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PREFACE 

Little is known at present to historians of mathe
matics regarding the achievements of the early Hindu 
mathematicians and our indebtedness to them. Though 
it is now generally admitted that the decimal place
value system of numeral notation. was invented and 
first used by the Hindus, it is not yet fully realized 
to what extent we are indebted to them for our 
elementary mathematics. This is due to the lack of a 
reliable and authentic history of Hindu mathematics. 
Our object in writing the present book has been to 
make up' for this deficiency by giving a comprehensive 
account of the growth and development of the 
science of mathematics in India from the earliest 
known times down to the seventeenth century of the 
Christian era. 

The subject is treated by topics. Under each topic 
are collected together and set forth in chronological 
order translations of relevant Sanskrit texts as found 
in the Hindu works. The texts have been elucidated, 
wherever necessary, by adding explanatory notes and 
comments, and also by illustrative examples culled from 
original sources. We have tried to avoid repetition 
as far as has ~een consistent with our aim. However, 
on several occasions it has been considered desirable 
to repeat the same rule in the words of different authors 
in order to emphasize the continuity or rather the 
gradual evolution of mathematical thought and termino
logy in India. Comparative study of this kind has 
helped us to throw light on certain obscure Sanskrit 
passages and technical terms whose full significance 
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had not. been understood before. In translating the 
texts we have tried to be as literal and faithful as 
possiQle without sacrificing the spirit of the original. 
Sometimes it has not been possible to find exact 
parallels to Sanskrit words and technical terms in 
English. In all such cases we have tried to maintain 
the spirit of the original in the English version. 

The above plan of the book has been adopted in 
pursuance of our intention to place before those who 
have no access to the Sanskrit sources all evidence, 
unfavourable as well as favourable, so that they can 
judge for rhemselves the claims of Hindu mathematics, 
without depending solely on our statements. In order 
to facilitate comparison with the development of 
mathematics in other countries the various topics have 
been arranged generally in accordance with the se
quence in Professor D. E. Smith's History of Mathematics, 
Vol. II. This has sometimes necessitated divergence 
from the arrangement of topics as found in the Hindu 
works on mathematics. 

In search of material for the book we had to 
examine the literature of the Hindus, non-mathematical 
as well as mathematical, whether in Sanskrit or in 
Pdkrit (Pali and Ardha Magadhi). Very f~w of the 
Hindu treatises on mathematics have been printed so 
far, and even these are not generally known. The 
manuscript works that exist in the various Sanskrit 
libraries in India and Europe are still less known. We 
have not spared labour in collecting as many of these 
as we could. Sanskrit mathematical works mentioned 
in the bibliography given at the end of this volume 
have been specially consulted by us. We are thankful 
to the authorities of the libraries at Madras, Bangalore, 
Trivandrum, Trippunithura and Benares, and those of 
the India Office (London) and the Asiatic Society of 



P-REFACE 

Bengal (Calcutta) for supplying us tra~scripts of the 
manuscripts required or sending us manuscripts for 
consultation. We are indebted also to Dr. R. P. 
Paranjpye, Vice-Chancellor of the Lucknow University, 
for help in securing for our use several manuscripts 
or their transcripts from the state libraries iri India 
and the India Office, London. 

It would not have been possible to carry our study 
as far as has been done without the spade work of 
previous writers. Foremost among these must be men
tioned the late Pandit Sudhakar Dvivedi of Benares, 
whose editions of the Lfldvatf, Brdhmasphttta-siddhanta, 
Triiatikd, .Mahasiddhanta, Siddhanta-tattva-viveka, etc., 
have been of immense help. Colebrooke's translations of 
the arithmetic and algebra of Brahmagupta and Bhas
kara II. Kern's edition of the Aryabha![ya and Ranga
carya's edition (with English translation) of the Gapita
sdra-samgraha of Mahavira have also been of much use. 
The recent work of G. R. Kaye, however, has been 
found to be extremely unreliable. His translation of 
the Gapitapaaa of the At:yabha![ya and his edition of the 
Bakhshall Manuscript are full of mistakes and are 
misleading. 

I t has been decided to publish the book in three 
parts. The first part deals with the history of the 
numeral notation and of arithmetic. The second is 
devoted to algebra, a science in which the ancient Hindus 
made remarkable progress. The third part contains 
the history of geometry, trigonometry, calculus and 
various other topics' such as magic squares, theory of 
series and permutations and com~inations. Each part is 
complete in itself, so that one interested in any particular 
branch of mathematics need not consult all of them. 

Part I which is now being published contains two 
chapters. Chapter I gives an account of the various 
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CHAPTER I 

NUMERAL NOTATION 

1. A GLIMPSE OF ANCIENT INDIA 

. The student of ancient Indian History is struck 
by the marvellous attainments of the Hindus, both 
in the Arts and the Sciences, at a very eady period. 
fhe discoveries at Mohenjo-daro reveal that as early as 
3,000 B.C. the inhabitants of the land of the Sindhu
t~e Hindus-built brick houses, planned cities, used 
metals such as gold, silver, copper and bronze, and lived 
a highly organised life. In fact, they were far in advance 
of any other people of that period. The earliest works 
available, the Vedas (c. 3,000 B.C. or probably much 
earlier), although ~onsisting mainly of hymns of praise 
and poems of worship, show a high state of civilisation. 
The Brahmapa literature (c. 2,000 B.C.) which follows 
the Veda:r, is partly ritualistic and partly philosophical. 
In these works are to be found well-developed systems 
of metaphysical, social and religious philosophy, as well 
a s the germs of most of the sciences and arts which have 
helped to make up the modern civilisation. It is here 
that we find the beginnings of the science of mathematics 
(arithmetic, geometry~ algebra,. etc.) and astronomy. 
This BrrJhma!la period was followed by more than two 
thousand years of continuous progress and brilliant 
achievements. Although during this period there were 
several foreign invasions as well as internal wars and 
many great kingdoms rose and fell, yet the continuity of 
intellectual progress was maintained. The constitution 
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of Hindu society was mainly responsible for this. 
The foreign invaders, instead of being a hindrance, 
cqntributed to progress and the strengthening 6f Hindu 
society by bringing in new blood. They settled in the 
land, adopted the religion and customs of the conquered 
and were -completely absorbed into Hindu society. 
There were a class of people-the Bra.hmar:tas-who 
took the vow of poverty, and devoted themselves, from 
one generation to another, to the cultivation of the 
sciences and arts, religion and philosophy. The 
Brihmat;las, thanks to their selflessness and intellectual 
attainments, were highly respected by the kings and the 
people alike. They were the law-givers and advisers 
of the kings. In fact, this body of selfless thinkers 
and learned men were the real rulers of the land. 

The great Epic, the Rdlllqyat1a, was composed by 
Valmiki, the father of Sanskrit poetry, about 1,000 B.C., 
Pa.Q.ini, the grammarian, perfected Sanskrit grammar 
about 700 B.C. and Susruta wrote on the sciences of 
medicine and surgery about 600 B. c. l A century later, 
~Iahavira and Buddha taught their unique systems of 
religious and moral philosophy, and the doctrine of 
Nirvdt1Cl. With the spread of these religions evolved 
the J aina and Buddhist literatures. Some of the earlier 
Purdp.as and Dharma-fdstras were written about this 
time. The period 400 B.C. to 400 A.D., however, seems 
to have been a period of great activity and progress. 
During this period flourished the great Jaina meta
physician Umasvati, Patafijali, the grammarian and philo
sopher, Kau~ilya, the celebrated politician, Nagarjuna, 
the· chemist, Caraka, the physician, and the immortal 
poets Asvagho~a, Bhasa and Kalidasa. The great 

1 There is considerable divergence of opinion regarding the 
dates of the pre-historic works and personalities mentioned in this 
section. \Ve have given those dates that appear most plausible. I 
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astronomical Siddhdntas, the Stt,]'tl, the Pitdlllaha, the 
Vafi.f!ha, the Pardfara and others were 'written during 
this period and the decimal place-value notation was 
perfected. 

2. HINDUS AND MATHEMATICS 

Appreciation of Mathematics. It is said that 
in ancient India no science did ever attain an independent 
existence and was cultivated for its own sake. What
ever of any science is found in V celic India is supposed 
to have originated and grown as the handmaid of one 
or the other of the six "members of the Veda," and 
consequently with the primary object of helping the 
Vedic rituals. It is also supposed, sometimes, that 
any further culture of the science was somewhat dis
couraged by the Vedic Hindus in suspicion that it might 
prove a hindrance to their great quest of the knowledge 
of the Supreme by diverting the mind to other external 
channels. That is not, indeed, a correct view on the 
whole. It is perhaps true that in the earlier Vedic Age, 
sciences grew as help to religion. But it is genera-lly 
found that the interest of people in a particular 
branch of knowledge, in all climes and times, has al
ways been aroused and guided by specific reasons. 
Religion being the prime avocation of the earlier Hindus, 
it is not unnatural that the culture of other branches 
of knowledge grew as help to it and was kept subsi
diary. But there is enough evidence to show that 
in course of time all the sciences outgrew their original 
purposes and were cultivated for their own sake. A 
new orientation had indeed set in in the latter part of 
the Vedic Age. 

There is a story in the Chdndog_),a Upal1i.fdd 1 whose 

1 Chdndogya Upanirad, vii. I, 2, 4. 
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value in support of our view cannot be over-estimated. 
It is said that once upon a time Nirada approached 
the sage Sanatkumara and begged of him the Brahllla
tJI4_yd or the supreme knowledge. Sanatkumara asked 
Narada to state what sciences and arts he had already 
studied so that he (Sanatkumara) might judge what 
still remained to be learnt by him. Thereupon Narada 
enumerated the various sciences and arts studied by him. 
This list included astronomy (nakfatra-vicfya) and arith
metic (rafi-vi4ya). Thus the culture of the science of 
mathematics or of ?ny other branch of secular kno~v
ledge, was not considered to be a hindrance to spiritual 
knowledge. In fact, APard-~'ic!ya ("secular knowledge") 
was then considered to be a helpful adjunct to Parii'-vi4Jd 
("spiritual knowledge"). 1 

Importance to the culture of Gat/ita .(mathematics) 
is also given by the J ainas. Their religious literature 
is generally classified into four branches, called ant!Y0ga 
("exposition of principles"). One of them is gtl.'?itdnu
yoga ("the exposition of the principles of mathematics"). 
The knowledge of Samkhydna (literally, "the science of 
numbers," meaning arithmetic and astronomy) is stated 
to be one of the principal accomplishments of the Jaina 
priest.c In Buddhist literature too, arithmetic (garand, 
samkl?Jdna) is regarded as the first and the noblest of 
the arts.3 All these will give a fair idea of the importance 
and value set upon the culture of gattita in ancient 
India. 

The following appreclation of mathematics, al
though belonging to a much later date, will be found 
to be interesting, especially, as it comes from the pen 

1 MII!1t:lakopani/ad, i. 1, 3-~. 
2 Bhagavati-sutra, Sutra 90; Uttaradhyayana-sutra, xxv. 7, 8, 38. 
a Vincrya Pi/aka, ed. Oldenberg, Vol. IV, p. 7; Majjhima 

Niktiya, Vol. J, p. 85; Cullanidtiesa, p. 199. 
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of Mahavlra (850 A.D.), one of the best mathematicians 
of his time: 

"In all transactions which relate to worldly, Vedic 
or other similar religious affairs calculation is of use. 
In the science of love, in the science of wealth, in music 
and in drama, in the art of cooking, in medicine, in 
architecture, in prosody, in poetics and poetry, in logic 
and grammar and such other things, and in relation to 
all that constitutes the peculiar value of the arts, the 
science of calculation (ga!1ita) is held in high esteem. 
In relation to the movements of the sun and other 
heavenly bodies, in connection with eclipses and 
conjunctions of planets, and in connection with the 
Iriprafna (direction, position and time) and the course 
of the moon-indeed in all these it is utilised. The 
number, the diameter and the perimeter of islands, 
oceans and mountains; the extensive dimensions of the 
rows of habitations and halls belonging to the inhabi
tants of the world, of the interspace between the worlds, 
of the world of light, of the world of the gods and of 
the dwellers in hell, and other miscellaneous measure
ments of all sorts-all these are made out by the help 
of ga!1ita. The configuration of living beings therein, 
the length of their lives, their eight attributes, and other 
similar things; their progress and other such things, 
their staying together, etc.-all these are dependent 
upon ga!1ita (for their due comprehension). \V'hat is 
the good of saying much? Whatever there is in all thc 
three worlds, which are possessed of moving and non
moving beings, cannot ,exist as apart from /!,I7!lifa 

(measurement and calculation). 
« With the help of the accomplished holy sages, 

who are worthy to be worshipped by thc lords of the 
world, and of their disciples and disciples' disciples, 
who constitute the well-known series of preceptors, 
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I glean from the great ocean of the knowledge of 
numbers a little of its essence, in the manner in which 
gems are p~ckcd from the sea, gold is from the stony 
rock and pearl from the oyster shell; and give out 
according to the pO\ver of my intelligence, the Sdra-stJlJi
graha, a small work on !!,opjto, which is (however) not 
small jn value." 1 

Mathematics in Hindu Education. The 
elementary stage in Hindu education lasted from the 
age of five till the age of twelve. This period slightly 
differed in the case of sons of kings and noblemen. 
The main subjects of study were fipi or fekhd (alphabets, 
reading and writing), rupa (drawing and geometry) and 
gapalld (arithmetic). It is said in the ArthafdJ-tra of 
Kau~ilya (400 B.C.) that having undergone the ceremony 
of tonsure, the student shall learn the alphabets (fipi) and 
arithmetic (sa1Jikl-!)·c1lla).2 We hnd in the HathIgumpha 
InscriptionS that king K):1aravela (163 B.C.) of Kaling t 
spent nine years (from the age of sixteen to the age of 
2. 5) in learning lekM, riipa and garand. Prince Gautama 
began his education when he was eight years of age 
"firstly (with) writing and then' arithmetic as the most 
important of the 72. sciences and arts."4 Mention of 
fekhd, rtlpa and gartJl1d is also found in the J aina canonical 
works. 5 

l GSS, i. 9- 1 9-
2 Arthafdstra, ed. by R. Shamasastri, i. 5, 2; Eng. trans., 

p. 10. 

a Hathigumpha and three oth~r inscriptions, ed. by Bhagavanlal 
Indraji, p. 22. 

4 Antagaga-dasao an_d Anttttarvavarya-dasao, Eng. trans. by L. D. 
Barnett, 1907, p. ; 0; cf. Kalpastltra of Bhadrabahu, Sutra 2 I I. 

5 E.g., Samavcfyanga-siJlra, Sutra 72. 
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3. SCOPE AND DEVELOPMENT OF HINDU 
MATHEMATICS 

Gattita literally means "the science' ot calculation" 
and. is the Hindu name for mathematics. The term is a 
very ancient one and occurs copiously in Vedic literature. 
The Veddtiga Jyoti.fa (c. 1,200 B.C.) gives it the highest 
place of honour among the sciences which form the 
Veddtiga: "As the crests on the heads of peac:ocks, as 
the gems on the hoods of snakes, so is gapita at 
the top of the sciences known as the Veddnga."1 In 
ancient Buddhist literature we find mention of three 
classes of gattita: (I) mudrd ("finger arithmetic"), (2) 
gapana ("mental arithmetic") and (3) samkhydna 
("higher arithmetic in general"). One of the earliest 
enumerations of these three classes occurs in the Digha 
Nikt!ya,2 and it is also found in the Vincrya Pi/aka, 3 

Di1!Jdvaddna4 and Milindapafiho. 5 The word satJikl!)'dna 
has been used for garita in several old works. G At this 
remote period garita· included astronomy, but geometry 
(k..fetra-gattita) belonged to a different group of sciences 
known as Kalpasutra. 

It is believed that some time before the beginning 
of 'the Christian era, there was a renaissance of Hindu 
Ga{1ita. 7 The effect of this revival on the scope of 

1 "Yatha sikha mayur:l.l}arh naganarh mat:J.ayo yatM 
Tadvadvedangasastral}arh gal}itarh murdhani sthitarp." 

2 I, p. 51. Vedanga Jyotifa, 4. 
"IV, p. 7. . 
4 Dil!Jdvaddna, ed. by E. B. Cowell and R. A. Neil, Cambridge, 

1886, pp. 3, 26 and 88. 
G Milindapaiiho, Eng. trans. by Rhys Davids, OJolford, 1890, 

p. 91. 
G E.g., Kalpasutra of Bhadrabahu, ed. by H. Jacobi, Leipzig, 

1897; J3hagavatf-.ifltra, Bombay, 1918, p. 112; Arthaitistra, i. 5. 2. 

'Bibhutibhusan Datta, "The scope and development of 
Hindu GaQita," Indian Historical Quarter!;, V, 1929, pp. 479-5 I2. 
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ga(1ita was great. Astronomy (jyoti/a) became a separate 
subject alld geometry (kfetra-ga(1ita) came to be included 
within its scope. The subjects treated in the Hindu 
Ga(1ita of the early renaissance period consisted of the 
following: 1 Parik.arma ("fundamental operations"), 
V)avahdra ("determinations"), Rcyju ("rope," meaning 
geometry), RdJi ("rule of three"), Kaldsavar(la ("opera
tions with fractions"), Yaval tdlJal ("as many as," 
meaning simple equations), Varga ("Square," meaning 
quadratic equations), Ghana ("Cube", meaning cubic 
equations), Varga-varga (biquadratic equations) and 
Vikalpa ("permutations and combinations"). 

Thus ga(1ita came to mean mathematics in general, 
while 'finger aFithmetic' as well as 'mental arithmetic' 
were excluded from the scope of its meaning For the 
calculations involved in ga(1ita, the use of some writing 
material waS essential. The calculations were performed 
on a board (pdti) with a piece of chalk or on sand (dhull) 
spread on the ground or on the pdP, Thus the terms 
pafl'-ga(1ita ("science of calculation on the board") or 
ibuli-karma ("dust-work"), came to be used for higher 
mathematics. Later on the section of ga (1ila dealing 
with algebra was given the name Bija-gatJita. The first 
to effect this separation was Brahmagupta (628), but he 
did not use the term Bfja-ga!1ita. The chapter dealing 
with algebra in his Brdhma-sphuta-siddhdnta is called 
Ku!!aka. Sridharacarya (750) regarded Pdji-ga!2ita and 
13[ja-ga!1ita as separate and wrote separate treatises on 
each. This distinction between Pd!iga!1ita and Bijaga!1ita 
has been preserved by later writers. 

Having given a brief survey of the position anti 
scope of mathematics in Ancient India, we turn to the 

1 "Parikammarh vavaharo rajju dsi kalasavanne ya I 

Javantavati vaggo ghano tataha vaggavaggo vikappo ta II" 

SthtinailgoIiitro, Sutra 747. 
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purpose in hand-that of giving a connected account 
of the development and growth of the different branches 
of mathematics. The numeration system of the Hindus 
will engage our attention first. 

4. NUMERAL TERMINOLOGY 

Scale of Notation. \Y/e can definitely say that 
from the very earliest known times, ten has formed 
the basis of numeration in india. 1 In fact, there is 
absolutely no trace of the extensive use of any other 
base of numeration in the whole of Sanskrit literature. 
It is also characteristic of India that there should be 
found at a very early date long series of number names 
for very high numerals. While the Greeks had no 
terminology for denominations above the IJryriad (104

), 

and the Romans above the mille (103
), the ancient Hindus 

dealt freely with no less than eighteen denominations. 
In modern times also, the numeral language of no 
other nation is as scientific and perfect as that of the 
Hindus. 

