 0.43.

yi^ = xyx—y: A.l.

* 2/- =/(.'): 3256.

i/„j. ^ a""i/ : L.39.

i/„^=(a+i3,iOy : J. 10.

9^'"*yiiu=^ u"'>j : A.32.

x^'"y2,nx = ij : A.12.

a;?/,,^: := y : A.26.

x"*y„x=±y : by definite integrals:

C.482,49 : J.57.

y„r = a;"'i/ : by definite integrals : J. 19.

a3"''*'i/(2„,+i)x =±2/ : by Bessel's func-

tion : M.2.

y,,^ = x"'y+A+Bx+ac^-+ .

.

. +N.C" :

Z.IO.

y,,^ = ^a;'»;2/,+Bc<!"'-'?/ : A.28,38.

x-"yn^ = Axy +By: A.33.

^«j-— a'?/ = y-2x+nh'V"ij : by definite in-

tegrals : J.17.

y„^= Ax^y'i^+Bxy^+Cy: AM: M.3.

y„jc = J.a!'"2/'^+-Ba;"'~'i/j,+ Gx"'--y : A.

29,30,33,38.

a;i/nx+ oy(n-i)x = hxy : J.2 : Z.IO.

a;y„j:—^(„_i)j,4-i?^a;3'i/ := : A.40.

xynx+^in-i)^ = « i^y^+l^y) A.86.

Axy„x+By(n-i)x=^ x"'{Axy:c+By) : Z.8.

«^,nx+ q"'X^y =P ip— l) y{m-2)x : J.2.

= *'" (a.e2;y,,+ 6.,-7/,+C?/) : A.38.

* i/,u-|-«i^/(»-i'.+ ... + «„y = : 3239 : A.

4o:
* ditto =f{x): 3243, 3516: a, ... a,.

functions of x, 3237 : J.39.

n fractional and. all lower orders

integral : L.36.

{ch+ary=f{x):CM.A.
* ditto = e"-' : 3528 : ditto = sin mx -.

3529.
* {f+qxy'ynx-\-ai (25+ (2a0"-'!/(«-rix+...

+ any =f{x) : 3250 : with 2^ = 0,

C.96.

a,n,ny{m*n)x-\- . +(«m+ .'') y ,nx + ...

+ aoy = : A.47.

x»-\a+hx) y„,+x"-%c+d) y,n-^>.. + ...

+ ty = 0: J.39.

y3x -\-myj:+ 71yT+])y = q : L.44.

*D. E. of higher order : 3251—69.

* y,.. = I'Mv/(„ .;,): 3258.

* ynx = F{y^n-2,.): 3260.

Bynr+Q = 0, where P, Q arc func-

tions of X; y, and the first n—

1

derivatives of // : J.31.

D.E., simultaneous system of: An.69,
82,84: C.10,43;,47,92o : CM.l: LM.
14: Me.13,80: Pr.12.

Harailtonian : Q.14.

integration and inversion of the in-

tegrals : C.23.

Jacobi's : CD.3.
* method of multipliers : 3353.

numbtr of arbitrary constants : Me.

* reduction of order : 3350.

redaction to a P.D. eq : C.44.

theorem of Abel : C.24.

theorem analogous to Lagrange's
in the Perturbation theory : L.

tlieorem of a new multiplier : J.27.

transformation and integration of

:

L.45.

* Xit = ax+ ly and y->t = cx+ dy : 3354

and a similar example.

*D.E., simultaneous linear: 3340—59:
AJ.4: C.9,92: E.5: N.66,84.

Pfaff's method : C.14 : J.2 :

transformation of: J.98.

* ^^= '^^ = 1:3346: Q.14.

jt dx dv dz
3347.

Pi—xP Pi—yP Ps—zP
* xt+P(ax+by) = Q and y,+ r{cx+d>i)

= B: 3348.

* txt+ 2(x—y) = t and fyt+ ix+ i>y) = t^-.

3349.

* equations in a', x-u, x.u, &c. . (//, y^, y^t,

&c.: 3357.

* homogeneous in x,y,z...aud their

second derivatives only : 3358.

*D.E., simultaneous first order : 3340

—

49: C.43: J.48: Pr.62.

*D.E., symbolic methods: 3470—3636:
CD.l : P.61 : Q.3,172.

* F{de)u=Q: 3515.

* Hix+a-u = Q and similar : 3522.

* exceptional case of the inverse pro-

cess : 3526.
* reduction of an integral of the i!th

order : 3530.

* ax"'i/,nx+hx"y„.+ &c. = Q : 3531.

* ay,„i-\-hy„«-\-&c.=j'{e'',s'u\6,cos6): 3535.

* a7ri"z+ hni"z+ &c. = '^^l+ ^^i+&c. :

3540.

* F{7r)a = Q,: 3541.

* Kcduction to the form (n" + .l„n"-'-|-

...+An)u = Q, whore II — ^[dx +
Ndy+ &c. : 3546.
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D.E., symbolic methods

—

{continued)

:

* F {xch, ydy, ...)u = ^Ax"'y" ... : 3558.

* to transiovm{a+hx+ ...)u„x+{a'+ b'x

+ ...)'W(„_i)x+ + ...&c. = Q intothe

symbolic forin : and tlie con-

verse : 3571, 3573.

* tt+ai0 (D) e,u+&c. = U: 3575.

* to transform m+<P {D) e'^it = C:
3579—80.

* to reduce a homog. eq. to the form

y„,+cpj = X: 3585.

*DifBerential expressions : 1407 : prAn.
85.

algebraic : An.79 : M.9, by homog.
coords.

transf. of: J.85 : Q.I62 : Mo.69.

Differential : formuljB, theory of : L.

62.

functions, theory of: C.60.

expressions, linear : J.85.

parameters of functions : C.66, 78.

quadratic forms : An. 8-4 : transfor-

mation of, A. 16.

* resolvents of alg. eqs : 3631—7 : An.
83 : C.91 : LIVl.1,9,14 : M.geo4,18 :

Me.75,82: Man.65,84 : Q.6,11.

* of y"— ny"-'+{11—l)x = 0, &c. :

3633—6: Man.65.

of^'»+%'-+cfc = 0: Q.17.

of 12 iy^+ay^+xy) = cfi : Me.82.

Differentiants in terms of differences of

roots of parent quantities : AJ.l.

*Dlfferentiation : (see also ' Differential

coefficients ') 1402-82 : CM.l.
* formula: 1411—72: An.59 : CD.2

:

CM.l : Pr.9.

by the method of " Eates "
: Me.75.

general, i.e., with any index fractional

or imaginary : An.58 : AJ.3 : CD.
3.,4,5 : J.12 : JP.13 : L.55 : N.84 :

Q.3,4: TE. 14,15: Z.16 : change
of independent variable, JP.15.

* under the sign \ -. 2253 : A.17.

successive : A.20 : Q.12.

when the function becomes infinite :

C.88.

Digits :- calculus of : Sbouimsky's
th : J.30.

frequency of in numbers : AJ.4.
origin of: L.39.

Diopbantine analysis : see " Partition

of numbers."

Di-polar geometry : Z.27.

*Direction ratios and cosines : 5511— 14.

Directive algebra : N.68.

Directrix: of a conic: 1160: gn.eq
A.25: E.36: Me.80: t.cQ.13.

of in-parabola of a triangle : Me.80.
of a curve : A.20 : J.2.

of a parabola : gn.eqE.29.
of a qnadric : N.74,75.

Discontinuity : in curves : CM.4 :

Z.26.

in fractions : Man.48.

in maxima and minima: CD. 3.

Discontinuous functions : A. 7 : C.153,

28: G.19: J.7,10: LM.6 : Man.
48: TI.21.

Discriminant : 1627, 1638—9, 1644 : Ac.
1 : J.90 : LM.2 : M.12 : N.59 :

Pr.l4: Q.10,11.

of an algebraic d.e of 1st order in 4
variables, and of its complete
primitive : An.84.

of alg. eqs., resolution into factors :

M.24.
of alg. functions : J.91.

applied to conies and quadrics : A.
58.

of binary quantic : Au.56.
of a binary sextic : An.68.
of a quartic : ISr.83.

of a ternary quadratic form : Me. 68.

*Discriminating cubic : 1849, 5693 : G.
16 : J.26,71.

* proof of real roots : 1850 : A.29.

Displacement : theory of : N.82.

of plane figures : C.80 : N.73.

of an invariable dihedron : Me.85

:

infinitesimal ditto, C.84.

of an invariable figure : C. 51,523,66,

922 : JP-26 : L.74,75.

of a figure, two of whose points slide

on two curves : C.82.

of a solid : L.40 : determination of

the normals to the lines or sur-

faces described : C.62.

of a system of points : C.78.

virtual displacement : J. 11.

infinitesimal : of an alg. surface : C.

70.

of bodies only defined by 4 coordi-

nates : C.73.

of a parallelogram : C.97.

*Distance: between 2 points: 4034—5,

t.c4601 : Q.7 : sd5508, 5510: some
relations, G.9.

correspondences for quadric surfaces :

LM.16.
of a point from a line and from a

plane : A.57.
* of a point from a plane in a given di-

rection : 5559.

relatioiis : Z.27.

*Distributive law : 1488.
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Divisibility : C.96 : E.8 : M.39 : N.67,74.

of decadic numbers : Z.22.

of numbers of the form 23'"+ 1 : Mel.Ss.

of a quotient by the powers of a fac-

torial : C.94.

of {x+yr+ {-x)"+ {-!ir Me.79.
Division: prJ.47 : prL.oO.

* abridged: 28: arithJ.31 : N.452,463,

52,54,57,81 : algN.42.

by 73 or 47 ; rule for remainder: E.22.
* effected by determinants : 581.

Foui-ier's rule : N.52.

of planes and spaces : J. 1,2.

of a rectilineal figure and of a spheri-

cal polygon : J.lOj.

* of a right line into equal parts : 950.

and transformation of plane figures :

A.4,.

of trapeziums, pyramids, and spheres

:

A.11.
of triangles: A.11, 17.

Divisors : of an integer, number of :

374: C.96: N.68.

of integral rational functions : Mem. 57.

* Newton's method of : 459.

of a pol3'nomial with commensurable
coefficients : N.75.

rational, of 2nd and 3rd degree: N.45.
* sum of : 377: Ac.f4 : L.56,57.

sum of powers of: L.58.

of;c2+^//2: L.49.

Double algebra : LM.15.
Double function, laws of change of

higher order : A.21.
*Doablc points : 5178 : )i-tic with

hi (?i— 3), C.60 ; with I (n— 1)

(7i,—2),M.2; Clebsch'sthsof these

quantics, C.84: n-ticwith^vu— 1)

(;/i—2)— 2 double points, L.80.^

of plane curves in cubic space : Z.28.

in a locus defined by alg. conditions :

C.88.

of a pencil of curves : An.64.

of plane curves in cubic space : Z.28.

in the projected intersection of 2 quad-
rics : ISr.84.

of tortuous curves : M.3.
Double relations : A.60.

Double tangents : An.51 : J.49 : P.59 :

Q.4: Z.21.

of a Cartesian : E.30.

of an >t-tic : M.7 : number= In (ii— 2)
(?i2— 9), J.40,63; N.53.

of a quartic : C.37 : J.49,55,68,72 : M.
1: N.67: P.61: Pr.U : with a

double point, M.4,6 : reciprocity

of 28 double tangents,
to the surface of centres of aquadric :

C.78.

Drilling, shape of liolc : Pr.35.

Dual relation between figures in spa«e :

J.IO.

Duplication of the cube, appro.x. : Pr.20.

*e (see also " Expansion '
) : 151 : N.67,

68-:: geo meaning E.4: N.55.

combinatorial definition of : A.I2.

* incommensurable: 295 : Cil.2 : L.40

:

Me. 74.

and TT, numerical th : Q.15.

e'"''-^*'-^'* in fractious : L.8O2.

e~'^\ &c. : CP.6.
gI>x2>gA^. E.37.

*e" : 766 : AJ.7 : in transformations :

CM.4

.

e"^''': A.33.
*Edge of regression : 5729: tg.eC.71.
* radius of curvature of : 5742.

Eisenstein's theorem : G.16.

Elastic curve : C.18,19: JP.34.

Elementary calculation : N.45.
*ElimiLiants : 583, 1626.

and associated roots : LM.16.
of two cubics : J.64.

degree of: G.ll, two eqsl2 : J.22,31.

*Elimination : 582—94: A.23 : Ac.6,7 :

C.12,87,90: CD.3.,,6: CM.3 : G.

15,17 : J.34,43,60 : JP.4 : L.41,44 :

LM.ll: M.5,11: N.42,453,46,80,

82,83.. : Q.7,thl2 : Z.23.

problems : C.S4,97 : J.58 : M.12 : Q.
8,11 : in metrical geo, A.63.

*Elimination of x between two equations

:

686—94 : C.12 : CM.2 :

"

J.16,27 :

M0.8I : N.43..,76o,77.

* by Bezout's method: 586: A.79 : J.

53: Me.64: N.74,79.

bv cross multiplication : CM.l.
* by the dialytic method : 587 : N.79.

in geodetic operations : Z.3.

* by h.c.f : 593 : JP.8.

by indeterminate multipliers : CM.l.
* by symmetrical functions : 688.

degree of the final equation: J.27:

L.41.

Elimination : ap to alg. curves : M.4.
ap to in- and circum -conies of a poly-

gon ; At.63.

calculation of Sturm's functions : C.
80.

* of functions: 3163: C.84,87 : Me.73,
76.

with linear equations : At.63.

with linear differentials : L.36.

with )) variables : CP.5.

resultants, comparison of : J.57 : and
interpolation, J.57.

transformation and canonical forms :

CD.6.
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*Ellipse (see also "Conies"): 1160,

4250: cnr245: geoQ.9.

theorems : A.30,47.prs49 : N.76 : Mc
Oullagh's, N.72.

eq. r+r'= 2a : A. 2.

equal chords : tg.eB.22.

of maximum surl'ace : N.65.
* as the projection of a circle : 4921 :

N.75-:.

* rectification of : 6083—96: A.3,22,27,

30: At.39: graphic: M^l.l : N.

43: TB.4 : Z.6: when e is very

small, TI.9.

representation by a circle : An.70.
* quadrature of : 6108,6113; t.c4688 :

A.46 : of sector 6098, A.20 : of

segment, 6103.

and triangle : thQ.4.

*Ellipse and hyperbola : 1160, 4250 : A.

24,28.

theorems : A.23 : 0M.3 : N.85.

sectors: TE.14.
*Ellipsoid : 5600, 6132 : A.28 : thCD.2 :

prC.20 : L.38 : cnM.20 : P.9.

centro-surface : CP.12 : LM.3.
cubature of some derived surfaces

:

A.12.
* and enveloping cone : 6664—72 : Q.6.

generation of (Jacobi) : CD. 3.

* of gyration : 5930 : of inertia : 5925

—

'39.

and plane of constant segment, th :

E.32.
* of revolution : 5604 : area, ]Sr.42.

a locus in space : Q.16,170.
-* quadrature of : 6143 : J.17 : Z.l : of

zone, A.22.
* volume: 6144,-8: A.46.

Ellipsoidal geometry : A. 10: LM.4.
surfaces : G.17.

*Elliptic functions : 2125: A.1,122,16,21,

35,48: trAc.5,6.7,ths7o : An.61,84 :

C.46,506,90,96,97 : CD.2,32,5 : CM.
3o : E.23 : G.I4 : J.2,34,44,6,8,16,26,

27,30.^32,35,37,39,46,72,83., : JP.

25 : L.55,56,61 : LM.7,10,29 : M.
3,ll,12,pr25 : Me.79,80,81,822 :

Mo.81,823,83o,85 : N.773,784,792

:

P.31,34,76,78 : Pr.6,9,10,12,232 :

Q.11,17,19 : Z.22,11,27.

of first kind : A.12,21 : C.16 : J.93 :

L.43.

with complementary moduli exten-

sion of a theorem of Lagrange

:

An 832-

normal forms of 3rd and 5th de-

gree : M.172.

replaced by one of second kind : J. 55.

r^presentedbygauchebiquadratics:
C.83.

Elliptic functions

—

[continued) ;

of first and second kind : CIO.

as functions of their amplitude : JP.

14.

representation in a simple form :

Z.21.

series by which they arc computed

:

J.16,17.

of second kind : J.93.

mechanical representation : Me.75.

reduction to first kind from same
modulus : A. 56.

of second and third kind, expression

by 6 function : Z.IO.

of third kind: C.94,96: CD.8 : J.14,

47 : LM.13.
addition of: A.47,geo64 : AJ.7 : C.59,

78: J.35,41 ,44,54,880,90 : LM.13:
M.17: Me.80,84: Q.18: Z.l.

of 1st kind, Z.26 : 3rd kind, Me.81.

2nd kind by q series : Me.83.

application of : C.857,865,892,90,93,946.

to algebra : J. 7.

to arithmetic : C.98 : L.622.

to confocal conies : Z.72.

to geometry : G.12 : J.38,53.

to in- and circum-circles of a poly-

gon : L.45.

to rectification : L.45.

to spherical conies : Z.22.

to spherical curves and quadrature

:

An. 50.

to spherical polygons with in- and

circum-circles : L.46.

to spherical trigonometry : Q.20.

^ approximation to : 2127-32 : P.60,62.

arithmetical consequences : Ac. 5.

arithmetieo-geometric mean : J.58,85,

89.

arg sn a and (arg sn a)", as def. inte-

grals : Q.19.

in complex regions : Z.282.

development of : 2127—32 : J.81 : 1st

and 2nd kind, C.92 : with respect

to the modulus of X (a), /x {k) and

their powers, C.86.

development of an imaginary period

when the modulus is small

enough: An.70.

differentiation by periods and invari-

ants : J.92.

discriminant of modular equations :

M.8,9.

double substitution : J.15.

am—- cos "^^ am— sm—

Xa; A^am— xdx: J.'37.

Jo TT

5 T
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Elliptic runctious

—

(continued)

:

eqs. for the division of : Mo. 75.

formulae: AJ.5 : J.15,36,.50: LM.13 :

Me.78,80,85 : Jacobi Mel.l : Q.16,
19 : from confocal conies,LM.14

;

differential,Me.82 ; for sn, en, dn,
of u+ v + w,M.e.82.

Galois' resolvent : M.18.
geo. problems : M.19.
geo. properties : L.43,45 : P.52,64.

geo. representation : A.22,61 : An.60,
61 : At.53 : C.19,2l3 : J.63 : L.44,

78 : in solid geo, M.9 : of 1st kind,
An..53: C.70: CD.l : JP.28: L.

43,45„46,78 : of 3rd kind, A.24.
identities : Me.77.
imaginary periods : AJ.6.
infinite double products, A.14 : with

elliptic functions as quotients,
J.35.

inversion of : J.4 : JP.34 : L.69.

KE'+E'E-KE' = iTT : Me.75.
otiK: Me.85.
modular equations : 0.47^ : J.58 :

LM.9,10: M.12.
modular functions : A.11,13: G.12 :

J.72,83: L.40.: M.17,18: difEeren-

tiation for modulus of am, LM.
13 : expansion in powers of modu-
lus, J.41 : formulas, L.64: relation

between the modulus and the
invariant of a binary quar tic, Z.18.

multiplication of : 0.88.: J.14,39,41,

74,76,81,86,882: M.8: Mo.57,83,3:

and division, Z.7o : formulae, trA.
36 : C.59 : J.39,48 : complex, M.
25: Mo.62: Q.19,2U: mod.-Vi,
J.48.

periodicity moduli of hyper-elliptic
integrals as functions of a para-
meter : J.71,91.

subsidiary, pm («, h) : LM.15.
products of powers : Mem. 71.

quadriquadric curve: M.25.
g-forraula for sin am: LM.ll.

<ir-serics : and f85o: for ~- + ^^
coeffs.:

Q.21.

reduction of: An.64: in canonical
forms, J. 53.

relations : A.67 : J.56 : between E'
{1c) and F' {k) : J .39.

representation by power series: J. 54.

representation of quantities by sin
am{u-i-w, h) : J.45.

series : C.95.

sn 8m, on 8m, dn 8u in terms of sn u,

tables: Pr.33.

sn.cn, and dn of u+ v+ ui -. LM.13.

Elliptic functions

—

(continued)

:

spherical triangle of : Q.19.
and spherical trigonometry : Q.17.
substitution of 1st order: J.34.

and theory of numbers : L.58.

transformation : An. 573,58,60 : Ac.3 :

C.49,f79,f80,82 : CD.3,5 : J.3,34,

35,f65,55,87,88,89 : LM.9,11 : M.
14,19.„22 : Me.83,tr84 : Pr.27 : Q.
13,20:

of 1st kind : A..33.

of 1st and 2nd kind as functions of

the mod : L.40o.

of 3rd order : J.60 : Me.83.
of 7th order, square of mod : J.12

:

LM.13.
of 11th order: At.5.

of the orders 11, 13, 17, and 19 : J.

12,16.

cubic: C.64: Q.13.

and division: J.76 : M.25.
of a double integral, &c. : Me.75.
Hermite's ; tables : J. 72.

Jacobi's : LM.153,16 : J.87.

linear : J.91.

modular, of Abel : ap to geom : C.

58 : to conies, C.79.

modulus of in a function of the
quotient of the two periods : An.
70.

pertaining to an even number : J.

14.

quartic : Q.12.

by roots of unity : J.6.

of rectangular coordinates : LM.15.
and of functions in theory of Cate-
nary : A.2.

triple division of and ap. to inflex. of
cubics : A.70.

Weierstrass's method : AJ.6.
*Emanents : 1654.

Empirical formula^ calculation of : Me.
73.

Engrenages : L.39,40.j.
" Ensembles," theory of : Ac.24.

*Envelope : 5192 : A.24,prs56 : C.45,86.

p.d.eOM.4: G.ll : M.84: Me.64,72: N.
44,-59,68,74.

application to jierspective : A.9.

class of (Chaslcs), th : C.85.

from ellipse and circle : LM.15.
* of a carried curve: 5239.

of conies, theorems : N.45.
of chords of a conic: N.48: subtending

a constant angle at the focus,

CM.3.
of chord of a closed curve : E.28 : cut-

ting of a constant area, E.31.

of curves in space : L.83.
* of a curve with 11 parameters : 5194.
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'Envelope— (contimicd)

:

of directrix of a parabola : E.34.

of geodesies : M. 14,20.

imaginaiy, of the conjugates of a plane

curve : C.75.

of pedal line of a triangle : Q.IO : do.

of in -triangle of a circle, Q.8,9.

of perpendiculars at extremities of

diameter of an ellipse : lSr.46.

of a plane : C.35.

of planes wliich cot a quartic gauche
curve of the 2° in 4 points of a

circle : An.71.
of planes perpendicular to radiants of

an ellipsoid at the surface : An.
69 : Pr.9.

of plane curves : G.11,12 : singulari-

ties of, LM.2.J.

of polars of a curve : J. 58.

of a quadric : Q.ll.

of a right line : N.63,79,83 : Q.13.

cutting two circles harmonically :

K85.
sliding on two rectangular axes :

N.45.
of a Simson line : E.29,o4.

of a sphere : C.67 : J.33 : touching 3

spheres, IST.OO.

of a surface : CM.l : M.5 : degree of,

N.60.
of a surface of revolution : L.65.

of tangent of 2 variable circles : N.
51.

Enveloping asymptotic chords and
polars : A. 14, 16,17.

*Enveloping cone : 5664—72.

of an «-tic surface : CD. 4.

* of a quadric : 6697 : th of Jacobi, J.

12 and CD.3.
of a twisted hexagon, locus of vertex :

A.IO.
Enveloping line of class cubic : invo-

lution th, E.29.

Epicycloids : J.l : Mem.20: K45,46,60:
TE.24: thsZ.16.

centre of curvature : N.69 : plane and
spherical, JP.14.

double generation of : lsr.69.

reciprocal polar of : geoE.19.
*Epi- and Hypo-cycloids : 5266—72: LM.

4 : Z.18.

and derived curves : Z.17.

tangential properties of : absPr.34.

*Epi- and Hypo-trochoids : 6262—5 :

LM.4.
Equality and similarity of figures : J.52.

*Equations (see also " Linear equa-

tions ") : 50-67, 211-222, 400-
694: A.6,18,57,58,60,61,65o,67: tr

Ac.32 : AJ.6 : Au.51,54o : C.44,

'Equations— (coyifinued)

:

47,69,62,68,91,97,995: CM.3 : CP.
4: G.l : J.13,16,34: L.67.^,69 : M.
14.21: Me.76: Mo.79,f80': ISr.67,

68,t_hs55,67,and80: P.1799.

(For Binomial, Biquadratic, Cubic,
Cubic and biquadratic, Linear,
Quadratic, Quiutic, and Trans-
cendental equations, see those
headings. Other kinds will be
found below.)

Abel's properties : C.91.

algorithms for solving : M.3.
whose coefficients are rational func-

tions of a variable : J. 74.

of degree above the 4th not soluble :

j.83.

whose degree is a power of a prime :

An.61 : C.48 : L.68.
* derived: 424— 31: A.22 : in d.c,

1708—12.
developments : An.61.
differential operators in : LM.14.
Eisenstein's theorem : LM.7.
extension of theoi-y of : C.58.

fundamental principles or theorems
A.1,11: C.96,97: L.39,40: J.23.

Galois' theory : C.60 : G.12 : M.18,23.

of geometry : C.68 : homogeneous,
N.64.

generic : Q.4,o.

Hariot's law of : J.2 : extC.98.

homogeneous, reduction of a princi-

pal function which verifies a
characteristic homog. eq. : C.IS^,

14.,.

identical: J.27.

impossible : Man.51.

in geo. mean of roots : ]Sr.45.

in quotients of roots : N.45.

in Slims of the G («,2) roots of another
eq. : N.43.

insolubility of quintics, &c. : J.l.

irrational : Man. 51.

* with integral coefficients : 503 : C.24:

J.53 : complex, J. 53.

irreducible: An.51 : Mo.80 : of prime
degrees, AJ.7.

* linear: see " Linear equations."
* miscellaneous : 214.

numerical: C.10,123,32,78,81 : G.13 :

J.IO: L.36,38,41,83.

and commensurable quadratic fac-

tors : L.45.

of ttth degree with two real roots :

C.98.
'

from observations : A.21.
* with only one positive root : 411 :

C.98.

of payments : A.34,36 : CD.l : CM.2.
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Equations

—

(continued) .-

* reciprocal: 466: A.44: C.I62: of a

quartic, N.66.

reduction of : C.97 : CD.6 : to recipro-

cal eqs., A. 35.

relation to linear d.e and f.d.e : L.36.

roots of: see " Roots of equations."
* simultaneous (see also " in two or

three variables ") : 59, 211, 582 :

C.25 : LM.6 : thsN.48 and 81

:

quadratics, N.60.

deducible the one from the other

:

C.22.

of the form a;"'+?/"'+ ^"' = « : N.46.
* solution of : 45,54,59,211,466—533,

582: A.64: trAn.52: 0.3.2,53,62,

643: J.4,272,87: Mo.56,61.
* by approximation : 506—533 : A.30

:

Ac.4: C.ll,17.45,60,79o,82 : E.4:

G-.8 : J.14,22 : Me.68 : N.51,62,783,

80,84: No.58: P.5 : Q.3: TI.7:

Z.23.
* Horner's method: 533: ^P.19.

* Lagrange's method : 525 : C.91.

* Newton-Fourier method : 527—8 :

AJ.4: G.2: Me.66: N.46,56,60,

69,79.

Weddle's method : Z.7,8.
^

by continued fractions : J.33.

by definite integrals : Me.81 : P.64

:

Z3.

by diminishing the powers of the

roots : C.41.

by elimination of integers: N.70.

by geometry : C.87.

by imaginary values : J.20.

by infinite series : J.33.

by interpolation : C.5.

by logarithms : C.95.

the one by the other : C.72 : L.71.

by radicals : C.58 : Q.15.

by series : An.57 : C.49,52 : J. 6 :

Mem.33.
by transcendents : An.63 : Q.5.

* by trigonometry : 480: A.l.

a nonic eq. which has this charac-

teristic : A given rational sym-
metrical function 6 [a, (3) of two
roots, gives a third root y, such

that a = e ((3, y), (3 = 6 (y, a),

y = <9 (a, [3) : J.34.

symbolic, non-linear : 0.22.

systems of: 0.67: G.11,18: LM.2,8

:

Q.ll: M.19: Z.14,18 (see also
" Linear equations.")

transformation of : C.6k
* in one varial^lc : 45—58, 214—16, 400
—550 : approx A.20.

graphic solution : C.65.
(C-'"-i— :o_/,- = 0: An.59.

Equations

—

{continued) ;

x'^—pn'-^q^O : number of real

roots : C.98.
g,2n_j_^^n_|_^-^n _ Q j^^^j dcrivativcs :

N.652.

^»-i^x"--+ ...+l =0 irreducible

if n be a prime : L.56.

ax-'"
*
"+ hx'"

* "

+

ex"+ d= 0: G.14.

(.<•—1)!+1 = x"': L.56.

(,,;•_„;-) ^ (a.) = 0: N.82.

(14-a')*"(l + t'i')= when x is small:

A.2.

* in two variables : 59—67,211,217—8 :

A.20,25: 0M.2: J.14: N.473,48,

63: Pr.8: Q.18.

of any degree with a variable para-

meter: L.59.

implicit : Mem. 30.

numerical solution : Z.20.

x^+if^ = a and x~y+xy~ = h : A.48.

in three variables : gn.sol, 60 : A.l,64

:

N.47: M.37: byacubo-cycloid,0.69.

* {y—c){z—h) = a^, sym in x,y,z:
219.

* y"+z^+y3 = a^, &c., sym : 220.

* x^—yz:= a", &G.,sjin, and x= cy-{-hz

&c., sym : 221—2.

x-yz = iaV {(l-i/2)(l-z2)}, &c.,

sym : A.36.

ax+ hy+ CZ = I, a 'x+ h'y+ c'z = V,

x~+y'^-\-z~ = 1, by trigonometry

:

A.6.

*Equiangular spiral: 5288: Me.62.,: N.69,70.

Equilateral hyperbolic paraboloid and
derived ray-system : Z.23.

Equimultiples in proportion : Gl.

EquipoUences, method of : ^.692,702,73;,

743.

Equipotential curves : Me.82 : Pr.24.

Equipotential surfaces : G.20 : geoJ.

42 : M.8.

of ellipsoid : L.822.

Equivalence of forms : 0.88,90 : JP.29.

Equivalent representation: Z.23.

E((uivalcnts, theory of: A.44.

Eratosthenes' crib or sieve : N.43,49.

Error in final digit of decimals : C.40

:

Me.74: N.56.

Errors of observation : A.18,19 : An.58:
0.93 : JP.13 : N.56 : P.70 : TE.24.

Errors of constants : Mo.83.

*Euclid, enunciations: p. xxi.

axiom 11 : J.l ; 1.47 : new proof, 0.60.

II. 12 and 13: Mc.80 ; VL7: Q.ll

new proof, Q.9.

XL, &c., Me.71 : XI.28 : A.IO.

XIL, &c., G.9; criticism on : Q.7,9.
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Euler's algorithms : A.67.

*Euler's constant : 2744. : Pr.15,16,18,19,

20, Table 27.

and Binet's function : C.77 : L.75.

Euler's equation : N.72 : integration of

it by the lines of curvature of a

ruled hyberboloid, N.75.

Euler's equations of motion solved by
elliptic integrals : Q.l^.

Euler's formula for (!+'»)": L.44.

*Euler's integrals: 2280-2323: A.41

:

Ac.1,2: An.54: 0.9,17,94,95,th96:

J.15,21o,45 : fL.43 : Me.83 : Z.9.

* B{l,m): 2280: An.69 : G.9.

r (?i) : see " Gamma function."

ap. to series and functions of large

numbers : JP.16.

sum formula and quadratic residues :

An.62.
Euler's numbers : AJ.5 : An.77 : 0.66,

83 : J.79,89 : prsL.44 : Me.78,80.

Evectant of Hessian of a curve: E.

32.

*Even and odd functions : 1401

.

*Evolute: 6149— 59, 5165: An.53,61

:

C.30: Q.3,11.

analogous curves : L.76.
* of a catenary : 5159.

of a cubic curve : Q.ll.

of a cycloid : A.30.
of au evolute, in inf. : L.59 : Me.80.

* of an ellipse: 4547,4958: C.84: N.52,

63,.

and involute in one : L.41.

of the lima9on, rectif. and quadr. of:

E.40.

of negative focal pedal of a parabola :

E.29.

oblique, direct and inverse of differ-

ent orders : C.85.
* of aparabola : 4549,4959 : Q.5 : N.65.

rectification and quadrature of : A.4.

of surfaces : C.74.

of symmetrical bicircular quartics :

Q.18.
* of a tortuous curve: 5731: A.25.
* angle of torsion of evolute : 5754.

integrable equations : L.43.

*Evolution : 35.

E {k) = integral part of x : O.50 : L.57.

*Ex-circle of a triangle : 711,953 :

4749: A.54: thN.60.

locus of centre, th : Q.9.

*Expausions of a function in a series

(see also " Series " and " Sum-
mation ") : A.31 : An.7 : thsAJ.
3 and 4: C. 7,13,17,20 : CM.4:
J.90 : L.38,46,76 : M.16 : Mel.3 :

Mem.33 : N.82,83 : num, Q.3 :

Z.2.

Expansions of a fi;nction in a series

—

* of circular functions : 2955 : A.11 :

CM.3: J.43: L.36: Q.12: of

imag. arcs, J.6.

coefficients of : gn form, C.85 : gn
property, J.41.

connected with a 2nd order d.e : C.5 :

L.36,37,.

of denominators of convergents :

C.46: JP.21.

of exponentials : J.80.