In the Yajttrveda Samhita (V4Jasaneyl)2 the following 
list of numeral 'denominations is given: Eka (I), dafa 
(10), sata (100), sahasra (1000), qJttta (10,000), nryuta 
(100,000), prqyuta (1,000,000), arbuda (10,000,000), 

'!Jarbuda (100,000,000), saJJ1udra (1,000,000,000), 

madhya (10,000,000,000), anta (100,000,000,000), 

parardha (1,000,000,000,000). The same list occurs at 
two places in the Taittir[ya Sanihita. 3 The ./I,tIaitrdyatzf4 

1 Various 'instances are to be found in the f!,.gveda; noted 
by Macdonell and Keith, Vedic Index, Vol. I, p. 3.43. 

2 Yajurveda Sambitd, xvii. 2.. 

:I iv. 40 • 11. 4; and vii. 2.. 2.0. I. 

4 ii. 8. 14; the list has ayl{ta, prayllfa, then again ~Yllta, then 
nya,blllia, samudra. mad0'a, anfa, pardrdha. 
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and K6thakal Samhitcis contain the same list with slight 
alterations. The Paficavilitfa Brdhmapa has the Yq/fJr
veda list upto ,?),arbuda inclusive, and then follow 
nikharva, vddava, ak.fiti, etc. The Sdnk~Y4Yana Srauta 
Si/tra continues the series after '!J'arbuda with nikharva, 
Sdl!ludra, salila, allrya, ananta (= 10 billions). Each of 
these denominations is 10 times the preceding, so that 
they were aptly called daJagupottara sa1h_jfid·2 ("decuple 
terms"). 

Coming to later times, i.e., about the 5 th century 
B.C., we find successful attempts made to continue the 
series of number names based on the centesimal scale. S 

We quote below from the Laiitavistara,4 a well-known 
Buddhist work of the first ct:ntury B. c., the dialogue 
between Arjuna, the mathematician, and Prince Gautama 
(Bodhisattva): 

"The mathematician Atjuna asked the Bodhisattva, 
'0 young man, do you know the counting which goes 
beyond the koji on the centesimal scale? 

Bodhisattva: I know. 
Arjuna: How does the counting proceed beyond 

the kot; on the centesimal scale? 
Bodhisattva: Hundred ko!;s are called ayllta, 

hundred cryutas niyuta, hundred nrylltas kankara, hundred 
katikaras vivara, hundred vivaras kfobl?Ja, hundred k~o
bl?Jas vivdha, hundred vivdhas utsmiga, hundred utsangas 
ba/.)Jda, hundred bahlJias ndgabala, hundred nagabalas ti/i-

1 xvii. 10; the list is .che same with the exception that nryuta 
and prayuta change places. In xxxix. 6, after l[Yarbuda a new 
term t'adava intervenes. 

~ cr. Bhaskara II, L, p. z. 
~ Satottara ga1,1(lfla or SatotMra sarujna (names on the cen

tesimal scale). 
1 La/i/avistara, ed. by Rajendra La] Mitra, Calcutta, 1877. 
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lambha, hundred ti!ilambhas ryavasthdna-prajnapti, hundred 
ryavasthdna-prC!/flaptis hetuhi/a, hundred hetuhi/as karahu, 
hundred karahur hetvindriya, hundred hetvindriyas samapta
lambha, hundred samdpta-Iambhas gatlanagati, hundred 
gatlandgatis niravarfya, hundred niravarfyas mudrd-bala, hun
dred Ilttldrd-balas sarzla-bala, hundred sarva-balas visatnjnd
gati, hundred llisatnjnd-gatis sarvqjiid, hundred sarvajiids 
lIibhutatigamd, hundred vibhutmigamds ta/iak.fatla.l" 

Another interesting series of number names 
increasing by multiples of 10 millions is found in 
Kaccayana's Pali Grammar. 2 "For example: dasa 
(10) multiplied by dasa (10) becomes sata (100), 
sata (100) multiplied by ten becomes sahassa (1,000), 
sahassa multiplied by ten becomes dasa sahassa (10,000), 
dasa sahassa multiplied by ten becomes sata sahassa3 

(100,000), sata sahassa multiplied by ten becomes dasa 
sata sahassa (1,000,000), dasa sata sahassa multiplied by 
ten becomes koti (10,000,000). Hundred-hundred
thousand kojis give pako/i. 4 In this manner the further 
terms are formed. What are their names? ......... . 
hundred hundred-thousands is ko{i, hundred-hundred-

I Thus tollaksana= 1053• 

This and the following show that the Hindus anticipated 
Archimedes by several centuries in the matter of evolving a series 
of number names which «are sufficient to exceed not only the 
number of a sand-heap as large as the whole earth, but o{;_e as 
large as the universe." 

Cf 'De harenae l1umero' in the 1544 edition of the Opera of 
Archimedes; quoted by Smith and Karpinski, Hindu Arabic 
Ntlmera/s, Boston, 1911, p. 16. 

2 "Grammaire Palie de Kaccayana," j(Jtlrn. Asiatique, Sixieme 
Serie, XVII, 1871, p. 4I1. The explanations to sutras 51 and 
5 z are quoted here. 

S Also called lakkha (Iak!a). 
4 Also called ko/i-ko/i, i.e., (10,000,000)2=1014• The follow

ing numbers are in the denomination k(J/i-koji. Compare the 
Anl!Yogadvam-s/itra, Sutra J 42. 
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thousand ko!is is pako/i, hundred-hundted-thousand 
pako!is is ko!ippako!i, hundred-hundred-thousand ko/i
pp(rko!is is 17(Jlmta, hundted-hundted-thQusand nahutas is 
"jllllrliJllta, hundred-hundted-thousand ninnahutas is ak
klJObiJini; similarly we have bindu, abbuda, nirabbuda, 
ahaha, ababa, alata, sogandhika, 1ppala, kUJll1lda, pupf/.arika 
pOdJlJlla, kathdlla, Illahakathdna, asmik~Y8)la."l 

In the Ant!Jogadz'dra-sutra 2 (c. 100 B.C.), a Jaina 
canonical work written before the commencement of 
the Christian era; the total number of human beings 
in the world is given thus: "a number which when 
expressed in terms of the denominations, ko/i-ko!i, etc., 
occupies twenty-nine places (sthalla), or it is beyond the 
24th place and within the 3.?,nd place, or it is a number 
obtained by multiplying sixth square ( of two) by (its) 
fifth square, (i.e., 296

), or it is a number which can be 
divided (by two) ninety-six times." Another big number 
that occurs in the Jaina works is the number representing 
the period of time known as S irfoprahe!ikd. According 
to the commentator Bema Candra (b. 1089)\ this 
number is so large as to occupy 194 notational places 
(alika-sthdnehi). It is also stated to be (8,4°0,000)28. 

Notational Places. Later on, when the idea of 
place-value was developed, the denominations (number 
names) were used to denote the places which unity would 
occupy in order to represent them (denominations) in 
writing a number on the decimal scale. For instance, 
according to Aryabhata I (499) the denominations are 
the names of 'places'. Be says: "Eka (unit) dasa 
(ten), sata (hundred), sahasra (thousand), ayuta (ten 
thousand), no 'Uta (hundred thousand), prq)'tfta (million), 

1 Thus asatikf:y~ya is (ro)140=(ro,000,000)20. 
2 Sutra 14Z. 

3 The figures within brackets after the names of authors or 
works denote dates after Christ. 
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koti (ten million), arbuda (hundred mjllion), and vrnda 
(thousand million) are respectively from place to Ilace 
each ten times the preceding."l The first use 0 the 
word 'place' for the denomination is met with in the 
Jaina work quoted above. 

In most of the mathematical works, the denomina
tions' are called "names of places," and eighteen of 
these are gene~ally enumerated. Sridhara (750) gives 
the following names: 2 eka, dala, lata, sahasra, ((yuta, 
lak,fa, prqyuta, koti, arbuda, alva, kharva, nikharva, ntaha"
sarqja, safii"N, saritd-pati, anrya, mad~a, pardrdha, and adds 
that the decuple names proceed even beyond this. 
Mahavira (850) gives twenty-four notational places: 3 

eka, dasa, sata, sahasra, dasa-sahasra, lak.fa, dasa-Iak.fa, 
koti, dafa-koti, fata-koti, arbuda, tryarbuda, kharva, 
ntahdkharva, padtna, mabd-padma, k.fo!1i, mahd-k.fo!li, 
sankha, ntahd-sankha, k,fiti, mahd-k,fiti, k,fobha, mahd
k,fobha. 

Bhaskara II's (1150) list agrees with that of Sridhara 
except for mahdsaroja and saritaPa!i which are replaced 
by their synonyms mahdpadma and jaladhi respectively. 
H~ remarks that the names of places have .been assigned 
for practical use by ancient writers. 4 

NariyaDa (1356) gives a similar list in which aija, 
mahdsarqja and saritapati are replaced by their synonyms 
saro/a, mahdbja and pdrdvdra respectively. 

Numerals in Spoken Language. The Sans!u.U 
names for the numbers from one to nine are: eka, JW., 
tri, catflr, panca .fa!, sapta, a.fla, nava. These with the 

lA, ii. z. 
2 Irif, R. Z-3; the term used is dafagUlJdb samjiidb, i.e., «decup.t. 

names." .-
3 GSS, i. 63-68; "The first place is what is known as eka; the 

second is dafa" etc. 
4 L, p. 'z. 
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numerical denominations already mentioned suffice to 
express any required number. In an additive system 
it is immaterial how the elements of different denomina
tions, of which a number is composed, are spoken. 
Thus one-ten or ten-one would mean the same. But 
it has become the usual custom from times immemorial 
to adhere to a definite mode of arrangement, instead 
of speaking in a haphazard manner. 

In the Sanskrit language the arrangement is that 
when a number expression is composed of the first two 
denominations only, the smaller element is spoken 
first, but when it is composed also of higher denomina
tions, the bigger elements precede the smaller ones, 
the order of the first two denominations remaining as 
before. Thus, if a number expression contains the 
first four denominations, the normal mode of expression 
would be to say the thousands first, then hundreds, 
then units and then tens. It will be observed that 
there is a sudden change of order in the process of 
formation of the number expression when we go beyond 
hundred. The change of order, however, is common 
to most of the important languages of the world. I 
Nothing definite appears to be known as to the cause 
of this sudden change. 

The numbers 19, 29, 39, 49, etc., offer us instances 
of the use of the subtractive principle in the spoken 
language. In Vedic times we find the use2 of the 
terms ekanna-vimfati (one-less-twenty) and ekaJma
catvdrimfat (one-less-forty) for nineteen and thirty-nine 
respectively. In later times (Sutra period) the ekdnna was 
changed to ekona, and occasionally even the prefix eka 

lOnly in very few languages is the order continuously 
descending. In English the smaller elements are spoken first 
in the case of numbers upto twenty only. 

2 Taittirfya Sanihitd, vii. z. II. 
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\vas deleted and we have fina-vitfdati, fina-trimfat, etc.
forms which are used up to the present day. The al
ternative expressions nava-dafa (nine-ten), nava-vi1Jifati 
(nine-twenty), etc., were also sometimes used." 

Practically the whole of Sanskrit literature is in 
verse, so that for the sake of metrical convenience, 
various devices were resorted to in the formation of 
number expressions, the most common being the 
use' of the additive 2 method. The following are a 
few examples of common occurrence taken from 
mathematical works: 

Subtrac/ive: 

AIultiplicative: 

(1) the number 139 is expressed as 
40+100-1;" 

(2) 297 is expressed as 300- 3. 4 

(1) the number eighteen is expressed 
as 2.X9;5 

(2) twenty-seven is expressed as 
3 X 9 and 12 as 2x6;6 

(,) 28,483 is expressed as 8,+400+ 
(4000 X 7). 

1 19 ~= nav.l-dala (Vdjasaneyf Samhitd, xiv. 2.3; Taittirfya Samhitti, 
xiv. 2.3. 30). 

2.9 = nat'a-v;mfati (Vdjasaneyf Samhitd, xiv. 31). 
99 = nava-navati (f!.-gveda, i. 84· 1.)). 

23339 = trflJi latdni trisahasrdlJi trimfa ca nava ca, i.e., "three 
hundreds and three thousands and thirty and nine." (f!..gveda, 
iii. 9. 9; also x. 52. 6.) 

:3 GSS, i. 4: cattvarimfafcaikona fatddhika ("forty increased by 
one-less-hundred"). 

4 L, p. 4, Ex. I: Trihfnasya fata-trqyasya ("three less three 
hundred"). 

5 A, ii. 3: dvi-navaka. 
(, Trif, Ex. 43: tri-navaka ("three nines"), dvi-Ia! ("two sixes"). 
1 GSS, i. 2.8: tryafitimifrdlJi catttffatdni catussahasraghna 

naganvitdni ("eighty-three combined with· four hundred and 
four thousand multiplied by seven"). 
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The expression of the numbe1; 12.3456H32.I in the 
form "beginning with I upto 6 and then diminishing in 
order" is rather interesting. 1 

What are known as alphabetic and word numerals 
were generally employed for the expression of large 
numbers. A detailed account of these numerals will 
be given later on. ' 

5. THE DEVELOPMENT OF NUMERICAL 
SYMBOLISM 

Writing in Ancient India. It is generally held 
that numerical symbols were invented after writing had 
been in use for some time, and that in the early stages 
the numbers were written out in full in words. This 
seems to be true for the bigger units, but the signs for 
the smaller units are as old as writing itself. 

Until quite recently historians were divided as to 
the date when writing was in use in India. There were 
some who stated that writing was known even in the 
Vedic age, but the majority following Weber, Taylor, 
Buhler and others were of opinion that writing was 
introduced into India from the West about the eighth 
century B.C. These writers built up theories deriving 
the ancient Indian script, as found in the inscriptions 
of Asoka, from the more ancient writing discovered in 
Egypt and Mesopotamia. The Semitic origin was first 
suggested by Sir W. Jones, in the year 1806, and later 
on supported by Kopp (1821), Lespius (1834), and many 
others. The supporters of this theory, however, do 
not completely agree amongst themselves. For, whilst 
W. Deccke and 1. Taylor derive the Indian script from 
a South-Semitic script, Weber and BUhler derive 

1 GSS, i. 2. 7: ek.ddila(iantani kramcpa hmani. 
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it from the Phoenician or a North-Semitic script. 1 

Buhler rejects the derivation from a South-Semitic 
script, stating that the theory requires too many assump
tions, and makes too many changes in the letter forms 
to be quite convincing. He, however, supports Weber's 
derivation from a North-Semitic script and has given 
details of the theory. 2 Ojha3 has examined Buhler's 
theory in detail and rejects it stating that it is fanciful 
and that the facts are against it. He states that only 
one out of the twenty-two letters of the Phoenician 
(North-Semitic) script resembles a phonetically similar 
Brahmi letter. He supports his argument in a most 
convincing manner by a table of the two alphabets, 
with phonetically similar letters arranged in a line. He 
further shows that following Buhler's method of deri
vation almost any script could be proved to be the 
parent of another. 4 

Other scholars, who held that writing was known 
in India as early as the Vedic age, based their conclusion 
upon literary evidence. The Vafi.f!ba Dharmasutra, 
which originally belonged to a school of the J!.-gvcda 
offers clear evidence of the use of writing in the Vedic 
period. Vasi~tha (xvi. 10, 14-15) mentions written 
docurhents as legal evidence, and the first of these sutras 

1 For minor differences in the theories set up by different 
writers and also for several other theories, see Buhler, Palaeograp~, 
p. 9; the notes give the references. 

2 Biihler, i.e., pp. 9f. 
8 PLM, pp. 18-.31. 
4 Recently several0ther eminent historians have expressed their 

disagreement with Buhler's derivation. See Bhandarkar, "Origin 
Qf the Indian Alphabet," Sir Asutosh 'Mukerji Jubilee Volumes, 
Vol. III, 192.2, p. 493; H. C. Ray, "The Indian Alphabet," lA, 
III, 1924, p. 2H; also Mohe'!Jo-daro and the Indus Valley Civilisation, 
I93 I, p. 424, where ~he following remark occurs: "I am con
vinced that all attempts to derive the Brahm! alphabet from Semitic 
alphabets were· complete failures." 

z 
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IS a quotation from an older work or from traditional 
lore. Another quotation from the ~gveda itself (x. 62. 
7), which refers to the writing of the number eight is: 
Sahasr{wi me dadato a.f!akar!!}ap, meaning "gave me a 
thousand cows on whose ears the number eight was 
\vritten." The above interpretation, although doubted by 
some scholars, seems to be correct, as it is supported by 
Pfu).ini. 1 :0.Ioreover, the practice of making marks on 
the ears of cows to denote their relation to their owners, 
seems to have been prevalent in ancient India. 2 

At another place in the ~gveda ex. 34), we find 
mention of a gambler lamenting his lot and saying that 
"having staked on one,3 he lost his faithful wife .... " 
Again, in the Athan'aZJeda (vii. 50, (52), 5) we find 
the mention of the word "written amount". 4, Papini's 
grammar (c. 700 B.C.) contains the terms J'avandni 
("Semitic writing") and the compounds lipikdra and 
libikdra (iii. 2. 2 I) (writer), which show that writing 
was known in his time. In addition to these passages, 
the Vedic works contain some technical terms, such as 
ak.fara (a letter of the alphabet), kdpt}a (chapter), pa!ala, 
grantha (book), etc., which have been quoted as evidence 
of writing. These specific references to written docu
ments when considered with the advanced state of Vedic 
civilisation, especially the high development of trade 
and complicated monetary transactions, the use of prose 
in the 13rdblllatlaS, the collection, the methodical arrange
ment, the numeration, the analysis of the Vedic texts 

1 Kartzo var/la lakfatzdt (vi. 2. I 12) and also (vi. 3. I I 5) support 
the interpretation. 

~ Athal"l'al'eda (vi. 141) mentions the method of making 
mithuna marks on the ears. In (xii. 4. 6) the practice is denounced. 
The Mqitra)'tlIJi SaJJihitd has a chapter dealing with this topic. The 
method of making such marks is dealt with in 1V. 2. 9. 

8 Here 'one' refers to the number stamped on the dice. 
4 Ajtlifa~l/ tva stlllilikhittllJlajaiftllJJtlta stllJirudhatjl. 
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and the phonetic and lexicographic researches found in 
the Vedangas, form sufficient grounds for assigning a 
very early date to the use ofwtiting in India.1 Although 
thes'e arguments possess considerable weight, they were 
not generally recognised, as will always happen if an 
argumentum ex impossibili is used. R. Shamasastry (1906) 
has published a derivation based upon ancient Indian 
hieroglyphic pictures which he believes to be preserved 
in the tantric figures. His learned article has not at
tracted the attention it deserves. 

Recent discoveries have however, sounded the 
death knell of all theories deriving the Indian script. 
from foreign sources. Pottery belonging, to the Megali
thic (c. 1.,500 B.C.) and Neolithic (6,000 B.C.-3,000 B.C.) 
ages, preserved in the Madras Museum, has been found 
to be inscribed with writing. And according to 
Bhandarkar 2 five of these marks are identical with the 
Brahm! characters of the time of Asoka. The excava
tions at Mohenjo-daro and Harappa have also brought 
to light written documents, seals and inscriptions, 
dating from before 3,000 B.C. Thus it would be now 
absurd to trace the Brahmi to any Semitic alphabet of 
the eighth or ninth century B.C. 

Earliest Numerals. The numerical figures con
tained in the seals and inscriptions of Moh(\njo-daro, 
h;; ve not been completely deciphered as yet. The 
vertical stroke and combinations of vertical strokes 
arranged side by side, or one group ·below 
another, have been found. The numbers one to 
thirteen seem to have been written by means of 
vertical strokes, probably, as in the figures given bel6w: B 

1 Cf. Biihler, I.e., p. 3. 2 J.e. 
3 Marshall, I.e., pp. 450-5 z. See also "Mohenjo-daro-Indus 

Epigr:aphy" by G. R. Hunter URAS, April, 1932, pp. 470, 478ff.) 
who IS more pronounced about the numerical values of some of 
the signs. 
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It is not yet quite certain whether there were special 
signs for greater numbers such as 20, 30, the hundreds 
and higher numbers. There are humerous other signs 
which are believed to represent such numbers, but 
there seems to be no means of finding out the true 
values of these signs at present. 

Between the finds of Mohenjo-daro and the inscrip
tions of Asoka, which contain numerals, there is a gap 
of 2,700 years or more. No written documents contain
ing numerals 'and. belonging to this intervening period 
have been so far discovered. The literary evidence, 
however, points to the use of numerical symbols at a 
very early date. The reference to the writing of the 
number eight in the ~gveda and the use of numerical 
denominations as big as lOla in the Y qjun'eda Samhitd 
and in several other Vedic works, quoted before, offer 
sufficient grounds for concluding that, even at that 
remote period, the Hindus must have possessed a well 
developed system of numerical symbols. The con
clusion is supported by the fact that the Greek and the 
Roman numerical terminologies did not go beyond 10\ 

even after-writing and a satisfactory numerical symbolism 
had been in use for several centuries. 

The writings on the inscriptions of Asoka show 
that in his time the use of numerical symbols in India 
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was quite common. 1 The variations in the forms of 
the numerical signs suggest that the symbols had been 
in use for a long time. 

Most of the inscriptions of Asoka and the following 
period are written in a script which has been called 
Brdhmf, whilst some are in a different script known as 
Kharo.f!hf. The forms of the numerical symbols in 
the two scripts are different. We consider them 
separately. 

6. KHAROSTHI NUMERALS 

Early Occurrence. The Kharo!!hf fipi is a script 
written from right to left. The majority of the Kharo
Hhi inscriptions have been found in the ancient province 
of Gandhara, the modern eastern Afghanistan and the 
northern Punjab. It was a popular script meant for 
clerks and men of bll:siness. The period during which 
it seems to have been used in India extends from the 
fourth century B.C. to the third century A.D. In the 
Kharo~thi inscriptions of Asoka only four numerals 
have been found. These are the primitive vertical 
marks for one, two, four, and five, thus: 

I 2 4 5 • 

/ 1/ III/ /l1li 
More developed forms of these numerals are found in 
the inscriptions of the Sakas, of the Parthians and 

1 Megasthenes speaks of mile-stones indicating the distances 
and the halting places on the roads. The distances must have 
been written in numerical figures (Buhler, l.c., p. 6; also Indika 
of Megasthenes, pp. 125-26). - The complicated system of keeping 
accounts mentioned in the Arthafdstra of Kau~ilya confirms the 
conclusion. 
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of the Ku~anas, of the 1St century B.C. and the '1St and 
2nd centuries A.D., as well as in other probably later 
documents. The following are some of the numerals 
of this period: 

z 4 6 7 8 

I U 11/ X IX /IX IIIX XX 

10 zo 40 50 60 70 80 

? J 3J 733 ~33 :/33J 3$33' 
100 zoo 300 lZ2 274 

"(I 1 jJ jll) IJ] 1'1 )(7 ?7J1" ' 

Forms and their Origin. It cannot be satis
factorily explained why the number four, which was 
previously represented by four vertical lines came to be 
represented by a cross later on. The representation of 
the numbers five to eight follows the additive principle, 
with four as the base. This method of writing the 
numbers 4 to 8 is not met with in the early records 
of the Semites. \V'e do not know how the number 
nine was written. It is very probable that it was written 

as I X)C , i.e., 4+4+ I (reading from right to left, 

the order -being the same as that of the script). 
The number 10 has an entirely new sign. The 

question why it was not written as /IXX ,or why 

the base )( (4) ,vas abandoned cannot be satisfac

torily answered. 
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It is accepted by all that the Kharoghi is a foreign 
script brought into India from the west. The exact 
'period at which it was imported is unknown. It might 
have been introduced at the time of the conquest of the 
Punjab by Darius (c. 500 B.C.) or earlier. 1 The numerals 
given above undoubtedly belong to this script as they 
proceed from right to left. 
, The old symbols of the inscriptions of Asoka, 
however, seem to have undergone modification in 
India, especially the numbers from 4 to 19. The 
symbols for four and ten seem to have been coined 
in India, in order to introduce simplification and also 
to bring the Kharo~thi numeral system in line with 
the Brahm! notation already in extensive use. The 

symbol X seems to have been derived by turning the 

Brahm! symbol + which represents 4 in the inscrip-

tions of Asoka. The inclined cross to represent 4 is 
found in the Nabatean numerals in use in the earlier cen
turies of the Christian Era. 2 The Nabatean numerals 
resemble the Kharosthi also in the use of the scale of 
twenty and in the m~thod of formation of the hundreds. 
It is possible that the Semites might have borrowed the 
Kharo~thi symbol for 4, although it is not unlikely, 
as Buhler thinks, that the symbol might have been 
invented independently by both nations. 

1 The theory of the foreign origin of the script has to be 
revised in the light of the discoveries at Mohenj o-daro and Hatappa, 
especially in vtew of the fact that the Mohenjo-daro alphabet tan 
from right to left. 

2 J. Euting, Nabataische Inschriften aus Arabien, Berlin, 1885, 
pp. 96-97. 
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The numeral ? (10) closely resembles the letter 

a of the Brahm! alphabet. The symbol for twenty 

'3 appears to be a cursive combination of two tens. 

It resembles one of the early Phoenician forms found in 
the papyrus Blacas 1 (5th century B.C.). The mode of 
expressing the numbers 30, 40, etc., by the help of the 
symbols for 10 and 20, is the same as amongst the early 
Phoenicians and Aramaeans. 

The symbol for 100 resembles the letter fa or fra 
of the Brahm! script, to the right of which stands a 
vertical stroke. 

The symbols for 200, 300, etc., are formed by 
writing the symbols for 2, 3, etc., respectively to the 
right of the symbol for 100. This evidently is the use 
of the multiplicative principle, as is found amongst 
the early Phoenicians. 2 

The formation of other numbers may be illustrated 
by the number 274 which is written with the help of the 
symbols for 2, 100, 20, 10 and 4 arranged as 

In the right to left order. The 2 on the right of 100 

multiplies 100, whilst the numbers written to the left 
are added, thus giving 274. 

The ancient Kharo~thi numerals are given in 
Table 1. 

1 Buhler, Palaeography, p. 77; Ojha, I.e., p. I z8; see Table IICb). 
2 See Table lI(e). 
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7. BRAHMl NUMERALS 

Early Occurrence and Forms. The Brahm! ins
criptions are found distributed all over India. The 
Brahm! script was, thus, the national script of the 
ancient Hindus. It is undoubtedly an invention of the 
BdhmaZlas. The early grammatical and phonetic re
searches seem to have resulted in the perfection of this 
script about 1,000 B.C. or earlier. The Brahm! numerals 
are likewise a purely Indian invention. Attempts have 
been made by several writers of note to evolve a theory 
of a foreign origin of the numerals, but we are con
vinced that all those attempts were utter failures. 1 These 
theories will be dealt with at their proper places. Due 
to the lack of early documents, we are not in a position 
to say what exactly were the original forms of the 
Brahm! symbols. Our knowledge of these symbols 
goes back to the time of King Asoka (c. 300 B.C.) 
whose vast dominions included the whole of India and 
extended in the north upto Central Asia. The forms 
of these symbols are: 

4 6 50 200 

+ G.J 
The next important inscription containing numerals 

is found in a cave on the top of the Nanaghat hill in 
Central India, about seventy-five miles from Poona. 
The cave was made as a resting place for travellers by 
order of a King named Vedisr!, a descendant of King 
Sitavahana. The inscription contains a list of gifts 
made on the occasion of the performance of several 

yajiias or religious sacrifices. It was first deciphered 

1 Cf Langdon's opinion in, Mohetijo-daro and the Indus Vallry 
Cit-jllsatioN, ch. xxiii. 
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by Pandit Bhagavanlal Indraji who has given the 
interpretation of the numerical symbols. L These occur 
at about thirty places, and their forms are as below: 

2 4 6 7 9 10 

=f.+ 'f 1 . ? o:.ex. ,ex:" 

2.0 80 100 200 300 40 0 700 

0 CD C1 ?i tf 'H+ 111 

1,000 4,000 6,000 10,000 2.0,000 

T ~ 1'.p Tee. 1<> 

A number of inscriptions containing numerals and ' 
dating from the first or the second century A.D. are 
found in a cave in the district of Nasik in the Bombay 
presidency. These contain a fuller list of numerals. 
The forms~ are as follows: 
I 2. 3 4 5 6 7 8 - :: ;: "'1'1> ,..~ ~ 1 "::1 
9 10 2.0 40 70 100 2.00 500 

~ CX.CI-(" 9 ~ :J.. "7 / )1-

1,000 2.,000 ,,000 4,000 8,000 70 ,000 

1 r 'f p 'j7 '11 

l'''On Ancient Nagar! Numeration; from an inscription at 
N?naghat," Journ. if the Bomb,!), Branch of the Rqyal Asiatic Society, 
1876, Vol. XII, p. 404. 

2 E. Senan, "The inscriptions in the caves at Nasik," EI, Vol. 
VIII, pp. 19-96; "The inscriptions in the cave at Karle," EI, Vol. 
VII, pp. 47-74. 
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Even after the invention of the zero and the plac'e
value system, the samd numerical symbols from I to 9, 
continued to be employed \'vith the zero to denote 
numbers. Thus the gradual development of these forms 
can be easily traced. This gradual change from the 
old system without place-value to the new system 
with the zero and the place-valqe is to be met with in 
India alone. All other nations of the world have given 
up their indigenous numerical symbols which, they had 
used without place-value and have adopted the zero 
and a new set of symbols, which were never in use ih 
those countries previously. This fact alone is a strong 
proof of the Hindu origin of the zero and the place
value system. 

The numbers I, 2 and 3 of the Brahml notation 
were denoted by one, two and three horizontal> lines 
placed one below the other. These forms clearly dis
tinguish the Bdhmi notation from the Kharoghi and 
the Semitic systems. 

It cannot be said why the strokes were hori
zontal in Brahmi' and vertical in Kharosthi and 
Semitic writings, just as it cannot be said' 'why the 
writing proceeded from left to right in Brahm! and 
from right to left in Kharo~thi and Semitic writings. 
It appears to us that the Brahm! and the Kharo~thi 
(Semitic) numerals have always existed side by side and 
it cannot be definitely said which of these is the' earlier. 
The difference in writing the symbols I to 3, seems to 
be due to the inherent difference between the two 
systems of writing. The principles upon which numeri
cal signs are formed in the two systems are quite 
different. 

Difference from other Notations. In the Brahm! 

] It has been incorrectly stated by Smith and Karpinski that 
the Nanaghat forms were vertical. See J-livdll Arabic NIIJJ!erais, p. 28. 
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there are separate signs for each of the numbers 1,4 to 9 
and LO, 20, 30, 40, 50, 60, 79, 80, 90, 100, 200, 3°°, ..... 
1000, 2000, etc., while in the oldest Kharoghl and in 
the earliest Semitic writings, the Hieroglyphic and the 
Phoenician, the only symbols are those for I, 10, zo 
and 100. 

The Hieratic and the Demotic numerals, however, 
resemble the Brahm! in having nineteen symbols for 
the numbers from I to 100, but the principle of forma
tion of the numbers 200, 300,400, 2,000, 3,000 and 4,000 

are different, as will appear from Table lI(e). The 
method of formation of intermediate and higher numbers 
is also different in the two systems. While the Brahm! 
places the bigger numbers to the left, the arrangement 
is the reverse of this in the Kharosth'i and Semitic 
wrltlngs. Thus the number 274, is ~ritten in Brahm! 
with the help of the symbols for zoo, 70 and 4 as 
(zoo) (70) (4), while in the KharoHhi and the Semitic 
numerals it is written as (4) (70) (200).1 

Theories about their Origin. Quite a large 
number of theories have been advanced to explain the 
origin of the Brahm! numerals. Points of resemblance 
have been imagined between these numerals and those 
of other nations. Recourse has been taken by writers 
to the turning, twisting, adding on or cutting off of 
parts of the numerals of other ·nations to fit their pet 
theories: It is needless to say that each of these theories 
had its own supporters who were quite convinced of 
the correctness of their explanations. We give below 
the outlines of some of these theories: 

1. Cunninghaml! believed that writing had been 
known in India from the earliest known times, and 

1 Compare the. same number written in Kharoghi, p. 24. 
2 Inscriptions of Asoka, Corplfs Inscriptionulll Indicartlfll, Vol. J, 

p. 5 z. 
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that the earliest alphabet was pictographic. He suggest
ed that the Brahml script was derived from the eady 
pictographic writing. The theory is evidently capable 
of extension to the numerical signs. Later epigraphists, 
however, discarded the hypothesis as it appeared too 
fanciful to them. Cunningham's bold hypothesis re
garding the antiquity of writing in India has been 
more than justified by the recent discovery of the use 
of a quasi-pictographic script on certain seals and in 
inscriptions belonging to the fourth miHenium B.C. 
found amongst the excav:ations at Mohenjo-daro and 
Harappa. His theory has been revived by Langdon who 
is of opinion that the Brahmi alphabet could be derived 
from the pictographs of Mohenjo-daro. 1 The theory is 
incomplete as the writings of Mohenjo-daro have not 
been completely deciphered as yet. It can be called a 
guess only. As regards the evolution of the Brahm! 
numerals, it may be stated that it is at present extremely 
difficult to differentiate the numerical symbols from the 
Mohenjo-daro script. If the surmise that the figures, 
given ,on p. I9, are numerical symbols be correct, it 
will not be possible to develop a theory deriving the 
Brahm! numerals from them. 

2. BayleJ2 asserted that the principles of the 
Brahm! system have been derived from the hieroglyphic 
notation of the Egyptians, and that the majority of the 
Indian symbols have been borrowed from Phoenician, 
Bactrian, and Akkadean figures or letters. As has been 
already remarked3 the principles of the ~rahmi and 
the hieroglyphic systems are entirely different and 

1 A1ohenjo-daro etc., Chap. xii. This view is strongly supported 
by Hunter, I.e., p. 490. 

2 Journal of the Royal Asiatic Soc., XV, part I, reprint, 
London, 1882, pp. 12 and 17. The theory was supported by 
Taylor, The Alphabet, London, 1883, Vol. II, pp. 26J-66. 

~ See pages 27-8. 
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unconnected. The reader will find the hieroglyphic and 
the Brahm! systems 'Shown together in Tables II (a), (b), 
(c), and convince himself of the incorrectness of Bayley'S 
assertion. Moreover, the assumption that the Hindus 
borrowed from four or five different, partly very ancient 
and partly more modern, sources, is extremely difficult to 
believe. Regarding the resemblance between the Bactrian 
and Akkadean numbers and the Brahmi forms postu
lated by Bayley, BUhler l remarks that in four cases (four, 
six, seven and ten) the facts are absolutely against Bayley'S 
hypothesis. Some writers have also criticized Bayley's 
drawings as being affected by his theory.z Under these 
circumstances his derivation has to be rejected. 

3. Burne1l3 pointed out the general agreement of 
the principles of the Indian system with those of the 
Demotic notation of the Egyptians. He asserted a 
resemblance between the Demotic signs for I to 9 
and the corresponding Indian symbols, and put forward 
the theory that the Hindus borrowed these signs and 
later on modified them and converted them into 
ak,faras (letter forms). 

4. Buhler3 has put forward a modification of 
Burnell's theory. He states, "It seems to me probable 
that the Brdh171a numerals are derived from the Egyptia,n 
Hieratic figures, and that the Hindus effected their 
transformation into Ak!aras, because they were already 
accustomed to express numerals by words." 

The above theories like the one examined before 
are not well founded. Tables II (a), (b), (c), show the 
Hieratic and Demotic symbols together with thos~ 
of the Brahm!. An examination of the Tables will reveal 

1 Biihler, On the Origin of the India" Brtlhma Alphabet, Strassburg, 
1898, pp. 52, 53 foot-note.' 

2 Cf Smith and Karpinski, Hindu Arabic Numerals, pp. 30-1. 

3 Biihler, I.c.) p. 81. 



BRAHMI NUMERALS 

that out of the nineteen symbols to Fepresent the num
bers from I to 100, only the nine of the Brahm! resem
bles the corresponding symbol of the Demotic or the 
Hieratic.' There is absolutely no resemblance between 
any of the others. To base the derivation on a resem
blance between the Hieratic 5 and the Brahm! 7, as is 
sought to be done, is absutd. Likewise the changing 
and twisting of the Demotic and Hieratic forms to suit 
the theory 1S\ unacceptable. 

That there is some resemblance between these 
systems in the fact that each employs the same number 
of signs, i.e., nineteen, for the representation of numbers 
upto hundred, cannot be denied. There is, however, 
a difference in the method of formation of the hundreds 
and the thousands. In the Brahmi the numbers 200 

and 300 or 2,000 and 3,000, are formed by adding one 
Illatrkd and two Illatrkds to the right of the symbol for 
hundred or thousand respectively, thus 

100, 

1,000, 

7 200, 

q- - 2,000, 

7 300 

Cf - 3,000. 

The numbers 400 and 4,000 are formed by connecting 

the sy.mbol for 100 and 1,000 to the number X (4), 
thus 

41- = 4 00 and 9'f = 4,000. 

In the Hieratic the corresponding symbols are: 

4 2 

'4 
_7 ;::::;;:: 100, _.Y 200, 3 5 - 1,000, ~ 2,000, 

"'1 4, 
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_5J - 300, 

~ - 3,000, 
_!1!J - 400, ~ - 4,000. 

It will be observed that in the Hieratic system the sign 
for one thousand is not used in the formation of the 
other thousands. The similarity in principle, even if it 
were complete, would not force us to conclude that one 
of these nations copied the other. The use of nineteen 
signs afforded the easiest and probably the best 
method of denoting numbers. It is not beyond the 
limits of probability that what appeared easy to the 
Egyptians might have also independently occurred to 
the Hindus. 

There are on the other hand some considerations 
which make us suggest that the Egyptians borrowed 
the principles of the Hieratic and the Demotic systems 
from outside, and probably from India-a hypothesis 
which is not a priori impossible as it has been shown 
that the numeration system of th~ ancient Hindus based 
on ninetc;!en signs might have been perfected about 
1,000 B.C. It is known that the ancient Egyptian system 
employed only four signs, those for I, 10, 20 and 100. 

Why should there be a sudden change from the old 
system to one containing nineteen signs cannot be 
adequately explained except on the hypothesis of foreign 
influence. Further, the cursive forms for the numbers 
2, 3 and 4 are unsuited to the right to left Hieratic or 
Demotic script. Although these figures are connected 
with the earlier hieroglyphic and Phoenician figures, 
yet it is possible that the cursive combinations might 
have been formed to obtain the nineteen signs necessary 
for the new system, under the influence of a people with 
a left to right script. It may be, however, asserted that 
the hypothesis of an Indian origin of the H.ieratic system 
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is a mere suggestion. The two points noted above, by 
themselves, would not be enough, unless backed by 
other facts, to put forward a theory. It is expected that 
further discoveries will throw light on this point. 