* of explicit functions : 1500—47.

extended class of: C.82 : approxi-

mating to functions of very large

numbers, L.782.

of faculties of the variables : Mem.31.
of implicit functions : 1550

—

73.

of Jacobian functions : Au.82.

of Legendre's functions, X„ : An.75.

with limits : C.34.

of another function : 1559 : C.95,96.

of periodic quantities : C.52,.53 : JP.ll.

of powers of the variable : At.57 :

0.19 : L.46.

of powers of a polynomial : 0.86 : J.53,

88..

of powers of another function : Mem.
33: N.74.

within a given interval according to

the mean values of the function

and of its successive derivatives

in this interval : O.90.

by Bessel's function : J.67 : M.10,17 :

Z.l.

* by binomial theorem : 125.

* by factorials : 3730.
* by generating functions : 3732.

* by indeterminate coefficients : 232,

1527—34: A.3.

by logarithmic method: 0.92.

* by Maclaurin's th : 1524.

by a series : 0.93,95.

Expansion of : alg. functions : 0.89

Z.45.

Eisenstein's th : J.45.

n, alg. functions from 11 eqs : G.ll.

[l+ ax)" in an integral series: A.65.

(l_a;)(l_a;3)(l_a;3) ... ; 0.92 : J.21 :

L.42.

(l-a-)(l-;e2)(l-:ei)(l-K8) ... : Me.80.

(l+a;)(l+ 2.o) ... (1+ ^^=1 A-) : 0.25 : J.

43.

{l+ax+bxZ+...+le"-Y^ : AJ.6.

{(a;-a,)2+... + (,-«-a4)3}-i
: 0.95,.

(l+aa;+&«2)»: Q.18.

{l—2ax+x^)-i : L.372.

(1—2aiB+a2a2) ^ . 0.863.
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: J.40.

Expansion of

—

{continued)

:

{l-ax~hx^)-" : J.43.

{x—z)'" in powers of ::^—l : C.86.

(x+yY"^: CM.3.

nth derivative of \/{a~—h'X~) : A.4o.

' l-s/{i-it)
y
X

y =

in powers of t, wlien

1566.
l+ y(l-a;2)

Bernoulli's numbers : 1545.

circular functions : J.24 : Q.5.

an arc in linear functions of sines or

tangents of fractions of the arc

in g.p : L.43.

powers of arc in powers of sines : J.ll.

n : 2931—2, 2945, 2960—2 : Me.78.

powers of TT : Me.78: ir^, 858: tt"',

Me.83.
sin 6 and cos 6 in powers of 6 : 764,

1.531 : A.5,29 : C.16.

sin"^ and cos"^ in sines or cosines of

multiple arcs : 772—4 : A.24,55 :

0.12 : CD.3: J.1,5,14: K71 : TI.7.

sin nd and cos nd in powers of sine or

cosine : 758, 775-79, 1533 : 0.82 :

CM.2 : Me.76 : Mem.13,15,18 : N.
732,83 : Q.4 : convei'gency of the
series, J.4.

cos nO in powers of cos 6 : 780 : Q.

12.

sin-'a;: 1528,-64: J.25:N.74: re-

mainder, Z.lo.

cos"«.i; : A.ll.

tana;: 1525,2913,-17: A.16 : 0.88:

N.57.
cot a;: 2911,-16: 0.88: Q.17.

sec X : 1526 : A.16 : 0.88 : J.26 : N.57 :

Q.17.

coseca; : 2914,-8.
tan-^c : 791.

tannO: 760.

ft^sin a' in differences of sin x : 3749.

^"^ nx I cos .c" : A.4.
cos '

(1—^cos 0)"' := 2a„cos2ft^ : A.21.

{a'^+b^—2ah cos i^)exp.— (m+^):TB.5.

(rt+ ^ cos <|)+ c cos <?)')"" in cosines of

multiples of >P and <p'
: J. 15.

cos /c cos"' (cos 0) -fa) : 0.15.

sin
(^+ ^i+ ... + ^.-0: A.34.

7/ in powers of x wlicn x =
796,1558.

LL"J/

Expansion of

—

{continued)

:

* do. when x .

log '/

s\n{i/ + a)-

1570.

^cot^ in powers of sin2^: Q.6.

cot-'(m—1)— cot-' (»t+l) : A.47.

differential coefficients by f.d.c and
tlie converse: J.16.

elliptic functions : A.19.

aiidof their powers : 0.83: cos amx,
L.64.

equations : L.60.

exponential functions : N.82.

j_

e = limitof (H-,v)-1590:A.3,23:Q.7.

e- : O.30 : N.48.

X e""—

1

e^±T' e^+1'

e"'-' in powers of ye'"-' : 1571.

(ffle^- 1)-': At.57.

1539, 1543—4.

2961

e exp

cos hx : 798.

Z.3.

e'"-' ^bxdx, and summation of
Jo cos

the series : J.41.

e exp. sin a;: 1629.

e exp. asiii-'«: 1535.

e exp. \og{z+x sin?/) : 1557.

e exp.—(p{x,y,3...) : 0.58-2.

a; exp.[.(' exp.[a;exp, &c. : J.28.

fractions : 248-

functions :

Al{x),Ali{x), ALix) (Weierstrass's func-
tions) in powers of the modulus :

0.822,85,86 : L.79,.

'-, by Taylor's th : 0M.4.
IV ;

f{x+h) (see Taylor's th) : 1500—9,
1520: Abel's th, 1572; Stirling,

1516 ; Boole, 1547 : AJ.3.

f{x) (Maclaurin) : 1507: 3759.

f{x+h,y+h): 1512,1521.

f{x,y) : 1516, 1523 : Me.3.

/(O) (Bernoulli): 1510.

<P{a+hx+ cx-^+ ...) (Arbogast): 1536:
OD.1,6.

-—
• (Oaylcy) : 1555.

''{"+•''</>(.'/)} in powers of .(• (La-

grange) : 1552 : liaplace's th>

1556.
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Expansion of

—

{continued) :

*=

f{y) in powers of ^//•('/) (Burmann) :

1559.

*=

/{^|'-H.«)} andrl^-'OO: 1561—3.
^ </) (eO (Herschel) : 3757.

* it,.„ : 3740 ; A"26 : 3761.

*= A"itx and A"itj : 3741—2.

*= in differential coefficients of u :

3751.

i^ A".i3'" and A»0'" : 3743—4.
* Unx in differences of a : 3752.

^ i(.j:cIm in terms of Uo,Ui,ih, &c. : 3778.

a function of a complex variable : M.
19.

a function of a function : AJ.2,3.

functions of infinitesimals : G.\2.

a function of a rational fraction : At.

65.

a function of n variables : C.6O4 : J.

66.

a function of y,y' in ascending powers
of x,x when y = z-\-x^{y) and >/=
z'+x'0{i/') as in 1552: J.48.

holomorphic functions : M.21 : by
arcs of circles, C.94.

^ implicit functions : 551,1550: L.81.

integrals : A.l : of linear d.e, An.71 :

of log X, A.4.
"= logarithms : 152—9 : N.82.

^ log(l±a;),log|±i|; &c. : 155—9.

* log y and log y" in powers of a ^ when
yi—ay+b = 0: 1553—4.

* \og{a+hx+cx"-+...): 1537.

* log(l+2acosa;+a2): 2922.

* log (1+91 cos a;): 2933.

* log 2-^
(I):

2927.

* logrd+a;): 2294, 2773.

higher integrals of log x : A. 4.

numbers : M.21.
* a polynomial : 137 : Z.26.

a quartic function : A.35.

Exponents : N.57 : P.1776.

reduction for d.i : C.16.

Exponential, th : 149 : IS]'.52.

functions : P.16.

replaced by an infinite product : C.99.

Exponentials, successive of Euler : L.45.

Factorials: calculus of: L.67 : N.
60: Pr.22: Q.12 : Q.f8.

geom. i.e(l+a;)(l+ra')(l+ r2^)...: C.

17.

* notation : 94, 2451 : Q.2.

Factorials

—

{continued) :

reciprocal : C.17.

treatment by limits : J. 39.

1,, 2^,3:5... 7i": Me.78.

^ n\ = T{l+n) : 2290.

approx. to when n is large : C.9,50

:

J.25,27 : L.39.

5i ! = w"e-V(2H7r) (Stirling): Q.15.

1.3.5
CM.3.

theorem : 339.
2.4.6 ...

G (», r) when n = a+i[^ : J.43.

Factors: 1—27.
in analysis of integral functions : M.

15.

application to rotations to indicate

direction: J.23.

^ of composite numbers : 274: J.ll.

complex : C.24.

equal, of integral polynomials: C.42 :

L.56.
^ of an equation : 400 : J.3 : condition

for a factor of the form x"— a",

A.56,63.

irreducible, of an integral function ac-

cording to a prime modulus p
C.86.

linear, resolution into : N.822.

of polynomials and geo.ap : J.29,89.

product of an infinite number of : A.

59.

cos ^ cos -^ COS -^ • • : N.70.

radical, of numbers : C. 24,25.

o? Ax^+By^+Cz^, th of Lagrange:
AJ.3.

oU^-fgif = ±1 : A.33.

of {x+y)n—xn—y" : thQ.15,16o.

* of iL'2"—2.-c''^"cosn^+i/-": 807.

of «"—2iicos nd+x-'' : CP.ll : Me.76.

{l-x){l-xZ){l-x^)...: C.96.

* tables of (Burchardt's) p.7 : to 4100,

J.46.

geo. properties : J.22.

transformation of: A.57.
of 100...01: Me.79.

Faculties, analytical : J.7,11,334,35,40,

44,51.

coefficients of : A.9,11 : At. 75.

divisibihty of : A.48.

numerical, of 2nd order : Mem.38.

series : Z.4.

*Fagnani's theorem: 6088: A.26 : LM.
6,13,23 : Z.l.

curves having Fagnanian arcs : LM. 1 1

.

stereometric analogy : Z.17.
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Faisccaux : of binary forms having
the same Jacobian : C.93.

of circles : C.76.

of conies : Z.20.

curvature relations : Z.15.

formation of : C.45 : CM.3.
intersections of : N.72 : degree of the

resulting curve, J. 71.

of lines and surfaces : N.53,83.
plane : N.53 : defined by a first order

d.e, C.86.

of tortuous cubics in connection with
ray-complexes : Z.19.

Fan of Sylvester : E.33.

Faure's theorems : G.1,19 : and Pain-

vin's, lSr.61.

Fermat's theorems : of (N''~^—l)

H-p : 369 : A.32 : AJ.3 : J.8.

oi x"+y"^ z" being insoluble when
n is an odd prime, &c : An.57:
C.gz84 and 965,91 : J.40,87 : TE.
21.

analogous theorem : J.3.

case of « = 14 : J.9.

and periodic functions : Mo. 76.

x+y = D, «3-f 7/3 = d3: Mem.26.

of the semicircle :' A.27,30,31 : gzA.31.
method of maxima : C.5O2.

Feuerbach's : th of the triangle, Me.84

:

circle, A. 59.

Fifteen girl problem : E.34,35 : Q.8,9.
" Fifteen" puzzle : AJ.22.

*Figurate numbers : 289: A.5,69.
*Finite differences, calculus of: 3701

—

3830: A.13,18,24,63: C.70 : J.ll-:,

12,133,14.:,15.,,16: Me.82 : Mel.5 :

Mcm.l3 : N.G9 : thsP.16,17.

ap. to complex variability : An.82

:

ap. to i.eq, An. 50.

* first and ?ith differences : 3706.

A2«=0: An. 73.

* A"0"' : 3744: Q.5,8,9: Herschel's table,

N.54.

A"0"'H-n(m), table of: CP.13.

8uq, 8^u„, &c., in a function of Au^„

A2«„, &c. : N.61.
* A"« in successive derivatives of «:

3761 : N.73.
Al'' and Bernoulli's numbers : An.59.

hu'^ AUj.—— AUx-\ -^ AHj: — &C.

Ac. 5.

A sin a! and Acos.i': CM.l.

Finite difference ecpiations : AJ.4 An.
59: CD,2: C;M.1,3,4: CP.6 : JP.
6: L.83: P.60: Pr.lO.

of integrable form : C.54.
of mixed differences : Q.IO.

Finite ditt'erence eqs.

—

{continued)

:

of the kind M,,j,= Mr-!/,r + y : CM.4.

linear: AJ.7 : Au.50 : At.65: Q.l.

first order, constant coefficients :

C.8.

determination of arbitrary con-

stants : A.27: At.65: G.7.

integration to differences of any
order : J. 12.

with variable coefficients : 0.17.

partial:

constant coefficients : C.8.

linear of 2nd order : C.98.

of physics : C.73.

Finite differences : exercises : No.
44,47.

formula;: CD.9 : Q.2.

sura and difference: J..58.

of functions of zero : TI.17.

n [n, r) value of : Q.9.

integrals : C.39,57 : JP.42 : L.44.

expressed by definite integrals

:

An.53.
2e'i/ : A.6 : No.44.

inverse method : C.74 : P. 7.

involving I/l : Me. 78.

of powers converted into d.i : JP.17.

Fleflecnodal planes of a surface: Q.15.

Flexure : AJ.2.. : Me.2.

of ruled surfaces : An.65.

of Slices : LM.9.
of spherical surfaces : Me. 77.

^Fluctuating functions : 2955a : LM.5 :

M.20: TI.19.

Fluents: P.1786.

of irrational functions : P.16.

*Focal : chords of conies : 1226, 4235,

4339.

circle of conies : Mel.2.
* distances: 4298: N.64.

pedal of a conic : N.66.
*Focal properties: of conies: 1163,

1167—9, 1181, 1286-8, 4298-
4306, 4336—45, 4378, 4382, 4516,

4550—58, 4719— 21, 5008— 16:

CD.7.
of curves: CD.7.
of homographic figures : N.71.

* of a parabola : 1220, 1223-6, 1230—4,
4231, 4235—8 : G.22.

of a quadric surface : An.59 : N. 58.

Focal quadrics of a cyclide : Me.85

.

Foci: J.64: N.42,44,.53,85 : Q.2.a.c9.
* of conies : 1160: trA.2.5,63,64,cn69

:

gzC.22andL.39: CP.3 : N. 69,74,

78,81.82: t.cQ.8,13,12and45: gen.

cq, N.48.
analogous points in higher plane

curves: J. 10.
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Foci : of conies

—

(continued)

:

* coordinates of: 4516.

eq. of: LM.ll: o.cE.40.

exterior : N.79.
* to find them : Q.25: fromgn.eq,5008.

through four points : N.SSa.
* of four tangents : 5029 : N.83.

locus, a cubic : M.S.
negative : A. 647.

under three conditions : Q.8.

of curves: C.82; )ithclass,86: N.59,79.

of cones : N.79.
of differential curve of a parabola :

A.58.

of in- conic of an H-tic, locus of: E.21.

of lines of curvature of an ellipsoid

:

Z.26.

of quadrics : N.42,66,74,75,78.

of quartics : J.56.

of the section of a quadric by a piano :

N.64,70.

by another quadric : N.47.

of surfaces : C.74 : of revolution, N.
74.

*Folium of Descartes : 5360 : N.44.

Forms, theory of : M.18 : of higher de-

gree, Mo.83 : Pr.38.

reciprocity principle : An.56.

Formulas: G.15,19.

for log 2, &c. : Me.79.
in the Fund. Nova : Me.76.

* of reduction in i.c : 1965: Me. 3.

Four colors problem : AJ.22.

Four-point problem : E. 5,6,82.

Four right lines not 2 and 2 in same
plane: J.5.

Fourier-Bessel function : J.69 : M.3.

*Fourier's formula in i.c : 2726— 42:

CM.3: J.36,69: L.36: M.4 : Me.
73: Q.8: gzZ.9.

ap.tocalculationof differentials : J.13.

*Fourier's theorem : 518 : 528 : An. 50,

75: J.13: M.W.: Me.77,82,83.

ap. to a function of a complex varia-

ble : M.21.
Fractions : AJ.S^ : G.9,prl6 : J.88 : L.IO.

continued, decimal, partial, vanishing,

&c. : see each title,

number expressible by digits If n

:

C.96.

reduction to decimals : A.1,25.

transformation into decimals : A.ll.

*Frullani's formula: 2700: LM.9.
Fuchsian functions : C. 927,93,943,95,96.

Fuchs's theorem on F{:<,y,y.) = : C.99.

Functional equations : CM.3 : J.90 :

TB.14.

f.<p.v=fa: C.88.

/.</>.« = H-/c: C.99.

(p .fx = F. (px, to find <p : Mem.31.

Functional e(j nations

—

(continued)

:

<p.v+ <i>y
= <p(xfy+yfx) : J.2.

=fix . <P\y+f-2x . <p2y+&c. : J.5.

<p,+^y = irf̂ -^'''+f^;-^y
: J.46.

J
'/(•'> 0) <P (a.'+^) dd = F{x), to find

Pr.8.

'P'>i-'p'--t-j = &C.: Q.15.
C,i} -\- (.1

/(,.)=/(sin^): C.

Functional images in ellipses : Q.17.

in Cartesian ovals : Q.18.

Functional powers : Mem.38.

symbols : Q.4.

Functions: A.28 : AJ.6 : xVn.79 : C.43,

91 : CP.l : J.16,prs71,74,84,87,

91 : L.45 : Me.7 : Mo.80,81 : P.15,

16,17,62: Pr.lla: prsZ.26.

algebraic, alternating, analytical, cir-

cular, circulating, conjugate, con-

tinuous, curvital, cyclotomic, de-

rived, discontinuous, elliptic, even
and odd, exponential, Fuchsian,
gamma, generating, hyperbolic,

implicit, infinite, imaginary, in-

tegral, irrational, irreducible,

isotropic, iterative, monodrome,
monogenous, monotypical, non-
uniform, periodic, polyhedral,

quantitative, rational, representa-

tive, transcendental, trigono-

metrical : see the respective

headings.
analogous : to algebraic functions :

C.89.

to circular functions : C.84.

to Euler's : C.89 : M.19.

to functional determinants : J.75.

sine and cosine : Q.16.

to modular functions : Ac.2 : C.93.

connected by a linear eq. : C.17.

condition oif{x,y) being a function

of (?)(.(•, ?/) : A.21.

development of: see "Expansion."
defined by d.e : JP.21,28.

differing very little from zero : L.74.

errors of geometricians: J.16.

expressed by other functions, remain-
der : C.98.

fractional : J.8 : the variable being
the root of an equation, ]Sr..56.

from functional equations : M.24.

from Gauss's equation : C.92.

with lacuna : C.96.

Lagrange, tr : JP.5,7.

5 u
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Functions

—

(continued)

:

linear: C.90.

with linear transformations inter so :

M.19,20.

whose logarithms are the sums of

Abel's integrals of the 1st and
3rd kind : C.92.

with non-interchangeable periods

:

M.20i,21,25.
number of values of : C.48.

do. through permuting the variables :

JP.10.,18: L.50,60.

of two variables : Ac.3 : C.90,962.

made constant by the substitution

of a discontinuous group : C.97.

which arise from the inversion of

the integrals of two functions :

0.922.

whose ratio has a fixed limit : G.5.

f{x,y) aiich that f{zf{x,y)} is sym-

metrical : J.l.

of three variables satisfying the d. e,

AF= 0: Ac.4.

of three angles, th.re 1st derivatives :

J.48.

of 4 and 5 letters : L.56.

of 4, 5, and 6 letters : L.50.

of 7 letters : 0.57,95^.

of 6 variables which take only 6 diffe-

rent values through their permu-
tation, not including 5 symmetri-

cal permutations : A.68.

of n variables : C.21 : Mo.83 : with

2n systems of periods, 0.97.

analogous to sine and cosine : Q.16.

number of values : J.85. : do. by
permutationofthe variables : O.2I4.

obtained from the inversion of the

integrals of linear d. e with

rational coefficients : 0.90-2 : J.89.

of an analytical point, ths : 0.952.

of a circular area from a given inte-

gral condition : Z.26.

of imaginary variables : 0.32,48 : JP.

21 : L.58,593,60;„6l3,62 : LM.geo
8.

of large numbers, approx. : C.2O3.

of a real variable, connexion with
their derivation : M.23,24.

of real arguments, classification ac-

cording to their infinitesimal

variation : J. 79.

of the species zero and unity : 0.95.

of a variable; analogous to the poly-

nomials of Lcgc^iidre: 0.95.

allied to Pfafi'iatis ': Q.16.

rationally connected : L.59.

with recurring derivatives : LM.i :

TE.24.

Functions

—

(continued)

:

which relate to the roots of the equa-

tion of division of a circle or of

n»-l = 0: J.17.

representation of : C.923 : M.17 : one-

valued, Z.25.

approximate : Z.3.

by an arbitrary curve : M.22.

by Bessel's functions : M.6.

by definite integrals : Ac.2.

by elliptic functions : An.82.

by Euler's sum-formula: J..56.

by Fourier's series : Mo.SSj.

by graphic methods : A.2 : imag.,

J.55.
_

by infinite products : Z.24.

y =1 e''-^''X, constant and r a positive

integer : A.42.

2/ = .«"e^'': A.52.

reproduced by substitution : 0.19.

resolution into factors : Ac.66 : 0.19,

30: OP.ll: J.18.

satisfying the eq. aF=0: 0.96.

singularities of : M.19.

whose successive derivatives form an
arith. prog. : An.71.

systems of: Mo.78 : of two inter-

connected, 0.98.

of two systems of quantities, cor-

relative and numerically equal

0.98.

which are neither rational norreduci
ble to irrational algebraic ex

pressions : O.I82.

which are of use in elliptic functions

and logarithms : No. 58.

which take a given value in a given

position : An.82.
which have no derivative throughout a

certain interval : An.77.

which vanish with their variables

:

TI.I62.

x": An.63.

I
(,(•')* U and so on, and the corres-

ponding inverse function : J.42.

arising from V(4!—2xz+z-): J.2.

</>(„) = "-^^+4 :LM.9.
ex -j- a

f(u,z), ?i being an implicit function

of an imaginary variable z : Pr.42.

/(,(•), formula of analysis : J.53.

/(,.) = 0, y =f (.-•). th. re <p (y) : E.36.

y}r(x)^d,]ogr(x): 2743.

yjr (a) of Jacobi : J.93.

Q(x): Ac.2.
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Functions

—

(continued)

:

Bessel's, IM = — Tcos (.<• cos 6) cl6

~ 23"
"*"

23. 42
""

22.42.62
"^

Cauchy's numbers ; N-kj,p

{e"'—e-'")>'du.

cosine integral ; Ciq = '- dx :

taP.70. '" "*'

Dirichiefs function,

F{x) = 2 Z.27.

elliptic

;

jaj'-r^-i 5 (rc^O {B {.'•>')}''^'ch : J.23.

* Euler's ; B {I, m) : 2280.

expon-integral ; i/i g s —— dx- : A.

K
10 : taP.70.

siu-" CO cos (e cos w) fZco : An.

70.

E (ic) : Mel.6.

tan-'a-
dx = l-

0~ 0~

= -915965,594177 ... : Mem.83.

r (ic) : see " Gamma function."

Jacobi's

(A).(-i,e.p2;::-t'.(^):

C.592,60: L.47,50.

Laplace's Y^ -. M.14.

log-integral ; Lig"
I log X

i«(l+,,)^,,_-^ + -&c.

Legendre's Xn : see " Legendre."

P, where e esp
(
—

^^)
f^* = ^-T^ •

Q.IO.
"

P"(cosy), 7i = 0: G.22.

Pf«^^,.c): Z.14
Va'^'-y' /

n (s) =
I

x'-e-^'dx ; >|^ (2) = d, log n (r) :

Q-1-
^^.^^^

sine-integral ; Siq=\
'

dx -. taP.

70.
^° '"^

2 1 e exp i-z^) F{z)dz = 0: C.93.

Functions

—

(continued) ;

E (p,<P) d<P

^(^''^)"joy{l-^3sin3^}-

X, Y, &c., such that ,SZYcZ(r= and
and that any function can be ex-

panded in theformaX+^Y+&c.:
LM.IO.

*Gamma function, T (n) : 2284 : A.4,6,61

:

An.69 : 0.35,92,96 : J.35,82,90,

ap57: L.42,46,52,55 : Q.9 : Z.l,

25.

application of this and other trans-

cendents : C.86.

of a complex : Me.84.
* curve y = T (x) -. 2323.
* deductions: 2286—2316: A.IO.

derivatives of : Q.6.

of equidifferent products : J.36.

of an infinite product : J.39.

* = limt. of 4nT : 2293 : A.30.

* logarithm of : 2294, 2768 : C.9.

* numerical calculation : 2771.
* as a definite integral : 2768.

71, negative : CD.3.
* numerical calculation of : 2317.
* the function r/^ (*) = fL log r (.r) : 2743

—70.
reciprocal of : Z.25.

reduction of : J.40.
* transformation of : 2284, 2318 : J.57.

T(n+ 1) = V (27r) e-"n"^Hl+ e) (Stir-

ling): C.5O2.

*r (m) r (1-hO = 2313: Ac.3.

H,)-^^{'^'-^)-
2316:*r(,,') r ia-+

L.55,56.

T(x) = P{x)+ Q(x): Ac.2.

2 ^, : G.6.
T(x)

Gauche cubics : C.82 : J.60 : N.623.

3rd class, theorems : J.58.

number of common chords of two :

An. 70.

through five points : N.83.

through six points, en : 'B.QQ.

Gauche curves : C. 70,77,903.

Mo.82: thsN.53.,.

classification of : JP.32.

on a cubic surface : C.62.

of a developable surface, singulari-

ties : An.70.
differential invariants of : JP.28.
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Ganche curves

—

(confinued) .-

intersection of two surfaces having
common multiple points, singu-

larities of : C.80.

on a one-fold hyperboloid : An.l : C.

52,53.

metric properties of, in linear space of

n dimensions : M.19.
representative curve of the surface of

principal normals of : C.86.

of the zero species : C.80.

Gauche helicoids : rad. of curv. : N.45.
in perspective : JP.20.

Gauclie : in-polygons of a quadric :

C.82.:.

perspective of algebraic curves : C.80.

projection : N.65.

quadric : IST.G? : and orthogonal tra-

jectory of generatrices : thN.48.
quartic : A.62 : C.82 : L.70.

9 points of, 7 points of a gauche
cubic and 8 associated points

:

C.98.

iinicursal, a class of: C.83.

surface: N.61.
sextic curve : C.76.

surface: JP.17: L.37,72.

deformation of : C.57.

•which can be represented by a p.f.d.e

of the 2nd order: C.61.

Gaussian periods of congruent roots

corresponding to circle division :

J.63.

*Gauss's function : see " Hypergeometric
function."

Gauss's theorems : J. 3.

*General methods in anal, geometry

:

4114.

General numerical solution of any
problem : LM.2o.

*Generating functions: 3732: J.81 : N.
81: Pr.5

and ground-forms of binary quantics

of first ten orders : A.J.23,3.

do. of binary 12-ic and of irreducible

syzygies of certain quantities

:

AJ.4.
of some transcendental series : At.55.

for ternary systems of binary forms,

ta : AJ.5.
Geodesies : 5775, 5837—55 : A.39 : C.

402,41 ,96,p.c97: CD.5 : G.19 : J.

50,91 : M.20 : Mc.71 : N.45,G5 : Q.
1,5 : Z.18,26.

of cubic surfaces, loci : CD. 6.

curvature: 5816: C.42,80 : L.12.

on an ellip.soid: M.20.
* radius of: 5776,5846.

duals of : Q.12.
* equations of; 5837.

Geodesies

—

{coidinued)

:

flexure of: C.66.

forms from en of their polar systems :

Z.24:.
* geometry : 5855.

problems: A.8 : An.65: CP.6: ^.hX:

L.49 : TK.73.:.

on a quadric or ellipsoid: C.222: CD.4:

J.19: L.4..41,44.48,57: M.35 : N.

76.

Joachimsthal's theorem : J.42.

and corresDonding plane curves

C.50.

and lines of curvature : L.463 : N.
82.

* fd constant along such : 5842.

shortest lines : .7.26.

* throTigh an umbilic : 5850.

on a right cone : A.69.
* radius'^of torsion of: 5848: HE'P^.^-

P = 0, Me.75.

sections : Z.2.

* shortest lines on surfaces : 5838 : J.

20.

on a spheroid : J.43.

triangles : Mo.82.
best form of : N.55.

reduction of arc of a small one : An.
50.

Geodesy, spherical problems : A.252,63.

representation of one surface upon
another: An. 70.

Geodetica, integration of its eq : An.
53.

Geography, comparative : A.57.

Geometrical conies: 1150— 1292 (see

Contents p. xviii) : G.l : Me.62,

64,71,73 : Q.IO.

Geometrical : constructions : LM.2.
definitions : J.l.

dissections and transformations : Me.
75.

drawing : A.23.

figures, general affinity of: J.12.

forms : G.l : of 2nd species, G.3,4.

* mean : 92 : CD.8 : Pr.29.

approx. to by a series of arith. and
harm, means : N.79.

paradoxes : Z.24.

* progression: 83: A.pr2,6 : G.U : N.
"54.

a property of 1,3,9,27... : A.33.

proportion, theory of pure: A.62.

quantities and algebraic eqs : C.29.

reckoning (Abziililcndcn) : ]\r.l(>.

relation of the 5th degree : i\r.2.

relations, ap of statics : J.21 ...

signs : Z.14.
* theorems and problems : 920—1102,
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Geometrical

—

{continued)

:

theorems : J.ll : L.46 : N.T^a : Law-
son's, Man.13.

method of discovering : J. 8.

from a principle in alg. : LM.ll.
problems: At.25,32.

transformations : A.32.

and ultra-geometric quantities : C.52,

55.

Geometry : of the Ancients : At.22.

comparative, ap. to conies : N.653.

of derivation : An.543.

* elementary : 920—1102 : J.6,10 : A.2 :

N.623.

principles of: A.40 : 0.56: G.11,14,

20: LM.16: Me.62: Z.20.

enumerative : Ac.l.

higher : A.20 : No.73 : prsA.55.

instinct of construction : N.56 : Q.2.

der Lage : Z.6.

linear : A.27 : ap. to quadrics, M.IO.

linear and metrical : M.5.

of masses : JP.21.

and mechanics, on their connection :

L.78.

organic, of Maclaurin : L.57.

plane, new anal, foundation : M.6.

plane and solid, analogies : L.36 : N.

653.

plane and spherical, ths : Mem.15.

of position : J.50 : Q.l : analTE.9.

theorems: An.55: J.31,34,38,41o :

TE.28.
5 points in space : CM. 2.

in lieu of proportion : CP.IO.

of space, abstract : Pr.14,18 : aphor-

isms, J. 24-2.

* of three dimensions : 5501—6165 : N.
63.

Glissettes : problem : Q.ll.

centre of curv. : JP.21 : I'ad. of curv.,

L.45.

Golden section : A.4.

Goniometrical problems : Q.7,15.

Graphic calculus : C.89.

Graphs (Clifford's) : LM.IO.
application to binary quantics : LM.

172.

to compotmd partitions : AJ.96.

Grassman's life and works : M.14.

Greatest common measure : see "Highest
common factor."

Greatheed's theorem, D.C : CM.l.

Grebe's point : A. 58.

Green's theorem, &c. : J.39.44,47 : TE.
26.

*GrifRth's theorem (Conies) : 6096.

Ground figures, single and double rela-

tions : J.88.

Groups: AJ.l: LM.9: M.13,20,22.

cyclic, in Cremona's transf. of a plane
An.82.

in a quadratic transformation : An.
82.

discontinuous : C.94.

of linear substitutions : Ac.l.

of finite order contained in a group of

quadratic substitutions : C.97,98.

of finite order contained in the semi-

cubic groups of Cremona : C.99.

Fuchsian : AC.I3.

formed from a finite number of

linear substitutions : C.83.

of interchangeable elements : J.862.

introduction to the theory of : Me.62o.

Kleinean: C.93.

of many-valued functions : Man.62.

modular eqs. (Galois) : M. 14,18.

non-modular : Man.652.

of points G'4 on a sextic with 5 double
points : M.8.

primitive: C.72,78,96 : L.71.

for the first 16 degrees : C.75

degree of, containing a given sub-

stitution : J. 79.

(P)36o (n)36o of the figure of six linear

complexes of right lines two and
two in involution : An.83.

principal, classification of: C.73.

of substitutions: C.67,84,94: M.5:
isomorphism of, G.16.

of 168 substitutions and septic equa-

tions : M.20.
transitive : G.22 : J.83 : N.84.

*Guldin's theorems : 5879 : Me.85.

Harmonic axes : of curves : C.743.

of a system of right lines and planes :

G.4.

Harmonic centre for a system of 4 points

in relation to a given pole : Z.20.

Harmonic division : of a conic : G.IO.

of a quadric : G.IO.
* of a right line by a circle and chord of

contact : 948.

Harmonic: hexhedron and octahe-

dron: Z.18.
* pencils and ranges : 933, 4649 : Q.6.

* of 4 tangents to two conies, locus of

vertex : 4984.
* points, system of four : 1063 : N.51.

polar curves : A.50 : M.2.
* progression or proportion : 87 : ext

of th, A.31,43,tr41 : C.43 : Me.82 :

N.85 : Z.3,14 : sum of, Pr.20.

divergency of : A.l.
* section by a quadric and polar plane :

5687.

Harmonics in a triangle : A.57.
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Hermitc's cp function, linear transf. of :

M.3.
*Helix : 5756 : AM.

conical : N.13,53 : rectif. of : N.45.

on a twisted cone: A.IG.

relation with cycloid : C.51.

Hemisphere, volume, &c. : 6061.

Herpolode of Poinsot : C.99.

Hesse's surface, &c. : Z.19.

*Hessian : 1630 : J.80 : curve, M.13.

covariant of binary quintic form : M.
•21.

of a quaternary function : Q.12

:

cubic, Q.7.

of a surface : nodes of, J.59 : con-

stant of, M.23.
Hexagon : thN.65.

Pascal's : see " Pascal."

in space : J.85,93.

Hexahedron : 907.

Higher algebra : An.54 : N,66.2 (Serret)

:

Q.45.

Higher : analysis : A.25 : G.14.

arithmetic : J.6,9 : N.81.

geodesy: Z.19: trZ.lS..

geometry : A.IO: N.57 : Z.6,17.

planes : A.47.

variation of simple integrals : Z.22.