Relation with Letter Forms. It was suggested 
by James Princep,t as early as 1838, that the numerals 
were formed after the initial letters of the number 
names. But knowing the pronunciation of the number 
names, we find this not to be the case. Other investi
gators have held that the numeral signs were formed 
after the letters in the order of the ancient alpha.bet. 
Although we find that letters were used to denote 
numbers as early as the 8th century B.C.,2 and that 
many systems of letter-numerals were invented in later 
times 3 and came into common use, yet we are forced to 
reject this hypothesis as resemblance between the old 
numerical forms and tne letters in the alphabetic order 
cannot be shown to exist. 

A peculiar numerical notation, using distinct letters 
or syllables of me alphabet, is found to have been used 
in the pagination of old manuscripts as well as in some 
coins and a few inscriptions.' The signs are, however, 
not always the same. Very frequently they are slightly 
differentiated, probably in order to distinguish the signs 
with numerical values from those with letter values. 
The fact that these symbols are letters is also acknow
ledged by the name ak,arapallt which the Jainas occa
sionally give to this system, in order to disti_nguish it 
from the decimal notation, the ankapalli. 4 

~ "Examination of inscriptions from Girnar in Gujerat, and 
DhauH in Cuttack," JASB, 1838. 

2 The method seems to have been used by paQini. See p. 63. 
3 Vide infra, pp. 64ff. 
4 Biihler, I.e., p. 78. The details of the ak,arapalli are given 

later on (pp. 72ff). 



NUMERAL NOTATION 

to put forward the hypothesis that the Brahm! numerals 
are derived from the letters or syllables of the B~hmi 
script. The Pandit, however, admitted his inability 
to find the key. to the system, nor has it been found by 
any other scholar upto this time. The problem, in fact, 
appears to be insoluble, unless further epigraphic 
material is discovered to show the forms of the numeri
cal symbols anterior to Asoka. The Asokan forms 
as well as those of later inscriptions are in a too well 
developed state, and are too far away from the time 
of invention of those symbols, to give us the desired 
information regarding their origin. 

But of all the theories that have been advanced 
from time to time, that of Pandit Indraji seems to us to 
be the most plausible. The Hindus knew the art of 
writing in the fourth millennium B. C. They used 
numbers as la.rge as Id' about 2,000 B.C., and since then 
their religion and their sciences have necessitated the 
use of large numbers. Buddha in the sixth century I 

B.C. is stated to have given number names as large "as 
1053 and this number series was continued still further 
in later times. 1 All these facts reveal a condition that 
would have been impossible unless arithmetic had at
tained a considerable degree of progress. It is certain 
that the Hindus must have felt the necessity of some 
method of writing these numbers from the earliest 
known times. It would not be, therefore, against 
historical testimony to conclude that the Hindus invented 
the Brahm! number system. The conclusion is sup
ported by the use, in writing numbers, of the matrkii, 
the anunasika and the upadhmanrya signs which are 
found only in the Sanskrit script and in no other script, 
whether ancient or modem. It is further strengthened by 
Indian tradition, Hindu, Jaina as well as Buddhist, which 

1 Cf .. pp. 10-12. 
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ascribes the invention of the Brahmi script and the num
eral notation to Brahma, the Creator, and thereby claims 
it as a national invention of the remotest antiquity.1 

Period of Invention. The invention of the system 
may be assigned to the period 1,000 B.C. to 600 B.C. 
As the Asokan numerical figures indicate that the 
system was common all over India,2 and that it has had 
a long history, the lower limit 1,000 B.C. is certainly 
not placed too early. On the other hand general con
siderations, such as the hi§h development of the arts 
and the sciences, the mention of numerical signs and of 
64 different scripts in ancient Buddhist literatpre;S and 
the use of large numbers at a very early period, all 
point to the date of the invention of the system as 
being nearer to 1,000 B.C., if not earlier. 

Resume. The strength of Pandit Indraji's hypo
thesis lies in the fact that out of the nineteen signs, 
eleven definitely resemble the letters or the signs of the 
Bdhmi alphabet. The resemblance i'l; too striking ~o be 
entirely accidental. Moreover, it has been found that the 
numerical forms closely followed the changing forms 
of the letters from century to century. This is especially 
true in the case of the tens and shows that the writers 
of the ancient inscriptions knew the phonetical values 
of these symbols. The divergence from letter forms 
in the case of the signs for the units may be due to the 

J 

1 BUhler (/.c., p. I, foot-note,) quotes several authorities. Of 
these the Narada Smrti and the Jaina canonical work, the Samava

yanga-stitra, belong to the fourth century B.C. 
2 Megasthenes speaks of mile-stones indicating distances and 

the halting places on the roads. Indika of Megasthenes, pp. 12.'5-12.6; 
Biihler, I.c. 

a Related in the Lalitavistara, both in the Sanskrit text and the 
Chinese translation of ;08 A.D. The Jaina Samav4.Jdtiga-stitra 
(c. 300 B.C.) and Pannavand-sutra (c. 168 B.C.) each gives a list 
of 18 scripts; see Weber, Indische StIJdien, 16, z80, 399. " 
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fact that they were the first to be invented and were 
in more common use, so that they acquired special 
cursive forms and did not follow the changes in the 
forms of the corresponding letters. We may now 
summarize the discussion g~ven in this section by saying 
that. (I) the Brahmi numerical forms were undoubtedly 
of Indian origin, (2) the form of the tens were derived 
from certain letters or signs of the alphabet, and (3) 
the origin of the forms of the units is doubtful. It is 
pro bable that they, too, ·were fashioned after the letters 
of the alphabet, but th~re appears to be no means of 
justifying this assertion unless the forms of these numerals 
anterior to Asoka are discovered. 

8. THE DECIMAL PLACE-VALUE SYSTEM 

Important Features. The third and most lm
portant of the Hindu numeral notations is the 
decimal place-vaiue notation. In this system there 
are only ten symbols, those called anka (literally \.> 

meaning "mark") for the numbers one to nine, 
and the zero symbol, ordina1"ily called iU1!)Ia (liter-

-ally, "empty"). With the application of the principle 
of place-value these are quite sufficient for the 
writing of all numbers in as simple a way as possible. 
The scale is, of course, decimal. This system is now 
commonly used throughout the civilised world. 
Without the zero and the place-value, the Hindu 
numerals would have been no better than many others 
of the same kind, and would not have been adopted 
by all the .civilised peoples of the world. "The 
importance of the creation of the zero mark," says 
Professor Halsted, "can never be exaggerated. This 
giving to airy nothing, not merely a local habitation 
and a name, a 'picture, a symbol, but helpful power, is 
the characteristic of the Hindu race whence it sprang. 
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It is like coining the Nirvdtza into dynamos. No 
single mathematic:al creation has been more potent for 
the general on-go of intelligence and power."l 

Forms. A large number of scripts differing from 
each other are in use in different parts of India today. 
The forms of the numerical signs in these scripts are also 
different. Although all t~e Hindu scripts are derived 
from a common source-the Brahml Script-yet the 
differences in the forms of the various modern Indian 
scripts are so great that it would have been difficult to 
establish any relation between them, if their previous 
history had not been known. The above remark ~pplies 
to the numerical signs also, as will appear from a study 
of the numerical sigt:}.s in the various vernaculars of 
India given in Table XV. The great divergence in the 
forms of the numerical symbols shows that in India, 
people already knew the use of the zero and the place
value principle before the different scripts came into 
being, and that the numefal forms were independently 
modified in various parts of India, just as the letters 
of the alphabet were modified. And as the changes 
in the forms in different localities were independent of 
each other, so there has come about a great divergence 
in the modern forms. That this divergence already 
existed in the eleventh century is testified to by AI
Blruni who says, "As in different parts of India, the 
letters have different shapes the numerical signs, too, 
which are called aJika, diffet."2 

Nagari Forms. The most import~nt as well 
as the most widely used of the different symbols are 
those belonging to the Nagar! script. The present 
forms of these symbols are: 

1 G. B. Halsted, On the foundation and technique of Arithmetic, 
Chicago, 1912, p. 20. 

2 AlberTini's India, I, p. 7~. 
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~, ~, ~, 'If, ,\, ~, \9, <::, f?" o. 

The gradual development of these figures from the 
lldhmi numerals is shown in Table XIV. 

Epigraphic Instances. The following is a list of 
inscriptions and grant plates upto the middle' of the 
tenth century, which contain numerals written in the 
decimal place-value notation. The numerals in the 
inscriptions and plates after this period, are always 
given in decimal figures. 

1. 595 A.p. Gurjara grant plate from Sankheda, 
(EI, II, p. 19). The date Sarilvat 
346 is given in the decimal place
value notation. 

'* 2. 

4· 

5· 

*6. 

7· 

8. 

Belhari Inscription, (jA, 186,). 
Kanheri Inscr.iption, (fA, 1863, 
p. 392 ). 

8th Century Ragholi plates of J aivatdhat;la II, 

725 A.D. 

736 A.D. 

753 A.D. 

754 A.D. 

(Ijil, IX, p. 41). The number 30 is 
written in decimal figures. 
Two Sanskrit Inscriptions in the 
British Museum, (lA, XIII, p. 250). 
The dates Sarilvat 781 (=72.3 A.D.) 
and Sarilvat 783 (=725 A.D.) are 
given in decimal figures. 
Dhiniki copper plate gtant, (lA, 
XII, p. 155).. The date Vikrama Saril
vat 794 is given in decimal figures. 
Ciacole plates of Devendravarmat:la, 
(EI, III, p. 133). The number 20 is 
written in decimal figures. 
Ra:graku~~ grant of Dantidurga, 
(lA, XI, .p. 108). The date Sarilvat 
675 is given in decimal figures. 
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9. 79 1 A.D. 

10. 793 A.D. 

*11. 813 A.D. 

12. 815 A.D. 

13. 837 kD. 

14. 843 A.D. 

16. 8~3 A.D. 

17. 860 A.D. 

Inscription of Samanta Devadatta, 
(lA, XIV, p. 351). The date Vikra
rna Sariwat 847 is given in decimal 
figures. 
Daulatabad plates of Sankargal).a, 
(EI, IX, p. 197). The date Saka 
715 is given in decimal figures. 
Torkhede plates, (EI, III, p. 53; also 
lA, XXV, p. 345). The date Saka 
SarilVat 735 is given in decimal 
figures. 
Buchkala inscription of Nagbha~a, 
(EI, IX, p. 198). The date Sariwat 
872 is given in decimal figures. 
Inscription of Bauka (Raj'putana 
Museum, PLM, p. 127; EI, XVIII, 
p. 87). The date Vikrama Sariwat 
894 is given in decimal figures. 
The inscriptions from Kanheri, No. 
43 b., (lA, VIII, p. 133). The date 
Sarilvat 765 is given in decimal 
figures. 
The inscriptions from Kanheri, No. 
15, (Ibid). The date Sarilvat 775 
is given in decimal figures. 
PandukeSvara Plates of Lalitasura
de~~, (lA, XXV, p. 177). The 
date Sariwat 21 of the King's reign 
is given in decimal figures. 
Ghatiyala Inscription of Kakkuka 
(EI, IX, p. 277). The date Vikra
rna Sarilvat 918 is given in decimal 
figures. 

1 For correction of date see lA, XX, p. 42.1. 
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18. 862 A.D. Deogarh Jaina Inscription of Bhoja-
deva, (EI, IV, p. 309). The dates 
Vikrama Sari1Vat 919 and the corres-
ponding Saka Sari1Vat 784 are both 
given in decimal figures. 

19· 870 A.D. Gwalior inscription of the reign of 
Bhojadeva (Archaeological Survry of 
India, Report, 1903-4, plate 72). Al-
though the date is not given, the 
slokas are numbered from 1 to 26 
in decimal figures. 

20. 876 A.D. Gwalior inscription of Allah, of the 
reign of Bhojadeva (EI, I, p. 159). 
The date Vikrama Sarilvat 933, as 
well as the numbers 270, 187 and 
50 are given in decimal figures. 

21. 877 A.D. The inscriptions from Kanheri, No. 
4P, (lA, XIII~ p. 133). The date 
SarilVat 799 is, given in decimal 
figures. 

22. 882. A.D. Pehava inscription (El, I, p. 186). 
The date Sari1Vat 276 (Sri Har~a Era) 

, 

is given in decimal figures. 

23· 893 A.D. Grant plate of Bala varmal)a, (Eli 
IX, p. I). The date Vallabhi Saril-
vat 574 is given in decimal figures. 

24· 899 A.D. Grant plate of A vanivarma1)a, (EI, 
IX, p. I). The date Vikrama Sam-
vat 956 is given in decimal figures. 

25· 9°5 A.D. The Ahar stone inscription (journ. 
United Provinces Hist. Soc., 192.6, pp. 
83 if) contains several dates, written 
in decimal figures. 

26. 9JO A.D. Ra~trakuta grant of Krishna II (El, 
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I, p. 53). The date is given in 
decimal figures. 

27. 917 A.D. Sanskrit and old Canarese inscrip
tions, No. 170, (lA, XVI, p. 174). 
The date '5arilvat 974 is ,given in 
decimal figures. The number 5°° 
also occurs . 

.28. 930 A.D. Cambay plates of Govinda IV, (El, 
VII, p. 26). The date Saka SarilVat 
85.2 is given in decimal figures. 

29. 933 A.D. Sangli plates of RaHrakfrta Govin
daraja IV, (lA, XII, p. 249). The 
date Sarilvat 855 is given in decimal 
figures. 

30 .. 95 I A.D. Sanskrit and old Canarese inscrip
tions, No. 135, (lA, XII, p. 2.57). 
The date Samvat 873 is given in 
decimal figures. 

31. 953 A.D. Inscription of Yasovarmar;ta,. (EI, I, 
p. 122). The date Sariwat 10Il is 
given in decimal figures. 

32. 968 A.D. Siyadoni stone inscription (EI, I, 
p. 162). The inscription contains a 
large number of numerals expressed 
in decimal figures. 

33. 972 A.D. Ragrakfrta grant of Amoghavar~a, 
(lA, XII, p. 263). The date Saka 
894 is given in decimal figures. 

Palaeographic evidences of the early use of the 
decimal place-value system of notation are found in the 
Hindu colonies of the Far East. J. The most important 
ones among. these are the three inscriptions of 

1 G. Coedes, "A propos de l'origine des chiffres arabes," 
Bull. School of Oriental Studies (London), VI, 193 I, pp. 32.3-8. 
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Srivijaya, two foun,d at Palembang in Sumatra, and 
the third in the island of Banka. These contain the 
dates 605, 606 and 608 of the Saka Era (corresponding 
respectively to A.D. 683, 684 and 686) written in 
numerical figures. Another instance giving the date 605 
Saka is the inscription or Sambor in Cambodia. In an 
inscription at Po Nagar in Champa, occurs the date 
73~ Saka (= 813 A.D.). 

Their Supposed Unreliability. The above list 
contains more than thirty undoubted epigraphic ins
tances of the "use of the place-va.lue notation in India. 
G.R.Kaye/ who believes in the theory of the non
Hindu origin of the place-value notation, states that 
all the early epigraphic evidences of its use in India 
are unreliable. On the. basis of the existence of a 
few forged grant plates he asserts that in the ele
venth century "there occurred a specially great oppor
tunity to regain confiscated endowments and to acquire 
fresh ones" and thereby concludes that all early epi
graphic evidences must be unreliable. Such t;easoning 
is obviously fallacious and needs no refutation. 

Most of the copper plates are legal documents 
recording gifts made by rich persons or kings to Bdh
mat;l.as on religious occasions. The plates contain de
tails as to the occasion for making the gifts, the names 
of the donor and the donee, the description of the mov
able and immovable properties transferred by the gift, 
and the date of the gift which is always written out in full 
in words and very often in figures also. The forgeries 
may be of two kinds: (I) In the original documents, 
parts relating to either the names of the donor. or the 
donee, or the description of the immovable .property 
may have been obliterated by being beaten out and new 

1 "Notes on Indian Mathematics," jASB, (N. S., 1907), 
III. pp. 482.-87. 
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names or descriptions substituted. All such forgeries 
are easily detected, because of the uneven surface 
of the part of the plate that is tampered with and 
the difference in the writing. (z) An entirely new 
document may be forged. Such cases, though rare, 
are also easily detected, because there is obvious 
divergence as to the date recorded in the docu
ment, and that inferred on the basis of the 
forms of the characters used in the writing. Such for
geries are also marked by an obvious inferiority in 
execution, and inaccuracies in the statement of gene a
Jogies and other historical facts. 

Epigraphists have so far found little difficulty in 
eliminating the spurious grant plates. It might be 
mentioned that the genuineness of the grant plates 
included in our list has not been questioned by any 
epigraphist. 1 

Kaye, in his article quoted above, has given a list 
of eighteen inscriptions and grant plates and eliminates 
all but the last two as forgeries. The arguments he has 
employed and the assertions of facts that he has made 
are in most cases incorrect and misleading, so that his 
conclusions cannot be accepted. As an instance of 
his method, we quote his criticism about the Gurjara 
grant plate, No. I in our list. He writes: "Dr. Buhler 
quotes this Gurjara inscription of the Chedi year 346 
or A.D. 594 as the earliest epigraphic instance of the 
use of the decimal notation in India. (i) An examination 

1 If any of them is forged, the forgery is so good that it can
not be detected. The writing in such cases, if any, is so well 
forged as to be indistinguishable from that used in the period to 
which the plate is said to belong. Therefore, the evidence of these 
plates as tq the method of writing numbers, cannot be rejected, 
even if they be proved to be spurious at some future date-a con
tingency which is very unlikely to use. It may also be noted that 
the list contains several stone inscriptions which cannnt be spurious. 
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of the plate (Ep. Ind., II., p. 2.0) suggests the pos
sibility that the figures were added some time after the 
plate was engraved. The date is engraved in words 
as well as in figures. It is 'three hundred years exceeded 
by forty-six: The symbols are right at the end of the 
inscription from which they are marked off by a double 
bar in~ most unusual manner. (ii) The figures are 
of the pe of the period, but they were also in use much 
later, a d in no other example are such symbols used. 
with lace-value. (iii) Also there are nine dates 
written in the old notation (Ep. Ind., V), e. g., there is 
another grant of the Gurjara of Bharoch in which the 
date Sarilvat 391 (i.e., A.D. 640) is given in the old 
notation. Again, there is no other Chedi date, at least 
before the eleventh century A.D., given in the modern 
(place-value) notation. (iv) There cannot be the 
remotest doubt as to the unsoundness of this particular 
piece of evidence of the early use of the modern system 
of notation in India." 

The following remarks will show to the reader that 
Kaye's criticism and his conclusion are unfounded and 
invalid: 

(i) An examination of the plate, (El, II, p. 19), 
will convince every one about its genuineness. The 
writing is bold· and clear, the numerical figures occur 
at the end, as they ought to be, immediately after the 
words 'three hundred years exceeded by forty-six.' 
They are separated from the written words by bars, . 
just 'as they ought to be. There is absolutely nothing 
suspicious about this method of separation, as it is 
common custom in India to do so and occurs frequently. 
That it was the practice to write the date at the end of 
a document is well known. 1 In fact, the numeral 

l,Many of the plates mentioned in our list contain the date 
at the end. 
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figures of the date occasionally. mark the end of the 
document. 1 The double vertical bar, II , is a sign of inter
punctuation. Although punctuation marks have been 
in use in India from the earliest known times, yet their 
use did not become either regular or compulsory till 
very recent times. 2 Different writers used the vari~us 
marks differently.. In inscriptions, the double vertical 
bar has been found at the end of sentences, half verses, 
verses, larger prose sections and do"cuments. In the 
Junar inscriptions it occurs after numerals and once 
after the name of the donor. S In manuscripts, the 
practice of separating numbers by vertical bars is com
mon. It is found in the Bakhshali Manuscript4 and 
in several others. Thus the occurrence of the numerals 
at the end and the inter-punctuation mark of the double 
vertical bar cannot form valid grounds for suspecting 
the document. The suggestion that the figures were 
added some time after the plate was engraved is absurd, 
as there appears to us no reason why one should take the 
trouble to add the figures when the date was already 
written in words. 