*Highest common factor : 30 : A.3 : M.
7.2-. N.42,44,452.

of 2 complex numbers : no. of divi-

sions : L.46,48.

of 2 polynomials : CM.4.
remainder in the process : C.42.

Holditch's theorem : see " Closed

curve."
Holomorphic functions : C.99 : G.22.

development in series : C.94 : M.21.

Homalographic projection : N.61.

Homaloidal system, 7i-tic surface and
an (n— l)-ple point : G.13.

Homofocal : conies : thISr.492 : loci

relating to parallel tangents, C.

62,632.

quadrics: C.50 : L.th51,60 : N.th64,

79: Pr.332.

j)araboloids : A.35.

and conjugate surfaces, tr : Z.73.

common tangents of : C.22 : L.46.

quartic surfaces, triple system of, in-

cluding tlie wave surface : N.85.

sphero-conics : L.60.

surfaces, and fx ain-i'+ v shi~i" = a~ :

C.22.

Homogeneity of formulae : C.96 : thsN.

49.

Homogeneous coordinates: G.13,8: Z.15.

metrical relation : G.ll.

Homogeneous functions : see " Qiian-

tics."

Homogeneous products, II{n,r) : 98

—

9: Q.6,9,10.

and sums of powers : 538 : E.39,40.

nomographic division of three tangents

to a conic : Mcl.2.

nomographic figures : threeC.94 : thQ.

3: N.58,68,pr61.

corresponding points, th : L.45.

focal properties : LM.2n.

relation of roots : N.73.

nomographic : pencils : 4651.

systems of points : 1058— 73.

on quadric scrolls : Q.9.

theorem of a conic : N.48,49.
transformation: N.70: of angles,Q.14.

Homography: Me.62 : ^N.60 : Z.21.

and perspective : N.69.

and rotations, correspondence of : M.
15.

Homological polar reciprocal curves :

ET.44.
Homology : 975 : G.3,8 : N.44 : E.24.

conic of: C.94.

of sets: Q.2.

of triangles : 975 : Me.73.

nomothetic conies : 4523 : N.64,th68.

with the same centre : C.66.

Horograph : 5826.

Hyperbola : theorems : A.27,46 :

CD.l : N.424.

with asymptotes for coord, axes

:

4387: Me.73.
asymptotic properties : 1182.

conjugate : 1160.

construction : 1247, 1289.

eccentric circles : A.44.

quadrature of.&c. : 6118 : A.25,26,27 :

N.44 : TI.7 (multiple areas).

rectangular : 4392 : Z.26 : under 4
conditions, A.3.

segment of : 6118 : N.61.

Hybcrbolic arc, rectification of: 6115

:

J.55 : P.2,11,59.

Landen's theorem : 6117 : LM.ll,13o.

Hyperbohc functions : 2180 : A.19 : G.

15 : Mem.30 : N.64.

analogy with the circle: An. 51.

ap. to evolution and solution of eqs.

:

A.38.
construction of tables of: J. 16.

generalization of : A.35.

Hyperboloid : 5605 : J.85 : Me.66.

theorems : geoG.4 : J.24.86.

one-fold : 5605 : of rotation, A.70 :

L.39 : M.18 : N.58.

parameter of a parabolic section of :

N.75.

two-fold: 5617: A.18,ths27.

conjugate: CD.2.
equilateral and of revolution : Ac.5.
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Hyperboloid

—

(continued)

:

^ generating lines of : 5607.

and relation to ruled surfaces : Z/23.

of revolution : N.72.

Hyperboloidic projection of a cubic
" gobba "

: An.63.

Hypercycles : C.Q-is.

Hyperdeterminants : CD.9 : J.342,4'2.

Hyper-elliptic functions : A.16 : AJ.Ss,

7 : An.70 : C.40s,62..,67,92,94,97 :

CD.3 : J.2.5,27,30,40,47,52,54,75,

76,81,8.5: L..54: M.3,11,13 : Q.15,19.

of 1st order : J.12,16;,35,98.

containing transcendents of 2ud
and 3rd kind : J.82.

multiplication of : Ac.3 : M.17,20.

transformation of: Ac.3: (jj = 2),

M.15.
transf. of 2nd degree : M.9 : Mo.66.

transf. of 3rd degree : M.1,193.

transf. of 5th degree : M.16,17,20.

of 3rd order (p = 4) : M.12.

of 1st order and 3rd kind : J.65,68,88.

of 1st and 2ud kind : An..58.,: J.93 :

in series, M.9.

of 3rd kind, exchangeability of para-

meter and argument : J.31.

of «th order, algebraic relations : C.

993.

Gopel's relation : An.82.

addition theory : M.7.

addition th. for 1st order in a system
of coufocal quadrics : M.22.

approximation to : P.60,62.

choice of moduli : C.88.

division of: C.68,98: L.43 : M.l.

bisection: C.7O2 : trisection, An. 76 :

M.2.
generalisation of : C.84,98.

geo. representation : L.78.

inversion of : C.99 : J. 70.

in logarithmic algebraic functions :

M.ll.

and mechanics : J. 56.

periodicity moduli : A.68 : An.70.

periodic: J.32 : of the 1st class, LM.
12 ; with four periods. An. 71.

with quartic curves, 4 tables : M.IO.

reduction of, to elliptic integrals

:

Ac.4: C.8.55,93,99 : J.55,76,79,86,

89 : M.15 : TI.25.

transformation of 2nd order, which,

applied twice in succession, pro-

duces the duplication : C.88.

transformation: M.7,prl3.

of two arguments, complex mult, of:

M.21.

Hyper-elliptic ^-functions, alg. charac-

teristics : M.25.

Hyper-Fuchsian functions from hyper-

geometric series of two variables

:

(J.99.

Hyper-Fuchsian gi'oups : 0.98^.

Hyper-Jacobian surfaces and curves

:

LM.9 : P.77 : Pr.26.

Hyper-geometric functions or series

:

291 : A.55,57 : J.15o,75 : M.3 : Q.
16: Z.8,26,27.

as continued fractions : 291—2 : J.66.

of two variables : C.90o,91,95 : L.82.,

84.

extension of Riemann's problem

:

C.90.

of «th order: C.96 : J.71,72 : M.2.

and Jacobi's polynomials : C.89.

square of : J.3.

Hyper-geometric integrals : J.73 : Z.22.

*Hypocycloid : 6266.

with 2 cusps : Z.19.

with 3 cusps : J.64 : Me.83 : N. 703,75.

Hypsometric tables of Bessel : Pr.l2.

*Icosahedron : 907 : M.12,25 : and star

dodecahedrons, Z.18.

Icosian game : Q.5.

*Imaginary : quantities : 223 : A.20,

22: 8 square, AJ.4 : C. 18,24,25,

882,94 : JP.23 : N.63,64 : P.1,6,31.

ap. to primitive functions of some
derived functions : jSr.63.

* conjugates : 223 : modulus of, 227.

* logarithm of : 2214: LM.2.
curves : Q.7.

exponents : A.6.

integrals of d. e : C.23.

prime factors of complex numbers
formed from the roots of irreduci-

ble rational equations : Z.IO.

transformation of coordinates : Q.7.

variables: 0.96,.: polygons of, C.92.

V\/a-\-ib in the form x+iy : A.55.

tan-' it+ir]) in the form x+iy : A.49.

<P (.'.', y)+H (', y) = F {x+ iy), to deter-

mine <p and 4' : A.IO.
* geometry : 4916 : A.32,,61 : C.61 :

CD.7,8: J.55,70: M.ll: Me.81:
N.70o,72„: TE.16.

of Lobatschewski : G.5: J.17 : N.

683.

of Standt : M.8.

use in geometrical drawing : J.l.

* circnlar points at infinity : 4717, 4918,

4935 : tg.eq4998, 5001 : Me.68 : Q.

3,8,32.
* coordinates : 4761 : C.75 : Man. 79 :

homog.Q.18.
elements in geometrical constructions,

and apparent uncertainty there-

from : Z.12,
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Imaginary

—

(confinued)

:

* lines throus^h imaginary points: 4761,
4722— :J.

problem, Newton-Fourier : AJ.2.
* tangents through the focus of a conic

:

_
4720—1, 5008 : A.22.

variables, generating polygons of a
relation between several : JP.30.

xc-\-iy = VX-\-iY, and the lemnis-

catic coordinates of the nth order.

Implexes of surfaces : C.SO..

*Implicit functions : of one independ-
ent variable, f {xij) ; values of (p,-,

<p-% <P,, : 1700—6.
* the same when \p {x,y) = is also

given: 1718—9.

*
JJr, y>r, ijix when <P (.«,?/) = : 170 7—

16 : 1/,,^, An.58.

* 'P- («,Z/-2), 'Pir (n,y,z) : 1720—1.
* 'Pi {'', y, ''>$) when. 3 eqs. connect

^••,y,^,l: 1723.

* of two independent variables :

y,-: when (p {x, y,z) = : 1728.

* 'P.i'i'yz), (P'iT, <pxz, when ^i{x,y,z)

= 0: 1729—32.
*

(p (if, y, z, ^, rj) when 3 eqs. connect

^e,y,z,^,r,:l7Sb.

* of n independent variables : 1737 :

An.58.
trausf. into isotropic means and trig.

series: C.38.

transf. into explicit functions : C.38.
defined by an alg. eq. : C.47.

determined by the infinitesimal cal-

culus : C.34.

*Incrcment : 1484.

Incommensurable : numbers : JP.
15 : N.43.

limits of numbers : N.81.
lines : ]Sr.44: in ratio a/3 : 1, A.3.

*Indeterminate coefficients : 232, 1527 :

A.3 : J.5.

*Indetcrininate equations (see also
" Numbers " and " Partition ") :

188—94: C.10,th78,88 : G.5 : J.9.,.

Mem.44 : N.44.,45,pr57,69o,71,78",

81,prs81,85 : TE.2.
ap. to a geo. problem : Mem.20 : Z.20.
impossible class of : N.63.
linear: JP.13 : L.41 : N.43: P.61 :

Z.19.
* with 2 unknowns : 188—93 : A.3,7 :

J.42 : L.63,69 : M6m.31.
* with 3 unknowns : 194 : G.2.

with n unknowns : C.94 : N.52.
.«i+2,C2+...-f »i,(;„ = w : G.l.

Indeterminate equations

—

(continued) .-

and congruences : Pr.ll.

quadric : J.45 : in n unknowns, N.84.
quartic : geo.cnL.63.
quintic : J.3.

quadratics in two unknown integers :

x^-mf- = ±1 : A.12,52 : E.23,28 :

J.17 ; by trig. : L.64-66 : N.78.

x'—ay^'^b: C.69 : L.37,38 : Mem.
28.

x^~aif = ± 4, a= 5 (mod 8) : J.53.

x^ + y^= (0,2+6=)*: C.36: An.53.

a;2 + 2/^ = : geoA.55.

(n + 4)x'-ny- =4: N.83.

ax- + bx = y": L.76.

(IX- + bx + c =^ ?/- : G.7.

2x^ + 2x + l = y-. N.78.

ax" + bxy + cy'^= : geoC.9.

;<;2 + nxy - ny'^= 1 : N.83.

a;^— 2/2= «?/ impossible: N.46.

ax^ + bxy + cy- + fk + c?/ +/= : 0.87

.

quadratics in three unknown integers:

X- + y" + z^^=Q : geoA.55.

x2 + y- = 22 : A.22,33 : E.3( » : G.19 :

solution prior to Diophantus,
C.283.

x^ + ay-= z^: N.78.

ax^ + by^= z^: G.8

x^ + ay"-= z: N.78.

x^±ay'= 4z: N.72.

x"' + a{x + bf^y: N.78.2.

(x- + ky-) z^=ax + blcy : J.49.

(a, b, c, d, e,f'^xyzY= t : Pr.l3.

«2 + 7/2 + 16z2=«2: Mel.4; =4h + 1,

L.70.

quadratics in four unknown integers :

x"- + y"-±z"-:= t- : CM : N.48 ; x- + 2y-

+ Sz^= t, L.69.

7y2= 22 + ^(2+/3)-: N.78,.

quadratics in five unknown integers

X- + by'^ + cz- + dir = u, with the follow

ing values of b,c,d: 1,1,1 ; 2,3,6

L.45: 1,1,2; 1,1,4; 1,1,8; 2,2,2;

2,4,8; 4,4,4 ; 3,4,12 ; L.61 : 1,2,4

1,4,8; 2,2,4; 2,4,4; 2,8,8; 4,4,8

4,4,16; 4,16,16; 8,8,8; 8,8,16

8,16,16; 16,16,16; L.62 : 2,3,3

3,ci,3a; L.66: 1,3,3; L.6O3, 63
1,1,3; 1.2,6; 2,2,3; 2,4,6; 4,4,

12; 1,1,12; 2,2,12; 1,4,12; 1,

3,4; 3,4,4; 4,12,16; 3,6,6; 3,3,3;

3,3,12; 3,12,12; 12,12,12; L.6 3:
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Indeterminate equations

—

(contimwd) :

1,1,5; 2,3,6; 5,5,5; L.64 : 1,5,5;

1,6,6; 1,9,9; l,n,oi; 2.n,2n; L.65,

59 : with c= ab, 0.42 and L.56.

ax" + hij^ + cz" + dt~^it,with. the follow-

ingvakies of a, 'b,c,d: 2,2,3,4 ; 2,3,

3,6; 3,3,3,4; 1,2,6,6; 2,3,4,4;

L.66: 2,2,3,3; L.65: 3,4,4,4;

3,4,12,48; L.63.

a;3 + 2/2 + z2 + /2= 4^t: L.56.

ax^ + hy^ + cz^ + dt^ + exij +fzt= u, with

the following values of a, h, c, d,

e,f: 1,2,-2,2,1,2; L.63: 1,2,3,3,

1,3 ; 2,2,3,3,2,3 ; 1,1,6,6,1,6 ; L.64 :

2,3,2,3,2,2 ; 2,5,2,5,2,2 ; L.64 : 1,1,

2,2,0,2; 1,1,1,1,0,1; 1,1,1,1,1,1;

2,2,3,3,2,0; 1,1,3,3,1,0; L.63; 3,5,

10,10,0,10; 2,3,15,15,2,0; 2,3,3,3,

2,0; L.66.

rc3 + 27/3 + 2z3 + 3^2 + 2ijz= u: L.64.

2*3 + 3?/3 + 3^3 + 3i3 + 2ijz= 11 : L.66.

x'^ + y^ + z^ + 2u^ + 2uv + 2v- + t- = w

:

L.64.
a;3 + 1/3 + 22;3 + 2zt + 2t^ + oio^ + 3v"-=iv :

L.64.

2 (a;3 + xy + y~) + ii {z" + 1^ + ifi + v~)=iv :

L.64.

xy + yz + zt + tu^v : 0.62; : L.67.

y^=^xl+xl+ ... +Xn : G.7.

quadratics in seven unknown inte-

gers :

x^ + ay^ + hz^ + ct~ + du^ + ev~ =^ lo, with

the following values of a, h, c, d, e :

4,4,4,4,4; 1,4,4,4,4; 2,2,4,4,4; 1,1,

4,4,4; 1,2,2,4,4; 1,1,1,4,4; 1,1,2,

24; 1,1,1,1,4; 4,4,4,4,16; L.65:

1,1,1,1,1; 1,1,1,1,2; 1,1.1,2,2;

1,2,2,2,2; 2,2,2,2,2; 2,2,2,2,4; 3,3,

3',3'3': L.64.

higher degrees :

cubic : AJ.2.

aj3= y3+a: ]Sr.78..,83: with a= 17,

N.77.

a;3+2/3 = azi : N.78o,80.

a!3+2/^+s3+.it3 = 0: A.49.

a«4+&i/4 = 22: C.87,91,94: N.79:

a =1,1 = -5, L.79.

a;4±2"'i/* = ^3 and similar eqs : L.53.

x^-\-axh/-\-rj^ = s3 : Mem.20.

ax^+bx^y"-+cyi+dx^y+ exy^ =fz^ :

C.883.

a;5-|-i/5= az5 . L.43.

xT-\-y1 = Z-, impossible : 0.82^ :

L.40,.

Indeterminate equations

—

{continued)

:

n-tic solution by alg. identities :

C.873.

a;»-|-y"= 3" impossible if 11 >2 {For-

mat's last th.) : A.26,58 : An.64:

C.24,89,90,,98 : J.17.

x'^"—y~"= 2x": L.40.

ax"'+by"' = cz"': 1^.7%

a;'" = '2/"+l' impossible : N.50,70,71-

fc2—ay3 = 2»: C.99.

simultaneous :

fc = «2; fe+l=2u3; 2,c+ l=3i(;3:

N.78.

,c~+ a= y~; y~—a:=z~: An.55: C.78.

xZ+x+2 = y3; xZ-x-2 = z"-: N.76.

ax+ by+cz=0 ; Ayz+Bzx-\-Cxy

= 0: A.28.

,^2+^2-22 = D ; a;2_y2+ j;2= q ^

— .f2+ l/3+ a3 = : E.20.

.c2+a«?/-f 1/2= D ;
7jZ+ayz+z^^ a ;

zZ+azx+x^=a : E.20,21.

x+y+ z = a ; a;2+2/2+a2 ==
;

fc3+i/3+s3=a: E.17.

six eqs. in nine unknowns : N.50.

exponential, x'J =y'' : A.6 : Z.23.

a--&!' = l: N.57.

*Indeterminate forms : 1580—93 : A.26 :

AJ.l exponential : J.l : Me.75 :

N.48,77 : -, A.21 ; Z.l : — ; L.41,
CO

* 42 : N.46 -.-^^ when * = 00 , 1592:

0", J.ll,12:'0exp0^ J.6.

* with two variables : 1592a.

*Indeterminate multipliers : 213, 1862,

3346: N.47.

*Index law : 1490.

Indian arithmetic, th : L.57 : calculation

of sines, N.54.

*Indicatrix: 5795: C.92: Me.72: N.74.

* a rect. hyperbola, condition : 5824.

* two coinciding lines : 5825.

* an vimbilicus : 5819.

to determine its axes : L. 78,82.

determination of a surface from the

indicatrix : A.59.

*Indices : 29 : N.765,778,78.

in relation to conies : !N'.722.

of functions, calcixlus of : J P.15.

*Inductiou : 233 : C.39 : G.15 : L.48.

*Inequalities : 330—41: A.1,24.

in integrals: Mel.3 : f.d.c.Mem.59.

{lny~>n": N.60.

5 X
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Inequalities

—

{continued)

:

a*>a; : A.14.

if 8.2-1-,/= 22, x"'+ y"^ I 2'"*: A.20.

geo. mean of n numbers < arith.

mean : 332 : N.42.

Infinite : equalities : M.IO : prG.22.

functions : An. 71 : J. 54.

from gnomonic projection : Mc.CG.

linear point-manifoldness : M.lo,17,

20,212,23.

point-mass : M.23.
products: J. 27: N.69.

value expressed by r functions :

Ac.3.
exhibiting circular arcs, logarithms

and elHptic functions of the 1st

kind : J.73 : Ac.4.

use of in mathematics : C.73.

*Infinitesimal calculus : 1407: M.11,18.

Infinitesimal geometry : An.59 : C.82.

of a surface, formula : G.13.

Infinity, points at on alg. surfaces : C.

59.

*Inflexional tangents : 5789 : A.35.

of a cubic curve : E.30 : J.38,58.

Inflexion curves : Z.IO.

*Inflexion points : 5175: CM.4 : J.41.

of cubic curves : J.28 : axis, E.31.

Horse's equation : N.81.

Inscribed figures :

In-circle : of a quadrilateral, locus of

centre: A.52.
* of a triangle : 709, 953, 4747—50 : tg.e

4889: CM.l.
* in-centrc : 709, t.c4629, tg.e4882.

In-conic : of a circle : thJ.91.

four of a conic : prJ.39.

of a developable quartic : An.59.

of a polj'gon : M.25.

of a quadric : J.41.

* of a quadrilateral : tg.e4907 : N.63 :

four, N.56.
* of a triangle : 4739—46, tg.e4887 :

A.2: N.50; max, A.8 : Q.2 : lat.

rect., E.34.

In-cubic of a pencil of six lines : Q.9.

In-hcxagon : of a circle : A.22.
* of a conic : 4781 : N.57,82.

In-parabola of a triangle : CD. 7.

In-pentahcdron of a cubic : Ac.5 : M.5.

*In-polygons : -of a circle: 746 : CM.l

:

J.35 : N.50.
regular of 15,30,60,120, &c., sides :

A.62.
do. 9 and 11 sides : LM.IO.
do. 17 sides : TI.13.

do. four of 30 sides : N.78.

do. 5, 6 and 10 sides, relation : A.40,

43,45,48.

In-polygons

—

(contimied)

:

two stars, one double the other

:

A.61.

of a circle and conic (Poncelet) : G.l.

^ of a conic : 4822 : thsN.47 : cnTN.69.
*= with sides through given points,

en : 4823 : An.5l2.

semi-regular: N.63.

of a cubic (Steiuer) : M.24.

of a curve : Q.7.

of a polygon, th : CD. 5.

of a quadric with sides thi'ough given

points : LM.22.
In-quadrics : of a developable : Q.IO

:

quartic, An.59.

6 of a quadric, 2 touching 4 : An.69.

*In-quadrilateral : of a circle : 733 :

A.5: cnE.21 : area, N.44: P.14.

* of a conic : 4709.

of a cubic : N.84.

In-sphere of a tetrahedron: A.61.

In-spherical quadrilateral : N.49.

In-square : of a circle : J.32.

of a quadrilateral : A.6.

In-triangles : of a circle : P.71.

with sides through given points :

J.45 : N.44.

of a conic : J.7 : Maccullagh's th, N.65.

with given centroid : &.23.

similar : A.9.

of a triangle : thsQ.21.

two ( Steiner's " Gegenpunktc ") :

J.62.

In- and circum-circles : of a poly-

gon : N.45.

distance of centres : A.32.

of a quadrilateral : Fuss's prMel.3.
* of a triangle : 935 : A.38.
* distance of centres : 936, 4972 : eq,

4644.

In-and circum-conics : of a pentagon:
N.78..

of a polygon : J.64,70 : regular, Z.14.

of a quadrilateral : 60 theorems, N.

45.,: N.76.

of a self-conjugate triangle : Me.81.
* of a triangle: 4724, 4739: An.52

:

G.22,.

In- and circum-heptagons of a conic :

A.3.

In- and circum-pentagon : of a circle :

A.22,43.

In- and circum - polygons (see also

"Regular polygons"): of a

circle: L.16: N.80 : P.ll : Q.H.
* sum of squares of pcrps., &c. : ths

1099.

dillercncc of perimeters, ths : N.433.

of two circles, respectively : C.53 :

G.21 : L.78.
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In- and circura -polygons

—

[continued):

of a conic : A.4 : ellipse An. 52 : An.
57 : J.64 : N.67,84

of two conies : C.90.

of a curve : 0.78.

of a homonymous polygon : A. 50.

In- and circum-quadrics of a tetra-

hedron : eqsN.65.

In- atid circum-quadrilaterals : of a

circle : A.48.

of a conic : 4709 : and pentagon ths,

N.48.

In- and circum-spheres : of a tetra-

hedron : N.73.

of a regular polygon : A.3'2.

* of a regular polyhedron : 910.

In- and circiim-triangles : of a circle

(Castillon's pr) : Q.3._

equilateral, of another triangle : Me.
74.

and square of an ellipse : A.30.
* of two conies : 4970 : N.80.
* envelope of base : 4997.

respectively of two conies having a
common pole and axis : CD.4.

*Instantaneous centre : 5243.

*Interest : 296—301 : and insurance, A.

26.

Integrability of functions : An.50,73 :

C.28: J.59,79: JP.17: L.49,.

criterion for max. and min. values of

a primitive : An. 52.

*Integral calculus: 1900—2997: A.ext

18,26: Euler's, A.20 : 0.14,42:

Newton, 0D.8 : G.19 : L.47 : Me.
72,74,75: Mem.18,36.

paradoxes : 0.44.
* theorems, &c. : 2700—42: A.45 : 0.

13 : L.geo.ap50,56 : Me.77 : Mem.
prsl5,30.

Integral functions : 0.88,89,98 : 0.4,22.:

h.c.f of G.2.

with binomial divisors : J. 70.

and continued fractious : An.77.
reciprocal relation of : A.67.

*Integrals or Integration : 1908 : A.1,2,
^

4,5,6,10,23: Ac.1,32,44: O.90

:

0D.9: 0P.3: J.2,4,8,17,25,36,39,

61,92 : JP.9,10,11 : L.39 : M.6,16,

73,75 : Mem.31 : P.14,36,37 : Pr.

7,39: Q.11,13: Z.7,ll,15,18o,222,23.

* approximation to : 2127, 2262, 2991 :

A.9,14: 0.97: 0M.2: G.3: J.l,

16,18,37,48 : L.80.
* Gauss's: 2997: 0.84: M.25.

by the principle of Abel's derivative :

J.23.
* by diiierentiating under the sign of

integration : 2258.

by elliptic functions : G.ll : L.46.

Integrals or Integration—(cow^iuwed) ;

from orthogonal surfaces' theory

:

L.38.

by Pfaff's method : A.47.

by series : Me. 71.

by substitution : A.18.

by Tchebyehef's method: L.74 : M.S.

comparison of transcendents : Me.79 :

Pr.8.

complex, representing products and
powers of a definite integral : J.

48.

connected with trinomial integrals :

L.55.

convergency of : M.13.
definite : applied to Euler's, &c.

:

J.16.

with finite diff"erences : J.12.

from indefinite : J.41,51,52.

whose derivatives involve explicit

functions of the same variable :

0.12.

determination of functions under the

signf: JP.15.

^ difference between a sum and an

integral: 2230: G.9.

division into others of smaller inter-

vals : A.4.
* eight rules for definite integration

:

2245.

equations for obtaining functions as

integrals : J. 79.

expressible only by logarithms : An.

76.

extended independently of the con-

ception of differentials : A.61.

formulas of: A.l : J.18,19 : M.4: Me.

76: Mo.85: N.85: failure of f,

0M.2.
and gamma-function : LM.12 : Z.9,12.

higher, of composite functions : A.20.

with imaginary limits : 0.23: J.37.

use of imaginaries in : M.14.

inverse method: 0M.4: OP.4,5: L.78.

involving elliptic functions : Pr.29 :

Q.19.
* limits of: 2233—44: L.74.

multiplication of : Pr.23.

number of linear independent of 1st

kind: An.82.

of alg. differentials by means of

logarithms: Mo.57 : An.75: 0.

9O2: J.12,24, 78,79: Mo.84: N.81

(see " Integrals ").

of algebraic surfaces: O.9O3: J.26

:

- octic. An.52 : cubature, 0.80.

* of circular functions : 1938—97 : 2453

-2522: No.1799: LM.4: M.6

:

Mem.9.
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Integrals or Integration

—

{continued)

:

sine and cosine : G.6 : M.ll.
* of exponential and logarithmic func-

tions : 2391-2431: E. 17,18.
* of circular, logarithmic and expo-

nential functions : 2571 — 2643

(see "Integrals ").

of a complex function: A.66: th of

Cauchy, Ac.84.
* of a closed curve : 5204 : C.23 : E.28 :

Z.17.

of differentials containing the square

root of a cubic or biquadratic :

Me.57.
* of discontinuous functions : 2252

:

C.23 : LM.6.
of dynamics : L.52,55,.58.

of explicit functions, determination of

algebraic part of result : An.61.

* of functions wbicli become infinite

between the limits : 2240 : J.20 :

JP.ll : Q.6.

of infinite relations : M.14.

of irrational alg. curves by loga-

rithms : An.61.

* of irrational functions : 2110—20

:

AJ.2 : An.56 : C.32o,89 : L.63,64 :

Mem.30.
* limits of : 1903,-6, 2233, 2775.

* for quadrature of curves : 5205—11:

0.68,70 : circle, J.21,23 : JP.27.

triple integrals : J.59.

* of rational functions : 2021- 32, 2071

—2103 : L.27 : N.73.
* of rational fractions : 1915 : CD.3 :

Mcm.33,: N.72.

of total differentials : 0.99-2.

of transcendental functions : JP.26.

of two-membered complete differen-

tials : J.54.

periods of : C.36,38,75o : G.753 : JP.274.

* principal values of infinite definite :

2240: A.68.

propei'tics by elliptic coordinates :

L.51.

quotient of two d.i of the form

^dxdy...d:: : J.67.

reduction to elliptic functions : An.
60 : LM.12 : Me.77,78.

residues of : JP.27.

Eicmanu's of first kind : An. 79.

singular values of : A. 11.

* successive : 2148 : L.62 : 2nd order,

M.20 and Z.ll.

* summation of : 2250 : J.47 : JP.12,21.

tables of definite, by B. de Ilaan, note

on: C.47.

and Taylor's theorem : Me.84.

theorems : L.48 : P.55 : Q.10,12.

Integrals or Integration— (co7i^inuef?) .-

* transformation of: 2245—62: A.IO :

CM.4 : J.f16,22,36 : L.36 : Mel.3 :

Q.l.
* variation of arbitrary constant : 2247 :

J.33.

whose values are algebraic : J.10 :

JP.14 : L.38.

ALGEBRAIC PTJNCTIONS. Indefinite :

unclassified: An.75 : C.gOo : J.12,24,

78,79: Mo.84: N.81.

* simple functions of x^±a^ : 1926—37 :

x"\ A.4 : v/(a3-a;2), A.38 : J—-„,

N.82:
V{1-

An.

fractions involving a binomial surd :

2008—19.

1

(l+fc)V(2a;2-l)
Mem.l3.

US.
{x"— a) \/{x"— h)

^^il±^
: 2015 : L.80 : Z.8.

(l±a'g)g

(l±«2)(H-ta33+fc4)5
Mcm.lO.

A.3.
(a;3+8) v^(x3-l)

* J^ and deductions : 2021—8.
r<;»±l

* a;'" {a+ hx")'' : 2035—60 : A.30 : Mem.l 1

.

* —1—
: 2061—5 : J.36.

x~+a~
1 ... 1

: A.40; 2007.
{x—aYix—b)"' '"' x"{x—l)"

* functions of {a+hx-\-cx"~) : 2071-80:
2103—9.

A.55.
l/{a+ hx+cxiy'

* functions of {a+hx^^+cx-^) : 2081—6.
* functions of {a+ hx"+ cx"') : 2086—

2102.

rational algebraic functions of irra-

tional ones :

* integrated by rationalizing : 2110—
20.

reducible to elliptic integrals, viz. :

rational functions of n/X^, \/X-i, and

^/A'n

:

* where Xi is a quartic in x -. 2121

—41.
* F{x, ^X,) : 2121 : LM.8. : L.57.

* ^-'-l., 2133—G: J.3G: LM.14.
yx,
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Integrals : algebraic—{continued) .

"^^^
: L.64 : Mel.3.

J—: C.59: CD.l: E.36 : J.IO.

-^M_ . C.51.
Fix)^X,

2141 : J.17 : Man.79.
^/X3

F{^X-j): L.57.

^
: Me.82.

{i-x^Y

±
, &c., reduced to

(a;3-l)v/(x3-fc3)'

Jacobi's functions : Q.18.

_/M
: J.32.

V± (l-a^')

sundry: CM.2 : L.47.

Limits to 1 :

Euler's : see " Euler's integrals."

* £b'-i (l-a!)'"-i . 2280 : A.40 : C.16 :

J.11,173.

Integrals : algebraic— (co?i/nn(fd) ;

* x'-'^fUcix-^V} (Cauchy): 2712;

A.9.

A.12: E.41.
l+2.rcos<^+ i

deductions from this involving in-

te grals of the forms

J— clc and n
, a.35.

-^° •'

" sin 077

Other limits

:

P F{.c)dx [" F{x)dx
. 03^8_o

J.,./(l-ro^)' ] (.c-c)" •

I'

* (a— ia')'a;"'-it7i-c: A.35.

,
,^^"" ^ ,

fZr'-=/(«): geoN.85.
. 1— 2fc coso+fc-

x'-'^+x"
2341 : 0.55.

* similar forms: 2342—4, 2352, 2356

—67.

1— as 1 — a;"
: 2367 : A.IO.

a;"' (1-a;)''

{l+axY
: L.59.

{l-xY
: L.57.

{l+y(l+ «^c)f'^^^^

^--Ml:-ajr:i
: L.56-7

{a+hx+cx'i)^''^

: J.42.
{a-hxy"{\-xy'"x'

Limits to CO :

J^,&c. : 2309—12, 2345—55 : A.38

:

l±x
J.24: L.41 : Q.12: Z.19.

^
: 2364.

(x^+ a^)"

X'^x-'--. Me.83.

-, 2?i > « > : N.48.

CIRCULAR FUNCTIONS. Indefinite:

* sin X, sin-'iK, &c. : 1938—49 : sin":c, &c.,

1954—7 : cos'-K, N.74.

1
1951: J.9;

^

!+«;"+»

&c.: A.16.

l+tc'

^i^\ and 12 similar : A.35.

a+tcosa;'
""""' """'

(a+6cosrc)»'

1958 : Me.80.

* products and quotients of sine and

cosine and their powers : 1959

—

80, 2066—70 : A.49.

* binom. fuucs. of sin and cos :
1982—92.

* ditto of tangent : 1983, 1991.

^ J^^^siuascos^fcl^ . i994_7. a.12:
acosa;+& sin fc+ c

J.19,32.

* (a+ 26cos«+ccos2a.-)-i: 1993;

* — ^T. 2029.
«-»—2*" cos Ji^+1

* .

F(cosx) . ^c)gQ

{ai+bi cos x){a.2+b.2 cos x)...&c.

a function of sine or cosine in a ra-

pidly converging series, and suc-

cessive integration of it : J.4,15.

^-^'^-
: A.ll.

(1—fc sin (^) v/ (1—^2 cos-0)

(sinama;)-": J.81.

v/{l— A;2 sin2 i {a+ x) sin^ * [d-x)} :

J.39.

?iji:^
.. A.17 : with m = 1, G.7.
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Integrals: circular. Indef.—[cont.):

* sin/vv. .,. (Fourier): 2726—42:
X or sin a;

A.38..

Limits to ~ :

* sm"x: 2453-5/2458,2472: E.29

:

n = i, E.28.

* tan2"'-ia;: 2457.

* sin" aj cos^ a; : 2459—65.

* CDS'' X ^^^ nx : 2481, 2484—92 : L.43.
cos

sin ,e 2

cos" ' - X sin nx : 2494.

a~ cos^x-\-h^ sin^a;

—2501, 2344.

and similar : 2496

jra ; andcos^-'-'aJsin"-' ^^^

sin''~- a; sin^^a; : 2585—8.

X cot ax : A.34 : No.l9 ;

a^tani7r(l—M: 5340.

Limits to TV :

sin" a; cos'' a; : 2459.

nx: 2474—82,2493.P^^ a;

V COS / cos

siir"xd„x/(cosa!) : 2495.

cos n {x—a sin x) : L.41 : to 2it, C.39.

cos {a-\-nx) cos (i+jja;) cos {c-\-qx) : C.

54.

X sma;
-: Pr.25: with a = l, 2506

1+ a^cos^x
and Q.11.

X sin a; or sin a; sin7'« or cosi'a;
: 2623 -9.

1—2a cosa!+a2

^in^''a;orco3y^a;
, Q.n , lM.11 :7i=^l,

(1— 2rt cosa;4-«~)"

L.74.

fcl^(sin« cos a;): JP.27.

al)out 250 integrals with limits chiefly

from to TT, some from to go :

Pr.252,26,27,29,30,31 ,32,,;53.

Integrals : circular. to oo — [cont.):

f- a;±"' ^^^hx: 2579-81.
cos

cos hx [" cos a'.

clx: A.IO.
x+a

'

^^°"^
; 2510 : A.30 : E.26 : Z.5 : 7i = 2

X"

and 3, 2511—2.

cos f/.e—cos pa; nr-ic) r

a; or a;2

sin ax sin 6a;
and similar : 2514—22.

Limits to CO:

cos2aa; sin^a; 2722—5.

V'aj

cos X-, cos (aa;)2: 2507-9: Q.

12: 2602.

(^"M'a;: Q.13 ;

•'^'"
a;" : Me.7

Vcos/ ^ ' cos

(sinaa;, cos 6a;), reduction of: J.15.

' (sin ax, cos hx)
_ y r>o 95

2572 : L.49 : Z.7,

* 9211±^: 2.573: A.10,11,59: J.33: Me.
rt2-(-;c-

72,76: Z.7,8.

~''" '"'

: 2575 : A.IO : J.33.
a2+a;3

-i'^^^^: L.40: Q.18.
{a~+x^)"

d)(n) ^^^rx
^°"

: A.ll: with (/.(„•)=«;"
a"+x?

L.46: 4. (,(•) = tan-' cv', A.ll.

(«,r)2

a3+fc2

(l+rc2)sin6
Ac. 7.

1— cos

and similar : Z.13.

and related integrals

:

: Z.7,8.

1 or a; sin ex

(l+a!2)(l—2acosc,f+ a2)
2030-2.

* ton_^^
2503; Itan-'-^ tan"' ',

fc(l+a'2) i.;2 a b

2504.

,^ tan'' ga-—tan-' h.v c)rr\f

lim. to 27r

;

Other limits :

Jo a+ 6cosa;-|-c sin-.c

A.55.

lo 1+ ,,;

L.69.

d.c, deduced from (2116)
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Integrals : circular—{continued)

.

^ p tan~^ a«(Za5

Jo i«.

r.

ev/(l-a:3)

F{x)

2502.

dx, where F (.c) is a rational
X"

integral circular function : CM. 3.

sine-integral, &c. : sec " Functions."

EXPONENTIAL FUNCTIONS. Indefinite

:

e',a^: 1924; x'"^"'', 2004.

e^{<?.(«)+<^'(.^)}: 1998.

eexp(ia;2): E.34.

X being a rational integ. funct. oE x -.

e-'X : J.13 ; e-^, Mem.83 ; e exp

(-a'2), Q.l.

cexp(-a;3)
_ ^^ ^^^^ ^^^^^ ^ ^^o

^^.

V{a+hx"^)
-T- (c+ tlic2) : L.52.

Limits to ca :

* e-*'' K" : 2284—91 : see " Gamma
function."

* e exp (— /^.c2) : 2425 : evaluation by a

continued fraction, J.12.

* other forms : 2426—31, 2595, '8, 2601.

* eexp (-cc2-^) : 2604-5: L.56.

Z.6; ditto X x"\ L.46.
1+x^

and the same X a- : A. 10.
a;3

—

a~

e exp (af«")--Z?K± «'«"): Q-i8.

Other limits :

expon-integral : sec " Functions."

Tc exp (-a-2) [ = Erfc $ (Glaishcr)] :

Me. 76.

P e-'''=F{x)dx: C.77,.

fc^" e exp [ —a;3— iL.

jp(re*')e-"*': A.15.

C.12.

LOGARITHMIC FUNCTIONS. Indefinite

:

log a; : 1950 ; a;'" (log xf ", 2003—6.

a;"'log (1+a;), &c. : A.39.

F (a;) log a;: G.12.

Integrals : logaritumic. Indef.—
{continued) :

^'"^'^^•'
, type of several: Mem.18.

Limits tol :

* log-^: 2284; a;^(log^]", 2291.

* involving log a'- or log(l ± a) : 2391

—

2403, 2416—22.

* logll±«). 2416: C.59: J.6: L.43,44.
l+a;2

logfc
: 2636 : Q.12 ;

log a;

re' (log re)"

a; ± 1
and a similarform : 2030-

and many cases, J.34.

* J_ log l±r : 2403 : L.73.
X 1

—

X

''"' ^''-^'
: Z.3 ;

^!—^, A.37.
log X log X

about 540 expressions chiefly formed
from log(l±«) or log (1 ± a„)

or log (1 +a'-|-a;3) orlog (1 -(-fc2+a;^),

joined to a single factor of the

form a-'" or (1 ± a'") or '

,„

with integral values of m and n
A.39,40.

about 280 expressions, nearly all

comprised in the form
£.

x'-{l-x")''{logxY,

with integral values of m, n, 2'>, 1,

and t : A.40.

about 130 expressions of the forms,

X'-{1-X")" (logCc)2«'-3,

_p

fc"' (1—K") « log a;, and

X (X — 1
) j^g ^^^ with integral

x''—

1

values of vi, n, p, q, and r : A.40.

* Limits to CO: 2423—4.

Other limits

:

* l^^iln^) . 2408—12 : L.73 : Zl.
X

* - log ^^', limits to ^2-1 :
2415.

X l—x
log-integral : see " Functions."

circular-exponential FUNCTIONS. In-

definite :

* e"'' I ^^^Yhx: 1999; e^ sin" ft; cos" »,
^cos j

2000.
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Integrals : circular-exi'Onential-

(continued) :

{e" sina;)""^ : L.74.

Limits, to cc :

* e""* sin rx
2571,2591.

* e-"^ sin hx : 2583 : to 1, Mem.30.

* c-'-^o'"
^''^

bx : 2577, 2589 : J.33 : Z.7.
cos

* e-«.r /sin V"^. 2608-11: A.7

:

\cos /

* with limits-^ to ~, 2612.
2 2

sin Hi.i;, &c. : 2593—2600.

* c-*^ cos ma; sin" a; : 2717—20.

* c exp (— a2.i;2)
^°^,

26.i;, and similar :

2614—8: Z.1,10.

* c cxp j
- (fc3-|- ^^ \ cos ^

I
X &c. :

2606: Q.l;

- : 2619.

CIllCULAR-LOGAIlITnMIC FUNCTIONS :

* x^i'^op;^)'"
. 2033.

a;2»_2a5"cosw^+l

Limits io 1 :

* ^"^ (m loff x) I log *, and similar : 2641
cos ^ i^ I I o '

—3.

log(l-2.ccos.?>+a:-)^
^^^^ &c. : A.34.

X

, l-2a;cos<?>+i«g^^
13 ^^^-.^^^

._ l.73,.
° a;(l— a;2)

log sina; log cosw, «fcc.
(
limits Oio —\:

E.22.
^

Limits to—

:

* log sinfc : 2635 : CM.2 : E.23 : Q.12 :

to rnr and similar integrals, A.

16.

* log(l + cco3^c)
. 2633 : to TT, 2634.

cos a;

tana; log coseca; : E.27.

log(l+»'-^ sin^a;) . -j^^q

^{l—lc"sin~x)

Integrals : cuicuLAii logakithmic—
{continued)

:

loo;
^"^ X and log ^(1— />;- sin^ x), each

" cos '^

with the above denominator : J.92.

Limits to TT

:

* log (l-2a cos cc+a2) : 2620—2 : L.38 :

Q.ll.
* cosr.Blog(l—2acos*-|-a-) : 2625: A.

13.

* X log sin x : 2637 ; x log sin2 x, 2638.

Limits to <X) -.

cos ax , c, Alliiog2ca;: A.ll.
h^+x^

^ log (1—2 a cos cx+a~)

l+.i;2

Other limits :

r-a+ tcosa;^^^^^
A.53.

Jott— ocosa;

F (cos nx) log sin ''- dx : Z.IO.

I
cos-'"~'^.B log tan x dx -. A. 16.

Jo

I

'"
ic"' log (1—2 a cos x+x^) dx, and

Jo
similar: J.4O3.

exponential-logarithmic functions :

2631.

e"''—
e-

-log (.<;'- -|- tt3) (l,i;, &c. : J.38.

1;

"'e'-'- log (l-2rtC0S a'+a2) dx: J.40.

MISCELLANEOUS THEOREMS :

* formula? of Frullani, Poisson, Abel,

Kummer, Cauchy, &c. : 2700—13.

* |^y'(«,)=/(&)-/(a): 1901-3: A.16.

*
C'

<p{nx)-<t> {hicl
^^^ . j^jg_8i . „ _o^ 2700.

* H.O{A"-')}^"^'<^=
2001-2.

riiM.dx {6 of Taylor's th) : LM.13.

[
F{x)dx, approx. to: C.97.

lfle-I{)dx = U\y)dr-GDA.

f ^f,,.^}J\.tS:!2(lx\ and similar:

"
Me.75,76,77.'

{/(a;)
<f)

(«)(?.«: L.49.

{' avdxlf udx\\dx: AJ.7.
Jo 'o •'0
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Integrals : miscellaneous
{continued) :

f {^i)ndu: Z.25.

{u+ Jc),,,da = {-iy'
j

{ti),.2du:

A.38.

\

P,n (x) P„ (x) dx (P,, X = Legendre's

coeff.) : Pr.23.

du

uU^iu)

{x+ p){x+qYdd

= log^ia) + G: J.ll

pos integer

:

C.78.

I <?> (sin 2x) cos x dx

J" n
= (p (cos2 x) COS X dx : A.21 :

L.532.

J/(a;) sin anxd (log .-) : Mo.85.

r°° r , COS ,T sin" , c p
I $ . a;^ o .1', transi. of:

Jo r2+a;2 sin cos-

J.36.

integrals deduced from

s"+Ps'+ Q2 = 0, and y"+
iP+2B) y'+ {Q+B {P+R) + B'}

y = 0: J.18.

ln{x,'ij)dx: J.61:Mo.61: Q.7.

* if f{x+iij) = P+iQ, th : 2710.

[Upwards of 8,000 definite integrals have
been collected and arranged in a 4to

volume by D. Bierens de Haan
;

Leyden, 1867 (B.M.C. : 8532. ff.)]

*lntegrating factors of d.e : pp.468—471,
3394.

*Integrator mechanical : 6450.

Intercalation : CM. 3.

*Intercepts, to find : 4115.

*Interest: 296: N.48,61,64.

Interpolating functions : C.ll.

*Interpolation : 3762 : A.32,61,62,70 :

AJ.2 : C.19,48,68,92 : J.5 : L.37,

46 : Me.78 : K.59,76 : Q.7,8.

of algebraic functions, Abel's th : J. 28.

Canchy's method : A.2 : C.373: L.53.

by circular functions : N.85.
by cubic and quintic equations : C.25.

formute: J.2 : 0.99.,: Mo.65.
* Lagrange's : 3768': J.1,84 : N.57,61.

Newton's: N.57,61,71.

for odd and even functions : C.99.
* and mechanical quadrature : 3772

:

A.20.

Interpolation— (cojiiiimed) :

by method of least squares: C.373:

Mem.59.
* by a parabolic curve : 2992 : C.37.

Stirling's series : Me.68.

and summation : I.llo,12,14.

tables: I.II3.

of values from observation : Mel.2

:

tr, Mem. 59.

Intersection : of circles and spheres :

L.38.
* of 2 conies : 4916 : CD.5,6 : 1^.6Q.

* of 2 curves : 4116, 4133 : CM.3 : J.15 :

L.54: by rt. lines, Me.80.
* of 2 planes : 5528.

of 2 quadrics : 0.62 : N.684.

of right line and conic : see " Right
line."

of successive loci, ths : N.42.
of surfaces : J.15 : L.54 : by rt. lines,

Me.80.

^Invariable line, plane, conic,and quadric

:

5856-66.
*Invariants : 1628: An.542: C.853 : E.42 :

G.1,2,15: J.62,68,69: L.55,61,76

:

M.3,5,17,19 : Me.81 : N.58,59.,69,

70 : P.82 : Pr.7 : Q.12 : Z.22.

of binary cubics : An.65.
of binary forms : of 8th deg., C.84

:

G.2 : M.5 : simultaneous, M.l.

of higher transformations : J.71.

superior limit to number of irre-

ducible : C.86.

of a binary quadric : M.3.
* of a binary quantic : 1648 : E.40

:

Me.79 : of two, 1650.

of a binary quartic : M.3 : Q.IO.

of a binary quintic, table of irreduci-

ble : AJ.l.
of a bi-ternary quadric : J.57.

* of a conic: 4417: 4936—5030.
* of two conies : 4936 : N.75.

of three conies : Q.IO.
* of particular conies : 4945.

of a correspondence : G.20.

differential : M.24 : of given order

and degree belonging to a binary

10-ic, C.89.

of d.e linear: C.88 : of 4th order, Ac.
3.

and covariants of f{x^,y~) relative to

linear transformation : G.17.

of linear transformations : M.20.
mutual relation of derived invariants :

J.85.

of an orthogonal transformation : J.

65: LM.13.
of a pair of homog. functions : Q.l.

partial : LM.2.
of points, lines, and surfaces : Q.4.

5 t
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Invariants

—

(continued) :

of a quadric : J.80 : oftwo, M.24 : Q.6.
of a quintic : of 12th order, Q.l : of

18th order, C.92 : J.59.

related to hnear equations : C.94.
of sixth order: G.19.
skew, of binary quintics, sextics, and

nonics, relations : AJ.l.
of ternary forms : G.19.2.

transformation theoi'era : M.8 : Me.85.
Inverse calculus of differences : N.51.

•^Inverse equation of a curve or inverse
method of tangents : 6160 : No.
1780: J.26: Mem.9,26.

*Inversion: 1000, 5212: An.59 : C.9-i,pr

90 : LM..5 : Me.66 : thsN.61 : Pr.
34 : problems by Jacobi, J.89

:

geo. ths, Q.7.
formulge: An.53: Lagrange's, J.42,54.
of arithmetical identities : G.23.

* of a curve : 6212 : (:^.4 : J.14 : Pr.l4.
* angle between radius and tangent:

6212,6219: E.30.
of 2 non-intersecting circles into con-

centric circles : E.39.
* of a plane curve : 6212 : G.4: Pr.l4.

of a quadric: J.52,76 : Q.ll.
of a system of functions : An. 71.

and stereographic projection : E.35.
*Involutc : 6149,—63,—66.
* of a cu-cle : 5306 : C.26 : successive,

E.34.

and evolute in space : CD.6.
integrals of oblique : C.86.

* of a tortuous curve : 6753.
*Involution : 1066 : A.56,63 : gzAn.69 :

At.63: CD.2: thCP.ll: thE.33:
G.10,20: J.63: N.63,64,65.

and application to conies : A.4,5.
of a circle : Me.66.
of a cubic space and the resulting

complex : Z.24.

of higher degrees : C.993 : JM.72 : of
3rdand4th, An.84: Z.19.

of numbers, machine for : P.16.
of n-i\(i curves : C.87.

relation between a curve and an 7i-tic,

the latter having a multiple point
of the n—1th order: C.96.

pencils with problems in conies and
cubics : N.85.

of points on a conic : N.82.
of 6 lines in space : C.52.
of right lines considered as axes of

rotation : C.62.
* systems of points in : 4S26, 4828.

ditto, marked on a surface : C.99.
Irrational fractions: decomposition of,

J.19 : irreducibility of, Mem.41 :

rationalization of, A. 18.

Irrational functions : M.4 : of the 2nd
degree, C.98.

Irreducible functions with respect to
a prime modulus : C.70,90,93 : L.
73..

Isobaric : calculus, N.85 : homog.
functions, G.22 : algorithm, N.84.

Isogonal relations : A.60: Z.18, 20.

do. represented by a fractional func-
tion of the 2nd degree : M.18.

representation of x = '^X and

V cX"-\-d

transformation of plane figures: N.69.
Isomerism, pr : AJ.l.
Isoperimeters, method of: N.47, 74,82.
problems: J.18: M.13: Mel. 5.

triangle with one side constant, and
a vertex at a fixed point : C.84.

Isoptic loci : Pr.37.

Isosceles figi^res : C.87 : JP.30.
Isothermp, families of: Z.26.

Isotropic functions : 0.260,272.

Iterative functions : L.84.

*Jacobian: ths 1600—9 : AJ.3 : thZ.lO.
* of 3 conies : 5023 : LM.4.
* formulEe : d.C.1471 : J.84: : Mo.84.

function : one argument, G.2.

of several variables : Mo.822.
modular eq. of 8th degree : M.16.
and polar opposites : Me.64.
sextic equation : Q.18.

system, multiplicator : M.r2.

Jacobi-BeruouUi function : J.42.

Kinematics: A.61 : AJ.3: G.23: L.

63,80: LM.thl7: N.82, ths 83
and 84.

of plane curves : A.56 : N.82 : caus-
tics, Z.23.

paradox of Sylvester : Me.78. .

of plane figures : Mel.26 : N.78,802 :

of a triangle, N.63.
of a point : N.49,82 : baryccntric

melhod, Mel. 5.

of sliding and rolling solids : TA.2.
Kinematic geometry: of space: J.

90.

of similar plane figures: Z. 19.2,20,23.

Knight's move at chess : C.31,52,74 :

CD.7: CM.3: E.41: N.64: Q.IU.
Knots : TE.28 : with 8 crossings, E.33.

*Kummer's equation, i.e. : 2706.

rational integrals of : M.24.
an analogous eq. : C.99.

Kummcr's 16-nodal quartic surface

:

C.92 : J.84.

figures of : M.18.
lines of curv. of : J.98.
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Lamp's equation: An.70 : C.86,90,91,

ths92.

Lame's functions : C.87 : J.56,60,62 :

M.18.
*Lagrange's theorem (d.c) : 1552:

C.60,77: CD.6: 0M.3: Mel.2:
gzC.96 and Me.85 : gzQ.2.

*Lambert's th. of elliptic sector: 6114:

of a parabolic sector, A.16,33,48 :

Me.78: Q.15.

*Landen's th. of hyperbolic arc: 6117:

E.21.

Laplace's coefficients or functions : see
" Spherical harmonics."

Laplace's equation: and its analogues,

CD. 7 : and quaternions, Q.l.

Laplace's th. (d.c) : 1556.

Last multiplier, Jacobi's th. of : L.45.

Lateral curves : A.58.

*Latus rectum : 1160.

*Law of reciprocity : N.72 : d.e,3446.

ext. to numbers not prime : C.90.

*Least divisors, table of, from 1 to 99000 :

page 7.

Least remainder (absolute) of real

quantities : Mo.85.

Least squares, method of : A.11, 18,19
AJ.l : 0.34,37,40 : CP.8,11

G.18: J.26: L.52,53,67,75

Me.80,81: Mel. 1,4: gzZ.18.

Legal algebra (heredity) : N.63.

*Legendre's coefficient or function, X„:
2936: C.47,91: L.76, gz79

:

Me.80: Pr.27.
_

and complete elliptic integral of 1st

kind: Me.85.
rth integral of and log integral of:

Me.83.
product of any two expressed by a

series of the same functions

:

Pr.27.

Legendre's symbol ( — ) : Mel.4,5.

Leibnitz's th. in d.c : 1460 : N.69 : a

formula, Mo.68.

*Lemniscate : 6317: A.55,cn3: At.51 :

thsE.4: L.46,47: Me.68 : N.45.
chord of contact, en : Z.12.

division of perimeter: 0.17: L.43 :

into 17 parts, J. 75 : irreducibility

&c. of the partition equation,

J.394.

tangents of: J.14 : cnZ.12.

Lemniscatic geometry: Z.2I2: coordi-

nates, Z.12 ; of nth order, J.83.

Lemniscatic function : biquadratic
theorem, multiplication and
transformation of formula), J.30.

Lexell's problem : LM.2.

*Lima(?on : 5327 : 0.98 : N.81.

Limited derivation and ap. thereof

;

Z.12.

Limiting coefficients : 0.37.

Limits : theory of, Me.68.
of functions of two variables : M.ll.

of 1+ir when a; ^ 00 : L.40 :

N.85: Q.5.

Life annuities : A.42 : en of tables, P.

59.

Linear : associative algebra : A.T.4.

construction : Man.51.
coordinates in space: M.l.

dependency of a function of one vari-

able : J.55.

dependent point systems : J.88.

forms : L.S4 : with integral coeffi-

cients, J. 86,88.

function of n variables : Gr.l 4.

U'= F- where U, V are products of u
linear functions of two variables :

0D.5.
geometry, th : M.22.
identities between square binary

forms: M.21.

systems, calculus of: J P.25.

Linear equations : A.5l2,70 : Ac.4 : C.

81,th94. : G.14 : J.30 : JP.29 : L.f

39,66: Mo.84o: N.51,75,80o: Z.

152,22.

analogous to Lame's : 0.98.

with real coefficients : M.6.

similar : N.45.2.

solution by roots of unity : 0.25.

* systems of : 582 : A.10,22,52.57 : G.

15: 0.81,96: L.58: N.462.

in one unknown : 0.90 : G.9.

of nth. order : J.16.

* standard solution : 582: Q.19 : gen.

th, A.r22.

symbohc solution in connexion with

the theory of permutations: 0.21.

whose number exceeds the number of

variables: N.46.

Lines : alg. representation of : 0.70.
" de faits et de thalweg " in topo-

graphy : L.77.

generated by a moving plane figure :

0.86.

of greatest slope : A.29 : and with

vertical osculating planes, 0.73.

loxodromic : J.ll.

six coordinates of : OP. 11.

*Lines of curvature: 5773: A.84.,37

:

Au.53: 0.74..: 0D.5: L.46: M.2,
3o,76: N.79: Q.5.

of alg. surfaces : Z.24.
* and conies, analogy : 5854 : Me.62.
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Lines of curvature

—

{continued)

:

dividiug a surface into squares : C.

74: LM.4: Mo.88.

of an equilateral paraboloid : N.84.

of an ellipsoid: A.o8,48 : An.70: ths

CD.3: CM.2,3,4: JP.l : N.81.

comparison of arcs of, by Abel's th :

An.69.
and of its pedal surfaces : Q.12.

projection of : Z.2.

rectification of : An. 73.

generation of surfaces by : J.98 : N.
77.

and geodesies of developables : L.59.
* near an umbilic : 5822 : A.70 : Q.IO.
* osculating plane of : 5835.
* plane, condition for: 5843: An.68 :

C.36,,42,,96 : G.22 : Me.64.

plane or spherical : An.57 : C.46 : JP.

20: L.53.
* of a quadric : 5833—4 : C.22.,,49,51

:

G.ll: J.26: Me.l: N.63o:'Pr.32:

TI.14.
* i^d constant along it : 5836.

projected from an umbilic into con-

focal Cartesians : E.19.
* quadratic for ?/x, giving the direc-

tions : 5810.

of two homofocal quadrics : L.45.

of quartic surfaces : C.59 : L.76.

of ruled surfaces : C 78.

spherical : C.36o,42,.

and shortest distance of 2 normals
one of which passes through an
umbilic : L.55.

of surface of the 4th class, correlatives

of cyclides which have the circle

at infinity for a double line : C.92.

of the tetrahedral surfaces of Lame,
&c.: C.84.

and triple orthogonal systems : M.3.

*Linkage and linkwork : 5400—31 : E.

28,30 : Me.75 : N.75,78.
* 3-bar: 5430, E.34; 4-bar, Me.76.

conjugate 4-piece : LM.9.
* for constructing : an ellipse: 5426.

a lemniscate : AJ.l.
* a lima^on : 5427 : Me.76.

x" and x'" : AJ.l and 3.

* root of a cubic ecj nation : 5429.
* Hart's: 5417: LM.6,8,.
* Kempe's : 5401 : Pr.23.
* Peaucellier's : 5410 : E.21 : LM.6 : N.

82.

the Fan of Sylvester : E.33.
* the Invertor': 5419.
* the Multiplicator : 5407.
* the Pentograph : 5423.
* the Plagiograph : 5424.
* the Planimetcr : 5452.

Linkage and linkwork

—

{continiicd)

:

* the Pro])orliunator : 5423.

* the Quadiuplane : 5422.

* the Reciprocator : 5419.

* the Reversor : 5407.
* the Translator: 5407.
* the Versor-invertor : 5422.
* the Yersor-proportionator : 6424.

Lissajons' curves : A.70 : M.S.

*Lituus : 5305.

Loci, classification of: C.83,85 : P.78

:

Pr.27.

Locus of a point

:

the centre of a circle

cutting 3 circles in equal angles :

N.53.

the centre of collineation between a

quadinc surface and a system of

spherical surfaces : A.05.

dividing a variable line in a constant

ratio : gzAJ.3.

of intersection of common tangents

to a conic and circle : ISr.63,79.

of intersection of curves : CM. 2.

ditto of two revolving curves : N.64.

on a moving right line : L.49.

on a moving curve : Mem.18.
the product of 2 tangents from which,

to 2 equal circles is constant

:

An. 64.

at which 2 given lengths subtend

equal angles : A.68.

whose sum of distances from 3 lines

is constant: A.17,46 : from 2

lines, N.64 : from lines or planes,

A.192,prs and thsol.

whose distances from 2 curves have a

constant ratio : An.58 : or satisfy

a given relation, A.33 symbolic f.

Locus: of pole of one conic with

respect to another : N.42.

of remarkable points in a plane tri-

angle : A.43.
of vertex of constant angle touching

a given curve: N.61.

of vertex of quadric cone passing

through 6 points : N.63.

*Logarithmic": curve, 5284: quadra-

ture, N.45.

integral: A.9,,19 : J.17 : Z.6.

inimerical determination : A.U.
of a rational differential : J. 3.

parabola : CD. 7.

potentials : M.3,4,8,13,16 : Z.20.

rational fractions : A.6.

systems : A.14.
transcendents : P.14.

waves : LM.22.

*Logarithms: 142: P.1792, 1787, 1806,

17 : TE.26.
and anti-logarithms, en : I.12.„24.
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Logarithms

—

{continued)

:

* calculation of : 688: A.24,27,42: LM.
1,6 : Me.74 : N.51 : Pr.31.2,32 :

TE.6,14 : TI.6,8.

Huygben's method : 0.662,680.

and circular functions from definite

integrals : A.65.
common or Briggean : A.24.

constants in integral : J.60.

of diiferent orders of numbers : L.45.

higher theory of : trA.15.

impossible : CM.]

.

natural, or Napierian, or hyperbolic :

A.25,26,57.

of commeusurable numbers or of

algebraic irrationals : C.95.

base of: see " e."

* modulus of : 148 : A.3.

of negative numbers : No.l784.

new kind of : J. 70.

powers of : CM.2.
of sum and difference of 2 numbers :

A.45.

with many decimal places : N.67.

of 2, 3, 6, 7, 10 and e all to 260 decimal

places : Pr.27.

of 2, 3, 6, 10 and e to 205 places : Pr.

6,20.

* of primes from 2 to 109 : table viii.,p.6.

tables of log sines, &c. en : Q.7.

Logic, algebra or calculus of : A. 6 : AJ.

3,72: CD.3 : M.12 : Man.71, 76,823:
Q.ll.

of equivalent statements : LM.ll.
Logic of numbers : AJ.4.

Logocyclic curve : Pr.9 : Q.3.

Longimetry applied to planimetry : J.52.

Loto, game of : L.42.

Loxodrome: eqA.21 : N.eio : Z.5.

of a surface of revolution : N.74.

of cylinder and sphere : A.2.

of elhpsoid and sphere : A. 32.

of paraboloid of rotation : A.13.

Loxodromic triangle upon an oblate

spheroid : A.27.
Lucas's th : G.14 : analogous f., G.13.

Ludolphian number : Mo.82.

Lunes : J.21.

*Maclaurin's th. (d.c) : 1507: A.12

:

CM.82: J.84: N.70.

symbolic form : CM. 4.

Maclaurin-sum-formula : J.12.

Magical equation of tangent : Q.6.

Magic : cubes, Q.7 : CD.l. -

cyclovolute : TA.5,9.
parallelopiped : A.67.

rectangles : A. 65,66.

squares: A.21,57,66 : CD.l: CM.4:
E.8 : J.44 : Me.73 : Pr.15,16 : Q.

6,10,11 : TA.5,9.

Malfatti's problem, to inscribe 3 circles

in a triangle touching each
other: A.15,16,20,55: J.]0,45o,76,

77,84,89 : LM.7 : M.6 : P.52 : Pr.

6 : Q.l : TE.24 : Z.21.

Malfatti's resolvents of quintic eqs : A.
45.

Malm's surfaces, th : J.84,88.

Mannheim, two theorems : G.8.

Martin's measure of distance : A.19.

Matrices : E.42 : LM.4,16 : thMe.85 :

P.58,66 : Pr.9,14.

(«;^^) and function /(,) = 5^J:
Me.804.

Cayley'sth: LM.16: Me.85.

equation, px = xq : C.992.

of 2nd order : linear eq., C.992 : quad-
ratic, Q.20.

of any order : linear eq., C.994.

notation of : J. 50.

persymmetrical, th : E.34.

product of : G.5,11.

roots of a unit matrix : C.94.

whose terms are linear functions of ;» :

J.60.

*Maximum or minimum : 58, 1830 : A.4,

13,22,35,49,53,60o,70 : C.17,24 : J.

48 : JP.25 : Me.l,geo5,72,76,81,

83 : N.43 : Z.13.
* problems on: 1835—40, 1847: A.2,

geol9,38,39: geoL.42 : Mem.ll,
a paradox, N.63.

of an arc as a function of the abscissa

:

J.17.

* continuous : 1866,

of a definite integral : Z.21.

discontinuity in : CD.3.
distances between points, lines, and

surfaces, geo : At.65.

duplication of results : Me. 80.

ellipse which can pass through 2

points and touch 2 right lines :

A.14.

elliptic function method : Mel.6.

of figures in plane and in space : CM.
3: L.41 : J.242: Z.ll.

* functions of one variable: 1830 : ditto.

with an infinity of max. and min.
values : J.63.

* functions of 2 variables : 1841 : Mem.
31 : Q.5,6 : Lagrange's condition,

CM.2.
* functions of 3 variables : 1852 : CD.l :

prs 1860—5.
* functions of n variables : 1862 : L.43

:

Mem.59 : Q.12 : symmetrical,
Mel.2.
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Maximum or minimiim

—

[coniinucd)

:

of iu- and circnra-polj-gon of a circle :

A.29,30 : do. of ellipse, and analo-

gous th. for ellipsoid, An. 50.

indeterminates : CM. 4.

in-i)olygon (with given sides) of an
ellipse: A.30.

by interpolation, f : A.25.
method of substitution : A.23.

of multiple definite integrals : Mel.4.

planimetrical groups of: A. 2.

of single integrals between fixed

limits : J.54,69 : M.25.

of the sura of the distances of a point

from given points, lines, or

planes : J.62.

of the sum of the values of an integral

function and of its derivatives :

L.68.

solids of max. vol. with given surface

and of ini!i. surface with given
vol.: C.63.

* of j i^ (.V, y) ds, &c., to find s : 3070—2.

* o?llF (.e, y, z) dS, &c., to find 8 : 3078

—80.

Maximum : ellipse touching 4 lines :

A.12.
ellipsoid in a tetrahedron : Z.14.

of a factorial function : Me.73.

polyhedron in ellipsoid: A.32.

of a product : N.44.

of a sphere, th : N.53.
* solid of revolution : 3074.

tetrahedron : in ellipsoid, A.32 :

whose faces have given areas, 0.

54,66 : E.62a.
* volume with a given surface : 3082.

of A.362 : of ^x, &c., A.42.

ofax+ hy+ &c., when x"+ y~-\-&c.=^'\.

:

N.46.

Mean centre of segments of a line cross-

ing three others : A.40.

Mean distance of lines from a point : Z.

11.

Mean error of observations : A.25 : C.

37; : TI.22.

in trigonometrical and chain measure-
ments : A.46 : Z.6.

Mean proi)ort.ionals between two lines :

A.3 1,3 4.

Mean values : 0.18,20,23,26,27.. : L.67 :

LM.8 : M.6,7 : Z.3.

of a function of one variable : G.16 :

of 3 variables, C.29.

and i)robabilities, gco : 0.87 : L.70.

Measures of length &c. : page 4.

exactitude of : Z.6 : do. with chain,

Z.l.

Mechanical calculators : C.28 : 1.16 :

P.85.

for " least squares "
: Md.2.

Mechanical construction of : curves :

M.6 : N.56.