(ii) Kaye admits that the figures are of the type 
of the period. His remark that they were in' use much 
later is incorrect. The Tables III-V and XII show that 
the usc of three horizontal bars to represent 3 is not 

1 This is so in the Ch:irgaon plates of Huvi~ka (Arch. Surv~ 
, Report. 1908-9. plate 56), 'in the Inscription of Rudradamana (lA, 

VIIT, p. 42.) and in others. 
~ There are some copper plate grants which do not contain 

any punctuation marks; see Buhler, I.e., p. 90. 
3 Biihler, I.c., p. 89. 
4 E.g., I 5 I ,21 r; I 2558 I ,;2v; I 330 I , 17v; instances such 

as these: I 1 I 4 I 9 I 16 I , 16y; and L=J, oW, etc., F. are 
very common. Very often, isolated numbers are not separated. 
The double vertical bar also occurs before and after the words uda, 
stitrafJI, etc. 
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found after the eighth century. The figure for 4 used 
in our grant plate is not found after the sixth century, 
and. the same is true for the figure for 6. The forms 
of the numerical signs alone fix the date of the writing 
to the sixth century and not later. 

(iii) The Chedi SaJiIVat is one of the thirty-four eras, 
whose use has 'been discovered in inscriptions and grant 
plates. The occurrence of nine dates in the Chedi Sam
vat, written in the old notation after this plate, does not 
prove the unsoundness of this particular piece of evi
dence, as Kaye would like us to conclude. It simply shows 
that in India too, the new system had to fight for 
supremacy over the older one just as in other countries. 
In Arabia the new system was introduced in the eighth 
century, but it did not come into common use until 
five or six hundred ye'ars later. In Europe we find 
that it was exceptional for common people to use the 
new system before the sixteenth century-a good 
witness to this fact being the popular almanacs. Calen
dars of 1557-96 have generally Roman numerals, while 
Koebel's Calendar of 1578 gives the Hindu numerals 
as subordinate to the Roman. 1 

We may, therefore, conclude that the Gurjara 
grant plate offers us a genuine instance of the use of the 
new system (with place-value) in India. 

Kaye's criticisms regarding the genuineness of some 
other plates included in our list (marked with asterisks) 
have been found to be baseless. 

Place of Invention of the New System. It has 
been already stated that the same numeral forms for the 
numbers I to 9, as were in use in India from the earliest 
known times, have been used in the new system of nota
tion with the place-value. Another noteworthy fact 

1 Smith and Karpinski, i.e., p. 133. 
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regarding the new system is the arrangement of the 
mika ( digits). It will be observed that the arrangement 
in the old system was that the bigger numbers were 
written to the left of the smaller ones. 1 This same 
arrangement continues in the new system with place
value, where' the digits to the left, due to their place 
or position, have bigger values. The gradual change 
from the old system to the new one using the same 
numerical signs, is to be found in India alone, and this, 
in our opinion, is one of the' strongest arguments in 
favour of the Hindu origin of the new system. The 
earliest epigraphic instance of the use of the new system 
is 594 A.D. No othq country in th~ world offers such 
an early instance of its use. Epigraphic evidence alone 
is, therefore, sufficient to assign a Hindu origin to the 
modern system of notation. 

Inventor Unknown. It is not known who the 
inventor of the new system was, and whether it was 
invented by some great scholar, or by a conference of 
sages or by gradual development due to the use of 
some form of the abacus. Likewise, it is not known 
to which place, city, district or seat of learning belongs 
the honour of the invention and its first use. Epigra
phic ~vidence cannot help us in this direction. For 
the system was .used in inscriptions, a very long time 
after its invention, in fact, when it had become quite 
popular all over Northern India. 

Time of Invention. The grant plates were legal 
documents. They were written by professional writers. 
The existence of such writers is mentioned in the 
southern Buddhist canons and in the Epics. 2 They have 

l Showing thereby that the place assigned to a numeral de
pended upon its value. This has been incorrectly thought to 
be a sort of place-value system by some writers. 

2 Bi.ihler, I.e., p. 5. 

4 
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been called !ekhaka, !tpikara and later on divira, karat1a, 
kdyastha, etc. According to Kalha1)a,l the Kings of 
Kashmir employed a special officer for drafting legal 
documents. He bore the title of pa!!opdd~Y4Ya, i.e., the 
teacher (charged with the preparation) of title deeds. 
The existence of manuals such as the Lekhapaiicdjika, 
the Lekhaprakdla, which give rules for drafting letters, 
land grants, treaties, and various kinds of bonds and 
bills of exchange, show beyond doubt that the writing 
of grant plates was a specialised art and that the 
style of writing those documents must always have been 
centuries behind the times, just as it is even to-day 
with respect to legal and state documents. The time 
of invention of the new system must, therefore, be 
placed several centuries before its first occurrence in a 
grant plate in the sixth century A.D. The exact period 
of invention may be roughly deduced from the history 
of the growth of numerical notations in other countries. 

According to Heath,2 the Greek alphabetic notation 
was invented in the 7th century B.C., but it came into 
general usc only in the second century A.D. Thus 
it took about eight hundred years to get popular. In 
Arabia the new notation was introduced in the 8th 
century A.D., but it came into common use about five 
or six hundred years later. The same was the case in 
Europe. The Arabs got the complete decimal arith
metic, including the method of performing the various 
operations, at a per~od when intellectual activity in 
Arabia was at its greatest height, but they could not 
make the decimal system common before about five or 
six hundred years had elapsed. 3 In legal documents 

1 Rdjatarati,e,i!1i , V, pp. 397f. 
2 Heath, History oJ Greek lHathematics, I, Oxford, 192.I, p. 34. 
3 The arithmetic written by AI-Kharki in the eleventh century 

does not use the decimal system, showing that at the time there 
were two schools amongst the Arab mathematicians, one favouring 
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and in recording historical dates, the Arabs even nqw 
use their old alphabetic notation. 

Epigraphic evidences show that the new system 
was quit.e common in India in the eighth century and 
that the old system ceased to exist in Northern India by 
the middle of the tenth century. This would, therefore, 
place the invention. of our system in the period bet
ween the first century B.C. and the third cenrury A.D . 

. T{ie exact date of the invention, however, would be 
nearer to the 1st century B.C. or even earlier, because 
for a long time after its invention, the system must 
have been looked upon as a mere curi_osity' and used 
simply for expressing large numbers. A still longer 
time must have elapsed before the method of perform
ing the operations of addition, subtraction, multiplica
tion, division and the extraction of roots, could be 
perfected. It would be only after the perfection 
of the methods of performing the operations that the 
system could be used by mathematicians. And then 
after this it would take about five hundred years, ~s in 
l\rabia, to become popular. There should, therefore, 
be a gap of about eight centuries between the time of 
invention and its coming into popular use, just as was 
the case with the Greek alphabetic notation. There
fore, on epigraphic evidence alone, the invent jon of 
the place-value system must be assigned to the begin
ning of the Christian era, very probably the 1st century 
B.C. This conclusion is supported by literary and other 
evidences which will be given hereafter. 

the Hindu numerals, while the other stuck to the old notation. 
See the article on -"Hisab" by H. -Suter.in the Enryclopaedia of Ii/am. 



NUMERAL NOTATION 

9. PERSISTENCE OF THE OLD SYSTEM 

The occurrence of the old system of writing 
numbers, with no place-value, is found generally in 
inscriptions upto the seventh century A.D., after which 
it was gradually given up in favour of the new system 
with place-value. Occasional use of the old system, 
however, is to be met with in Nepal and in some South 
Indian inscriptions upto the beginning of the tenth 
century A.D., but after this period the old system seems 
to· have been forgotten, and completely gone out of 
use. In the seventh century the new system was in 
general use, but the old system seems to have been 
given preference in inscriptions. There are a number 
of grant plates of the eighth century A.D., in which 
the dates, although written in the old notation, are 
incorrectly inscribed, showing thereby that people had 
already forgotten the old system. In a grant plate 
of Slladitya VI,' dated the Gupta year 441 (c. 760 A.D.), 
the sign for 40, instead of the sign for 4, has been 'Sub
joined to the sign for 100 to denote 400, i.e., 4,000 has 
been incorrectly written for 400. There is another 
grant plate, dated the Gangeya year 183 (c. 753 A.D.), in 
which the figure 183. is wrongly written. 2 This plate is 
of ~pecial interest as it exhibits the use of the old and the 
new systems in 1 he same document. 3 Another very inter
esting instance of the use of the old and the new systems 
in one and the same document is the Ahar stone 

1 lA, VI, p. 19, (plate). 
2 EI, III, p. 133, (plate). In this the sign of 8 is written 

for 80 and that of 30 for 3. The number 20 has been written 
by placing a dot after 2. 

:; For other instances showing admixture of both the old and 
the new systems, see Fleet Gupta Inscriptions, Corpu.r Inscriptiomml 
Indican"'l, III, p. 292; also lA, XIV, p. 3-5 I, where (8no) (4) 
(9)·-=849' 



WORD NUMERALS 

inscription. 1 The dbcument records gifts made on several 
occasions ranging over thirty-seven years, the last entry 
corresponding to 905 A.D. . In this inscription the old 
notation is used in the first six lines whilst in the follow
ing lines it has been discarded and the new place-value 
notation appears~ It is evident from the forms that the 
writer did not know the old system. For instance, 200 is 
written by adding the subscript 2 to the letter su (ICO), 
instead of using a lJ,atrkd sign as in the old system. In 
the same way the sign for 10 is incorrect ip. so far as a 
small zero has been affixed to the usual sign for ten. 
The inscription shows that although the old system had 
gone out of use completely, yet people tried to use it in 
inscriptions, probably for the same reason that makes 
us use the Roman numerals in giving dates, in number
ing chapters of books, and in marking the hours on the 
face of a clock, even upto the present day. 

10. WORD NUMERALS 

Explanation of the System. A system of 
expressing numbers by means of words arranged as in 
the place-value notation was developed and perfected 
in India ~n the early centuries of the Christian era. 
In this system the numerals are expressed by naIIles 
of things, beings or concepts, which, naturally or in 
accordance 'with the teaching of the Sastras, connote 
numbers. Thus the number one may be denoted by 
anything that is markedly unique, e.g., the moon, the 
earth, etc.; the number two may be denoted by any 
pair, e.g., the eyes, the hands, the twins, etc.; ?nd 
similarly others. The zero is denoted by words meaning 
void, sky, complete, etc. 

1 C. D. Chatterjee, "The Ahar stone inscription," JOIiTn. United 
Provinces Hist. Soc., 1926. pp. 83-1I9. 
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The system is used in works on astronomy, mathe
matics and metrics, as· well as in the dates of inscrip
tions and in manuscripts_ The ancient Hindu mathema· 
ricians and astronomers wrote their works in verse_ 
C()nsequent~T they strongly felt the need for a convenient 
mcthod of expressing the large numbers that occur so 
oftcn in the astronomical works and in the statement 
nf problems in mathematics. The word numerals were 
im'enred to fulfil this need and soon became very popular. 
The~' are used even upto the present day, whenever big 
numbers have to be expressed in Sanskrit verse. 

The words denoting the numbers from one to nine 
and zero, with the use of the principle of place-value, 
gi\'c us a very convenient method of expressing numbers 
by word chronograms. To take a toncrete case, the 
number 1,230 may be exprcssed in many ways: 

I, kba-_gll!Ja-kara-adi, 
2, lha-!oka-kar!1a-candra, 
3, dkljja-kli/a-netra-dJJard, etc. 

It will bc observed that the same number can be 
expressed in hundreds of ways by word chronograms, 
This I?rop.erty ':1ake~ the word numerals specially suit
abl~ tor InclusIon In metre. To secure still greater 
varIety, the numbers berond ten arc also sometimes 
denoted by w()rds, 

List of Wurds. The following is a list of words 
commonly u~l'd in this system to denote numbers: 

o is expressed by JU'!)I[I, kha, gaJ"alltl, alllbara, dkdsa, 
abbra, lJ~j'at, '.'J'OIlIrl, antllrik,ftI, l1abha, ja/odborapatha, 
piirflr1, ralldhrll, vi/ !1l1pada, ({17{{lIta, etc. 

u' is expressed by ddi, ,fa.fi, mdII, vidlm, cOJldra, kala
dhtlrt/, hiIIN/gI(, silt/Iii},!, k :wpcrkara, l,illlOllisl(, sitaraJllli, 
prl//('y(ililsll, .rOIl/a, saicilika, IIJ!J!.ciliko, hiJlla/(ara, 
slldb~;liJStl, rl!;anikara, fasadhara, fL'e/a, aida, bhd, 
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bhilllli, k.fiti, dhara, Ifrvara, go, IJastmdhara, prtbv!, 
kf1lla, dbaratt!, l'tJslldba, iid, kll, mah!, ripa, pitall/aba, 
n4J,aka, tanll, etc. 

2 is expressed by ),allta, .yamaia, afvin, nclsaf]'a, da sra , 
iocana, netra, ak.fi, dr.f!i, cak.ftl, alilbaka, nt1)'ana 
ik,ratta, pak,ra, babtl, kara, kartta, ktlca, Of/ha, glllpba, 
jantl, jmigba, dVt1)'a, dvanda, J'tIgaia, )"tglJla, t1)'aJJa, 
kll/tttl/ba, ravicandral(, ncrya,l etc. 

; is expressed by rail/a, gtl!la, trigtl!7a, loka, trijagat, 
bhtIVana, kaia, trikala, trigata, trimtra, haranetra, 
sahodara/J, agni, anala, }Jahni, POl 'aka, lJmSl!anara, 
dahalla, tapalla, hlltdfana, jva/ana, fikbill, krfdllll, botr, 
pura, ratna.2 (Jaina), etc. 

4. is expressed by veda, fmti" salJJtfdra, sagara, abdhi, 
alJlbhodha, am/Jhodhi,ja/adbi, IIdadhi,ja/anidlJi, saliJakara, 
l!Ijallidhi, vdridhi, pcryodhi, PcJ),ollidhi, allib"dhi, ke!1dra~ 
vartta, afrallla, ]ttga, tlll)'a, krta, t1)'tl, 4_ya, dif, bal1dhu, 
kO.f!ha, gati, ka.fc!J'a, etc. 
is expressed by bat/a, fara, fastra, s4J'aka, iflt, bhlita, 
parva, prdtta,pavana,3 pd!ujaM, artha, vi,fcrya, lIIabdbhi?la, 
tatva, bhdva, indriJ,a, raIna, karattD'a,4 vrata, etc. 

6 is expressed by rasa, atiga, k,q)'a; rIll, masardha, dar
fana, rilga, ari, fdstra, larka, karaka, lekl!)'a, drtl1(),a, 5 

khara, kUll/aravadana, fa tllJlukha} etc. 
7 is expressed by naga, aga, bhi7bhrl, parvata, faiia, 

acala, adri, giri, ffi, Illlmi, ),ati, atri, vara, svara, 

1 Method of ~omprehending things from particular stand
points-drazyarthika and pao'4Ydrlhika. 

2 Used by Mahavira only; others take it for five. 
~ 3 See Si5e, i. 27; SiJ'i, ga!1itddh)'clya, x. 2. Used also for t 

(See the guotations by Bhanotpala in his commentary on Brhat
sanihilii, ch. ii). In Al-Bi'runl's list it is erroneously put for 9. 

4 That which ought to be done; according to the Jainas
ahillisa, sun.rla, ast€)'a, brahllJacarya, and aparigraha. 

,'Used by Mahavira. 
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dhdtfl, ail/a, turaga, l'ciji, hqya, c/Jane/ap, dhf, kalatra, 
tatva,l dt4pa, pCllmaga,2 bhc1)'a,3 mdtrkJ, t)'aSalta, etc. 

8 is expressed by vasu, ahi, ndga, gqja, dan!i, dvirada, 
diggqja, bastin, ibha, nJdtanga, ktliijara, dlJipa, pUfkarin, 
sindhtlra, sarpa, tak.fa, siddhi, bht2ti, antt.f!tlbha, Illan
gala, anfka, karll/cw/ dllrita, ttlfltl,5 dik, e /lIada,7 etc. 

9 is expressed by anka, Il({flda, nidhi, /!raha, 'randhra, 
chidra, dvdra, go, 8 /lpendra, keiava, tdrkD'adhvqj, durgd, 
padortha,9 labdha, labdhi, etc. 

10 ·is expressed by dii, dlk, diid, did, "ui.gtllf, pankti, 
kakubh, ravatzaiira, avatdra, karlllall, etc. 

1 I is expressed by rttdra, tSvara, 11Ircja, hara, fia, bhava, 
bharga, iulin, mahadella, ak.fauhitzi, etc. 

12 is expressed by ravi, st7rya, ina, arka, 1I1artatzcja, 
cfyullJcltzi, bhdm/, adirya, divdkara, mdsa, raii, 1!)'aya, 
etc. 

, 

13 is expressed by iJiivedevap, viiva, kama, atijagatt~ 
agho.fa, etc. 

14 is expressed by manu, m(/yd, indra, iakra, loka/o etc. 
15 15 expressed by tithi, ghasra, dina, ahan, pak.fa,l1 etc. 
16 IS expressed by nrpa, bhupa; bhupati, a.f!i, ka/d, etc. 

17 1S expressed by atyaf!i, etc. 

1 Used by Mahavira because the Jainas recognise seven tatras; 
used for five by others. 

2 Used by MaM.vira. 
3 Used by Mahavlra. 
~ Used by Maharvira for 8 and by others for 10. 

5 Used 'by Mahavira. 
G This word has been used for 8 as well as for 10. The use 

of dis or dik for 4 also occurs. 
7 Used by Mahavira only. 
8 This has been used for I a15Q. 
o Used by Maha.vira only. 

10 Also used for 3. 
11 Also used for z. 
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18 is expressed by dhrti, etc. 
19 is expressed by atidhrti, etc. 
20 IS expressed by nakha, kfti, etc. 
2 I IS expressed by utkrti, prak! ti, svarga, etc. 
22 IS expressed by krti, jaJi (?), etc. 
23 IS expressed by vikrti. 
24 IS expressed by g4yatri, jina, arhat, siddha, etc. 
25 is expressed by (atva,l etc. 
27 is expressed by nak.fatra, uflu, bha, etc. 
;2 IS expressed by danta, rada, etc. 
_, _, is expressed by deva, amara, tridafa, sura, etc. 
48 is expressed by jagati, etc. 
49 is expressed by tana, etc. 

57 

Word Numerals without Place-value. In the 
Veda we do not find the use of names of things to 
denote numbers, but we do find instances of numbers 
denoting things. For instance, in the J!..gveda the number 
'twelve' has been used to denote a year 2 and in the 
Atharvaveda the number 'seven' has been used to 
denote a group of seven things (the seven seas, etc.).3 
There are instances, however, of fractions having been 
denoted by word symbols, e.g., kald = ·iJtr, kU.f!ha = II:!, 

'h I sap a = '4' 

The earliest instances of a word being used to 
denote a whole number are found about 2,000 B.C., in 
the ~atapatha Brahmatla4 and Taittir[ya Brah'lla!1a.5 The 

1 Generally used for 5; also for 7 by Mahavira. 
2" Devtl bifilJl juguplirdvddafasya rtlllJl narona praminanf)'ele . . ~ , . , " 

(vii. 103, I). ' 
a "Om ye' frifapta para'ante. ... " (i. I, I). 
4 The word kr1a has been used for 4. 