Oartesian oval : AJ.l.

conies : An.52 : three, N.43.

ellipse: A.65 : Z.l.

lemniscate : A.3.

conformable figures : AJ.2.
cubic parabola : N.58.

curves for duplication of roots : A. 48.

(a3-a'2)/7/ : E.18.

sm-faces of 2nd order and class : J.34.

Mechanical : division of angles : Q.4.

measurement of angles : A.61.
* integrators : 5450 : 0.92,94,95 : Pr.24,.

for Xdx+Ydy: Me.78.
involution : AJ.4.

* quadrature : 3772 : A.58,59 : J.6,63

gzA.66 and 0.99.

solution of equations : Me.73 : N.67.

linear simultaneous : Pr.28.

cubic and biquadratic, graphically :

A.l.

Mensuration of casks : A.20.
Metamorphic method by reciprocal

radii : N.64.

Metamorphic transformation : N.46.

Metrical : system : E.30.

properties of figures, transf. of : N.
582,59,60 : j.4.

properties of surfaces : AJ.4.

*Meunier's theorem : 5809 : gzC.74.

Minding's theorem : Quaternion proof :

LM.IO.
Minimum : theory of : L.56: prM.20.

angle between two conj. tangents on
a positive curved surface : A.69.

area : J. 67.

of circum-polygon : 0D.3.
of a hexagonal " alveole," pr : N.

43.

circum-conic of a quadrilateral : A.
13: An.54.

circum-tetrahcdi'on of an ellipsoid :

Z.25.

circutn-trianglc of a conic : Z.28 : of

an ellipse, Z.25.

curves on surfaces : J.5 : see " Geo-
desies."

distance of 2 right lines : G.4 ; of a
point., ths : A. 8.

ellipse through 3 points and ellipsoid

through 4 : L.42.

ellii)soid, tli : Mo.72.
N. G, F. of a binary septic : AJ.2.
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Minimum : theory oi—{continued) :

numerical value of a linear function

with iutegral coefficients of an

irrational c[uantity : C.63,54.

jDerimeter enclosing a given area on a

curved surface : J.86.

questions relating to approximation :

Mel.2 : Mem.59.
* sum of distances from two points :

920-1.
sum of squares of distances of a point

from three right lines : Z.12.

sum of squares of functions : N.79.

Minimum surfaces: eqA.38 : G.14,

22: J.81,85,87,ext78: Mo.67,72 :

projective, M.14 : metric, M.15.

algebraic : M.3 : lowest class-number,

An.79.
not algebraic and containing a succes-

sion of algebraic curves : C.87.

arbitrary functions of the integral eq.

of: C.40.

between 2 right lines in space : C.40.

generation of : L.63.

representation of by elliptic functions :

J.99.

of a twisted quadric : At. 52.

limits of (Calc. of Var.) : J.80 : on a

catenoid, M.2 : determined by
one of the edges of a twisted
quadrilateral. Mo.65.

variation of surface, capacity of : Mo.
72.

Minimum value of

r ^{A+B.^+ Cx'~+&c.)d.e: N.73.

of j ^/{dx~+d)j-+...) when the varia-

bles are connected by a quadric
equation : J.43.

Models : LM.39 : of ruled surfaces,

Me.74.

Modular : equations : An.79 : of 8th
degree, 59: C.483,493,66 : M.1,2 :

Mo.65 : see also under " Elliptic

functions."

degradation of : M.14.
factors of integral functions : C.24.

functions and integrals : An.51 : J.

184,193,20,21,23,25 : M.20.

indices of polynomials which furnish

the powers and products of a

binomial eq : C.25.

relations : At.65.

Modulus: of functions, principal:

C.20.

of series : C.17.
* of transformations : 1604: A.17.

*Momental ellipse : 6953,

*Momental ellipsoid : 5925, 6934 ; for a

plane, 6936.

Moment of inertia : 6903 : An.63 : At.
43 : M.23.

* of ellipsoid : 6150 : CD.8 : J.16.

by geometry of 4 dimensions : Q.16.
* principal axes : 5926, 6967, 5972 : At.

43.

* of a quadrilateral : 5951: Q.ll.

of solid rings of revolution : Q.16.
* of a tetrahedron : 5957.
* of a triangle : 5944 : Me.4 : Q.6 :

polar, N.83.
* of various lamina and solids : 6015

—

6165.

Monge's theory " des Deblais et des
Remblais "

: LM.14.
Monocyclic systems and related ones :

J.98.

Monodrome functions : C.43 : G.18.

Monogenous functions (Laurent's th) :

Ac.42: C.32,43.

Monotypical functions : C.32.

Monothetic equations : C.99.

Mortality : A.39.
" Mouse-trap " at cards : Q.152.

Movements : JP.15.

elliptic and parabolic : JP.30.

groups of : An.692-

of a plane figure : thAn.68 : JP.20,

28: LM.3.
of an invariable system : C.43.

of a point on an ellipsoid : AJ.l : J. 64.

relative : JP.19 : of a point, L.63.

of a right line : C.89 : N.63.

of a solid : JP.21.

transmission of and the curves result-

ing : JP.3.

of " ahnlich - veranderlicher " and
" affin-veranderlicher " systems :

Z.24 and 19.

*]\[ultinomial theorem : 137 : Me.62^
Multiple-centres, geo. theory : L.45.

Multiple curves of alg. surfaces : An. 73.

Multiple Gauss sums : J. 74.

Multiple integrals : 1905, 2826 : A.64 :

An.62: C.8,11: thsCD.l : thE.

36: J.69: L.39,43a,45.:,46,th48,66:

LM.82: Me. 762: Z.13,3.

* double : 2710, 2734—42 : A.13 : Ac.5

:

An.70 : J.272 : G.IO : L.682 : Mem.
30.

approximation to : J.6.

Cauchy's theory, ext. of : C.762.

* change of order of integration :

2775: A.19.
expressing an arbitrary function :

J.43.

reduction of : J.46 : Z.9.

residues of: C.75.i.
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Multiple integrals, double

—

{continued):

{x—y-)clxd]i_

o;V{(«'-!>')(c'-«2)(!.'-./)(o'-r)}

=
f:

L.38.

same with log of numerator : L.50.

jx'—x){dy dz —dz dy')j\-sym

= 4»i7r : CM.

transf. of
[ [

n

d(pd\lr

J.20.

7r2Jo Jo A

II:

\/ {sin^u— sin^ cj) cos2^/^)'

cos ix cosjx dx dy

v/{l+a2+ 2a(^C0Sa+ j/C0S?/)V

C.96.
•

jj F {a+ hx+ c)j) dx dij : A.37.

II
F' {x+iy) dx dy : J.42.

J^;^,dtdu: C.96.
G {u, t, z)

r r</) {ax"' ± %") «"-• 7/'-i dx dij : J.

"37.

evaluation : A.6 : by Fourier's th,

CM.4.
expansion of : Q.8.

Frullanian : LM.15,
limits of : LM.16.
reduction of : An.57 : L.41,39.

by transf. of coordinates : C.13.

\"F (fr+7y2+ ...)<p {ax+%+ ...) dxdy

...: L.57.

of theory of attraction : CD. 7.

transformation of : 2774 : A.IO : An.
63 : N0.47 : CM.4 : Mel.2 : Mem.
38: Q.4,12.

an indef. double : J. 8^,10.

a triple integral : 2774—9 : J.45.

ijidxi+ ... +yndx„ : LM.ll

.

triple: 2774: A.30 : J.45.

which are unaltered in form by trans-
formation of the variables: J. 15,

91.

^jj...dxdydz...: Q.23.

Ill
'y" dxdy d:: ... with

equationsdifferent limiting

2825: CM.2: L.51.

some other integrals evaluated by r
functions: 282G— 34.

jj\F{ax-\-hy+ cz,a'x+ h'y+c'z,

a"x+h"y+c"z) dx dy dz, limits

± 00 : A.30.

\l

Multiple integrals

—

{conthmed)

:

volume integral of

\{j e exp (

—

x~—y~— z~), x''y^ z dx dy dz -.

N.54.

Jlj---<P
(«''•"+ ^.V"+ &c.) x"y'J

. . .
dx dy . .

.

with limits to go in each case
(Pfaff) : J.28.

dx du ... 1 J.

{(«-,,.)=+(;;-!,)=+...}••
"y*"

continuous functions : TI.21.

do. with n z=— and with a numerator

<'-">^(S + |i + -)^CM.3.

\\ ---F {ic, y,z...) PQ dx dy dz . . . where
r = il-xr-'{l-y)''- ...

arising from (2604), viz :

Te exp (—x^- -\ dx : Pr.42.

*Multiple points: 5178: CM.2: thG.15:
Me.2: Q.2,6.

on algebraic curves : An.52 : L.42 :

N.51,59,81, at 00 643.

on two curves having branches in

contact : C.77.

on a surface : J.28.

*Multiplication : 28 : J.49 ; abridged, N.
79.

_

by fractions : Me.68.
Multiplicator equations : M.15.
Multiplicity or manifoldness : J.84-,86 :

thAc.5: Z.20.

Music: B.273,28: Pr.37.

Nasik squares and cubes : Q.8,1 So.

Navigation, geo. prs.of use in : A.38.
Negative in geometry: No.1792.
Negative quantities : At.55 : N.443,67 :

TE.1788.
Nephroid: LM.IO.
Net surfaces: J.1,2: M.l : any order,

An.64.
quadric: J.70,82 : M.U.
quartic : M.7.
and series : C.62.

trigonometrical : Z.14.

having a 3-poiut contact with the
intersection of two algebraic sur-

faces : G.9.

Newton, autograph m.s.s of : TE.Ti.
*Nine-point circle: 954,4754: A.41 : E.

7,30,th35,pr39 : G.l,ths4: Mc.64,
08: Q.5—8.
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Nine-point circle

—

{continued) :

an analogous circle : A. 51.

* contact with in- and ex-circles : 959 :

Mc.82: Q.13.

and 12-point sphere, analogy : N.OS.

Nine - point conic of a tetraliedron :

Me.71.
Nonions (analogous to Quaternions) :

0.97,98.

Non-uniform functions : 0.88.

Nodal cones of quadrinodal cubics : Q.

10.

Node cusps : Q.6.

Nodes, two-plane and one-plane : M.22.

*Normals: 1160: 4122—3,5122: A.13,

53: LM.9: p.eMe.66: Z.cn2and3.
of envelopes : Me.80.

* plane of a surface : 5772.
* principal : 5722 : condition for being

normals of a second curve, 0.85.

of rational space curves : J.74.

section of ellipsoid (geodesy) : A.40.
* of a surface : 5771, 5785 : 0.52 : 0D.3

:

0M.2 : L.39,47,72 : M.7.

coincident : L.48.

transformation of a pencil of : 0.88-2.

*Notation (see also " Functions ")

:

A,B,G,F,G,H: 1642.
* A.P., G.P., H.P. : 79,83,87.

* {a,hc3): 554.

(n) {-), (Jacobi's function (see

" Functions ").

* a'' or a"l» ; 2451.

* a+\J^^ : 160.

* B^„, Bernoulli's nos. : 1539.

* G {n,r) or 0,,,,- : 96. Otherwise

G {n,3) = number of triads of n things,

&c.

T'^) = rth coeff . of nth power of (1 +x)

:

also Jacobi's function (see " Func-
tions ").

* D : 3489 : chAu; &c. : 1405.

* dh/,dx\%&c.: 1407.

* d juvw)
. -^gQQ_

d{xyz)
'

*A: 582,1641, 3701; a', 1645.

*E : 902, 3735.

*d: 150, 1151. A

e esp 83 H or e

Notation

—

[continued] -.

*<|) (a/3y) = u : 4656 ; "I' (X/iii/) or U, 4665.

*Gu,: 3732.

*H (n, r) : 98.

*/: 1600.

iV.(T.-F= numerical generating func-
tion.

iV=6(modr) signifies that N— h is

divisible by r.

* Ijz, = %(») = » ! : 94, 3713.

* TT as operator : 3500.
* P {n, r) or P,,,, = n"') : 95. Also,

P {n, r) = number of trijDlets of n
things, &c.

*
if/ {x) or Z'{x) = clr log r (,c) : 2743.

* B, r, Ta : 909—13.
* /Sm, 8,n p : 534 ; 8n, 2940.

* sin-i, &c. : 626 ; sinh, &c., 2180.
* 2: 3781—3.
* iin : 3499.

fi (;n) = sum of divisors of n.

Y or ^ (
—

-
) = integer next%

*/(»!): 400, 1400 ;/->(?«), 430.

*/' (33) /" {x) : 424, 1405.

I Y
= integer next > —-.

( — ]=rthcoetr. of (1+*)".

4; = not less than ; ';^ = not greater

than.

(-^) = denominator to be stated after-

wards.

( X ) and ( I ) : 1620.

algebraic : 0P.3.

for some developments : 0.98.

continuant = contd. fraction determi-

nant.

median = bisector of side of a triangle

drawn from the opposite vertex.

subfactorial : Me. 78.

suggestions : Me. 73.

*Numbers (see also "Partition of," and
" Indeterminate equations") : 349

:

A.2,16,26,68,59 : Ac.2 : AJ.4,6 :

C.f 12,43,44o,454,f60 : OM.l : G.16,

32 : J.93,39,404,48,77 ; tr,273,28and

29o : JP.9 : L.37—39,41,45,586,59,
60 : LM.4 : Mem.22,24; tr(Euler),

30: N.443,62,79: Q.4: TE.23.

ap. of algebra, JP.ll ; of r function,

No.81 ; of infinitesimal analysis,

J.19,21.

formulas : L.64;,65.2.

relation of the theory to i.c : 0.82.

5 z
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Numbers

—

(continued)

:

approximation : to \/N, E.17 ; to

functions oflartre numbers, C.82.

binomial eqs. with a prime mod : C.62.

cube : Q.4.

cubic binomials : fc'^ii/^ ; C.6I0.

determined by continued fractions :

LM.29.
digits, calculus of, th : J.30.

digits terminating? a power: A.58

:

N.46.

Dirichlet's th. 2^ (§)=a»0:L.57.

Dirichlet's f. for class numbers as

positive determinants : L.57.

division of : A.26: J. 13: Mel.3 : Pr.

7,10 ; by 7 and 13, A.25,26 ; by
ma!2+>M/, Mem.l5: P.17,88 : Q.
19,20.

divisoi's of i/2+yls2 when^= 4«+ 3

a prime : J.9.

divisors arising from the division of

the circle : L.60.

4))2.+ l and 4j/i+3 divisors of a num-
ber : LM.16.

factors of: Mem.41.
Gauss's form : L.56.

integral quotients and remainders

:

An.62.
large, analysis of : A.2 : C.2,29.

method with continuous variables

:

J.41.

multiples of : C.2.

non-pentagonal th : J.31.

number of integers prime to n in

n\ = <p {n) : L..57.

odd: A.lo : and prime to all squares,
0.67.

Pellian equation : prA.49 : LM.15

:

sol. by ell. functions, Mo.63.
perfect : C.81 : N.79.
polygonal, Fermat's th. of : P.61.
polynomials having determinate prime

divisors: C.98.

powers of, 12 theorems : N.46.
prime to and < N : A.3,29 : E.28.,

:

J.31 : N.45.
prime to and < the product of the

iirst n primes : A. 06.

prime with respect to a given ar.p :

C.54.

pi-ime to the radix having multiples
made up of repeating digits

:

Me. 76.

l)roducts of divisors of: Q.20.
quadratic forms of: Mem. 53.

rational linear functions taken with
respect to a ])rime modulus, and
connected substitutions : C.48;j.

Numbers

—

[continued)

:

representation of by forms : C.92 ; by
infinite products, A.l.

square having prime factors of the

form 4?; + l : N.78.

squares of: J.84 : M.13: Pr.63,7.

three in ar.p : N.62.

sums depending upon E [x) : L.6O0.

sums of digits : Me.66 : TE.16.

sum and difference of two .squares

:

thsN.63.
* sums of divisors : 377 : Ac.6 : G.7 :

L.63.2: Mel.2: Mem.50.
* sums of powers of (see also " Series "):

276, 2939: An.61,65 : thCD.5 :

Me.75 : N.42,56,70 : Q.8.

of cubes: An.65: L.66 ; of the odd
nos., A.64.

of n primes : lSr.79.^ ; 4th powers,
A.54.

of squares : A.67.

of uneven orders : Mo.57.

symmetrical functions of: Q.7.

systems: Z.14; history of, by Hum-
boldt, J.4.

theorems: A.7,10,20,49 : An. 70: C.

25,,43,83: CM.2: G.8 : L.48,52

:

N.75; Cauchy's, gzC.63; Eisen-
stein's, J.27,50,83 : LM.7 : Q.6,6.

r^P n,P

Gauss's on X = '-

—

-J-
: C.98.

x—y
Lagrange's arithmetical : A.47.

^y + f/"
in terms of jj(/: N.75.

on2"±l: C.85,86: Me.78.

2, biquadratic character of : 0.57,

66: L.59.

on {n+\)"'—n"': N.44 ; p; (*i), L.69.
* on n'—n (w— l)'--)-, &c. : 285 : A.30.

on 2m positive numbers : N.43.

on F{m)-\-E P(1)+:Q.C

on the greatest product in whole
numbers of given sums : J.57.

on an odd sum of 12 squares : L.60.

on products of sums of squares : G.2.

on 1- squares : N.57.

on 2, 4, 8, and 16 squares : Q.17.

on <['[a)-\-<p{a')-\-, &c. = n, where a,

(t', etc., arc the divisors of «: Om.3.
Numeration, ancient decimal : 0.6,8^.

Numerical approximations : N.42a,53.
Numerical functions : L.57 : Me.62.

simply periodic : AJ.l.
sums of, approximately : 0.96.

which express for a negative deter-

minant the nunjber of classes ol" a

((uadratic form, one at least of

whoso extreme coefficients is odd

:

0.62..
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Obelisks : A.O.H.
Oblique : bevilled wheels, en : J.2.

* coordinates : 4050, 5511—9 : fN.54
cyclic surface : TI.9.

and oscillating circle of a conic : G.22.

Octahedron function : Q.IO.

Octahedron, centroid of: LM.9.
Octic equations : G.7,10 ; and curves,

M.15.:.

Octic surface : G.13 : M.4 : Q.14.

*Operative or symbolic calculus: 1483,

3470—3628: AJ.4 : C.17: 0.20^:

J.5,59 : LM.123 : Me.82,85 : P.37,

44,60—63: Pr.l0o,ll,,12o,134 : Q.

4,5,8.

applications : G.19 : Me.82.

algebraic : TE.14 ; ap. to geometry,
CM.1,2; ±,CM.3.

expansions: Pr.l42.

formuIa3 : C.393.
* index symbol : 1485 : CD.H.

integration : CD. 3 : exMe.76.
representation of functions : C.43 :

CD.2.
seminvariant operators : Q.20.

on the symbols .v-', log/,ft', sin x, cos x.

sin-'ir, cos'^a; : A.9,11.

theorems : A.57 : CD.80 : LM.ll : Q
32,15,163 ; from Lagrange's series

Q.16; from Trpu—pmt = pu, CD. 5.

*Operators : d,, 1405; e'"^ 1520—1, Q.9o

* {ch—m)-\ &c. : 3470—85
;
gz of 3474,

C.43.

* D (D-1) ... (D-n+l) : 3489.

* Tr = xd^+yd,j+&G.: 3500.

expansions and fcrmuloB for :

* F {xd,) U, where U= f{.i') = a+ bx+
cfc3+ : 3486.

* /(D)wv, 3494: tif{D)v, 3495, with/
as above.

D"f{xD)U: E.36.

* {cp (D) e'"Y Q : 3491.

e^^^F (,.), &c.: E.34.

e^' ^P (,.•) = '^^ F (,«+l) : E.86.

nF{a,x): Q.13.

"-"'*y{a v'v±h^/iwi)}, &c. : C.96.

f{x+ hD).l: E.39.

* yjr {dr+y) (f^y^
= (p {d,j+x) ylry : 3498.

* reduction o{F {tti) : 3503.

* F{n)U and F'^ (tt) U : 3509—10.

* G{ii,vi)u„lml: 3514.

transformation of Vdj. . Ud^..., &c: G.

21.

Orthocycle: Q.17.

Orthogonals, algebraic system of : C.69.

*Orthogonal :—^circles : 4170, 4182—4

;

of in- and circum-circles of a tri-

angle, Q.18.

circle and conic : E.7.

coefficient system : A.2,61.

coordinates : C.60 ; curvilinear, JP.
26.

conies : N.84 ; families of, A.63.

curves : J.35 : N.52,81.

system from logarithmic repre-

sentation: Z.16.
* lines of a triangle : 4633.

lines and conies : C.72.
* projection : 1087.

in metrical projective geometr}-

:

GM.14.
of a circle into an ellipse : A. 2.

of a triangle: E.30,31,36,37.

substitution: J.67 : M.13: Z.24.

surfaces : C.29, spheres 36,54^,59,72,

79,87,thsl7 and 21 : J.84: JP.17 :

L.43,44,46,47,63 : N.51 : P.73o

:

Pr.21: Q.19.

cubic eq. for : C.762.

with elliptic coordinates : 0.53

:

J.62.

and isothermal: C.84: JP.18 : L.

43,49.

systems: C.67,754 : M.7 ; condition,

J.83 ; quadric, J. 76
;

parallel,

M.24.
triple : A.55 — 58 : An.63,77,85 :

C.alg58,67 ; cychc, G.21,22 : J.84 ;

quartic, 82 : Z.23.

trajectories: L.45 : Me.80 : Z.17.

of circles : Me.85.

of circular sections of an ellipsoid :

L.47.

of a moveable plane : Pr.41.

of a moveable sphere : C.42.

of a surface : Mem.20.

Orthomorphic projection of an ellipsoid

on a sphere : AJ.3.

Orthomorphosis of a circle into a para-

bola: Q.20.

Orthoptic : lines of a conic: A.57.

loci of : LM.13 : Pr.37 ; of 3 tangs.

to a quadric, E.40.

surface of a quadric : J.50.

Orthotomic circles : Me.64,66 : Q.2.

*Osculating : circle : 5724 : L.39.

of conies : A. 70: N.60.

of a family of curves : N.70.

of a parabola, ths : N.66.

of quadric curves lsr.43.

of tortuous curves : N.81.
* cone : 6727 : angle of, 5752.

conic : L.39 : triply, A.69 : Z.19.

of a cubic curve : J.68: : Z.17.
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Osculating

—

{continuecl) :

curves : Q.ll.

helix: N.71.
line of a surface : C.82 : J.81.

parabola : N.81.
paraboloid: JP.15: N.82: of aquadric,

L.38.,.

* plane : 5721, eq 6733 : and radii of
curv. at a multiple point of a
gauche curve : An. 71 : C.68.

of a tortuous curve : C.96 : J.41,63.

sphere : Mem.20 : N.70 : of curve
of intersection of two surfaces,
en : C.83.

of two curves having a common
principal normal : LM.16.

surfaces : C.792, degree of 98 : L.41,

80 : of quadrics, N.60.
Oval of Cassini : see " Cassinian oval."

Oval of Descartes : see " Cartesian
oval."

Pangeometry : G.5,15.

*Pantograph : 5423 : Mem.31 : TE.13.
Paper currency : A.42.
Pappus, prs in plane geometry : A.38

:

Z.5.

*Parabola: geo. 1220—44 : anal. 4200—
39: eqCM.2: K424,54,70 : geo
0M.4 : Me.71 : cnl249 : thsN.60,
63,71,76,802.

circum-hexagon and triangle: CM.l.
* circle of curvature of : 1260: A.61.
* chords of : 1239, 4224.
* two intersecting : 1242.

determination of vertex and axis :

N.58.
* eq. deduced from eq. of ellipse: 1219.

focus and directrix: N.49.
* focal chord : 4235—9.
* latus rectum : 1222 : Me.75.
* normal, length of : 4233—4.

plane and spherical : A.60.
* quadrature of : 1244 : A.32.
* and right line : see " Right line."
* segment of : 6078 : A.26,29.

solid generated by it : N.42.
sector : E.30 : N.57 : Lambert's th,

J.16.

in space : A. 8.

* tangents : sec under " Conies."
* tlirough 4 points, en : 4837 : J.26.
* triangle of 3 tangents : 1237,-68 : A.

47: Me.75.
trigonometry of : CD.8.

Paraboloid : 5621, 6126—41 : N.Gl : Q.
13.

* generating lines of : 5624.
of eight lines : C.84.

* elliptic: 5622: A.ll : L.5S : P.96.

Paraboloid

—

{continued)

:

* quadrature of: 6127: An.55.
* segment of : 6127-33 : A.29.
* hyperbolic : 5623 : A.ll.
* of revolution : 6134.

Paradoxes of De Morgan : J.l 1,3,12,, 13,

16.

Parallels : A.8,47 : At.51 : J.11,73 : Mel.

1,3 : Mem.SO.: Z.21,22 : Thibaut's

proof, A.15.

in analytic geometry : A.44.

Parallel curves : J.55,ths32 : LM.3 : Q.
11 : Z.5.

closed : A. 66.

* of ellipse : 4960 : A.39 : An.60: N.44<>:

Q.12.

Parallel surface : C.54 : LM.12.
of surface of elasticity : An.57.

of ellipsoid: A.39: An.50,60: E.17

:

J.93.

Parallelogram with sides through four

given points : A.39.

Parallelogram of Watt : A.8 : L.80.

*Parallelopipeds : on conjugate diame-
ters : 5648.

diagonals, &c. : CM.l.
equality of : A.4.

analogues of parallelograms: LM.2

:

Me.68.
on a spherical base : N.45.

system of: LM.8.
Partial differences: question in analysis:

J.16.

*Partial differential equations (P.D.E.)

:

3380-3445 : C.34,11,16,78,95,96

:

thsCD.3 : J.58,80,prs26 : JP.7,10,

11: L.36,80,83: M.ll: Z.6,8,18.

*P.D.E., first order : 3399-3410 : A.33,

tr50 : An.55,69 : C.14c,53:„545

:

CD.7: CM.l.,: J.2,17: trJP.22

:

L.75: M.9,ll,th20: Z.22.
* com])lete ]U"imitive connected with

any solution : 3405.
* derivation of the general primitive

and singular solution from the
complete primitive : 3401.

* derivation of a singular solution from
the differential equation : 3403.

with a general first integral : Me.78.

integrntioii by: Abclian func-

tions : C.94.

Cauchy's method: C.81.
* Charpit's method : 3399.

Jacobi's first method: C.79,82 : and
ap. to Pfaff's pr, J. 59.

Jacobi-Hamilton method : M.3.

Lie's method : ]\r.6,8.

Weilcr's method : M.9.
* law of reciprocity : ;M46.

and Poisson's function : C.9I2.
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P.D.E., first order

—

{continued) :

simultaneous: C.68,76 : L.79 : M.4,5.
* singular solution : 3401—3 : J.66.

systems of: A.56 : M.11,17.

theorem of Jacob! : C.45.

3 variables : J.64.

* n variables : 3409 : A.22 : J.60 : LM.
10,11.

with constant coefficients : Mel. 5.

integration by calc. of variations

:

C.14.

z=px+ qii-\-F{li,q): Z.5.

as" 1/* z''^'" q"=A: CM.l.

(l+P,+ ...+Pn'^d.,d,jYZ=Q: Z.13.

*P.D.E., first order, linear: 3381—95:
reduction to, C.15 : J.81 : Me.78.

* Pz.,+Qz,j = B: 3383: extension to

n variables, 3384.

L{px+qij-z)-3Ip-Nq+B = :

C.83.

a(yUz—^ii';)+ l>{zUx—xUz)+ c{xu,j—yHr)

= 1:"Q.8.

* Ff,+Qf,+ ... +BL = 8: 3387.

* z,= L^
; 2,. — fc3+y2 : 3390-1.

* {x-a)z,+ {y-h)z,j = c-z: 3392.

* x2+y2+z^ = 2ax: 3393.

* simultaneous : 3396 — 7 ; ex. 3398 :

J.81.

u = Vy and My =. — Vr-. J. 70.

*P.D.E., second order : 3420—45 : A.33
O.54„70.„78,98 : JP.tr22 : L.72
M.15: Me.76o,77: Mel.3 : N.83

;

P.46 : transf. of, C.97.

in two independent variables : trA
64 : trNo.81 : C.92 ; transf. of, 97

M.24.
in 4 and 6 variables : Mem.13.

* Er+8s+Tt=V, Monge's method

3423: CM.3: N.76: Q.6.

* Br+Ss+Tt+U{rt-s^) = V: 3424

3434—40: J.61.

* Br+Ss+ Tt+Pp+ Qq+Zz = U:
3442.

T+t = 0: A.2 : CM.l: J.59,73,74

L.43.

r+t+h2z = 0: M.l.

* r-aH = 0: 3433.

* v—aH = (a'.,i/), &c. : 3565.

x{r-aH) = 2np: E.13.

r-a"-y-H = 0: B.27,28.

r=q'""t: C.98.

T = q: J.72.

P.D.E., second order

—

(continued)

:

dx {p s\nx)-\-t-\-n {n+ \)z sin2 « = :

L.46.

r (l + r/) = ^l+y2). J.58,.

qh--AH+ ^r^„q = 0: E.22.
V

dx {px)-\-dy [qx) = : Z.28.

construction of explicitly integrable
equations of the form s = zX {ie,y)

:

JP.28.

MIMI^'A
: C.81.

{f{x)+F(y)y^

a2tZxylogX±X = 0: L.53.

s+Pp+Qq+Z=0: Me.76.

* s+ap+hq+ahz=r: 3U4.

{ax+by+c) s+a\q+ h,jip = : A.33.

(a;+i/)2 s+a {x+y)p+ h {x+y) q+cz
= 0: A.33,38.

z2 {zs—pcj)2+ q = F {ij) : A.70.

rt—s^: geoQ.2.

* P = {rt—s2)"Q„ Poisson's eq. : 3441.

(1+r) t+ {l+ t)r-2pqs = : An.53o.

* q (1 +q) r+p (1 +p) t-{p+ q+ 2pq)

s = 0: 3432.

4s2+ (r—^2 = 47-3
; approx. integn.,

C.74.

As+Bq+^ {r,p, q, x, y, z) = : C.93.

(Iog2).,+ «3 = 0: C.36.

«,, = Br '^ where t =
\ ., '''I' ., .

r J \^{2Br^+ A^)

L.38.

* ihi: +U2,j+U2z= (see also " Spherical

harmonics ") : 3551, 362G, J.36 :

Mo. 78.

* «.•+ ^^y+^t; = ^B^/:3: 3552.

* aUx-\-huij-\-cuz-=xyz, &ic.: 3554.

* xu2,+au^—q^xu = Q: 3618.

* a^{u-2r-\-u-2„^-u-:.:)=.U2t: 3629: C.7 :

LM.72.

integration bv change of variables

:

C.74j.

P.D.E., third order, two independent
variables: LM.8: N.83.

P.D.E., fourth order : AAtt = : C.69.

P.D.E., any order : No.73 : C.80,89

:

M.11,13.

X-Znx=^Zny: Z.7.

two independent variables : C.75

:

CP.8.
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P.D.E., any order

—

[continued) :

any number of functions and inde-

pendent variables : C.80.

and ap. to physics : JP.13.

of cylinders : Me.77.

and elliptic functions : J.36 : hyper-

ell., J.99.

integration by definite integi'als : An.
59 : C.94 : L.54.

of dynamics : C.5 : J.47.

Hamiltonian: M.23 : Z.ll.

of heat : L.48 ; of sound, L.38.

integrated in series : C. 15,16.

of Laplace: G.23.

linear: An.77 : C.13,00 : CD.9., : CM.
2: J.69: JP.12o: L.39.

of orthogonal systems of surfaces :

Ac.4: C.77.

with periodical coefficients : C.29;(.

of physics : L. 72,47.

P.D.E., simultaneous : C.92,th78 : LM.9

:

M.23 : Z.20.

linear : J.65.

P.D.E., system of: C.18,74,81.

a'"Zmt = 'A-™z,„^ : A.30,31, by 2 = e'"/(.v.).

Zn, = .C'%„,„),+ Fl(l/)+ ^«i^2 (!/)+ ... +
fc-i^„,(y)

: A.51.

Az„t^{d2^-^diy^- ...Yz = ^: C.94.

dz = Edx+Kdij+Ldp+Mdq+Ndr+
&C.: J.14.

Partial differentials of —^— = J.11.

*Partial fractions: 23.''>, 1915: A.30,66 :

C.46,49.,,783: CM.l : G.2: J.1,5,9,

10,11,22',32,50., : JP.3 : L.46 : Mem.
9: N.45.2,64,69 : Q.5.

Partition of numbers (see also " Nura-
bei's" and " Indeterminate eqs.")

:

AJ.2,5,6 : An.57,59 : At.65 : C.80,

86,90,91: CP.8: J.13,61,85: M.
14: Man.55: Me.78,79 : Mem.13,
geo.ap20,44 : Mcl.l : N.69,85 : P.

50,56,58: Pr.7,8: Q.li;,2,7,15 : Z.

20,24.

by Arbogast's derivatives : L.82.

of complex numbers in Jacobi's th :

C.96.

by elliptic and hyper-elliptic func-

tions : J. 13.

formula of verification : Pr.24.

into 2 ,s{|uares : An. 50,52,54: C.87 : J.

49: LM.8,9: N.54,78,algG5 : odd
squares, Q.19.

into 3 squares : J.40 : L.59,60.

into 4 squares : C.99 : L.68 : Pr.9 : Q.l.

4 odd, or 2 even and 2 odd : Q.l 9,20.

into 5 squares : C.97,98 : J.35.

Partition of numbers

—

{continued)

:

into ten squares : C.60 : L.66.

into p squares : C.39,90 : L.61 : N.
54.

and an integer : L.57.

into the product of two sums of sqs.

:

L.57.

into parts, the sum of any two to be a

sff. : Mem.9.
into 2 cubes : L.70.

into sum or difference of 2 cubes :

AJ.2.
into 4 cubes : lSr.79.

into maximum «th powers : C.95.

into 10 triangular numbers: C.62.

formation of numbers out of cubes :

J.14.