"catll!!omma krtena qydnd~lI . ... " (xiii. 3. 2. I). 
G "Ye vai catvdral; stomdp krtalJl tat . ... " (i. j. I!. I). 
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CbdJldo,gya Upanifad also contains several instances. In 
the Vedanga Jyotifa~ (1,200 B.C.) words for numerals 
have been used at several places. The Srallta-Stltras of 
KoO'qyana 2 and Lti!.Yt!J'and' have the words gti_yatri for 
24 andjagatf for 48. 

At- this early stage, however, the word symbols 
were nothing more than curiosities; their use to denote 
numbers was rare. :Morcover, we find evidences of a 
certain indefiniteness in the numerical significance at
tached to certain words. For instance, in the same 
work, the Aitarv'a BrahlJlatJa, the word 1lira! has been 
used to denote 10 at one place and 30 at another. The 
principle of place-value being unknown, the- word 
symbols could not be used to denote large numbers,. 
\vbich were usually denoted in terms of the numerica1 
denominations or by breaking the number into parts. 4 

The use of the word symbols without place-value is 
found in the Pinga/a Chandap-sutra composed before 
200 B.C. The principle of place-value seems to -have 
been applied to the word numerals between 200 B.C. 
and 300 A.D. 

Word Numerals with Place-value. The earliest 
instance of the usc of the word numerals with place
value in its current form is found in the Agni-Plirarza/ 

1 riipa = I, t?ya = 4, gupa = .)'lIga = 12, bhasa1JJiiha = 27. See 
(1']. 23, AJ. F), (YJ. 13, A]. 4), (A]. 19), (YJ. 25) and (1"J. 20) 
respectively. . 

2 \'Veber's edition of Kdty4Jana Srauta Srt/ra, p. 1015. 
3 ix. 4. 31. 
-1 E.g., 

DaJii)'fItaniilJ)q)'tllati, sahasrd(li ca vililia/IV • 
• Ko/)'a!J ,ra,r,tiJca ,ra! caiva yo'smin rajan-mritjhe /Jalap 

that 15, 10 (10000) + 10000+20 (1000) + 60 (10,000,000) + 

6 (IO,ooo,ooo)-Alahdbharata, Stripar2'a, xxvi. 9. 
" A.!?,ni-P/II'a!lCl, BangaMsl ed., Calcutta (13 14 B.S.), chs. 122-

2..3, 13 I, 140" 141, 328-33 5. According to Pargiter, probably the 
gl Caresr Puranic scholar of modern times, "the pura(las cannot 
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a work which belongs to the earliest centuries of the 
Christian era. Bhattotpala in his commentary on the 
Brbat-saJJihitd has given a quotation from the original 
Ptllifa-siddhanfa 1 (c. 400) in which the word system is 
used. The number expressed in this quotation is 
kha (0) kha (0) af/a (8) JJl1Ini (7) rama (3) afzJi (2) netra (2) 
af/a (8) fara (5) rdtripap (1) = 1,582,237,800. There 
are in this work 2 several other quotations from the 
Puliia-siddhdnta, which contain word ° numerals. Later 
astronomical and mathematical manuals such as the 
Su,:_va-siddMnta ° (c. 300), the Paiica-siddhdntikd3 (505), the 
oMahd- and Laghu-Bhdskariya4 (522), the BrahlJla-sphll!a
siddhdnla5 (628), the Triiatikii6 (c. 750), and the GatIitd
sdra-samgraha7 (85 0), all make use of the word notation. 8 

Word Numerals in. Inscriptions. The earliest 
epigraphic instances of the use of the word numerals are 
met with in two Sanskrit inscriptions9 found in Cam
bodia which was a Hindu colony. They are dated 604 

be later than the earliest centuries of the Christian era." (jRAS, 
1912., pp. 2.54-55). The Agni-Puratza is admitted by all scholars 
to be the earliest of the Puratzas. 

J Brhat-sallihita, ed. by S. Dvivedi, Benares, p. 163. 
"Ibid, pages 2.7, 2.9,49, 51, etc. We are, however, not sure 

whether those quotations are from the original work or from a 
later redaction of the same. 

d i. 8; viii. I, etc. 
• See MBh, ch. 7 and LBh, ch. 1. 

5j. 51-55, etc. 
6 R. 6, Ex. 6, etc. 
7 ii. '7, 9, etc. 
8 In the face of the evidence adduced here, G. R. Kaye's 

assertion, (If/dian A1athematics, Calcutta, 19I5, p. 31) that the word 
numeloals were introduced into India in the ninth century from 
the cast, shows his ignorance of Indian mathematical works, or is 
a deliberate misrepresentation. 

U R. C. l\Iazumdar, Ancient Illdian colonies in the far east,
Campa, Vol. I, Lahore, 1927; see inscriptions Nos. 32.,39; also 40, 
4 1 ,43 and 44. 
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A.D. and 625 A.D. Their next occurrence is found in 
a Sanskrit inscription of Java, belonging to the 8th 
century.l 

In India proper, although they were in use amongst 
the astronomers and mathematicians from the 3 rd or 
4th century A.D. onwards, it did not become the fashion 
to use them in inscriptions till a much later date. The 
earliest Hindu inscriptions using these numerals are 
dated 813 A.D.'! and 842. A.D.3 In the following 
century they are used in the plates issued by the Eastern 
Chalukya Amma II, in 943 A.D.4 In later times the 
epigraphic instances become more frequent. The nota
tion is also found in several manuscripts in which dates 
are given in verse. ~ 

Origin and Early History. It should be 
noted that the arrangement of words, representing the 
numbers zero and one to nine, in a word chronogram 
is contrary to the arrangement that is followed when 
the same number is written with numerical signs. This 
fact has misled some scholars to think that the decimal 
notation and the word numerals were evolved at two 
different places. G. R. Kaye has gone so far as to 
suggest that the word numerals were imported into 
India from the east. This suggestion is incorrect for 
the simple reason that in no language other than 
Sanskrit do we find any early use of the word system. 
Moreover, in no country other than India do we find 
any trace of the use of a word system of numeration 

] lA, XXI, p. 48. 
2 The Kac;lab plates, lA, XII, p. II; declared by Fleet to be 

suspicious (Kanarese Dynasties, Bombqy Gazatteer, I, ii, 399, note 7); 
cf. Buhler, I.e., p. 86, note 4. 

3 The Dholpur Inscription, Zeitschrift der DeulIchen Morgen/a!1dis
chen Gesellschaft, XL, p. 42.. 

4 lA, VII, p. IS. 
;; Buhler, I.c., p. 86, note 7. 
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as far back as the fourth century A.D., at which period 
it was in common use amongst the astronomers and 
mathematicians of India. 

During the earlier stages of the development of 
this system, we find that instead of the word symbols, 
the number names were used, being arranged from left 
to right just as the numerical signs. An instance of 
this is found in the Bakhshali Manuscript ' (c. 200), where 
the number 

26 5 3 296226447064994 .... 83 2 1 8 

1S expressed as 

$arjvifitfafca (26) tripancdfa (53) ekoJ1atrimfa (29) evacha 
Dvd!a [!!i] (62 ) !a;ivimfa (26) catufJCatl'drimfa (44) saptali (70) 
CatuP.fa.f!i (64) na[vanavali] (99) ... msanClJ1tarallJ 
Trirafiti (83) ekavimfa (21) a/fa (8) ... pakal!J 

In the same manuscript, however, the contrary 
arrangement is used when the number 54 is expressed 
as catup (4) panca (5).12 Jinabhadra Gat).i (575) has used 
word symbols with the left to right arrangement to 
express numbers. 3 It seems, therefore, that in the 
beginning opinion was divided as to which method of 
arrangement should be followed in the word system. 

The extensive use of the word numerals by early 
mathematicians such as Pulisa, Varahamihira, Lalla and 
others appears to have set the fashion to write the word 
numerals with a right to left arrangement, which was 
gener;:tlly followed by later writers. 

1 Folio 58, recto. The dots indicate some mISSIng figures. 
The probiem apparently required the expression of a big number 
in numerical denominations. We do not find a problem of this. 
type in anr of the later works. Cf. B. Datta, "The Ba.khshall 
Mathematiq;." BCi\IS, XXI, p. 21. 

~ Folio 27, recto. 
3 Brhat-kfetra-samdsa, i. 69ff. 
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No explanation as to why the right to left arrange
ment was preferred in the word system is to be found 
in any of the ancient works. The following explana
tion suggests itself to us, and we believe thac it is not 
far from the truth: The different words forming a 
number chronogram were to be so selected that the 
resulting word expression would fit in with the metre 
used. To facilitate the selection the number was first 
written down in numerical figures. The selection of the 
proper words would then, naturally, begin with the 
figure in the units place, and proceed to the left just as in 
arithmetical operations. This is in ilccordance with the 
rule "mikana'?1 vaRlato gatifJ," i.e., 'the numerals proceed 
to the left,' which seems to have been very popular with 
the Indian mathematicians. The right to left arrange
ment is thus due to the desire of the mathematicians to 

look upon the process of formation of the word chrono
gram as a sort of arithmetical operation. 

Date of Invention. The use of the word nU9Jerals 
in the Agni-Purdpa which was composed in the 4th 
century A.D. or earlier, shows that the word system of 
numerals must have become quite common in India 
at that time, toe Pllrd{1ClS being works meant for the 
common folk. That it was a well developed system 
in the fourth century is also shown by its extensive use 
in the SiI;ya-siddhdnta and the Ptdifa-siddhdllta. Its in
vention consequently must be placed at least two 
centuries earEer. This would give us the period, 100 
.A.D. to 200 A.D., as the time of its invention. This 
conclusion is supported by the epigraphic use of the 
word notation in 605 A.D., in Cambodia, which shows 
that by the end of the 6th century A.D., the knowledge 
of the system had spread over an area roughly of the 
size of Europe. 

It must be pointed out here that the decimal place
value notation and the word numerals were not invented 
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at the same time. The decimal notation must have been 
in existence and in common use amongst the mathema
ticians long before the idea of applying the place-value 
principle to a system of word names could have been 
conceived. Thus we find that in the beginning (c. 200), 

the place-value principle, as is to be expected, was used 
with the number names. The word symbols were then 
substituted for the number names for the sake of 
metrical convenience. The right to left procedure was 
finally adopted because of the mathematicians' desire to 
look upon the formation of the word numeral as a 
sort of mathematical operation. 

The above considerations place the invention of the 
decimal place-value notation at a period, at least two 
or' three centuries before the invention of the' word 
system. The word notation, therefore, points to the 
1st century B.C. as the time of invention of the place
value notation. rhis conclusion agrees with that 
arrived on epigraphic evidence alone. 

II. ALPHABETIC NOTATIONS 

T~e idea of using the letters of the alphabet to 
denote numbers can be traced back to PiQ.ini (c. 700 

B.C.) who has used the vowels of the Sanskrit alphabet 
to denote numbers.' No definite evidence of the exten
sive use of an alphabetic notation is, however, found 

'In PaQini's grammar there are a number of sutras (rules) 
which apply to a certain number of sutras that follow and not 
to all. Such sutras are marked by signs according to panini. 
Patanjali commenting on sutra i. 3. I I, says that according to 
K:1tyayana (4th century B.C.) a letter (vartza), denoting the number 
of sutras upto which a particular rule is to apply, is written over 
the sutra. Kaiyya~a illustrates this remark by saying that the 
letter i is written above Pa!)ini's sutra, v. 1. 30 to show that it 
applies only to the next two sutras. Thus according to Panini 
a = 1, i = 2, II ~ 3, ..... . 
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up to the 5th century A.D. About this period a number 
of alphabetic notations were invented by different writers 
with the sole purpose of being used in verse to denote 
numbers. The word numerals gave big number 
chronograms, so that sometimes a wh;)le verse or even 
more would be devoted to the word chronogram only. 
This feature of the word system was naturally looked 
upon with disfavour by some of the Indian astronomers 
.vho considered brevity and conciseness to be the main 
attributes of a scientific composition. Thus the alpha
betic notations were invented to replace the word 
system in astronomical treatises. The various alpha
betic systems1 are simple variations of the decimal 
place-value notation, using letters of the alphabet in the 
place of numerical figures. It must be noted here that 
the Hindu alphabetic systems, unlike those employed 
by the Greeks or the Arabs, were never used by the 
common people, or for the purpose of making calcula
tions; their knowledge was strictly confined to the 
learned and their use to the expression of numbers in 
verse. 

Alphabetic System of Aryabhata I. Aryabha~a 
I (499) invented an alphabetic system of notation, which 
has been used by him in the DaJagitikii 2 for enumerating 
the numerical data of his descriptive astronomy. The 

1 Some alphabetic systems usc::d for the pagination of manus
cripts do not use the place-value principle. These systems were 
the invention of scribes who probably wanted to be pedantic and 
to show off their learning. Their use was confined to copyists 
of manuscripts. . 

"The Dafagitikd as the name implies ought to contain ten 
stanzas, but actually there are thirteen. Of these the first is an 
invocation to the Gods, the second is the paribhd!cl ("definition") 
given above and the thirteenth is of the nature of a colophon. 
These three stanzas are, therefore, not counted. Cf. WI. E. Clark, 
"Hindu-Arabic Numerals," Indian Studies in Honour of Charles 
Rockwell Lanman, (Harvard Univ. Press), 1929, p. 231. 
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rule is given in the Dafagitika thus: 
Varga'le{drapi varge'varge'vargak{arapi kat nTnau yap 
Khadvinavake svara nava varge'varge navantyavarge va 

The following translation gives the meaning of the 
rule ~s intended by the author: 

"The vargal letters beginning with k (are used only) 
in the varga 2 places, the al!arj!,a letters in the avarga3 

places, ( thus) ya equals timau (tia plus ma); the nine 
vowels (are used to denote) the two nines 'of zeros 
of varga and avarga (places). The same (procedure) may 
be (repeated) after the end of the nine varga places." 

This rule has been discussed by Whish? 4 Brock
khau~/ Kern, 6 Barth/ Rodet,8 Kaye, U Fleet/o Datta,tl 
Ganguly,12 Das,'3 Lahiri14 and Clark. 15 

The translation of kba by "place'" (Clark) or by 
"space" (Fleet) is incorrect. We do not find the word 
kba used in the sense of 'notational place' anywhere in 
Sanskrit literature. Its meanings are 'void', 'sky', etc., 
and it has been used for zero, in the mathematical and 

1 T/arga here means "classed," i.e., the classed letters of the 
alphabet. The first twenty-five letters of the alphabet are classed 
in groups of five, the remaini~g ones are unclassed. 

2 Varga here means odd. 
3 Avarga here means even. 
4 Transaction: of the Literary Society of Madras, I, 1827, p. 54. 
5 Zeitschrifte fur die kunde des Morgen/iindes, IV, p. 8 I. 
6 JRAS, 1863, p. 380. 
7 Oeuvres, III, p. 182.. 
8 JA, 1880, II, p. 440. 
o JASB, 19°7, p. 478; Indian Mathematics, Calcutta, 1915, p. 30; 

The Bakhshtili Manuscr,ipt, Calcutta, 192.7, p. 81. 
10 )ARS~ 1911, p. 109. 
11 Slhitya-Parirad-Patrika, 192.9, p. 2.2.. 
12 BCMS, 192.6, p. 195. 
13IHQ, III, p. 110. 
14 History of the World (in Bengali), Vol. IV, p. 178. 
is Aryabhatiya of Aryabhata, Chicago, 1930, p. 2.. 

5 
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astronomical works. We thus replace "the two nines of 
places" in the translation given by Clark by "the two 
nines of zeros." Clark has given the following reason 
for not translating kha by zero: "That is equivalent 
to saying that each vowel adds two zeros to the numeri
cal value of the consonant. This, of course, will work 
from the vowel i on; but the vowel a does not add 
two zeros. It adds no zero or one zero depending on 
whether it is used with varga or avarga letters. It seems 
to me, th(!refore, more likely that a board divided jnto 
columns is implied rather than a symbol for zero, as 
Rodet trunks." The vowels do not add zeros. The 
explanation will not work for any of the vowels; for 
instance, i, according to this interpretation, would add 
two zeros to g but three zeros to y. What really is 
implied by kha is explained by the commentator Surya
deva as follows: "khani Ju,!yopalak;itani, sank4ydvi'!)'dsas
thandni tefa,!, dvinavaka,!" khadvinavaka,!" tasm;n khadvina
vake fli/?Jopalak.fitdsthana.f!ddaJa (18) ityarthaf.;;" that iso, 
"kha denotes zero; the places for putting (writing) 
the numbers are two nines (dvinavaka,!,) , therefore, 
khadvinavake means the eighteen places denoted by 
zeros." It may be mentioned here that the Hindus 
denote the notational places by zeros. Bhaskara 1(522), 
commenting on Gatzitapdda, 2, which gives the names of 
ten notational places, says: . I 

"'!YasaJca sthananalp 0000000000." 

i.e., "writing down the places we have 0000000000." 

Bhaskara I is more explicit in the interpretation of kha 
by zero, for in his comments on the above rule, he 
states: "khadvinavake svard nava varge: kha means zero 
(fi2'!.ya). In two nines of zeros (kha), so k/Jadvinavake; 
that is, in the eighteen (places) marked by zeros; ...... " 1 

1 Commentary on the Daiagitikd by BM.skala I, "khadvinavake 
slIard nalla lIargc khdni iUf!Jani, khdndfJl dvinavakafJI tasmin khad1Jinavake 
df#dafa iUf!Jtikfitcfll .. •... " 
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Thus kha must be translated by zero, although the 
kha (zero) here is equivalent to the 'notational places.'l 
What is implied, here is certainly the symbol for the 
zero and not a board divided into columns. 

Clark finds great difficu liy in translating navan(ya
varge va. The reading hau instead of va suggested by 
Fleet is not acceptable. The translation given by us 
accords with the several commentaries (by Bhaskara I, 
Suryadev'a, Paramdvara and Nilakarnha) consulted by 
us. They all agree. 

Expfanation. A.rayabhata's rule gives the method 
of expressing the alphabetic chronogram in the decimal 
place-value notation, and vice versa. The notational 
places are indicated as follows: 

all 0 at e I r II i a 
'-';----..,-A-..'_"'_'''_'''___''_''_'''__''_,,_A-. 

a v a v a v a v a v a v a v a v a v 
o 0 0 0 0 o· 0 0 0 0 0 0 0 0 0 0 0 0 

where v stands for vm:ga and a for avarga. 

It will be observed that the eighteen places are de
noted by zeros and they are divided into nine pairs, each 
pair consisting of a varga place and an avarga place, i.e., 
odd place and even place. 2 The varga letters k to mS.are 
used in varga places, i.e., odd places only, and denote 
the numbers I, 2, •••••••• , 25 in succession. The 

1 NilakaQtha says: "khadvinavake, that is, there are eigh-
teen places, the nine varga places and the nine avarga places 
...... " See Aryabha![ya, ed. by K. Sambasiva Sastri. Trivandrum, 
'930, p. 6. 

2 The later Indian treatises use the terms visama and sama for 
varga and avarga respectively. Varga is also ~sed for a square 
number or the figure. 

S These are called varga or classified letters, because they are 
classified into groups of five each. 
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avarga letters y to h are used in the avarga places, i.e., 
even places only, and denote the numbers 3, 4, ...... ,10 

successively. The 'first varga and avarga places 
together constitute the first varga-avarga pair, and so on. 
Nine such varga-avarga p-airs are denoted by the nine 
vowels in succession. Thus the first varga-avarga pair, 
i.e., the units and the tens places are denoted by a; the 
second varga-at'arga pair, i.e., the hundreds and thousands 
places by i; and so on. The vowels thus denote places 
-zeros according to the Indian usage of denoting the 
places-and have by themselves no numerical value. 
When attached to a <letter-number' a vowel simply 
denotes the place that the number occupies in the decimal 
place-value notation. For instance, when the vowel a is 
attached to y, it means that the number 3 which y 
denotes is to be put in the first avarga place, i.e., the 
tens place. Thus ya is equal to 30. On the other 
hand when a is attached to one of the classed letters, 
it refers it to the first varga place, i.e., the units 
place. Thus na is equal to 5 and ma is equal to 2. 5 and 
nma l is equal to 30. Similady.yi denotes that the number 
3 is to be put in the thousands place whilst gi would 
mean that the number 3 which g represents is to be 
put in the hundreds place (g being a varga letter). Thus 
yi= 3 ,000, whilst gi= 300. It is possible that 
the zeros already written were rubbed out and the 
corresponding numerical figures as obtained from a 
given letter chronogram were substituted in their places. 
This would automatically give zeros in the vacant places. 
When this is not done and the numbers are written 
below the zeros indicating the places, then zeros have 

] When two consonants are together joined to a vowel, the 
numbers representing both are referred to the same varga-avarga 
pair. They are added together as in this case, tima = tia + ma = 
5 + 2..5 = 30 • 
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to be written in the places that remain vacant. 1 The 
same procedure can b~ applied to express numbers 
occupying more than eighteen places, by letting the 
vowels with anllsvara denote the next eighteen places, 
or by means of any other suitable device. 

One advantage of this notation is that it gives 
very brief chronograms. This advantage is, however, 
more than counterbalanced by two very serious defects. 
The first of these is that most of the letter chronograms 
formed according to this system are very difficult to 
pronounce. In fact, some of these 2 are so complicated 
that they cannot be pronounced at all. The second 
defect is that the system does not allow any great 
variety in the letter chronograms, as other systems do. 

Katapayadi System. In this system the con
sonants of the Sanskrit alphabet have been used in the 
place of the numbers I -9 and zero to express num
bers. The conjoint vowels used in the formation of 
number chronograms, have no numerical significance. 
It gives brief chronograms, which are generally pleasant 
sounding words. Skilled writers have been able to 
coin chronograms which have connected meanings. It 
is superior to that of Aryabhata I, and also to the word 
system. Four variants of this system are known to have 
been used in India. It is probably due to this non
uniformity of notation that the system did not come 
into general use. 

1 Some examples from the Aryabha!iya (i. 3): 
r II i a 

0 0 0 0 0 0 0 0 

khyughr S gh y kh 
( ·4 3 2 0 0 0 0=4320000 

c~Qgjymllflichlr { ~ ch i Ii Y g Y c 
7 7 5 , 3 3 6=577533 6 

2 For instance niiifll!1Jkhfr. bhadliknulehr. etc. 
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First Variant: The first variant of the Ka!apqyaai 
system.is described in the following verse taken from 
the Sadratnamdid: 

Naiitit'acaira fu,!)'dni samkhyd katapt!.yddayaf; 
Mifre tupdl1ta hal samkl!Ja na ca cil1tyo balasvara/l 

"n, ii and the vowels denote zeros; (the letters in suc
cession) beginning with k, t, p, and y, denote the 
digits; in a conjoint consonant only the last one denotes 
a number; and a consonant not joined to a vowel should 
be disregarded." According to this system, therefore, 

I is denoted by the letters k, !, p, .y. 
2 " " "kh, Ih, ph, r. 
3 " " "g, ¢, b, I. 
4 " " "gh, t}h, bh, v. 
5 " " n, (I, m, .f. 
6 " " "c, t, !. 
7 " " "ch, Ih, s. 
8 " " "j, d, h. 
9 " " "jb, db. 
o " " " ii, n and vowels 

standing by themselves. 
The consonants. with vowels are used in the places of 
of the numerical figures just as in the place-value nota
tion. Of conjoint consonants only the last one has 
numerical significance. A right to left arrangement is 
employed in the formation of chronograms, just as in 
the word system, i.e., the letter denoting the units 
figure is written first, then follows the letter denoting 
the tens figure and so on. . The follow.ing examples 
taken from inscriptions, grant plates and manuscripts 
will illustrate the system: 

2 4 4 I 

(I)'- rd - gha - lJa - ya 1442, 

1 EI, VI, p. 121. 
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4 4 6 
(2)1 bha - va - Ii - 644, 

5 I 3 1 
(3)2 fa - krya - 10 - ke 13 15, 

6 4 3 1 
(4)3 ta tva - 10 ke 1346, 

23 1 5 6 5 1 

(5)4 kha -go - nryd- nme -fa - md-pe = 1565132. 
The origin of this system can be traced back to the 

fifth century A.D. From a remark~ made by Suryadeva 
.in his commentary on the Aryabhaj&a, it appears that 
the system was known to Aryabhata I (499). Its first 
occurrence known to us is found in the Laghu-Bhas
karfya of Bha.skara I (522).0 

Second Variant: Aryabhata II (950) has used a 
modification of the above system. In this variant, 
the consonants have the same values as above, but the 
vowels whether standing by themselves or in conjunc
tion with consonants have no numerical significance. 
Also unlike the first variant, each component of a 
conjoint consonant has numerical value according to its 

1 lA, II, p. ,60. 
2 El, HI, p. 2.29. 
3 El, III, p. , S. 
4 The date of the commentary of !;)a<;lgurusi:;;ya on Sarvanukra

ma!li is given by this chronogram in the Kaliyuga Era: It corres
ponds to 11S4 A.D. 

5 Comments on the paribba;a-slitra of the DaJagitika. The 
author remarks: 

"Vargak.!{lra{1am samkhya pratipadane, kataptryaditvafJJ nailtryoJea 
ltl1ryripi siddha,;/ tannirasdrtham kat graha!1afJJ." 

That is, "the letters kat have been used to distinguish it (the 
method of Aryabhata I) from the Katapayad;' system of denoting 
numbers by the help of the varga letters, where nand il are 
equal to zero." 

6 LBh, i. IS. 
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place. The letters are arranged in the left to right 
order just as in writing numerical figures. 1 The differ
ence between the two variants may be illustrated by the 
chronogram (lha-ja-he-ku-na-he-t-sa-bhd. 12 According to 
Aryabhata II it denotes 488108674, whereas according 
to the first variant it would denote 47801884. 

Third Variant: A third variant of this system is 
found in some Pill manuscripts from Burma. 3 This is 
in all respects the same as the first variant except that 
S=5, h=6 and /"=7. The modification' in the values of 
these letters are due to the fact that the Pili alphabet 
does not contain the Sanskrit f and !. 

, Fourth Variant: A fourth variant of the system 
was in use in South India, and is known as the Kerala 
System. This is the same as the first variant with the 
difference that the left-to-right arrangement of letters, 
just as in writing numerical figures, is employed. 

Aksarapalli. Various peculiarities are found in 
the forms as well as the arrangement of the numerical 
symbols used in the pagination. of old manuscripts. 
These symbols are known as the ak!arapaIJi, i.e., the letter 
system. 4 In this system the letters or syllables of the 
script in which the manuscript is wri\ten are used to 
denot,e the numbers. The following list gives the 
phonetic values of the various numerals as found in 
old manuscripts: 5 

] The notation is explained in MSi, i. 2: 

, Riipat katapayaptirva var!1o var!1akramadbhavanryankdb 
Niiau ftinyam prathamarthe a chede e trt[yarthe. 

2 MSi, i. 10. 

3 L. D. Barnet, ]MS, 1907. pp. 127 if. 
6 For forms see Tables. 
5 See PLM. pp. lo7f. 
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e, sva, rum. 
dvi, . sti, na. 
tri, sri, maJ:t. 
1i.ka, r1i.ka, 1i.ka, t:J.ka, rt:J.ka, ~ka, r~ka, 

73 

ttq;. (pke), Et, ~. rphra, pu. 

q:, rq:, rq:a, hr, nr, rnr· 
phra, rphra, rphro, ghna, bhra, rpu, vya., 
phla. 
gra, gra, rgra, rgbhr:i, rgga., bhra. 
hra, rhra, rhri, dra. 
om, rum, ro, urn, urn, a, rnurn. 
l, ~a, l!ta, c;la, a, rpta. 
tha, tha, ~ha, gha, rgha, pya, va. 
la, la, rla, rla. 
pta, rpta, pta, rpta, pna. 

e, 1, l).U. 

cu, vu, ghu, thu, rthu, rthu, thu, .rgha, rghu. 
cu, cu, thu, rthu, rghu, rmta. 

su, su, Iu, a. 
su, a, Iu, rghu .. 
sta, sua, fiua, sa, SU, sum, SU. 
suo, sto, sta. 



74 NUMERAL NOTATION 

It will be observed that to the same numeral there 
correspond various phonetical values. Very frequently 
the difference is slight and has been intentionally made, 
probably to distinguish the signs with numerical values 
from those with letter values. In some other cases 
there are very considerable variations, which (accord
ing to B-~ihler) have been caused by misreadings of older 
signs or dialectic differences in pronunciation. The 
symbols are written on the margin of each leaf. Due to 
lack of space, they are generally arranged one below 
the other in the Chinese fashion. This is so in the 
Bower manuscript which belongs to the sixth century 
A.D. In later manuscripts the pages are numbered 
both in the ak.farapalli as well as in decimal figures. 
Sometimes these notations are mixed up as in the 
following: l 

33 -

13 1 -

Ii su su 
3 ; 100 -

su 

Ii ; 15 0 = 

o' , 
0 

su 

b 

102 0; 
2 

sft 

o 

I 0 rum , 
The ak,farapalli has been used in Jaina manuscripts 

upto the sixteenth century. After this period, the deci
mal figures are generally used. In Malabar, a system 
resembling the ak.farapalli is in use upto the present 
day. 2 

1 Cf. PLM, p. 108. 

2 I = na, 2 = nna, 3 = nya, 4 = ::;kra, 
5 = jhra, 6 = ha(ha), 7 = gra, 8 = pra, 
9 = dre(?), 10·= rna, . 20 = tha, 

;0 = la, 40 = pta, 50 = ba, 60 = tra, 
70 = ru (tru), 80 = ca, 90 = l)a, 100 = na. 

(CI ]RAJ, 1896, p. 790) 
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Other Letter Systems. (A) A system of nota
tion in which are employed the sixteen vowels and 
thirty-four consonants of the Sanskrit alphabet is 
found in certain manuscripts from Southern India 
(Malabar and Andhra), Ceylon, Burma and Siam. The 
thirty-fol:lr consonants in order with the vowel a denote 
the numbers from one to thirty-four, then the same 
consonants with the vowel d denote the numbers thirty
five to sixty-eight and so on. 1 

(B) . Another notation in which the sixteen vowels 
with the consonant k denote the numbers one to sixteen 
and with kh they denote the numbers seventeen to 
thirty-two, and so on, is found in certain Pali manus
cripts from Ceylon. 2 

( C) In a Pili manuscript in the Vienna Imperial 
Library a similar notation is found with twelve vowels 
and thirty-four consonants. In this the twelve vowels8 

with k denote the numbers from one to twelve, with 
kh they denote the numbers from thirteen to twenty
four, and so on. 

These letter systems do not appear to have been 
in use in Northern India, at least after the third century 
A.D. They are probably the invention of scribes who 
copied manuscripts. 

12. THE ZERO SYMBOL 

Earliest Use. The zero symbol was used in 
metrics by Pirigala (before 2.00 B.C.) in his ChandafJ-slitra. 
He gives the solution of the problem of finding the total 
number of arrangements of two things in n places, 
repetitions being allowed. The two things considered are 

1 Burnell, SOJllb _Indian Palaeograpl?J, London, 1878, p. 79. 
2 Ibid. 
3 The vowels r,!., t,.t, are omitted. 
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the two kinds of syllables "long" and "short", denoted 
by I and g respectively. To find the number of arrange
ments of long and short syllables in a metre containing 
n syllables, Pingala gives the rule in short aphorisms: 

"(Place) two when halved;"1 "when unity is sub
tracted then (place) zero;" 2 "multiply by two when 
zero;"3 "square when halved."4 

The meaning of the above aphorisms will be clear 
from the calculations given below for the G4Yatri metre 
which contains 6 syllables. 5 

Place the number 
Halve it, result 
3 cannot be halved, therefore, 

subtract I, result 
Halve it, result 
I cannot be halved, therefore, 

subtract I, result 
The process ends. 

A 
6 
3 

2 

I 

o 

B 

Separately place 2 

" " 
o 

" " 
2 

" " 
o 

The calculation begins from the last number In 

column B. Taking unity double it at 0,' this gives 2; 

at 2 square this (2), the result is 22; then at zero double 
(2-2), the result is 2"; ultimately, at 2 square this (23), 
the result is 2", which gives the total number of ways 

I Pinga/a Chandap-siitm, ed. by Sri Sitanath, Calcutta, 1840, 
viii. 2.8. 

2 Ibid, viii. 2.9. 
a Ibid, viii. 30. 
4 Ibid, viii. 3 I. 

5 For 7 syllables. the 
Subtract I 6 
Halve 3 
Subtract 2. 
Halve 
Subtract I ° 

gi v ing 2. 7 as the result. 

steps 
place 

" 
" 
" 
" 

are: 

° Double 2.2.,1 = 2.7 

2. Square 2.': 

° Double 2.:2. 2 = 2. 3 

2, Square 2,2 

° Double 1 =2. 
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in which two things can be arranged in 6 places. 1 

It will be observed that two symbols are required in 
the above calculation to distinguish between two kinds 
of operations, viz., (I) that of halving and (2) that of the 
'absence' of halving and subtraction of unity. These 
might have been denoted by any twO marks arbitrarily 
chosen. 2 The question arises: why did Pingala select 
the symbols "two" and "zero"? The use of the symbol 
two can be easily explained as having been suggested 
by the process of halving-division by the number 
two. The zero symbol was used probably because of 
its being associated, at the time, with the notion of 
'absence' or 'subtraction.' The use of zero in 
either sense is found to have been common ih Hindu 
mathematics from early times. The above reference to 
Piilgala, however, shows that the Hindus possessed a 
symbol for zero (Junya), whatever it might have been, 
before 200 B.C. 

The Bakhshili Manuscript (c. 200) contains the use 
of zero in calculation. For instance, on folio 56 verso, 
we have: 

" 1 8 ~~ I i~: 1 multi plied become I 
848320 I 

14112 t 

The square of forry different places is I 1600 I. On sub
tracting this froIn the number above (numerator), the 

remainder is 1846720 I. On removal of the common 
14112 

factor, it becom~s 1601 ." 
1 This method of calculation is not peculiar to the Pitiga/a 

Chandah-sutra. It is found in various other works on metrics as 
well ~s mathematics. The zero symbol has been similarly 
employed in this con~ection in later works also. Vide infra. 

2 E.g., Prthudakasvami uses va (from varga, "square") and 
lI' (from gutta, «multiply"), while Mahavira uses the nUqlerals 1 

and o. Vide infra. 
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There are a large number of passages of this kind 
in the work. It will be noticed that in such passages 
the sentences would be incomplete without the figures, 
so the figures must have been put there at the time of 
the original composition of the te.xt, and cannot be 
suspected of being later interpolations. For an explicit 
reference to zero and an operation with it, we take 
the following instance from the work: 
" 3 4 visible 

Adding2 unity 

to I 2 3 
In the Panca-siddhdntikd (50S) zero is mentioned 

at several places. The following is an instance: 
"In Aries the minutes are seven, in the last sign 

six; in Taurus. six (repeated) thrice; five (repeated) twice; 
four; four; in Gemini they are three, two, one, zero 
(iuf!Ya) (each repeated) twice.'" 

Zero is here conceived as a number of the same 
type as three, two or one. It cannot be correctly 
interpreted otherwise. Addition and subtraction of 
zero are also used in expressing numbers in this work 
for the sake of metrical convenience. For instance: 

"Thirty-six increased by two, three, nine, twelve, 
nine, three, zero (Junya) are the days."1S 

Instances of the above type all occur in those 

1 The zeros given here are represented in the manuscript 
by dots. The statement in modern symbols is equivalent to the 
equation, 

x + 2X + 3X + 4X = 200. 
2 The Sanskrit word is ylltatiJ meaning literally "adding", but 

what is meant is "putting" unity for the unknown (zero). 
3 BMs, ,folio 22., verso. 
'PSi, vi. 12.. 

Ii PSi, xviii. 35; other instances of this nature are in iii. 17; 
IV. 7; iv. 8; iv. II; xviii. 44; xviii, 45; xviii. 48; xviii. p. 
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sections of the Paiica-siddhtintikd which deal with the 
teachings of Pulisa. It seems, therefore, that such ex
pressions are quotations from the Pulila-siddhtinta. As 
it is known that the word numerals were employed by 
Pulisa (c. 4°°), it can be safely concluded that he was 
conversant with the concept of the zero as a numeral. 

The writings of Jinabhadra GaJ?i (529-589), a con
temporary of Varahamihira, offer conclusive evidence of 
the use of zero as a distinct numerical symbol. 
While mentioning large numbers containing several 
zeros, he often enumerates, obviously for the sake of 
abridgement, the number of zeros contained. For 
instance: 2.24,400,000,000 is mentioned as "twenty-two 
forty-four, eight zeros;"l 3,2.00,400,000,000 as "thirty
two two zeros four eight zeros."2 At another place in 
his work 

2419604_0-,7_1-,-5_0 
48392.0 

is described thus : 
"Two hundred thousand forty-one thousand nine 

hundred and sixty; removing (apavartana) the zeros, the 
numerator is four-zero-seven-one-five, and the deno
minator four-eight-three-nine-two."3 

It should be noted that the term apavartana means 
what is known in modern arithmetic as the reduction of 
a fraction to its lowest terms by removing the common 
factors from the numerator and the denominator. 
Hence the zero of Jinabhadra GaQi is certainly not a 
mere concept of nothingness but is a specific numerical 
symbol used in arithmetical calculation. , 

1 Brhat-kfetra-samasa, ed. with the commentary of Malayagiri, 
Bombay, i. 69. 

2 Ibid, i. 71. Other such instances are in i. 90, 97, 102, 
108, 113, 119, etc. 

albid, i. 83. 
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been given up long before. The quotation from 
Subandhu cannot, therefore, be taken as a definite 
proof of the use of the dot as a symbol for zero 
in his time. All that we can infer is that at some period 
before Subandhu, the dot was in use. We may go 
further and state that very probably, the earliest symbol 
for zero was a dot and not a small circle. 

The earliest epigraphical record of the use of 
zero is found in the Ragholi plates 1 of Jaivarahana II 
of the eighth century. The Gwalior inscriptions of the 
reign of Bhojadeva 2 also contain zero. The form' 
of the 'symbol in these inscriptions is the small circle. 
This is the form that has been in common use from 
quite early times, probably from before the eighth 
century. 

Other Uses of the Symbol. In the present 
elementary schools in India, the student is taught the 
names of the several notational }?laces and is made to 
denote them by zeros arranged in a line. These. zeros 
are written as 

.••••.•. 000000000 

The teacher points out the first zero on the right and 
says 'units', then he proceeds to the next zero saying 
'tens' and so on. The student repeats the names after 
the teacher. This practice of denoting the notational 
places by zeros can be traced back to the time of 
Bhiskara I, who, as already pointed out on page 6(5, 
ii't his commentary on the Aryabha![ya, Gatzita-pdda,z, 
says: 

'Writing down the places, we have 
o 0 0 0 0 0 0 0 0 0." 