2 squares whose sum is a sq. : E.20 :

N.50.
3 squares, the sum of every two being

asq. : E.17.

4 squares, the sum of every two being
a sq. : E.16.

3 nos., the sum or diff. of two to be a
sq. : Mem.l8.

2 sums of 8 sqs. into 8 sqs. : Me.
78.

a sum of 4 sqs. into the product of 2
sums of 4 sqs. : 'ri.21.

n nos. whose sum is a sq. and sum of

sqs. a biquadrate : E.18,22,24.

a quadi'ic into a sum of squares : N.
80,81.

ttS— ?n« into 3jj2-(-r/3 : N.49.

a square into a sum of cubes : N.67.

a cube into a sum of cubes : E.22,

23.

into 4 cubes : N.77 ; into 3 or 4
cubes, A.60.

7il~— 9)ui~ or its double into 2 cubes :

N.81.
3 nos. whose sum is a cube, sum of

sqs. a cube, and sum of cubes a

s(i. : E.26.

5 biquadrates whose sum is a square
E.20.

of n into 1, 2, 3, &c. different num-
bers : E.34.

of pentagonal numbers : C.96.

a series for the : AJ.6.
tables, non-unitary : AJ.7.

theorems : AJ.6 : C.40,96 : Me.76,80,

83 : pr. symm. functions, G.IO.

Partitions : in theory of alg. forms :

G.19.

numl)cr of for n things : E.IO.

in planes and in space: J.l.

Sylvester's theorem : Q.4.

trihedral of the X-ace and triangular

of the X-gou : Man .58.
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*Pascars theorem : 4781 : AJ.2 : CD.3,
4: CM.4: J.34,41,69,84,93: LM.
8: Me.72: N.44,52,&2: Q.1,4,5,9

:

Z.6,10.

extension of and analogues in space :

C.82,98: CD.4,5,6: G.ll : J.37,75 :

M.22 : Me.85.

ap. to geo. analysis : A.18.
on a sphere : A.60.

Steiner's " Gegenpunkte "
: J.58.

Pascal lines : B.30.

Pedal curve : A.35,36,52 : J.48,50 : M.6 :

Mc.80,81 : Q.ll : Z.5o,21.

circle and radius of curvature : C.84 :

Z.14.

of a cissoid, vertex for pole : E.l.

of a conic : A.20 : LM.3 : Z.3.

central : A.9 : Me.83 : N.71.

foci and vector eq. : LM.13.
negative central: E.20,29 : TI.26.

negative focal : E. 16,17,20.
nth and n—1th : E.18.

of evolute of lemniscate : E.30.

inversion and reciprocation of : E.21.

of a parabola, focal and vector eqs. :

LM.13.
rectification of difference of arcs of :

Z.3.

which is its own pedal : L.66.

Pedal surfaces : A.22,35,36 : M.6 : J.50 :

Z.8.

connter: AJ.5.
volumes of: C.55: A.34 : An.63 : J.

62: Pr.l2.

Pentagon, ths : A.4 : J.5,56 : N.53.

diagonals of: A.57.

Pentagonal dedecahedron : A.25.

Pentahedron of given volume and mini-

mum surface : L.57.

Periodic continued fractions : A.62,68 :

C.968: J.20,33,53: N.68 : Z.22.

closed form of : A.62.

representing quadratic roots : A.43.
with numerators not unity : 0.96.

Periodic functions : A.5 : J.48 : ISr.67 :

gzO.89: Mo.84.

cos a-—I cos 3x+l cos 5« : CD. 32.

doubly: C.32.,40,70,90 : J.88o : L.54.

of 2nd kind : 0.90,98 : gzL.83.

of 3rd kind : 0.97.

monodromic and monogenous :

0.40.

with essential singular points : 0.89.

expansion in trig, series: N.78.

4- ply, of 2 variables : J. 13.

2?i-ply, of n variables : Mo.69.
multiply: 0.57,680.

integrals between imaginary limits:

A 23
real kind of: Mo.66,84.

Periodic functions

—

{co7itmued) :

of 2nd species : M.20.
of several variables : 0.43: J. 71.

in theory of transcendents : J.ll.

of 2 variables with 3 or 4 pairs of

periods: 0.90.

with non-periodic in def. integrals

:

0.18.

Periodicity theory : M.18.
Periods : cyclic, of the quadrature

of an algebraic curve : 0.80,84.

of the exponential e-"^: 0.83.

of integrals : see " Integrals."
law of: 0.96^.

in reciprocals of primes : Me. 733.

*Permutations : 94: Al. : 0.22: 0D.7 :

L.39,61 : LM.15 : Me.64,66,79 : N.
44,71,763,81 : Q.l : Z.IO.

alternate : L.81.

ap. to differentiation and integration

A.21.
of n things : 0.95 : N.83 ; in groups,

L.65.

of Sq and 2q letters, 2 and 2 alike

:

N.74,753.

number of values of a function
through the permutations of its

letters: 0.20,21,46,47: L.65.

successive (" battement de Monge ")

:

L.82.

with star arrangements : Z.23.

*Perpendicular from a point : upon
a line : length of : 4094, t.c4624

:

eq4086, t.c4625 : sd5530,
* upon tangent of a conic : 4366—73.
* upon a plane : 5554.
* upon tangent plane of aquadric : 5627.
* ditto for any surface : 5791—3.

Perpetuants : AJ.7.,.

*Perspective : 1083 : A.692 : G.3 : thsL.
37: Me.75,81.

analytical : A.ll.

of coordinate planes : 0M.2.
* drawing : 1083— 6.

figures of circle and sphere : A.57.
isometrical : OP.l.
oblique parallel : Z.16.

projection : A.16,70.

relief: A.36,70 : K57.
* triangles : 974 : E.29 : J.89 : M.22,16 :

in a conic, Al.
Petersburg problem : A.67.
Pfaff's problem: A.60: 0.94: J.61,82 :

M.17 : th of Jacobi, J.57.

Pfaffians, ths on : Me.79,81.

TV (see also " Expansion of") : 0.95 : E.
30 : N.42,45.

calculation of: A.6,18: E.27 : G.2

:

enJ.3 : Me.73,74 : N.50,56,66.

by equivalent surfaces : N.48.
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IT : calculation of

—

{continued) :

b}'' isopcriracters : N.46.

by logarithms : N.56.

to 20U decimal places : 3.27; to 208,

P.41 ; to 333, A.2I2 ; to 400, A.22 ;

to 500, A.25 ; to 607, Pr.6,11,22.

formulai foi', or values of : A.12 :

J.17 : L.46 : M.20.

TT = 3 + -^ appros. : Me.66 ;

= - log i, J.9.

functions of : p.6 : A.l : C.56,74.

7r-i
: E.27; to 140 places, LM.4.

hyperbolic logarithm of : LM.14.

powers of tt and of tt"' : LM.8.
* incommensurable : 795.

series for : Q.12 : TE.14.
theorem on tt and e : Q.15.

n(,«)=l(l+.^)... {l + {n-l)x]: A.12:

J.43,67.

n {x) and imaginary triangles and
quadrangles: A. 51.

Piles of balls and shells : ISr.72.

Pinseux's theorem : Mo.84.

Plane: J.20,45 : Mem.22.
* equations of : 5645, q.c 5550, p.c 5552 :

Z.l.
* under given conditions : 6560

—

7'^.

* condition for touching a cone : 5700.

* ditto for a quadric : 5635, 5701.

cond. for intersection of two planes
* touching a quadric : 5703.

figiires, relation between : A.55 : J.52 :

M.3.
kinematics of : Q.16.

and line, problems : CD.2 : J.14.

motion of : JP.2 : LM.7.
point-systems : J.77 ;

perspective,

Z.17.

representing a quadric: N.71.

*Plane coordinate geometry : 4001—5473.

Planimeter: A.58 : Mel.2,3 ; Amsler's,

5452,0.77; Trunk's, A.44; polar,

A.51 : N.80.
Planimetrical theorems : A.37,60.

Pliicker's complex surfaces : M.7.

Pliickcrian characteristics of a curve
discriminant: Q.12.

Pliickcrian numbers of envelopes : C.78o.

Point-pair, absolute on a conic : Q.8.

harmonic to two such : Z.13.

Point-plane system : M.23o.

I'oints : in a plane, relation between
four: A.2,26.

* tg.c(i of two : 16G9, 41113.

on a circle and on a sphere : N.82.

of equal parallel transversals: A.61.

Points

—

(continued)

:

four, or lines, ths : CD. 8.

at infinity on a quadric : N.65.

roots in a closed curve : N.68.

in space, represented by triplets of

points on a line : LM.2.
systems: JP.9 : M.6,25 : N.58.

of cubic curves : Z.15.

three : coordinates of, N.42
;
pr, A.8.

*Polar: 1016,4124: A.28: J.58: gzLM.2 :

Me.64,66: N.72,79.
* of conies : 4762 : thsN.58.

of cubic curves : J.89 : L.57 : Mel.5 :

Q.2.

curves, tangents of : N.43.
* developable : 6728.

inclined: N.59.
* line of two points with respect to a

quadric : 5685.

plane: Q.2 : Z.22.
* of a quadric : 5678, 5687 : Au.71

;

of four, LM.13.
of a quartic : L.57.

of 3 right lines : A.l.
* subtangent : 5133.

Polar surface: of a cubic: J.89;

twisted, Z.2.32,24.

of a plane: C.60: N.66.

of a point : N.65.

tetrahedron : J.78 : N.65 : Z.13_.

of a triangle : A.59 ;
perspective. J.

65.

Pole: 'Of chords ]oining feet of nor-

mals of conic drawn from points

on the evolute : N.60.
* of the line Aa+/^^-fi^y: 4671.
* of similitude : 5-587.

*Pole and Polar : 1016, 4124.

Political arithmetic : trA.36—38.
Pollock's geo. theorems : Q.l.

Poloids of Poiusot : CD. 3.

Polyacrons, A-faced : Man.62.
Polydrometry : A.38,39.

*Polygoiial numbers: 287: Pr.l0,ll,12„

13.

Polygonometry : thsAn.52 and J.2,47 :

Mem.30.
Polygons (see also "Regular poly-

gons"): An.cn53,63: JP.4,9 : N.
74: Z.ll ; theorems: A.1,2 : C.

26o: prsCD.62: Mel.2: N.58.
* area of : 748, 4042 : J.24 : N.48,52.

articulated and pr. of configuration,

tr: An.84.

centroid : N.77.

of circular arcs, en : A.3 : J. 76.

classification : Q.2.

lUvision into triangles : A. 1,8 : L.38i,

?,%.: LM.13: rr.8.

of even number of sides : LM.l.
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Polygons

—

(continued) :

family of : N.83.
maximum with given sides : J.26.

of n+ 2n sides, numbers related to:

AM.
of Poncelet, metrical properties: L.79.

semi-regular: JP.24. ; star, A.59 and
L.79,80.

sum of angles of : A.52 : N.50.

Polyhedral function (Prepotentials) :

CP.13..

*Polyhedrons : 906 : C.46o,60—62 : J.3 :

JP.4,9o,15,24 : L.66 : Man.55 : N.
83: P.56,57: Pr.8,9,ll2,12 : Q.7 :

Z.11,14 ; theorems : E.39—42 : J.

18: N.43; F+S = E+2: 906:
A.24: E.20,272.

classification of : C.51,52.

convex: angles of, C.74; regular, A.
59.

diagonals, number of : ]Sr.63.

Euler's theorem : J.8,14 : Mem.lo :

Z.9.

minimum surfaces of : A.58.

maximum : regular, C.6L ; for a given
surface, M.2 : Mel.4.'

regular: ellipsoidal, 0.27; self-conj.,

A.62 ; star, A.62 : thsO.26.,.

symmetrical : J.4 : L.49.

surface of : A.53 ; volume, J.24 : ]Sr.52.

Polj'uomials : geometry of, JP.28 : th

determined from its partial differen-

tial : A.4.

product of two : lSr.44.

system of : L.56

.

of two variables analogous to Jacobi's:

A.16.

value when the variable varies be-

tween given limits : 0.98.

Polyzonal curves, v/?7+ v/F+= : TE.
25.

Porisms : L.59 : P.1798 : Q.ll : TE.3,4,9.

of Euclid: C.29,48,56—59 : L.55.

of two circles : Me.84.
Format's fourth : A.46.
of in- and circum-polygon : Me.83 :

P.61.

of in- and circum -triangle : LM.6,9 :

Q.I.

Poristic equations : LM.4,5.
Poristic relations between two conies :

LM.8.
Position, pr. relating to theory of num-

bers : Mel. 2.

Potential: thsAn.82 : 0.88: G.15 : J.

20,32,63,70,th81,85: M.2,3: N.70.,:

Z.17.

of a circle : J.76.

Potential

—

[continued) :

ofcyclides: 0.83: J.61 ; elliptic. Me.
78.

cyclic-hyperbolic, tables : J.4,63,72,83,

94.

of ellipsoids: J.98 : Me.84: Q.14

;

two homog., J.63,70.

elliptic: J.470.

of elliptic disc, law, ?-"^
: Q.14.

Gauss's f. and theory : Z.84.

gz. of first and second : L.79.

history of : J.86.

of homogeneous polyhedra : J.69.

Jellett's eq. and ap. : Q.16.

Newton's : M.11,13,16.

one-valued: J.64.

p.d.eof: 0.90.

Poncelet's ths : Z.3.

a related integral : L.45.

of a i-ight solid: J.58.

of a sphere : Me.81 ; surface of, Me.
83 : Q.12 : Z.7.

_

surfaces : J.54 ; conicoids, &c., 79.

vector : Me.80.
Pothenot's problem of the sphere : A.

44,47,542.

Powers : angular functions, &c. : J.72-

and determinants, relation : Z.24.

of negative quantics : Me. 73.

of polynomials : JP.15.

Power remainders : M.20.

Prepotentials : P. 75.

Prime divisors of quartics : J.3.

Prime factors ofnumbers : J.51 : N.71,75.

Prime-pairs : Me. 79.

*Primes : 349—378 : A.2,19 : A.J.7 : fAn.

69: C.thsl3,49,50,f63,962: G.5:

J.thl2,thl4,20 : L.52,54,th79 :

LM.2 : M.21 : Me.41: N.46,56: Pr.

5 : Q.5 : up to 109, M.3.

in ar.p : Z.6.

calculation of : J.IO : in 1st million,

M.25.
in a composite number : 0.32.

distribution of, ap. of recurring series

:

0.82.

division of a prime 4n+l into sum of

squares: J.50 : ditto of 8n+3,
7n+2, and 7ii+4, J.37.

even number = sum of 2 odd primes
{'^): E.IO: N.79.

Fibonacci's problem : LM.ll.

of the following forms and theorems
respecting them: 4-lc+ l, ih+S ;

L.60: 6A;-fl; J.12 : 8fc+l ; L.6I3,

62: 8k+ 3; L.58,60,61 4,622 : 8fc+5

or 7 ; L.60,61 : 12^+ 5 ; L.61,63 :

16fc+3; L.61: lQk+ 7; L.60,61:

16;;;+ 11; L.60—62: 16^+ 13; L.

61 : 20fc+3, 20&+7 ; L.63,64 :

6 A
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{continued) :

247v+l, 5, or 7 ; L.6I4 : 24/,;+ ll

or 19; L.60: 24?^:+ 13; L.61 :

40h+ S; L.61: 40A:+ 7or23; L.

603,613: 40A;+11 or 19; L.60:
40A-+27; L.6I3: 120/.:+31, 61, 79,

or 109; L.61: 168/^+43,67, or 163

;

L.63 : vi^+ hn"- with A- = 20,36,44,

66, or 116, and n an odd number;
L.65 : 4Hi-2+5?i2 with vi odd ; L.
66.

general formula for : C.63.

of a geo. form, limit of : C.74.

irreducibility of l+ a'+ .
..+,';''"', when

jj is a prime : J.29,67 : L.50 : N.49.

law of reciprocity between two, ana-
logue : J.9.

* logarithms of (2 to 109) : page 6.

* number infinite : 357 : Mo.78.
number within given limits : A.64 :

C.953: M.2: Z.5.

number of digits in their reciprocals :

Pr.222,23.

number in a given quantity : Mo.59.
product of n, th : N.74.

* relative : 349—50, 355,-8, 373 : J. 70:

L.49.

tables of : from 108 to 100001699 : of

153 of the 10th million :

of cube roots of to 31 places : Me. 78.

of sums of reciprocals and their

powers : Pr.33.

M^a'V for a prime or composite
modulus : Q.9.

totality of within given limits : AJ.4

:

L.52.

transformation of linear forms of into

quadratic forms : C.87.

on that prime number X for which the
class-number formed from the
Xth roots of unity is divisible by
X: M0.74.

Primitive numbers : thC.74.
Primitive roots : C.64 : JP.ll : fL.54 :

taJ.45.

of binomial eqs. : thsL.40 : N.52.
of primes : J.49.

product of, for an odd modulus : J.31.

of unity: C.92.

Abel's theorem : An.56.

divisors of functions of periods of :

C.92.

period, Jacobi's method : C.70.
of primes : J.49 : and their residues,

Mc.85.
sum of, for an odd modulus : J.31.

table, for primes below 200: Mora.
38.

table of, for primes from 3 to lOl :

J.9.

*Principal axes of a body : 5926,'60,
'72,'77: J.5: JP.15: L.47 : N.46.

Prismatoids : A.39 : volume of, Z.23.

Prismoids : A.39.
Prism : volume of, A.6.

*Probability : 309: A.U19,47 : C.65,97 :

CP.9: E.274,30: G.17: 1.15: J.

26.,302,33,34,36,42,50 : L.79 : N.
51,73: Z.2.

theorems : Bernoulli's : LM.5 ; P.62 ;

TE.9,21.
problems : A.61,64 : CD.6 : E. all the

volumes: G.16 : L.37 : Me.4,6 :

Q.9.

de I'aiguille, &c. : L.60.

in analysis : J. 6.

on decisions of majorities : L.38,42.
duration of life : CM.4.

rouge et noil- : J.67.

drawing black and white : L14 : L.41.

errors in Laplace, p. 279, and Poisson,

p. 209: CP.6.
games : A.11 : head and tail ; C.94.

* of hypothesis after the event : 324

:

Mel. 3.

local : P.68 : exE.7.

notation : LM.12.
position of double stars : Pr.lO.

principal term in the expansion of a
factorial formed from a large

number of factors : C.19.

random lines : Pr.l6 : E. frequently.
* repeated trials : 317—21 : C.94.

statistics : L.38.

testimony and judgment : TE.21.
Products : continued : Me.772.

of differences : thQ.15.

of 4 consecutive integers : N.62.
* of inertia: 5906.

infinite, convergency of : A.21 : transf.

of, C.17.

of linear factors : C.9.

of n quantities in terms of sums of

powers : Me. 71.

of 2 sums of 4 squares (Euler) : Q.
16,17.

systems of: L.56.

*Progressions : 79—93 : An.64 : C.20 :

G.62,7,11 : of higher order, G.122.

with n = a fraction : N.42.

*Projection : 1075, 4921 : A.3,6,12 : prsJ.

70: Q.21,prl3.

and new geometry : A.l.

central : G.13 : derivation from or-

thogonal, A.62.

central and parallel, of quadrics into

circles : A. 52.

* of conies : 4921—35 : A.66: J.37,86.

of a cubic surface : M.5.
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(continued) :

of curves : J.66 : Z.lSo: loci of cen-

tres, A. 6.

on spheres : Q.14.

tangents to : cnL.37.

of a curved surface on a plane : J.67.

of an ellipsoid on a plane : J.59.

of figures in one plane : A.l.

gauche : 'N.66.

of Gauss: Mel.2.
* map : Mercator's, 1093 : A.50 : G.18 :

JP.24: N.793.
* of one line on another : 5529 : on a

plane, A.6.
* orthogonal: 1087.

plagiographic : A.8.

of ruled quartics : M.2.
of shadows : N.56.

of skew hyperboloid : Me. 75.

of solids : Man.84.
* of the sphere : 1090 : AJ.2.
* stereographic : 1090: A.30—32 : L.

42,54.

of surfaces on a plane : M.5.

of surface of tetrahedron on a sphere :

J.70.
* of two rectangular lines : 4934.

Projective : correspondence between
two planes and two spaces : G.22.

equations of a surface, relation to

tg.e: E.2.

figures on a quadric : A.18.

generation of alg. surfaces : A.1,2 : of

curve forms, An.14: J.54: M.26
Z.18.

geometry : A.8 : An.75 : At.75..,78

G.r2—14,17: J.84: M.17,18: ths

N.77 : ths of Cremona, G.13.2,14

thZ.ll.

loci and envelopes : G.19.

and P.D. eqs. : A.l.

point series : J.91.

and perspectivity of higher degree in

planes : J.422.

*Proportion : 68 : A.8 : G.6,13 : TE.4.
Pseudosfera : G.IO.

Ptolemy's theorem : A.2,67 : At.l9 : J.

13: LM.12.
ext. to ellipse : A.30 : inverse of, A. 5.

Pure mathematics, address by H. J. S.

Smith, F.R.S. : LM.8.
Pyramid : triangular : A.l,3,21,28,32,

36 : J.3 : volA.14.

vertices of : A.2.

and higher w-drons : prsA.9.

and prism sections, collineation, &c.

:

A.9.

Pythagorean theorem: A.11,17,20,24:

gzJ.26 and N.62.

spherical analogue : A.44 : N.52.

Pythagorean triangles : taA.l : E.20.

^Quadratic equations : 45 : A.24o : with
imaginary coefficients, A.8.

graphic solution : Me. 76.

real roots of : J.61.

solution by continued fractions : L.40.

by successive approximation : N.74.

Quadratic forms (see also " Quadric
functions"): trA.15 : Ac.7 : C.

85 : J.27,f39,54,56,76,86 : L.51o,

73: M.6,23: Mo.682,74,: thsAn.
54: J.53: M.20 and Z.16,19.

Dirichlet's method : Mo.64.

having one at least of the extreme
coefficients odd : L.67,69.

Kronecher's : L.64.

multiplication of : An.60.

number of the genera of : J. 56.

number which belong to a real deter-

minant in the theory of complex
numbers : J.27.

odd powers of sq. root of 1

—

2t]U+t]":

Mel.5.

positive : A.II2.

reduction of : J.39 : L.48,56,57.

relation, anal, investigation : Z.14.

Quadratic loci, intersection of : AJ.6.

*Quadratrix: 5338.

tangent, en : lSr.76.

of a curve : 0.76^.

Quadrangle : prA.55 : 0.95.

of chords and tangents : A.2.

differential relation of sides : Me.77.

dualism in the metric relations on the

sphere and in the plane : Z.6.

and groups of conies : A.l.

of two intersecting conies, area

:

LM.8.
metrical and kinematical properties :

C.95.

*Quadrature: 6871-83: A.26 : An.SOa

CD.ths5,9: E.6: J.34 : L.54

Mem.24,41: N.42,f55,64: N.75
TI.l.

approximate : C.95 : N.58.

of the circle : Me.74 : Pr.7,20.

Cote's method : lSr.56.

with equal coefficients, f. : C.90.

Gauss's method: A.32 : C.84,90o:

J.gn55,56.

from integrals of differentials in two
variables : M.4.

* Laplace's formula, f.d.c : 3778.

of a small geodesic triangle. Gauss's

th: J.16,58.

* by lines of equal slope : 5881.

quadrics: CD.l : L.63 : formed by
intersecting cylinders, An.65.

sphero-conic : J.14.



916 INDEX.

Quadratures

—

(continued)

:

which depend upon an extended
class of d.e with rational coeffi-

cients : C.92.

*Quadric cones : 5590,6618,'64;97 : N.66.

locus of vertex : C.52.

through six points : C.52.

Quadric functions or forms : A.13i2,38

:

C.44,55,78,892,95 : J.47.: JP.28,

arith 32, positive 99 : algL.74 :

Mo.58 : see also " Quadratic
forms."

bipartite: P. 58.

in coefficients and in indeterminate
complexes : J.24.

equivalence of: C.93.

in n variables : Me.2 : disappearance
of products, N.55.

quaternary : An.59 : L.64 : M.5,13 :

whose det. < 0, C.96 ; and corres-

ponding groups of hyperabelians,

C.98.

reduction of : C.91,93,96 : G.5 : to

sum of squares, Mel. 5.

represented by others : C.93.

transf.of: C.86 : CD.4 : G.l : LM.16 :

N.66: Q.17.

reciprocal : J. 50.

invariability in number of pos. and
neg. squares : J.53.

with two series of variables : C.94.

Quadric surfaces : 5582—5703 : A.32,4,

12,16,45,56: An.52,geo60: At.51

:

C.76: CD.3: G.13,14: J.1,18,38,

f42,63,69,89 : JP.6 : L.39,43,50 :

M.2,23: geoMe.74: N.56,57,58..,

593,60,61,77 : Z.5,cnl3.

theorems : An.54 : CD.5 : J.54,85 :

L.43 : Mo.79 : N.632,64o : Q.2,4.

problems: An.61 : C.60: J.73 : N.
58: Q.IO.

analogy with conies : Me. 72.

anharmonic section of : G.12.

bifocal chords of : CD.5.
* central equations : 5599—5672.

* central sections : 5650 : area, 5650 :

axes, 5651.

locus of focus : N.66.
* non-central sections : 5654.

* centre : N.75 : area, 5655.
* centre, coordinates of : 5690: A. 16.

* circular sections : 5596, 5601,'6,'19 :

C.43: CD.l : CM.l: E.30: J.47,

65,71,85: N.51.
common enveloping cone : G.6.

* condition for a cone : 5699.
* conjugate diameters : 5637 : N.42,61

;

parallel, G.1; rectangular sys-

tem, L.58.

Quadric surfaces : conjugate diame-
ters— (cori^i)ut«?) :

* parallelopiped on them : vol. 5648 :

sum of squares of areas of its

faces, 5645 : do. of reciprocals of

the perpendiculars on its faces,

5644.

* sum of squares of their reciprocals

:

5643 : ditto of their projections

on a line or plane, 5646.

construction and classification by
projective figures : A.9.

correlation of points and planes on :

CD.5.
* cubature of : 6126—65 : A.14.
* diameters: 6677,-88.
* diametral plane : 5636

;
gn.eq, 5689.

of constant sectional area : N.43.

director-sphere of : Q.8.

duplicate : CD. 6.

* enveloping cones of : 5664—72, 6697.

equation between the coefTs. : J.45.

without foci : L.36.

focales, a property from the theory

of : L.45.
* general eq. : 6673 : CD.5 : CM.4 : LM.

12,13: M.l: Me.64.
* condition for a cone : 5699.

condition for a sphere : Q.2.

coefficients : A.l.

* generation: 5607—24, N.47,75 ; Ja-

cobi's, J.73.

homofocal : L.60.

indices of points, lines, and planes,

theory: N.704.

* intersection of two : 5660, C.64. : G.

6 : M.15 : Q.IO ; ruled, N.83 ; with
a sphere, ths, N.64.

parameter representation of: M.15.
tangent to : LM.13.

* intersection of three : 5661, J.73 :

TN.69.
loci from : A.27.

* normals of : 5629—32 : C.78 : J.73,83

:

N.63,78 : Q.8.

oblique coordinates : N.82.
* polar plane of : 5681—8.

Pliicher's method : L.S8.

of revolution : N.72,81 ; through 5

points, 66 and 79.

self-reciprocal : M.25 : Z.22.

sections of : J. 74.

similarity of two : CD. 8.

with a " Symptosen-axe": A.60,61.

system of: Q.15; reduc. and transf.,

L.74: Z.6.

* tangents : 5677 : G.12.
* tangent planes : 5026,-78 : CM.l :

cnJ.42: LM.ll: N.46.
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{continned) :

locus of intei-sect. of three : LM.15.
throusjh 9 points or uuder 9 condi-

tions : A.17 : CD.4., : J.24,62,68 :

L.58,59: Q.8: Z.25.

under 8 conditions : C.62.

through 12 points : G.17,22.

through a twisted quintic curve : E.

38.

transformation of two, by linear sub-

stitution into two others, in which
the squares only of the variables

remain : J.12.

principal axes : see "Axes."
principal planes of : L.36 : N.67,71

:

Z.24.

and their umbilics : 0.54.

volume of segment : A.27 ; of oblique

frustum, E.19.

Quadricuspidals : L.70.

Quadrilateral: A.6,48 : Me.66 : thG.5:
prsN.43.

area: N.48; as a determinant, N.74.

between two tangents to a conic and
the radii to the points of contact

:

A.53o.

bisectors, a property : lSr.75.

* and circle, geo. : 733 : Q.6.
* complete : 4652 : A.24,69 : At.63 ; mid-

points of 3 diagonals, collinear,

Me.73.
* and conic : 4697 : ]Sr.75,76.

* and in-conic : tg.c 4907 : Q.ll.

en. with given sides and equal diags. :

A. 5.

convex: A.66; area, Q.19.

Desargues' theorem : Z.24.

plane and spherical : A.2 : Z.6.

and quadrangle: A.l.

right-angled: A.2,3.

with sines of angles in given ratio

:

A.2.
* sum of sqs. of sides : th 924.

th. extended to 3 dimensions : J.56.

Quadruplane : LM.14.
*Quantics: 1620: C.47: J.56: LM.6

:

N.48: Cayley P. 54,56,58,59,61,

67,71 and 78: Pr.7>.,8,9.,ll,15,17,

18,23 : thsCD.6 : J.53 : K53 :

Q.14; Cauchy, Pr.42.

derivatives, relation between 1st and
2nd: E.39.

derivation from another by linear

substitution : 0.42.

of differentials : J.70,71 : Mo.69.

index symbol of : CD. 5.

integration of a rational : C.97.

in linear factors : C.50: L.ths61 : Q.6.

transf. of axi+bij"+cz~-\-dw^,hj linear

subst. : J.45.

Quantitative function, transf. of : CD.3.

Quartic equations : see " Biquadratic."

Quartic curves : An.76,79 : At.52 : C.37,

ths64,65,77,98 : CD.5 : G.14,16 :

J.59: M.thl,4,7,12: prN.56.

aU+6m= 0: M.l.

and Abel's integrals : M.ll.

binodal, mechanical en. of : E.18.

characteristics of a system : C.75.

chord of contact, eq. : M.17.

classification by inf. branches : L.36.

with cuspidal conies : M.19.

with 3 cusps of 1st kind : An.52.

degenerate forms : LM.2.
developable reciprocated : Q.7.

with a double hne : A.2 : C.75.

with a double point : M.19 ; two, C.97. ;

three, Q.18; three of inflexion,

N.78.
with double tangents : J.66.

and elliptic functions : J.57,59.

of 1st kind and intersections with a

quadric : An.692.

o-eneration of C.45 : J.44 ; 3rd class,

J.66 and Z.18.

16 inflexion points of 1st species of :

trZ.28.: E.32.

and in-pentagon, th : M.13.

oblate: C.74.

parameter representation of : M.13.

penultimate : Me. 72.

with quadruple foci : Q.18i;.

rectification : C.87i.

and residual points : E.342.

and secants : M.12.

singularities of : L.75: M.14.

synthetic treatment of : Z.23.

through which one quadric surface

only can pass : An.61.

trinodal : thE.30.

unicursal twisted : LM.14.
Quartic surfaces : A.12: C.70 : G.11,12 :

LM.3,19: M.1,7,13,18,20 : Mo.66,

72: N. 70,873: Q.10,11.

containing a series of conies : J.64.

with a cusp at infinity : LM.14.

with double conic: A.2: M.l,2,4

:

Mo.68.
with eq. Sym. det. = : Q.14.

generated by motion of a conic : J. 61.

Hessian of : Q.15.

and 2 intersecting right lines : M.3.

with 12 nodes : Q.14.

with 16 nodes : J.65,73,83,84,85,86,87,

88: Mo.64; principal tangent

curves of, M.23 and Mo.64.

Steiner's : C.86 : J. 64.1.

with a tacnode at infinity at which
the line at infinity is a multiple

tangent : LM.13.
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:

with triple points : M.24.
Quaternions: C.86,98.>: CD.4 : G.20 :

M.11,22: Me.62,,64,81 : P.o2 : Q.

(J: TE.27,28: T1.21.

ap. to linear complexes and congru-
ences : Me.83.

ap. to tanf^ent of parabola: AJ. la-

elimination of afSy from the conditions

of integrability of Suadp, &c.

:

TE.27.
equations : C.98 ; linear, QQo : of sur-

faces, Joachimstahl's method,
E.43.

vp<pp=0: TE.28: qQ-qQ; = 0,

Me.8.>j.

finite groups : AJ.4.

f. for quantification of curves, sur-

faces, and solids : AJ.2.

geometry of: CD. 9.

integration ths : Me.85.
transformations : Man.82.

*Quetelet's curve : 5249.

Quintic curves : cnM.25.

Quintic equations : AJ.6i,7 : An.65,682

C.46..,48,50,61,62a,73,80.,85 : J.59

M.13".,14,15: P.64: Pr.ll : Q.3

TI.19 : Z.4.

auxiliary eq. of : Man. 152 = P-61 : Q-3.

condition of transformability into a

recurrent form : E.35.

irreducible : AJ.7 : J.34.

functions of difference of roots : An.
69.

reduction of : Q.6.

resolvents of : C.63o.

whose I'oots ai'e functions of a varia-

ble: Q.5.

solution of : An.79 : J.59,87 : N.42 : Q.

2,18.

Descartes' method : A.27.

Malfatti's : An.63.

in the form of a symmetrical deter-

minant of four lines : An. 70.

Quintic surfaces : LM.3.
having a quintic curve : An. 76.

Quintics, resolution of : Q.4.

Radial curves : LM.l : of ellipse, Q.18.

of conies, catenary, lemniscate, &c.

;

E.24.

Radiants and diameters of a conic : C.

26.

*Radical axis (see also " Coaxal Cir-

cles ") : 958, 984—99, 4161 : LM,
2 : Me.66.

of symra. circle of a triangle : A.63.

of two conies : Q.15.

Radical centre : 997.

Radical plane : 5585.

Radii of curvature of a surface : A.ll,

55: Q.12: Z.8.

principal ones : L.47,82 : M.3 : Me.80 :

N.55.
*Radii of curvature of a surface : 5795—

5817 : A.11,55 : Q.12 : Z.8.

* ellipsoid : 5831.

flexible surface : L.48.2.

* principal: 5814—6: L.47,82: M.3:
Me.80: N.55.

constant : Me.64.
* for an ellipsoid : 5832.

equal and of constant sign : C.41

:

JP.21 : L.46,,50.
* Euler's theorem : 5806.

one a function of the other : An.65 :

C.84: J.62.

product constant : An.57.

reciprocal of product : An.52.

sum constant : An. 65.

sum = twice the normal : C.42.

Radius of curvature of a curve : 5134

:

A.cn4,9,31,33 : CD. 7 : J.2,45 : ths

M.17: N.62,74: q.c and t.c Q.12 :

Z.3.

absolute : CM.l.
* circular : 5736 ; ang. deviation, 5746.

* of conies : 1259 : A.9 : CM.l : J.30 :

L.36 : Me.66 : Mel.2 : N.45,682.

at a cusp or inflexion point : N.54.

in dipolar coordinates : Me.81.

of evolutes in succession : N.63.

of gauche curves : l^.QQ.

of a geodesic : L.44 : on an ellipsoid,

An.51.
and normal in constant ratio : N.44.

* of normal section of (.'', y, x) = :

5817.
* of a parabola : 1261,4542.

of polar curves : A.51 : CM.2.
of polar reciprocal : N.67.

of projection of a curve: N.61 ; of

contour of orthogonal projection

of a surface, C.78.
* of a roulette : 5235 : N.73.

transf. of properties by polar recipro-

cals : L.66.

of tortuous curves : Mem.lO.
of circum-sphere of a tetrahedron in

terms of the edges : X.74.

Radius of gyration : 5904.

Radii of two circles which touch three

touching two and two : A.55.

Radius vector of conic : J.30 : N.47;.

Ramifications : E.30;,33,40,pr37,th27.

sol. by a diophantine eq. : Mo.82.

Randintcgral : J.71.

Ratio and proportion: 68; compound,
74.

of a'' : h'' : geo.cnN.44.
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Eatio and Proportion

—

{continued) :

of differences of geo. quantities : O.40.

* limits of: 753.
* of segments of lines and triangles,

geo.: 929—32.
* of two distances, geo. : 926— 8.

Rational : derivation, cubic curve :

AJ.33.

divisors of 2nd and 3rd degrees : N.
45.

functions, development of : AJ.5.

Rationalisation of: alg. fractions:

A.13,33,35.

alg. equations : A.13 : CD.8 : J.14 :

P.14: TL6.
alg. functions : A. 69.

a series of surds (Fermat's pr.) : A.35.

Rational functions : of n elements :

M.14.
infinite form systems in : M.18.

Ray systems (see also " Congruences"):
J.67: L.60,74: Me.66: N.60,6l3,

622 : Z.16.

of 1st order and class and linear pen-

cils : J.67,692: Z.20.

1st and 2nd order : Mo.65 : M.15,17.

2nd order and class : J.92.

3rd order and 2nd class : J.91.

6tli order and 2nd class : J.93.

2nd class and 16 nodal quartics : J.86

:

Mo.64.
complex of 2nd degree and system of

2 surfaces: M.21.
and refraction theory: Q.14.2 : TI.15

—17.
forming a group of tangents to a sur-

face : Z.18.

infinite geometry of : Z.17.

*Reciprocal polars : 4844, 6704 : A.36 :

gzE.24: J.77: LM.2: N.48,49:
num.fG.21.

*Reciprocal : of a circle: 4845.
* cones : 5664, 6670.
* of a conic : 4866— 8.

* of a quadric surface : 5717—8.

radii: M.13.
relations: J.48,79,90 : M.19,20.

* spiral: 6302.
* surfaces : 6704—19 : J.79 : M.4,10 : P.

69.

curvature of : L.77.

degree of : CD.2 : TI.23.

ofMonge: C.42.
* of quadrics : gn 6705 ; central, 5706.

of surface of centres o a quadric :

Q.13.
of the same degree as their primi-

tives : Mo.78.
theorems on conies and quadrics : L.

61.

Reciprocal

—

(continued) :

transformation, geo. : L.71.

triangle : th Q.l ; and tetrahedron,

Q.l.

Reciprocants : LM.172.

Reciprocity: anal., A.7 : geo., CD. 3.

*Reciprocity law: 3446: AJ.l,th2: C.

90., : J.28.,,39 : LM.2 : Mo.58 : d.e,

3446 and A.33.
in cubics : M.12.
history of: Mo.75.
for power residues : C.84; quadratic,

C.24,88: J.47: L.472 and Mo.80,
84,85 ; cubic, in complex numbers
from the cube roots of unity, J.

27,28.

quadratic F^ system of 8th degree :

J.82.

supplementary theorem to : J.44,56.

*Rectangle : M. I. of, 6015.

*Rectangular hyperbola: 4392: Me.62,

66,72: N.42,65.

*Rectification of curves : 6196 : A.26 :

Ac.6: An.69: CR.95 : CD.9 : G.
11 : J.14: L.47: N.ths 53,64.

approximate : M.4 : Mel.4.

by circular arcs : C. 77,85 : L.50 : Mem.
3O2.

by elliptic arcs or functions : J.79 :

Mem.30.
by Poncelet's theorem : C.94.

mechanical : Z.16.

on a surface : Mem.22.

*Rectifying: developable : 5727.
* line : 5726,-61 : N.73.
* plane: 6726.
* surface : 6730.

Reflexion: from a revolving line:

TE.28.
from plane surfaces : A.60.

from quadric surfaces : J.35.

Refraction cui've : A.51.

Regie a calcul : C.58 : N.69.

*Regular polygons: 746: A.21,cn24,39

:

L.38 : M.cn6,13 : N.42,44,47.

convex : Me. 74.

eqs. oE and division into eqs. of lower

degrees, tr. : A.46.

in and circum : N.46 : Q.2.

in space : Me. 76.

spherical: N.60,67.

star: J.65 : Me.74 : N.49.

funicular : N.49.

6-gon : M.83.
7-gon: A.17.

7-gou and 13-gon : M.6.
8-gon : A.6.

12-gon : complete, C.96.
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Eegular Polygons

—

(confinued) :

17-gon: A.6: J.cu2-t,75 : N.74; and
division of the circle, A.42.

eqs. for sides and diagonals : A.40.

Regular polyhedrons :

' 907 : A.llo,47 :

Pr.:34: Me.66: Q.15.
* relation of angles : 9U9 : Me. 74.

volumes by determinants : A.57.

Related functions : M.25.

Relationship problems : E.35,38i.

Relative motion : N.66.

Rents: A.40.
Representative functions : M.18.
Representative notation : Q.6.

Reproduction of forms: C.97.

Reptation : ]Sr.54.

Residues: A.26: C.122,13,32,ap32.,,41,44,

49: CM.l: J.25o,31,89: L.38 : Mel.

4: N.46i,M(?m7U.
ap. to infinite products : C.17.

ap. to integrals whose derivatives in-

volve the I'oots of alg. eqs. : C.23.

ap. to reciprocity law of two primes
and asymptotes : C.76.

of complex numbers : Mo.80.
primes of 5th, 8th, and 12th powers

:

J.19.

biquadratic: C.64 : J.28,39 : L.67.

cubic : A.43,63 : C.79 : J.28,32 : L.76.

quadratic : Ac.l : J.28,71 : Q-1.

ext. of Gauss's criticism : Mo. 76.

of primes, also non-residues : L.42 :

Mel.4.

and partition of numbers : J.6I2.

quintic: C.76: Z.27.

septic: C.80.

of 9exp.(9exp.9) by division by
primes : A.35.

Residuation in a cubic curve: Me. 74.

Resultant alg. : M.16 : ext C.583.

and discriminants and product of dif-

ferences of roots of eqs., relation

:

Me.80.
of two equations : J.30,50,53,64 : M.3 :

P.57,68.

of two integral functions : Z.17.

of n equations : An. 56.

of covariants : M.4.

of 3 ternary quadrics : J.57o : N.69.

ReversiVjle symbolic factors : Q.9.

Reversion of angles : LM.6.
Rhizic curves : Q.ll.

Rhombus : quadrisection by two rect-

angular lines : Mem. 11.

circumscribing an equil. triangle : A.
45.

Riemann's surface : LM.B : M.6,182

:

thsZ.12.

of 3rd species : M.17.

new kind of: M.7,10.

Riemann's surface

—

{continued) :

irrationality of : M.17.

Riemann's function : A.68 : J.83: M.21.

ext. to hyper-geo.-functions of 2 vari-

ables : C.95.2.

^-formula, gz : Ac.3.

*Right-angled triangles : 718 : prs A.2.

with commensurable sides : E.33.

Rio-bt cone : Me.72,73,75,76.

Right line : A.49,57 : fQ.15 : t.c Me.62.

and circle : ths N.56.

coordinates of: G.IO.

and conic : Q.7 ; en. for points of sec-

tion, A.59,66 : N.85.

* quadratic for abscissaj of the points

:

4319.
* tg.e of the points : 4903.

* condition of touching: 4315,4323,

t.c 5017.

* drawn from x'l/' across a conic : quad-

ratic for the segments in an el-

lipse, 4314; parabola, 4221 ;
gen.

eq., 4494; method, 4134.

* joining two points, coordinates of

point dividing the distance in a

given ratio : 4032, t.c 4603, 5507.

* tg. eq. of the point : 4879.

* joining two points and crossing a

conic : quadratic for ratio of seg-

ments in an ellipse, 4310
;
para-

bola, 4214 ; gu. eq., 4487, t.c 4678 ;

method, 4131.

* constants, relations between : sd.

5515.

* coordinates of, relation between the

:

4897.

* and curve : 4131—5 : ths. in which
pairs of segments have a constant

length, C.836; a constant product,

C.82.,83;; a constant ratio, C.83;

ths. in which systems of 3 seg-

ments have a constant product,

C.832.

crystallography : A.34.

* equations of : 4052—66, p.c 4107, t.c

4605—8 ; sd5523, q.c 5541.

geometry of : A.64 : thsJ.8.

* at infinity : 4612—4, tg.c4898.

* cond. for touching a curve : 4900.

pencils of: C.70: L.72 ;
quadruple,

J.67.

and plane : prs CD.l and CM.2 : t.c

and q.c Q.5.

pole of: t.c 4671: tg.e 4674.

* and quadric : 5676 ; harmonic divi-

sion, 5687.

and (luadric of revolution : N.82.

six coordinates of : CP.ll.
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Right line

—

(continued)

:

system of : At.68 : G.9,10,16.

of 1st degree, G.6 ; of 2nd, G.7.

in space : G. 113,12 : L.46.

and planes, geo. of 2nd kind : At.

65.

* three, condition of intersection: 4097:

t.c4617.
* three points lying on, cond. : 4036,

t.c4615.
* through a point : 4073, 4088—9, 4099,

t.c4608.

* condition: 4101.

* and perp, or paral. to a given line :

sd5538— 9.

* through two points : 4083, sd5637 ;

t.c4616, 4789
;

p.c4109 : on a

conic, equation of, ellipse 4324,

parab. 4225.

through four lines in space: A.l :

CM.3 : Gergonne's pr. J.2 and
N.17.

* touching a surface : condition, 5786.

* quadric : 5703.

planes or points through or on given
points, lines, or planes, number
of such: Z.6.

* two: angle between them: 4112;
sd5520, 5553 : CP.2 : N.66.

* bisector of the angle : 4113, sd5540,

q.c5543.

* cond. of parallelism : 4076 ; t.c4618

;

sd5531.

* cond. of perp. : 4078 ; t.c4620 : sd
5532.

* cond. of intersecting on a conic, gn.

eq : 4962.

* cond. of either touching the conic :

4964.

* cond. of intersection : sd5533.

cooi-dinates : 4090, t.c4611.

* shortest distance : sd5534— 6.

drawn to the points of section of a

right line and conic, eq. of : A.69.

* through origin, eq. of: 4111.

under given conditions : C.73,74 :

under four, C.68.

*Right soUd : M. I. of, 6018 : thA.34.

Rodrique's th. : Me.80,84o.

Rolling cones : L.53.

Rolling and sliding solids : geo thsC.46.

Rosettes : lSr.48.

Rotation : CM.3 : LM.32 : infinitesimal,

C.78.

of system of lines drawn through
points on a directrix, modulus
of: C.21.

Roots of algebraic fractions : N.46.

*Roots of an equation (see also "Equa-
tions"): 50,402 : A.14 : CM.2 :

CP.8: E.36: J.20,31: N.42,56:
P.1798,37,64: Q.1,6,6.

of a biquadratic, en : N.44.
by parab. and circle : N.87.

* commensurable : 502 : N.45,th57.

limits to the number : N.59.
* common: 462: C.80,88 : N.55,69.

as continued fractions : CM.3.
continuity of : N.76.

in a converging series : C.23,38.

of cubic : L.44 : N.42.

of cubic and biquadratic : An. 55 : L.

55.

as definite integrals : J.2.

y"-xy"-'-l= : Me.81 : P.64.

as determinants of the coefficients :

A.69,61.
* discrimination of : 409 : A.46.
* equal : 432—47 : CD.5 : E.33 : Mel.l :

P.1782 : Q.9,18.

with equal differences : G.loo.

existence of: A.15 : CD.2 : CP.IO :

E.36: G.2: J.5,44,88: LM.l : Q.
11 : TI.26.

expanded in power series : J.48.

of the form a+Vb+^^c+ : N.45.

forms for quadrics, cubics, and quar-

tics: Z.24.
* functions of the roots of another eq. :

425,430 ;
products in pairs, Q.13.

* squares of differences : 641 : ap,N.

50: E.40.

as functions of a variable parameter :

C.30.

functions of : similar, L.54 ; relation

to coefficients, TE.28.

geo. en of: JP.IO.

in g.p : N.89.

in a given ratio : J. 10.

* imaginary : 408 : geo.cn,A.15,45 : C.24,

86—88: JP.ll: L.50: N.46,47,

682: approx. N.45,53 : Q.9.

between given limits : A.21 : L.44.

Newton's rule : Me.80 : N.67 : Pr.

13.

Newton-Fourier rule : Q.16.
* Newton-Sylvester rule : 530 : C.

994 : LM.l : Me.66 : Pr.l4 : Q.9 :

TI.24.
* incommensurable : 506 (see " Sturm's

th.")

infinite: N.442,45.

in infinite series : A.69.
* integral, by Newton's method of

divisors : 459.

least : M.9 : TE.28.
* limits of : 448 : C.58,60,93 : geo CP.

12 : N.43,45,59..,72,802,8L

6 B
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Roots of an equation

—

{continued) :

uumbei" between given limits : A.l :

G.9: J.52: L.40.

the eq. containing only odd powers
of X : N.63.

* Eolle's th. : 454 : AJ.4 : N.44 : ext
L.64.

RoUe, Fourier, and Descartes : A.l.
number satisfying a given condition :

C.40.

product of differences : Me.80: P. 61.
* of a quadratic: 50— 3.

of a qnartic and of a Hessian, rela-

tion : E.34.

ofquintics: C.59,60 : LM.14 : TI.18.

rationalization of : P.l 798,14.

real: A.36,58: C.61 : J.50 : JP.IO :

N.50 : P.57.

of a cubic: K72: Z.2.

Fourier's th. : N.44.
developed in a series : L.78 : N.56.
limits of :_J.1:_N.53,79.

series which give the number of

:

Z.2.

to find four : An.55.
* rule of signs: 416—23: A.34: 0.92,

98^,99; : N.43,46,47,67,69,79.

separation of: A.28,70 : J.20 : N.680,

72,74,75,802.

by differences : N.54.
for biquadratics : A.47.
for numerical : 0.89,92 : G.6.

simultaneous eqs. : 0.5.
* squares of differences : 541 : CM.l

:

N.42 44 : Q.4.
* sums of powers : 534: E.38 : th J.9 :

N.53,75: gzMe.85: Q.19.

in sums of rational functions of the
coefficients : Ac. 6.

surd forms of : CM.3.
* symmetrical functions of: 534: A.16:

AJ.l : An.54..,55,60 : 0.44,45 : G.
5,11 : J.19,54,81 : Me.81 : N.48,

50,55,66,84: P.57: Pr.8 : Q.4:
TI.25.

do. of the common roots of two eqs.

:

N.60: Z.15.

do. of differences of roots : C.98.

which are the binary products of the
roots of two eqs. : An. 79.

with a variable parameter : 0.12.

which satisfies a linear d.e of 2nd
order: 0.94.

*Roots of numbers: 108: A.17,26,35:
0.58: E.36: Me.75: N.61,70.

* square root: 35: 0.93: N.452,46,61,

70.

* as a continued fraction : 195 : A. 6,

12,49: 0M.2o: L.47: Mc.85:
Mem.lO: TE.5: Z.17.

Roots of numbers

—

(continued)

:

to 25 decimal places : Me.77.
* cube root : Horner's method : 37

:

A.67.

of 2 to 28 decimal places : Me.76,78.
and sq. root, limit of error : N.48.

fourth root : A.30.

11th root as a fraction : A.46.
*Roots of unity : 475—81 : 0.38 : J.40 :

L.38,54,59: Me.76 : N.43o : TE.
21 : Z.22.

cubic roots, alg. and geo. deductions :

0.84.

function theory : Z.22.

23 roots, composition of number 47 :

J. 56,56.

*Roulettes: 5229: Ac.63 : 0.70: 0P.7 :

J.65 : L.80,81 : N.56 : TE.16 : Z.28.

areas of, and Steiner's transf. : E.35.

generated by a circle rolling on a
circle: JP.21.

by focus of ellipse rolling on a right

'line: A.48.

by centre of curvature of rolling

curve : L.69.

Ruled surfaces: An.68 : 0D.8 : G.3 :

J.8: L.78: N.6L
areas of parallel sections : Z.20.

and guiding curve : A.18.
of minimum area : L.42.

octic with 4 double conies : O.60.

P. D.eq. of: Me.77.
quadric : Me.68.

quartic : A.65 ; with 2 double lines,

A.65.

quintic : J.67.

represented on a plane : 0.803.

of species, p z=0 -. M.5.
symm. tetrahedral : 0.62.

torsal line: M.17.
transformation of : 0.88.

*Scales of notation : 342 : J.l : L.48,5ry,

10ry,20ry: Phil. See. of Glasgow,
vol. 8.

Screws: TI.2o.

Scrolls : A.53 : CD.7 : OP.ll : J.20,67 :

M.8 : cubic, M.l : P.63,64,69 :

Pr.12,13,16 : Z.cn28.
condensation of: LM.13.
cubic on a quadric surface : Me.85.

flexure and equilib. of : LM.12.
ruled : A.68 : :; = mxy~, A. 55.

tangent curves of : M.12.
Sections of the cone : 1150.

Sectors and segments of conies and
conicoids : 6019 — 6162 : G.l

:

thsZ.l.

Secular eq. lias real roots : J.88.

Self-conjugate triangle : 4765, 4967 :

G.8 : N.67 : Q.5,10.
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Self-conjugate triangle

—

{continued) :

* of 2 conies : Me.77 ; of 3 conies, 5025.

and tetrahedron in couics and quad-
rics : Z.6.

Self - enveloping curves and surfaces :

Z.22.

Self-reciprocal surface : Mo. 78.

*Self-reciprocal triangle : 1020.

Seminvariants : AJ.7 : E.tli42,6 : Q.

19—21.
critical and Spencian functions: Q.4,6.

and symm. functions : AJ.6.

Septic equations : Mo. 58.

*Series : (see also "Summation" and
" Expansions ") : 125— 9, 149—
59, 248—95, 756—817, 1460, 1471

—2, 1500—73, 2708—9, 2743—60,
2852-64, 2880, 2^11—68, 3781,

3820 : A.4,52,9,14,1S,23,60 : No.39,

472: C.29,pr92: CP.9 : G.IO : J.

3,17 ,34,38,th53 : L.tli56,8l2 : Me.
64: N.59,th62,70 : Q.3 : Z.15,16,

23.

Useful summations

:

a,'2 ir3
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Series

—

(confinned) -.

2 K„ ——- , /3 a pos. integer < a,

Kn = the general term of some
recurring series : C.86.

2 -^ : A.34.

n = 1^
2_',- E fniiy. C.oO.

* 2 (eo'j2,i+ l(^) /n^ J.54; with I- = 2,

2960-1, J.8.

2 sin:^ (2/i+ l) (/> / (2;i+ l)^ : E.39.

^(cos«^)'"'°"/«^ '-^-d

2

* 2
(«"eo^^<^)/«= 2922-3.

7^2 2!?
, L.40.

* 2?^^illii^:2962: M.5.
a3+%2

2 ^„ cos" ^ .

"^
7i^ : Z.l.sm

(a+«/3): 800: Q.3

;

COS

* 2c"^j;^(a+n^),783;

dfe „ c" sin . , „. f,oo

^,7!cos(«+'^^)'^88.

2/(«)^j^%i^: J.42: L.52.

2 if (7>i,«)f«"^"^«0: J.41.

2 |-^ tan ^^ : A.44.

2/(7ia3) : L.61. 2An cj) {n) x", J.25,28.

from
J
X (1— a-)" clx : A.47.

10.from [ ' cos2 x log I±MhJI' ^.^ : G.
Jo 1— sin;<!

of Abel : C.93 : N.85.
ap])lication : thA.48 ; to arith, G.7.
in a.p : see "Arithmetical progres-

sion."

analogous series : N.69.
a.p and g.p combined : A. 9.

with Bernoulli's nos. : An.53 ; and bi-
nomial coefficients, A.23.

Series

—

(conlinned)

:

binomial (see " Binomial theorem") :

analogous series : E.35 : J.32 : N.
82 ; with inverse binomial co-

efficients, Me.80.
coefficients independently deter-

mined: A. 18.

whose coefficients are the sums of
divisors of the exponents, sq. of
this series : Me.85.

combination : A.26.
*= convergent: 239: A.2,6,8,14,26,41,67,

69: No.44: C.10,llo,28o,40,43o: J.

2,3o,ll,13,16,22,42,4.5,76 : L.39—
42: M.10,20—22: Me.64: N.45,
46,67,69,70,: P.87 : Z.10,11.

and of d.i with a periodic factor

:

L.53.

power-series : A.25.
representing integrals of d.e : C.40o.

representing functions : M.5,22.

in Kepler's problems : Ac.1799.
multiplication of : M.24.
and products, condition : M.22.
whose terras are continuous func

tions of the same variable : C.36
with constant ultimate differences

Pr.5,.

converted into continued fractions

J.32,33 : Mem.9 ; into product
of an infinite no. of factors, J.12
L.57 : N.47.

in cosines of multiple angles : C.44
Mem.15.

and definite integrals : L.82 : Man.
46.

derived : A.22 ; from tan" ' 6, A.16.
developed in elliptic integrals of 1st

and 2nd kind : An.69.
= difference : 264 : A.23,24.

differential transf. and reversal of:
Pr.7.

and differentiations : A. 10 : J.36.

Dirichlet's f. for 2 / - )
^-

: C.21 : L.
46. \ 2' I "

discontinuous: CP.6 : L.54 : Me.78,
82 : N.85.

divergent: A.64 : No.68 : C.17.20:
CP.8,10 : J.l 1,13,41 : M.IO : Z.IO.

division of : AJ.5.
double: C.63.

doubly infinite : CD.6 : M.24.
ext. of by any parameter : A.48.
factorial : 268 : Mora.20 : N.67 : TE.

20.

of fractions : L.40.

Fourier's: A.39 : C.91,92,96 : CM.2 :

Z.27.

of Gauss and Heine : C.73 : G.9.
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Series

—

{continued)

:

*" Gregory's : 791.

harmonic periodic : J.23,25.

of Hermite, a th. : E.29.

from infinite products : Me. 783.

integration of infinite : A.3.

irrationality of some : J.37.

involving two angles : L.74.

Klein's higher : An. 71.

of Lagrange: C.23,343,522 : L..57 : N.
76,gz86 : Q.2 ; remainder, C.53.

an analogous series : C.99.

of Lambert ; S A.IO: An.68

J.9 : Z.6.

Laplace's (d.c) : C.68.

of Laplace's functions: SY,,, C.882

;

2» Y„, C.44.

in Legendre's function X„ : An. 76 :

0.44.

of Leibnitz : J.89.

limits of : A.20 : Me.76 ; remainders,
C.34 ; by the method of means,
J.13.

from log(l+ft'), (l+fp)" and e^ by in-

termitting terms in the expan-
sions : A.21.

modular : C.19.

multiple : 0.19.1 ;
" regulateur " of,

0.44.

neutral: CP.ll.

obtained by inversion from Taylor's

series : Mem.11.

of odd numbers : A.64.

a paradox : Me. 72.

periodic, critical values of : OP. 8.

of polynomials : 0.96.

of posterns : G.6.
* of powers (see also " Numbers ") :

277: 0.87: G.2: cubes, L.64 and
65: M.23: Mo.78: Q.8: Z.l.

approximate fractions : J.90.

of a binomial : Mem.13.

in a convergent cycle, constants
in : M.25.

like numbers : N.71,77.

or multiples of 3 : A.27i:.

of terms in ar.p : L.46.

products of contiguous terms of

:

Mem. 18.

of reciprocals : Q.8.

* recurring: 251: doubly, An.57 : J. 33,

38 : Me.66 : Mem.24,26 : N.84 : of

circles and spheres, N.62 : f,Z.14.

represented by rational fractional

functions ; J.30.

* reversion of: 661: J.52,54: LM.2

:

TL7.
of Schwab : N.59.

Series

—

(contimied)

:

self-repeating : CP.9.
of spherical functions : An.75.

of Sterling, for transformation : J. 59.

with terms alternately positive and
negative : 0.64.

whose terms are the coefficients of

the same power of a single vari-

able in a multiple integral : 0.20.

in theory of numbers : O.89o.

transformation of : 0.69 : J. 7,9 : into

a continued fraction, Mem.20,

Z.7; of ^lf{x,t)dt and others,

0.13.

in a triangle problem : A.64.

trigonometrical (see above) : A.63 :

Ac.2: 0.95,97: M.4— 6,16o,17,22,

24 : J. 71, 722 : representing an
arbitrary function between given
limits, J.4 ; conversion in mul-
tiples of arc, L.61 ; symbolic
transf. of, Q.3.

triple: G.9.

two infinite, multiplication rule : J. 79.

*Seven-point circle : 4754c.
Seven planes problem : N.56.
Sextactic points of plane curves : Pr.

13,14.

Sextic curves : ax'^+ byi-\-c^ = 0, Q.16 ;

mech.cn, LM.2.
bicursal : LM.7.
and ellipse, pr : J.33.

Sextic developable : Q.7,9.

Sextic equation : 0.64: M.20.
irreducible : J. 37.

solution when the roots are connected
by(a-/3)(6-y)(c-a)+
(a-b) {(3-g) iy-a) = : J.41.

Sextic torse : An. 69.2.

Sextinvariant to a quartic and quart-
invariant to a sextic : AJ.l.

*Shortest distance : between two
lines : 5634 : A.46 : G.6 : N.49,66.

between two points on a sphere : A.
14 : N.14,67,68.

from the centre of a surface : A.63.
of a point from a line or plane : N.44.

Shortest line on a surface : A.23,37,64;
in spheroidal trigonometry, A.40.

Signs: OP.2,11: J.12 : Me.73 ; {=),
Me.76; (±), OD.6,7: Me.85 : N.
48,49.

Similarity: of curves and solids:

A. 13.

Similarly varying figures : LM.16.
Simson line of a triangle : E.29.

*Simpson's f. in ai-eas : 2992 : 0.78.
Sines of higher orders : 0.914,92.^ ; ap.

to d.e, 0.903,91.
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Sines, natural, limit of error : N.433.

Sin^<^-^: geo.N.75.
4

Qm-' {.v+ iy) : Q.15.

Sine and cosine : extension of mean-
ing: A.31: C.863.

* in factors : 807 : A.27 : J.27 : L.54.

of infinity: CP.8 : Me.71 : Q.ll.

of multiple arcs (see also " Expan-
sions ")

: CM.4 : TI.7.

* of particular angles: 690; 3'',6^...to

90°, N.53.

sums of powers : An.l.

* tables, formation of : 688 : A.66 : N.
422.

values near and 90° : G.9.

* of{a±h): 627; A.6,21,36.

Six-point circle of a triangle: Me.82,

83,.

Six points on a plane or sphere : LM.2.
Skew surfaces : see " Scrolls."

Sliding rule: LM.6.
*Small quantities of second order : 1410.

Smith's Prize questions, solutions : Me.
71,723,-4, 77.

Solid angle: A.42; section of, No.l9.
Solid harmonics : Me.80.
Solid of revolution : A.60,67.
between two ellipsoids : A.2.

* cubature and quadrature of: 5877

—

80 : A.68 : N.42.
Space homology : G.20.

Space theories: An.70: LM.14 : P.70

:

Z.17,18.

absolutely real space : G.6.

continuous raanifoldness of two di-

mensions : LM.8.
space of constant curvature : An. 69,

73: J.86: M.12.
Pliicker's " New geometry of" : G.8:

L.66: P.ll: Z.11,12.

Grassmann's " Ausdehnungslehre "
:

AJ.l: CP.13: M.7,12: Z.24 ; ap.

to mechanics, M.12.

non Euclidean or w-dimensional : A.
6,29,68: ths64: A J.4,5 : An.71 :

C.75: G.6.10,12,23 : M.4,5.,-7 :

Me.th.s68,72 : Pr.37.

3-dim., J.83; 4-dim., J.83, M.24; 6-

dim., G.12.

angles (4-dimen.) : A. 69.
areas and volumes : A.69 : CD. 7.

bibliography of: AJ. 1,2.

circle: G.12,16,18.

conies : AJ.5.
curves : C.79 : M.18.
Fcuerbach's points : G.16.

hyperboloid : Z.13.

Space theories

—

{continued)

:

imaginary quantities : Z.23.

loci (anal.) : C.24.

planes (4-dimen.) : A.68.

plane triangle : A.70.
point grou])S : thsAc.7.

polar s and alg. forms : J.84.

potential function : An.82,83.
proiection; M.19 ; 4-dim. into 3-dim.,

AJ.2.
quadric, super lines of (5-dim.) : Q.12.

quaternions : CP.13.
regular figures : AJ.3.
reversion of a closed surface: AJ.l.

representation by correlative figures :

C.8L,.

simplicissimum of nth. order : E.44.

screws, theory in elliptic space : LM.
15,16.

21 coordinates of : LM.IO.
Sphere : geo,C.92 : ths and prs M.4

:

q.cMe.62.
and circle : geo,A.57.

en. from 4 conditions : JP.9.

cutting 4 spheres at given angles

:

An..51 : N.83.
cutting a sphere orthogonally and

touching a quadric, locus of cen-

tre : TI.26.

diameters, no. of all imaginable: A.24.
* equation of: 5582.

5 points of: J.23: N.84.

illumination of: Z.27.

kinematics on a : LM.r2.
sector of (eccentric) : A.65.

small circle of : Me.85.

touching an equal sphere : E.31,32 ;

as many as possible, A.56.

4 spheres, pr. : L.46.

4 touching a 5tli : At.l9.

8 touching 4 planes : E.19 : N.50.

16 touching 4 spheres : J.37 : JP.IO :

Me.cn82 : Mem.lO : N.44,47,65,

66,84: Z.14,.

* volume, &c. of segment and zone

:

6050: A.3,32,39: An.57 : P.l.

*Spherical : areas : 902.

catenaries : J.33.

class cubics with double foci and
cyclic arcs : Q.15.

conies : thQ.3 ; and quadrangle, Q.13

;

homofocal, L.60.

coordinates : CD.l : CM.l,ap2 ; ho-

mogeneous, G.6.
* curvature: 5728,'40,'47 : thE.34.

curves : A.35,36 : Mem.lO.
of 3rd class with 3 single foci : Q.

17.

of 4th cla.ss with quadruple foci

:

Q.18.
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*Spherical : curves

—

(continued) :

of 4th order : J.43.

with eUiptic function coordinates :

J.93.

equidistant : An. 71 : J.25.

and polars : No.63.

rectification of : An. 54.

elHpse: t.cQ.8.

quadrature, &c. : L.45 : N.484,54.

epicycloid : G.12.

excess: Mel.2 : cn,N.46 : f,Z.6.

of a quadrilateral : Me.75.

figures, division of : J.22.

geometry -. G.4 : J.6,8,132,thsl5 and
22 : M.15 : N.48,585,59 : Q.4 : TI.8.

harmonics or " Laplace's functions "
:

An.68o: C.86,99: CD.l : CM.2 :

J.26,56,60,geo 68,70,80.82,90 : L.

45,48 : LM'.9 : Me.77,78o,8o: P.57 :

Pr.8,18: Q.7.: Z.24.

analogues of : J.66 : LM.ll.
and connected d.i : Q.192.

as determinants : Me. 77.

and homogeneous functions : CM.2.
and potential of ellipse and ellip-

soid : P. 79.

and ultra-spherical functions : Z.12.

P" (cos y), n = QO : J.90.

f Pi^i"'(^/x, &c. : Q.17.
•'-1

hl^ by continued fractions : JP.28
;

£ Qn Qn- : P.70.

loci in spherical coordinates : TE.122.

oblong : An.52 ; area, J.42.

polygonometry : J.2.

polygons in- and circum-scribed to

small circles of the sphere, by
elliptic transcendents : J. 5.

quadrilateral : A.4,40 : th,E.28 : N.45.

surface of : A.342,352.

quartics : foci, Q.21 ; 4-cyclic and
3-focal, LM.12.

representation of surfaces : C. 68,75,

94^,96 : M.13.
surface represented on a plane : Me.73.

triangle: A.9,ll,20,ths50,65: E.f30 :

J.10,pr28: JP.2.

ambiguous case : Me. 77,852.

angles of, calculated from sides :

A.51.
by small circles, area : N.53.

* and circle : 898 : A.29,33.

cos(^+B+C'), f. : Me.72.
and differentials of sides and

angles : A.10.

and ex-circles : 898 : E.30.

graphic solution : AJ.6.

Spherical : triangle

—

{continued) :

and plane triangle : A.l ; of the
chords, A.33 : An.54 : Z.l.

*" right angled : 881 : A.51 ; solution

by a pentagon, A. 11.

of very small sides : N.62.
two, relations of sides and angles

:

A.2.
*= trigonometry: 876: A.ths2,ll,13,28,

37: J.prs6,132: LM.ll: N.42

:

Z.16.

d.e of circles : Q.20.
* cot a sin b : Me.64 ; mnemonic, 896 :

CM.3.
derived from plane : A.26,27.

* formulae : 882 : A.5,16,24,26 : N.45,
46,53 : graphically, A.25: ap. in

elliptic functions, A.40.

geodetic reduction of a spherical

angle : A.5I2.
* Cagnoli's th. : 904.
* Gauss's eqs. : 897 : A.13,17 : J.7,12

LM.3,13.
Legendre's th. : C.96 : J.44 : L.41 :

M.l : N.56 : Z.20.
* Llhuillier's th. : 905 : A.20.
* Napier's eqs. : 896 : A.3,17 : CM.3 :

LM.3,13.
* Napier's rules : 881.

supplement to, and geodesy : A.36.
*Sphero-conics : 5655a: tg.c,Q.8,9o: Me.3:

Z:6,23.

homofocal: C.50.

mechanical en : LM.6.
Sphero-conjugate tangents : An. 55.

Sphero-cyclides : LM.16.
Spheroidal trigonometry: J.43: M.22.
Spheroidic transformation f. of Bessel

:

A.53.
*Spheroids : 5604, 6152 ; cubature, 6158,

A.2.

Spieker's point : A. 58.

Spiral : A.28 : L.692 : N.79 : Z.14.
* of Archimedes : 5296 : A.65,66.

conical : N.45.
* equiangular : 5288.
* hyperbolic : 5302.
* involute : of circle, 5306 ; of 4th order,

C.660.

Squares : J.22.

whose diagonals are chords of given
circles : A.64.

maximum with given sides : J.25.

maximum in a triangle : J.15.

whose sides and diagonals are

rational : J.37.

whose sides pass through 4 points :

A.43.
64 transformed into 65, geo. : Me. 77.

sum of three : G.16 ; of four, L.57.
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Standards of length : Pr.8,21.

Statistics : Z.26.

Steiner's ths. and prs. : A.53 : J.13,14,16,

18,23,25,36,71.73 : N.48,562,593,62

:

Hexagon, A. 6 : Ray - systems,

CD.6.
Stereographic projection : A.39 : JP.

16: L.46.

Stereograms of surfaces : LM.2.
Stereometry: JP.I4 : thsA.10,31,43,57 ;

J. 1,5.

multiplication : J.49.

quadric and cubic eqs. and surfaces :

J.49o.

Sternpolygon and sterupolyhedron : A.
13.

Stigmatics : see " Clinant."

Stewart's geo.ths. : CM.2 : L.48 : TE.
2,15.

Striction lines of conicoids : Z.28.

Stropboids : AJ.7 : N.752.

*Sturm's iuuctions: 506: A.62 : C.36,

62,68., : G.1,20 : J.48 : L.46,48,

67: Mo.58,78: N.43,46,52,54,66,

67,81: Q.3.

and addition tb. for elliptic functions

of 1.St kind: Z.17.

ext. to simultaneous eqs. : C.35.

and H. C. F. : Pr.6.

and a quartic equation : A.34.

and tbeir reciprocal relations : Mo.
73.

remainders : J.43,48.

tables: P.57 : Pr.8.

ap. to transcendental eqs. : J.33.

ap. to transf. of binomial eqs. : L.42o.

Subdeterminants of a symra. system :

J.93: M.82.
Subfactorial n: Me. 78.

Subinvariants= seminvariants to bin-

ary quantics of unlimited order :

a:j.5.

Subnormal: 1160.

Subsidiary angles : 726, 749.

Substitutions : A.62 : C.ths66 and 67,

74,76,79 : G.9,10.,,11,14,19 : L.65,

72: M.13.

ap. to functions of six or fewer vari-

ables : C.21.

ap. to linear d.e : C.78.

by approximation, of the ratio of the

variables of a binary quantic to

another function of the same
degree : C.80.

canonical forms of: L.72.

and conjugate substitutions : C.2l5,22.

of the form (r) = e {r"--+ar~) :

M.2.
linear: C.98: J.84 : M.19,20:.

Substitutions : linear

—

{continued) :

of a determinant : An.84.

and integral : M.24.
powers and roots of : C.94.

reduction of : C.90 : JP.29.

for reduction of elliptic functions

of 1st kind : An.58.
successive : A.38.

which transform quadric functions

into others which contain only the

squares of the variables : J.57.

of n letters : geo. for n := 3,4,5,6, and
mystic hexagram : An.83.

no. of in a given no. of cycles : A.68.

permntable amongst themselves

:

C.2I2.

of equidistant numbers in an integral

function of a variable : N.51.

of systems of equations : N.81.

of six letters : C.63.

a th. of Sylvester : A.J.I.

which admit of a real inversion : J. 73.

which do not alter the value of the

function : 0.21;.

which lower the degree of an eq. in

two variables and their use in

Abclian integrals : C.15.

Sum and difference calculus : A.24i:.

Sum of squares of lines drawn from a

point to cut a curve in a given

angle : J.11.

Summation of series (see also

"Series" and "Expansions"):
3781 : A.IO—13,26.,.30,55,62 : No.
84: C.87,88: J.IO',31.33: LM.4,
7o: Mem.20,30:P.1782,1784—7,—
9i,—98, 1802,—6,—7,—11,—19 :

Pr.l4.
* approximate : 3820 : J. 5 : 1.24.

of arcs : A.63.
Bernoulli's method : J.31.

Cauchy's th. : M.4.

G {n,r) products of a, a+ h, ... a+
{n-l)h: Q.18.

by definite integrals : A.4,6,38 : J.17,

38,42,46,74: Man.46 : Mem.ll.
of derivatives and integrals : C.44:.

* by differences : 264 : Mem.30.
by differential formulae : L.31 : Mem.

15.

by ^ (.(•) : 2757.

formulaj : A.47 : An.55 : J.30.

Maclaurin's, C.86., : f{A,D)DF{n),
Q.8: Lagrange's, J.34 : P.60

:

Vandermondc's, L.41.

of terras of a high order : C.32.

Kummer's method : C.64.

Lejcunc DirichlcL's : CD.9.

periodic : J. 15.

selected terms : Me.75.
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*Summation of series

—

(continued)

of sines and cosines : J.4.

* theorem re £x/(a.,Z;)& 2708.

of transcendents in alg. diiferentials :

J.19.

trigonometrical and infinite : Me.64.

Superposition: TE.21,2.3.
* of small quantities : 1515.

*Supplementary : angles : 620.
* chords: 1201.

cones : thN.48.
* curves: 4917—20: Man.54.
Supplement integrals : J. 98.

*Surds: 108: N.47.
quadratic (see " Boots of numbers.")
V {a~+b^), V (a~—h-) approximately :

J.13.

* V(a±Vh): 121: A.3,13 : J.17,20

:

Mem.lO: N.46,48.

* l/(a± Vh) : 122
; y (a± ^^h), 124.

^Surface of centres : 5774 : A.68., : An.
67: 0.70,71-.: E.30: L.41,58:
LM.4: M.5,16.

curvatures of the two ; relation : C.
74,79.

the two focal conies of a system of
homofocal quadrics : CSs.^.

of a quadric : Q.2.
bitangents of : Q.13.
model of : Mo.62.
principal axes of : N.48.

Surface curves : A.39,60 : An.54 : C.21,
80,: L.66: G.19 : J.2: N.54,84.

an an alg. surface : An.63.
on cubic surfaces : M.21.
curvature of : lSr.65.

on a developable : An.57 ; the oscu-
lating plane making a constant
angle with it, L.47.

on an ellipsoid : An.51 : CD.3 : geoL.50.
groups of rational : M.S.
of intersection : M.2 : N.68 ; of 2

quadrics, A. 16.

multiple : G.l^j ; singularities of, M.3.
on a one-fold hyperbola : CD. 4.

on quadrics : N.70.
rectification of : A.36.
relation to their tangents : C.82.
on surfaces of revolution : Z. 18,28.
and osculating sphere : 0.73.

*Surface or surfaces : 5770 : A.14,f32,41,
59,60,62 : An.51 — 3,55,60.,61,65,
71: At.57: C.17,33,37,49',ths58,

61,64,67,69,80,86,99.,: G-.3,21 : J.

9,thsl3,58,63,64,85,98
: JP.19,24,

25,33: L.44,47,51o,60 : M.2,4,7,9.,,

cnl9: Mo.82,833,84 : N.53,65o,68,
72: TI.14: Z.74,8,20.

*Surface or surfaces

—

[continued) :

^' + ?f+^_!^l: A.35;
a h c

a = h = c = \,K21.
areas of: G.22 : K52.
argument of points on : LM.16.

complex : M.5 ; of 4th order and
class, M.2.

whose coordinates are Abelian func-
tions of two parameters : 0.92 :

M.19.
of corresponding points : M.4.

* cut orthogonally by spheres : 3393 :

0.36.

deficiency of : M.3.
* definitions: 5770.

determined from two surfaces of cen-
tres : A.68.

Dirichlet's problem : An. 71.

Dupin's theorem : 0.74 : 0M.4 : Q.12.
doubly circumscribing an «-tic sur-

face : J.54.

of elliptic cone : An.51.
of equal slope : 0.98 : lSr.65.

* equation of: gn5780 : A.3 ; for points
near origin, 5803.

of even order : A. 70.

families of : O.70 : Me.72.
flexure of : J.I82.

Gaussian theory of: LM.12 : N.52.
generation of : 0.94,97 : G.9 : J.49., :

L.56,83 : M.18.
implexes of : 0.79,82.

of minimum area : 0.57 : J.8,13 •

L.59: Q.14.
of nth order : cnM.23 ; 2nd, 3rd and

4th, Mel.6.

of normals : ]Sr.59.

whose normals all touch a sphere or
conical surface : JP.4 ; do. for
surface of revolution, JP.5.

number under 9 conditions : C.62.

octic of zero kind : G.12.
order determined : Me.83.
one-sided : A.57.

parabolic points of: 0D.2.
and p. d. e : C.13 : CD.2 : Z.7.

and plane curves : J.54,72 : M.7.
and point moving on it : L.76,77.

and point at 00 on it : J.65.

relation of in Eiemann's sense: M.7.
representation of: J.83.

on a plane : An.68,71, 76.
one upon another : An. 77.

of revolution : 0.86 : G.4.
* areas and volumes : 5877,—9 : A.48.

of a conic about any axis in space :

JP.23 : L.63.
of constant mean curvature : L.41o.

6 c
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*Surface or suviaccs— (continued)

:

meridian of : a lemniscate, G.21 ;

generation of, C.85.

meridian and contour curves of:

Z.21.

oblique : Q.O.

passing through a given line, tan-
gent plane of : N.8-i.

in perspective : JP.20.
of reg. polygon about a side, vol. :

A.67.

quadric : A.55 : L.60.

shortest line on : A.38.
superposable : C.80: IST.Sl.

Riemann's symmetrical; and perio-

dicity modulus of the related

Abelian integral of the 1st kind :

Z.28.

ruled, with generators part of a linear

complex : 0.84.

ruled octic with 5 quartic curves

:

C.61.

screw, parallel projection of : cnZ.18.
section of, homogeneous eq. : LM.15.
self-reciprocal : LM.2 ; quadric, E.36.
sextie of first species : M.21.
singularities of: A.25: An.79 : CD. 7:

CM.2 : J.72 : M.9 : N.64 : Q.9.

cubics : M.4; and quadrics, A.17.
16 singular points : 0.929.

solutions by infinites of 3rd order

:

geoO.802.

Steiner's: LM.5,14 : M.S.
touching a plane along a curve:

0D.3: 0M.2.
touchinga fixed surface always : G.20.
transformation of: M.19.
and transversal, th. : N.49.
trapezoidal problem : Z.14.

two series of: prsAn.73.
web-system : J.82.

which cuts the curve of intersection

of two alg. surfaces in the point
of contact of the stationary oscu-
lating planes : L.63.

Surveying : N.SOj : geo. th.A.37.
Symbolic geometry : (Hamilton), CD.

1-4.
Symbolical language : E.282.

Symmedian line : E.42 : N.83— 5 : Q.2O2.

*Symmedian point : 4754c.
Symmetrical : conies of triangles :

A.59.
connections by generating functions :

J.53.
* expressions : 219.

figures : J.44.

functions: 0.76: J.69,93,98 : LM.13:
Q.20 : Z.4.

Brioschi's th. : 0.98.

Symmetrical

—

(continued)

:

of the common sol. of several eqs.

:

An.58.

multiplication of : Me.85.
of any number of variables : 0.82.

simple and complete : M.18,20.

tables of : AJ.5 ; of 12-ic, AJ.5.
points: of 1st order: A.60 : cnA.64.

of tetrahedrons : A.60.
of a triangle : A. 583.

products : P.61 : Pr.ll.

with prime roots of unity : Me.85.
tetrahedral surfaces : Z.ll.

Symmetry
;
plane and in space : N.47.

Synthesis : 0.18.

*Synthetic division : 28 ; evolution,

Me.68.
*Syntractrix : 5282.

Tables : mathematical ; Sect. I., con-

tents, p. xi.

of Bernoulli's nos., logarithms, &c.,

calculation of: J.2.

for empirical formulae : AJ.5.
in theory of numbers : Q.l.

of e^, e"-^, logioe-*', logioe'-"': CP.13.
Tac-loci: Me.83.
Tamisage: LM.14.

*Tangencies (circles, points, and lines) :

937 : Pr.9 : Q.2,8.

Tangential eq. with the intercept and
angle of inclination for coor-

dinates of the line : P.77.

*Tangent cone at a singular point : 5783.

*Tangents: 1160: cnA.4.33 : J.562,73:

K42: Z.23.

and contact-point in loci and en-

velopes : 0.85 : cnISr.57.

conjugate (and Dupin's th.) : An.60.

construction of: M.22 : N.80.

double: Q.3.
* eq. of ; to find it : 4120,-32; Me.66.

faisceaux of : N.50.
cut by lines at a constant angle : A.43.

locus of intersections of three : LM.
15.

at a multiple point, en. : JP.13.
* and normals : 5100; relations, A.51.

parallel: N.45.
* segments of : 4307 ; equality of, O.8I4.

* of a surface : 5781 ; at singular points :

5783: M.11,15.

*Tangent planes : 5770,-82
;
p.c5790 :

0M.4: N.45.
* and surface ; intersection of : 5786

—9 : L.58.

to equidistant surfaces : cnZ.28.

triple: 0.77.

tan 120° : P.8,18.

tan X as a continued fraction: Z.16;

do. tan^i.c, Me. 74.
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tan nx : i. in N.53.
tan-i (ic+iy): Z.14.

*tanh S : 2213.

tantochrone: L.44 : An.63.

*Taylor's theorem : 1500,—20,—23 : A.
8,13: AJ.4, extl: C.58 : CM.l :

J.ll: L.37,38.45,o8,gz64 : M.2U
23: Me.724,73,75 : Mem.20: N.
52,63,70,743,79: TA.7,8 : Z.gz 2

and 25.

analogues of: J.6.

convergence of : C.60,74— 6 : J.28 :

L.73.

Cox's proof: CD.6.
deductions : G.12.

for an imaginary variable : Me. 79.

kinematic meaning of : J.36.

reduced forms of : C.84.
* remainder : 1603 : An.59 : C.13 : J.17 :

K60,63: Z.4.

a transformation of : C.78.

Terminology : LM.14.

Ternary bilinear forms : G.21.
Ternary cubics : AJ.2,3 : C.56,90 : CD.l

:

J.39,55 : JP.31,32: L.68 : M.1,4,9.

in factors : An. 76 : Q.7.
as four cubes : LM.IO.
parameter of the canonical transf. :

LM.12.
reduction to canonical form: C.81.
transformation of : J. 63.

Ternary forms : At.68 : G. 1,9,18.

order of discriminant : LM.3.
with vanishing functional deter-

minants : M.18.
Ternary quadric forms : At. 65'. : C.92,

94,96 : G.5,8 : J.20,40,70,77 ; transf.
of, 71,78 and 79 : L.59,77 : P.67.

and corresponding hyperfuchsiau
functions : Ac.5.

indefinite: J.47 ; with2 conjug. inde-
terminates, C.68.

representation by a scpiare : An. 75.

simultaneous system : J.80.

table of reduced positive : J.41.

Ternary quartic forms : C.563 : An.82 :

M.17i,20.
Terquem's tb. : Q.4.
Tesselation pr. : LM.2.
Tesseral harmonic analogues : CP.13.
Tetradrometry, differential f . : A.34 :

Z.5.

Tetragon, analogue in space : CD. 7.

Tetrahedroid : J.87.

*Tetrahedron : 907 : A.3,16,23o,51,56 :

J.65: LM.4: Me.62,66^82: Mel.
2 : N.pr74,80,81 : Q.5 : geo Z.27.

determined from coordinates of ver-
tices : J.73.

Tetrahedron

—

(contimied)

:

of given surface : J.83.

with opposite edges ; equal, N.79

;

at right angles, Me.82.
with edges touching a sphere : ISr.74.

and four spheres : LM.122.
homologous : J.56.

and quadric : CD.8 : thN.71 ; 2 quad-
rics, Q.S.

6 dihedral angles of, eq. : N.46,67.
theorems : A.9,10,31 : N.61",66o : Q.3,5.
two: M.19.

* volume : 5569 : A.45..,57 : LM.2 : N.
67: Z.ll.

volume and surface in c.c and g.c :

A.53 : CD.8 : N.68.
volume and normal, relation : N.54.

Tetratops : A.692.

Theoretical value function : J. 55.

Theta-functions : Ac.3 : C.ths90 : J.61,

66,74: M.17: Me.ap78: P.80,82:
thsZ.12.

analogues of: C.93.

addition theory : J.88,89 : LM.13.
ap. to right line and triangle : A. 3.

argument : J.73 : 4thM.14 : M.16.
characteristic of: complexAJ.6: C.

88-:: J.2S.

th. of Riemann : J.88.

as a definite integral : Me. 76.

double: LM.9 : Q. transf. 21.

and 16 nodal quartic surface : J.83,

85,87,88.

formula of Riemann : J. 93.

Jacobian, num. value : M.7,11.
modular integrals : trAn.52,54: J. 71.

multiplication of : LM.l : M.17.
quadruple : AJ.6; : J.83.

reduction of, from two variables to

one: C.94.

representation of : M.6 : Z.ll.

transf. of: A.l : An.79 : J.32 : L.80 :

M.25...

linear: Me.84 : Q.21.

triple: J.87.

in two variables : C.92.. : J.84 : M.
14,24.

Theta-series : constant factors of, J.98 :

Me.81.
«-tuple : J.48.

^,, = a2 (c-a')/ {c (c-a-)-62} : Q.15.

*Three - bar curves : 5430 : LM.7,9 :

Me.76.

triple generation of: Me.83.
Toothed'wheels : cnTE.28.
Topologv with tables : M.19,24.

Tore: section of: G.IO : N.59,61,642,65.,

circular, 56 and 65.

and bi-taugent sphere : N.74.
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Toroid : A.8 : rectif. &c., A.9 : N.44.

Toroidal functions : T.Sl : Pr.31.

Torse: sextic : CP.II2 : Q.U.
circumscribing? two quadrics : Me.72.

depending on elliptic functions : Q.14.

and curve: Q.U; and sphere, G.1'2.

*Torsion : A.19,62,65 : J.60 : angle of,

5725; of involute, 575:3; of evo-

lute, 5754.
* inflected, infinite and suspended

:

5739 : N.45.
constant : L.42o.

*Tortuous curves : 5721 : Ac.2 : C.19,43,

58,cn62 : G.4,5,21 : J.16,59,93 :

JP.2,18: L.50,,th51,522 : M.5,19,

tli25: Mo.82: N.60: No.79: Q.

4,6,7.

* approximate coordinates of a point

near the origin in terms of the
arc : 5755,

* circular curvature of : 5722 : An.60 :

CD.9 : J.60 : JP.152 : Q.6.
* locus of centre of do. : 5741, 5748

—50.
with circular and spherical curvature

in a constant ratio : L.51.

en. upon ruled cubics and quartics :

C.53.

with coordinates rational functions of

a pai'ameter : M.3.
cubic : J.27,802 : M.20 : Z.27.

* definitions: 5721.

determined from relation of curva-

ture and torsion : A.65.

cubics : An.58,59 : C.46 : L.57 : of

3rd class, J.56 ; four tangents,

M.13.
and developable surfaces : CD. 5 :

L.45: M.13.
elements of arc : N.733.

generation of : C.94 : L.83 ; by two
pencils of corresponding right

lines, G.23.

with horaog. coordinates : Q.o.

the loci of similar osculating ellip-

soids ; d.e of same : C.78.

with loops: M.18.
with a max. or min. property: Mem. 13.

on a one-fold hyperboloid : 0.53.

with the same polar surface, d.e :

0.78^.

quadrics : J.20.

quartics : C..54., ; 1st species, J.93.

en. of two : C.53.

intersection of quadrics: C.54.

quintics : C.543,58.
* radii of curvature and torsion : 5730 :

L.48: Mem.lS.
* and right line method : 5743.

sextics, classification of : 0.76.

47:

(see also

A.37: 0.

L.44.

I

*Tortuous curves

—

(continued)

:

singularities of: 0.67 : J.42.

* spherical curvature : 5728,—40
A.19.

triple, and their parallels : A.65.

*Tractrix: 5279; area, E.35.

*Trajectory: 5246: M0.8O.
of a displaced line ; oscul. plane, &c.

:

0.70,76.

of 3 homofocal conies : An.64.
of meridian of surface of revolution :

L.46.

surface of points of an invariable

figure whose displacement is

subject to 4 conditions : 0.76,77.

of a tortuous curve : L.43.

Transcendental : arithmetic : J.29.

* curves : 5250 : An.76 : M.22.

equations: 0.5.59,72,94: G.6,10 : J.

22 : L.38 : N.55,56.

mechanical solution : 0P.4.

separation of roots by " compteurs
logarithmiques "

: C.44.

without a root : J. 73.

*Transcendental functions
" Functions ") : 1401

86 : J.3,th9,20 : L.51.

of alg. differentials : J.23

arithmetical properties : M.22.
classification of : L.37.

connected with elliptic : 0.17.

decomposition itito factors by calcu-

lus of residues : 0.32.

and definite integrals : P.57.

expansion of : J. 16.

integral : 0.94.95 : G.23 : J.98.

reduction of: Me.72.
squares of : Me.72.
theorem of Sturm : L.362.

whose derivatives are determined by
cubic eqs. ; summation of the
same : J.ll.

which result from the repeated integ-

ration of rational fractions : J.30.

Transformation : bilinear : M.2.

birazionalc : G.7 ; of 6th deg. in 3

dimensions, LM.15.
contact : M.8.

* of coordinates : pl.4048 ; cb.5574—81 :

A.13: A.26: OM.l.,: J.2: JP.7 :

N.63.

in 3 dimensions : A.13: Q.2j J.8.

rectangular into elliptic : Mel. 4.

Cremona's : M.4.

of curves : L.49,50.

of differential equations : Me.82.

of eciuations : A.40 : N.64., ; 3 vari-

ables, G.5.

of a characteristic e({. by a discri-

minant : An. 56.
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Transformation

—

(continued)

:

quadric: CM.2 : N.75 : M.23.
simultaneous: Q.ll.

of figures in a plane : A.4 : N.64,774.

in space : C.94,95o,96 : N.79,802.

double reciprocal by normals to a
sphere : 0.56.

formulas : J.32.

of functions : An.50 ; in an inf. series,

A.3.

by substitution : Mem.31.

quadric : Q.2 ;
quadric differential,

J. 70.

(ciy— 6,e)3+ (&2—ci/)3-f(c*— az)2 :

CM.1,2.
two variables : Mem.ll.

homographic plane : L.61.

in geometry : C.71 : J.67 : JP.25.
descriptive: G.13 : Z.9.

* linear: 582,1794: CD.1,6 : CM.3,4

:

M.2: Mo.84.
groups of: M.12,16.

methods of : C.92 ; which preserve
an invariable relation between
derivatives of the same order,
C.82: L.76.

which preserve the lines of curva-
ture : C.92.

* modulus of : 1604.
* orthogonal: 584, 1799.

for equations of dynamics : C.67.
plane : M.5 ; and in space, G.16.
of powers into binomial coefficients :

No.75.
of product of n factors : An.61.

quadratic, of an elliptic differential :

M.7.
in rational space : An.73 : LM.3.
i-ectaugular : LM.14.
reciprocal: C.92: G.17: N.64,82,83.
of rectilineal space coordinates : J.63.

by series doubly infinite : An.56.

space, for representation of alg. sur-

of surfaces : M.21 : N.69 : Q.12.

of symbolic functions into isotropic
means : C.43.

of tan"^ . / -—2 + symmet. y, z -.

CD.9.

Tschirnhausen's : An.58 : P.62,65 :

Pr.11,14.

ext. to quintics and higher : E.lo,4 :

J.582.

* unimodular : 1605.
of variables : G.5 : No.78.

Transitive function : of 24 quantities :

L.73.

doubly, of 6 or 6 variables : C.21,22.

Transitive function

—

(continued) :

reduction to intransitive : C.21.
*Transversals : 967—74: A.13,18,27,30,

56: CD.5: CM.l: J.84 : G.22 :

Me.t.c68o,75 : N.432,48 : TE.t.c24.
orthogonal : AJ.3.
of plane alg. curves : Z.19.
of two points : A.66.
parallel : A.13,57.
of spherical triangle and quadrangle :

A.45.
Trees, analytical : A.J.4.

Triads of once-paired elements : Q.9.
*Triangle: 700: A.17,19,22,29,33,36,43,

cn46,61: G.21:J.50: M.geol7 :

Me.q.c62: N.42„,43.
* angles of : 677 : 738—45 : A.65 : P.28 :

division, A.51,58: sum,
C.69,70 : difference, Q.8.

'

* area : 707, 4036—41 : A.45,57 : 0M.2
Mem.l3.

* bisectors : of angles : 709, 742,
932, 4628,-30.

* of sides : 738, 922i, 951, 4631 :

Mem.prl0,13.
* central line : 957, 4644.

and circle, ths. : A.9,40,47,60 : Q.7,8,
10.

and 3 concentric circles : Me.85.
of 3 intersecting circles : Q.21.

circle and parabola : Q.15.
and conic : N.70.

* of constant species : 977.
* construction of : 960.
* equilateral, sum of sqs. of distances

of any point from its vertices :

923 : A.69 : gzl094.
formed by joining the feet of bisec-

tors of a triangle : A.64o.

Gauss's equations for a plane tri-

angle : A. 5.

* notation: 4629: E.44.
* orthocentre : 952, 4634.

pedal line of : Me.83.
* perpendicular bisectors of sides : 713,

4639.
* perpendiculars on sides : 952, 4633 :

Mem.l3.
and point : Q.5.

and polar s : circle, G.ll ; conic. Q.7.
of mid-points of sides, t.cQ.8.

quadrisection of : Mem. 9.

rational: A.51,56.
* remarkable points of (see also"In-

ceutre,"&c.): 955—9 : A. four, 47 ;

two, 48 ; five, 52 ; 66,67 : E.28,

30,40 : LM. nine, 14„ : N.70,73,83 :

Z.11,15.
* of reference in t.c : 4006.

and right line : A.59.
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Triangle

—

(continued)

:

scalenity of: Me.66,68.
sides of: bisectors : A. 17.

division of : A.63 : N.83.
containing conjugate poles with

respect to four conies : An.69.

cubic eq. for in terms of A, B, and
r: J.20.

similar: C.792; under 3 or 4 condi-
tions, C.78.,.

* solution of : 718, 859 : A.3,51 : J.44.

:

TE.IO.
six-point circle : Q.4,6.

symmetrical properties : A.57 : Pr.ll.

theorems : A.9,43,45,o5,57,60,6l3,63,
6S ; J.t)8,71,pr28 : Q.9,t.c7 and 8,

geoi,2, and 4.

relating to triangles of same peri-

meter under four other condi-
tions : C.84.

*Triangular : numbers : 287 : E.30 :

J.69: L.ths63.

prism : thN.42.
pyramid : At.l9 : No.pr32.

Tricircular and tetraspheric geometry :

An.77.
*Trigon. in t.c : 4006.

*Trigonometry : 600: A.lo,2,8,ll,13,30 :

G.13: extM.35.
formula; : A.27,65 : Me.81,gzl : 'N.77:

geoQ.5,10.
* formula : 627,700,823 : A.33 : K46,80.

functions : P.1796 ; in factorials,

A.43.

in binomial factors : L.43.

in partial fi-actions and products :

Z.13.

functions closely allied to : A.27.
tables, en: A. 1,232,25.

theorems : A.2,50,51 : Q.pr7.

on product of 4 sines : Me.81.

on fl+ - 1 +
!)

Q.15,16.

cos3asin-i^-f2sinacosa sin ^ cos(f)

+sin2acos^^ = :

Trihedroii : about a parabola, locus
of vertex : N.63.

and quadric : N.71.
and tetrahedron : A.57.

Trilinear forms : C.92,93.

Trilinear relation of plane systems

:

J.98.

*Triplicate-vatio circle : 4754b : E.40,42,
435,44.

Twisted surface : see " Scrolls."

Twist of a bar : Me.80.

*Umbilics : 5777, 5819—23 : J.65 : JP.
18 : M.9 : Q.3.

* of qua dries : 6603, 5834 : C.96.

Underdeterminants of a symm. deter-
minant {i.e., successive first

minors) : J.91.

Undeterminants, &c. : A.592.

Unicursal curves: A.60 : C. 78,94,96 :

LM.4.
cubics, ths. re inflexion : E.28.
quartics : LM.16 : N.84 : Z.28.
surfaces, transf. of: M.66.

Uniform functions : C.92,94;,95,963.

with an alg. relation : C.9I2.

of an anal, point xy : Ac.l : C.94.

two points : 0.96,97.

with " coupures "
: C.96.

with discontinuities : C.94.
doubly periodic : C.94.

from linear substitutions : M.19,20.
with a line of singular points, decom-

position into factors : C.92.
monogenous : Ac. 4.

in the neighbourhood of a singular
point : C.89.

of two independent variables : C.94,95.

*Units of elasticit}', electricity, and
heat : p. 2.

*Vanishing fractions : 1582: M.15 : Q.l.

Vanishing groups : CD.2,3,6,7,8.

ap. to quantics : CD.2,3,6.

*Variation: 76: C.17.

of arbitrary constants : L.38.
* calculus of: 3028—91: A.3,prs42 :

An.52o: C.16,50: CD.3 : CM.2

:

J.13,prl5,41,54,65,prs74,82 : JP.
17: L.41: M.22,15o: Me.prs72

:

M0.57 : N.83 : Q.prlO : and d.e,

L.38 and C.49.

history : N.51.
* immediate integrability : 3090.

and infinitesimal analysis : C.17,40.
* relative max. and min. : 3069 : L.42.

of multiple integrals : J.15,56,f59 :

Mem.38.
ti'ansformations : J.55._;.

* two dependent variables : 3051.
* two independent variables : 3175.

integral, of functions : C.4O3.
* of parameters : th2714, 3243 : N.77.
* of second order : 3087 : A.4 : J.55 :

Q.14 : Z.23.
* of higher order : 3089 : A.27 : Z.26.

*Versiera or Witch of Agnesi : 5335.

Volumes : of solids : 5871—83 : A.
31,32,36: J.34: N.f57,80.

approximate : C.95.

of frustums : A.33 ; of conicoids,

J.44.

of right cylinders and cones in abso-
lute geometry : A.59.

of surface loci of connected points :

LM.14.
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Volumes

—

{continued) :

and surfaces by curvilinear coor-

dinates : C.16.

*Wallis's formula : 2456 : A.39,gz39

:

JP.28.

Waring's identity: N.49,62 : extMe.85.
Wave surface : O.13,47,78,geo82,92 :

CD.7,8 : CP.6 : L.46 : Me.66o,73,

76,78,79 : N.63,82 : Pr.32 : Q.2,33,

4,5,9,15„17.

asymptotes : C.97.

and cone: Q.23,26.

cubatureof: An.61.

generation and en : C.90.2.

lines of curvature : An.59 : C.97.

normals and centres of curvature :

geoO.64.
umbilics, geo : 0.880.

Wear of gold coins : E.43.

Web surfaces : see " Net surfaces.

Weierstrass's function 2tit"cosa"a;7r

G.18 : J.with a >\ and fe < 1

63,90.

expansion in powers of the modulus :

C.82.,85,86 : L.79o.

*Wilson's theorem : 371 : A.48 : CD.9 :

J .8,19,20 : Me.83 : N.43.
generalisation : J.31 : Me.64 : Mel.2 :

N.45.
Wronski's methods : 0.92 : L.82,83.

formula of 1812 : N.74., : Q.thl2.

Zetafuchsian functions : Ac. 5.

Zonal conies of tetrazonal quartics :

Q.IO.
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RETURN TO the circulation desk of any
University of California Library

or to the

NORTHERN REGIONAL LIBRARY FACILITY

BIdg. 400, Richmond Field Station

University of California

Richmond, CA 94804-4698

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS
• 2-month loans may be renewed by calling

(510)642-6753
• 1-year loans may be recharged by bringing

books to NRLF
• Renewals and recharges may be made 4

days prior to due date.

DUE AS STAMPED BELOW

MAY 2 fi 2001
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OCT 3 2007
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