In all works on arithmetic (pd!igatzita) zero has 

1 NO. 4 in the list of inscriptions given before. 
2 Nos. 19 and 20 in the list. 
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been used to denote the unknown. This use of 
zero can be traced back to the third century A.D. 
It is used for the unknown in the BakhshaH arithmetic. 
In algebra, however, letters or syllables have been 
always used for the unknown. It seems that zero 
for the unknown was employed in arithmetic, really to 
denote the absence of a quantity, and was not a symbol 
in the same sense as the -algebraic x (yd), for it does 
not appear in subsequent steps as the algebraic symbols 
do. This use of zero is mostly found in problems on 
proportion-the Rule of Five, Rule of Seven, etc. The 
Arabs also under Hindu influence used zero for the 
unknown in similar problems. Similar use of zero 
for the unknown quantity is found in Europe in a 
Latin manuscript of some lectures by Gottfried Wolack 
in the University of Erftirt in 1467-68. ~ The dot 
placed over a number has been used in Hindu Ga(Jita 
to denote the negative. In this case it denotes the 
"absence' of the positive sign. Similar use of the dot 
is found in Arabia and Europe obviousJy under Hindu 
influence. 2 

I,. THE PLACE-VALUE NOTATION IN HINDU 
. LITERATURE 

Jaina Canohical Wcrks. The earliest literary 
evidence of the use of the word Hnotational place" is 
furnished by the Anl!Jogadvdra-sutra/' a work wri~ten 
before the Christian era. In this work the total number 

1 Smith and Karpinski, J.c., pp. 53-54. 
2 The occasional use by AI-Battani (929) of the Arabic negative 

Id, to indicate the absence of minutes (or second;;), noted by Nallino 
(Verhandlungen des 5 congresses tier Orienta/isten, Berlin, 1882, Vol. II, 
p. 2.71), is similar to the use of the zero dot to denote the negative. 

S The passage has been already quoted in detail (vide supra 
p. xz). 
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of human beings in the world is given by "a number 
which when expressed in terms of the denominations, 
koti-koti, etc., occupies twenty-nine places (sthana)." 
Reference to the "places of numeration" is found also 
in a contemporary work, the Vjavahara-sutra. 1 

Puranas. The Purat:las which are semi-religious 
and semi-historical works, also contain references to 
the notational places. These works were written for 
the purpose of spreading education on religious and 
historical matters amongst the common people. Refer
ence to the place-value notation in these works shows 
the desire of their authors to give prominence to the 
system. The Agni-PuraIJa2 says: 

"In case of multiples from the units place, the 
value of each place (sthdna) is ten times the value of the 
preceding place." 

The VtjIJu-Puro"tro3 has similarly: 
"0 dvija, from one place to the next in succession, 

the places are multiples of ten. The eighteenth one 
of these (places) is called parardha." 

The V4Ju-PuraIJo4 observes: 
"These are the eighteen places (sthana) of calcula

tion; the sages say that in this way the number of places 
can be hundreds." 

The above three works are the oldest among the 
Purat:las and of these the Agni and the V 4Ju Pura1).as 
in their present form are certainly as old as the fourth 
century A.D. The Agl1i-PtlralJa is referred by some 
scholars to the first or second century A.D. 

1 Ch. i.; if. B. Datta, Scienlia, July, 1931, p. 8. 
2 The Agni-Pura!1a contains also the use of the word numerals 

with place-value (vide supra p. S 8). 
3 . 

VI. 3. 
4 d. IOzf. 
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Works on Philosophy. 
been used in vydsa-Bhd[Ja 1 

Patanjali : 

The following simile has 
on the Yoga-sutra of 

"Thus the same stroke is termed one in the units 
place, ten in the tens place, and hundred in the hundreds 
place ........ "2 

The same simile occurs in the S drfrak.a-Bhd[Ja of 
Sankarad.rya : 

"J ust as, although the stroke is the same, yet by a 
change of place 'it acquires the values, one, ten, hundred. 
thousand, etc .... "3 

The first of the above works cannot be placed 
later than the sixth century whilst the second one not 
later than the eighth. The quotations prove conclu
sively that in the sixth century, the place-value notation 
was so well known that it could be used as an illustra
tion for a philosophical argument. 

Literary Works. A passage from the Vdsavadattd 
of Subandhu comparing the stars with zero dots has 
already been mentioned. Several other instances of 
the use of zero are found in later literature. but they 
need not be mentioned here. 4 

1 iii. 13. 
2 The translation is as given by J. H. Woods, The Yoga System 

of Pataiijali, p. 216 .. In a foot-note, it is remarked: "Contrary to 
Mr. G. R. Kaye'S opinion, the following passages show t'ilat the 
place-value system of decimals was known as early as the sixth 
century A.D." The above passage is also noted by Sir P. C. Ray 
in his History of Hindu Chemistry, Vol. II, p. 117· 

~ III. iii. 17; if. B. Datta, American Math. Month!y, XXXIII 
192.6, pp. 220-1. 

4 E.g., the use of the filnya-bindu in Nairadha-carita of Srihaqa 
(c. 12th century). Cf. B. Datta, Ibid, pp. 449-4~4. 
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14. DATE OF INVENTION OF THE PLACE-VALUE 
NOTATION 

We may now summarise the various evidences 
regarding the early use of the place-value notation in 
India: 

(I) The earliest palaeographic record of the use of 
the place-value system belongs to the close of the sixth 
century A.D. -

(2) The earliest use of the place-value principle 
with the word numerals belongs to the second or the 
third century A.D. It occurs in the Agtzi-Purdtza, the 
Bakhshali Manuscript and the Ptllifa-siddhdnta. 

(3) The earliest use of the place-value principle 
with the letter numerals is found in the works of Bha.s
kara I about the beginning of tbe sixth century A.D. 

(4) The earliest use of the place-value system in a 
mathematical work occurs in the Bakhsha.li Manuscript 
about 200 A.D. It occurs in the Aryabha!fYa composed 
in 499 A.D., and in all later works without exceprton. 

(5) References to the place-value system are found 
in literature from about 100 B.C. Three references rang
ing from the second to the fourth century A.D. are 
found'in the PuraQ.as. 

(6) The use of a symbol for zero is found in 
Pirigala's Chandap-sutra as early as 200 B.C. 

The reader will observe that the literary and non
mathematical works give much earlier instances of the 
use of the place-value system than the mathematical 
works. This is exactly what one should expect. The 
system when invented must have for some time been 
used only for writing big numbers. A long time 
must have elapsed before the methods of performing 
arithmetical operations with them were invented. The 
system cannot be expected to occur in a mathematical 
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work before it is in a perfect form. Therefore, the 
evidences furnished by non-mathematical works should, 
in fact, be earlier than those of mathematical works. 

Mathematical works are not as permanent as 
religious or literary wo~ks. The study of a particular 
mathematical work is given up as soon as another better 
work comes into the field. In fact, a new mathematical 
work is composed with a view to removing the defects 
of and superseding the older ones. It is quite 
probable that works employing the place-value notation 
were written before Aryabhata I, but they were given 
up and are lost. It will be idle to expect to find copies 
of such works after a lapse of sixteen hundred years. 

In Europe and in Arabia it is still possible to find 
mss. copies of works using the old numerals or a 
mixture of the old numerals with the new place-value 
numerals, but in India absolutely no trace of any such 
work exists. 

In Europe the Erst definite traces of the place
value numerals are found in the tenth and eleventh 
centuries, but the numerals came into general use in 
mathematical text books in the seventeenth century. 
In India Aryabhata I (499), Bhaskara I (522), Lalla 
(c. 598), and Brahmagupta (628), all use the place-value 
numerals. There is no trace of any other system of 
notation in their works. Following the analogy of 
Europe, we may conclude, on the evidence furnished 
by Hindu mathematical works alone, that the place
value system might have been known in India about 
200 B.C. 

As the literary evidence also takes us to that period, 
we may be certain that the place-value system was 
known in India about 200 B.C. Therefore we 'shall 
not be much in error, if we fix 200 B.C. as the probable 
date of invention of the place-value system and 
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zero in India. It is possible that further evidence may 
force us to fix an earlier date. 

15. HINDU NUMERALS IN ARABIAl 

The regular history of the Arabs begins after the 
flight of Mohammad from Mecca to Medina 'in A.D. 
622. The spread of Islam succeeded in bringing to
gether the scattered tribes of the Arabian Peninsula 
and creating a powerful nation. The united Arabs, 
within a short space of time, conquered the whole of 
Northern Africa and the Sp4_nish Peninsula, and extended 
their dominions in the east upto the western border of 
India. They easily put aside their former nomadic life, 
and adopted a higher civilisation. 

The foundations of Arabic literature and science 
were laid between 750-850 A.D. This was done 
chiefly with the aid of foreigners and with foreign 
material. The bulk of their narrative literature came 
to the Arabs in translation from Persian. Books'on 

.... the science of war, the knowledge of weapons, the 
veterinary art, falconry, and the various methods of 
divination, and some books on medicine were translated 
from Sanskrit and Persian. They got the exact sciences 
from Greece and India. 

Before the time of Mohammad the Arabs did not 
possess a satisfactory numeral notation. The numer: 
ous computations connected with the financial adminis
tration of the conquered lands, however, made the use 
of 'a developed numeral notation indispensable. In 
some localities the numerals of the more civilised con
quered nations were used for a time. Thus in Syria, 
the Greek notation was retained, and in Egypt the 

1 For details consult Cajori's Histo,:_y of M~thematics, and Smith 
and Karpinski's Hindu Arabic Numerals. 
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Coptic. To this early period belongs the Edict of Khal!f 
Walid (699) which forbade the use of the Greek lan
guage in public accounts, but made a special reservation' 
in favour of Greek letters as numerical signs, on the 
ground that the Arabic language possessed no numerals 
of its own. 1 The Arabic letters gradually replaced 
the Greek ones in the alphabetic notation and the 
abjad notation came to be used. It is probable that 
the Arabs had come to know of the Hindu numerals 
from the writings of scholars like Sebokht, and aslo of 
their old ghobdr forms from other sources. But as their 
informants could not supply all the necessary informa
tion (e.g., the methods of performing the ordinary 
operations of arithmetic) these numerals had to wait 
for another century before they were adopted in some 
of their mathematical works. 

During the reign of the Khalif AI-Mansur (753-
774 A.D.) there came embassies from Sindh to Baghdad, 
and among them were scholars, who brought along 
with them several works on mathematics including the 
Brdhma-sphu/a-siddhdnta and the Khatu!a-khaCfyaka of 
Brahmagupta. With the ,help of those scholars, AI
fazari, perhaps also Yakub ibn Tarik, translated them 
into Arabic. Both works were largely used and exer
cised great influence 01) Arab mathematics. It was 
on that occasion that the Arabs first became acquainted 
with a scientific system of astronomy. It is believ.ed 
by all writers on the subject that it was ~t that time that 
the Hindu numerals were first definitely introduced 
amongst the Arabs. It also seems that the Arabs at first 
adopted th~ /!,hobdr forms of the numerals, which they 
had already obtained (but without zero) from the 

1 Theophanes (75 8-818 A.D.),. "Chronographia;" Scr;ptores 
Historiae Byzantinae, Vol. ]_CXXIX, Bonnane, 1839. p. 575; quoted 
by Smith and Karpinski, I.e., p. 64, note. 



NUMERAL NOTATION 

Alexandrians, or from the Syrians who were employed 
as translators by the Khalifs at Baghdad. AI-Khowarizmi 
(825), one of the earliest writers on arithmetic 
among the Arabs, has used the ghobdr forms. 1 But not 
long afterwards, the Arabs realised that the ghobdr 
forms were not suited to their right-to-left script. Then 
there appears to have been made an attempt to use more 
convenient forms. But as people had got accustomed to 
the ghobdr forms, they did not like to give them up, and 
so we find a struggle2 between the two forms, which 
continued for about two centuries (loth and 11th) until 
at last the mpre convenient ones came into g~neral use. 
The west Arabs on the other hand did not adopt the 
modified forms of the east Arabs, but continued to use 
the ghobdr forms, and were thus able to transmit them to 
awakening Europe. This, perhaps, explains in a better 
way the divergence in the forms of modern Arabic and 
modern European numerals, ihan any theory yet 
propounded. 

In a theory that was advanced by W oepcke, this 
divergence is explained by assuming that (1) about the 
second century after Christ, before zero had been 
invented, the Hindu numerals were brought to Alex
andria, whence they spread to Rome and also to west 
Africa; (2) that in the eighth century, after the notation 
in India had been already much modified and perfected 

1 Smith and Karpinski, le., p. 98. 
? One document cited by Woepcke is of special interest since 

it shows the use of the ordinary Arabic forms alongside the 
ghobar at an early date (970 A.D.). The title of the work is "Interest
ing and Beautiful Problems on Numbers" copied by AhJ11ed ibn 
Mohammed ibn Abdaljalil Abu Sa'id, al-Sijzi, (951-10Z4) from a 
work by a priest and physician, Nazif ibn Yumn, al-Qass (died 
990). Sprenger also calls attention to this fact (in Zeit. d deutschen
morgenliindisehen Gesselsehaft, XLV, p. 367). Ali il?n Ahmed 
AI-Nasav! (c. 1025) tells us that the _ symbolism of numbers was 
unsettled in his day (Smith and Karpinski, I.c., p. 98). 
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by the invention of zero, the Arabs at Baghdad got 
it from the Hindus; (3) that the Arabs of the west 
borrowed the Columbus-egg, the zero, from those in the 
east but retained the old forms of the nine numerals, 
if for no other reason, simply to be contrary to their 
political enemies of the east; (4) that the old forms were 
remembered~ by the west Arabs to be of Hindu origin, 
and were hence called ghobdr numerals; (5) that, since 
the eighth century, the numerals in India underwent 
further changes and assumed the greatly modified forms 
of modern Devanagad numerals. 

Now, as to the fact that these figures might have 
been known in Alexandria in the second century A.D., 
there is not much doubt. But the question naturally 
arises: Why should the Alexandrians use and retain 
a knowledge of these numerals? As far. as we kl:l:0W, 
they did possess numeral notations of their own; why 
should they give preference to a foreign notation? 
These questions cannot be satisfactorily answered unless 
we assume that along with the nine symbols the principle 
of place-value and probably also the zero was com
municated to them. But as they were unprepared for the 
reception of this abstract conception, they adopted the 
rune numerals only and used them on the apices. 
These numerals were then transmitted by them to Rome 
and to west Africa. 

The second assumption that the Hindu numeral 
figures of the eighth century were adopted by the Arabs 
is not supported by fact. The figures that are found in 
the old Arabic manuscripts resemble either the ghobdr 
numerals or the modern Arabic more than the Hindu 
numerals of the eighth century. In fact, we have every 
reason to believe that the Arabs knew these ghobdr forms, 
perhaps without the principle of place-value and 
zero, long before they had "direct contact with India, and 
that they adopted zero only about 750 A.D. 
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16. HINDU NUMERALS IN EUROPE 
, 

Boethius Question. It cannot be definitely said 
when and how the Hindu numerals reached Europe. 
Their earliest occurrence is found in a manuscript of 
the Geometry of Boethius (c. 500), said to belong 
to the tenth century. There are several other manus
cripts of this work and they all contain the numerals. 
Some of these contain the zero whilst the others do 
not. If these manuscripts (or the portions of them that 
contain the numerals) be regarded as genuine, it will 
have to be acknowledged that the Hindu numerals had 
reached Southern Europe about the close of the fifth 
century. There are some who consider the passages 
dealing with the Hindu numerals in the Geometry of 
Boethius to be spurious. Their arguments can be 
summarised as below: 

(I) The passages in question have no connection, 
with the main theme of the work, which is geometry. 
The Hindu numerals have not been mentioned in the 
Arithmetic of Boethius. They have not been used by 
him anywhere else. Neither Boethius' contemporary 
Capella (c. 475), nor any of the numerous mediaeval 
writers who knew the works of Boethius makes any 
reference to the numerals. 

(2) The Hindu numeral notation was perfected in 
India much later than the fifth century, so that the 
numerals, even if they had been taken to Europe along 
the trade routes, had no cLim to any superiority over the 
numerals of the west, and so cQuld not have attracted 
the attention of Boethius. 

Of the above arguments, the sec.ond is against facts, 
for it is now established that the Hindu numeral nota
tion with zero was perfected and was in use in 
India during the earliest centuries of the Christian era. 
The numerals could have, therefore, easily reached 
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Europe along the trade routes in the fifth century or even 
earlier. The first argument is purely speculative and 
throws doubt on the authenticity of the occurrence of 
the numerals in Boethius' Geometry. It does not prove 
anything. It seems to us unfair to question the 
genuineness of the occurrence of the numerals, when 
they are found in all manuscripts of the work that are 
in existence now. Their occurrence in the Geometry 
can be easily expfained on the ground that Boethius' 
knowledge of those numerals was very meagre. He had 
obtained the forms from some source-from the.N eo
Pythagoreans or direct from some merchant or wander
ing scholar-but did not know their use. He might 
have known their use in writing big numbers by the 
help of the principle of place-value and zero, but he 
certainly did not know how the elementary operations of 
arithmetic were to be performed with those numerals. 
Hence he could make no use of them in his arithmetic or 
any other work. The writings of Sebokht (c. 650) show 
that the fame of the numerals had reached the west 
long before they were definitely introduced there. The 
question of the introduction of the Hindu numerals 
through the agency of Boethius may, therefore, be 
regarded as an open one, until further investigations 
decide it one way or the other. 

Definite Evidence. The first writer to describe the 
;,hobar numerals in any scientific way in Christian Europe 
was Gerbert, a F renc~ monk. He was a distinguished 
scholar, held high ecclesiastical positions in Italy, and 
was elected to the Papal chair (999). He had also 
been to Spain for three years. It is not definitely 
known where he found these numerals. Some say that 
he obtained them from the Moors in Spain, while 
others assert that he got them from some other source, 
probably through the merchants. We find that Gerbert 
did not appreciate these numerals (and rightly, for there 
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• 
was neither zero nor the place-value), and that in 
his works, known as the Regula de abaco compuli and the 
Libellus, he has used the Roman forms. We thus see 
that upto the time of Gerbert (died 1003) the 
principle of place-value was not known in Europe. 

As early as 71 I A.D., the power of the Goths was 
shattered at the battle of Jarez de Ie Frontera, and 
immediately afterwards the Moors became masters of 
Spain, and remained so for five hundred years. The 
knowledge of the modern system 9f notatiol).. which was 
definitely introduced at Baghdad about the middle of the 
eighth century must have travelled to Spain and from 
there made its way into Europe. The schools estab
lished by the Moors at Cordova, Granada, and Toledo 
w.ere famous seats of learning throughout the middle 
ages, and attracted students from all parts of Europe. 
Thus although Europe may not be directly indebted to. 
the Moors for its numerical symbols, it certainly is for 
that important principle which made the ordinary 
ghobdr forms superior to the Roman numerals. 

Several instances of the modern system of nota
tion are to be found in Europe in the twelfth century, 
but no definite attempt seems to have been made 
for popularizing it before the thirteenth century. 
Perhaps the most influential in spreading these 
numerals in Europe was Leonardo Fibonacci of Pisa. 
Leonardo's father was a commercial agent at Bugia, the 
modern Bougie, on the coast of ,·Barbary. It had one 
of the best harbours, and at the close of the twelfth 
century was the centre of African commerce. Here 
Leonardo went to school to a Moorish master. On 
attaining manhood he started on a tour of the Mediter-

.- ranean and visited Egypt, Syria, Greece, Italy and 
Provence, meeting with scholars and merchants and 

. imbibing a knowledge of the various systems of numbers 
in use in the centres of trade. All these systems, he 
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however says, he counted as erro~s compared with that 
of the Hindus. 1 Returning to Pisa he wrote his Liber 
Abaci in 1202, rewriting it in 1228. 2 In this the Hindu 
numerals are explained and used in the usual compu
tations of business. At first Leonardo's book met \vith 
a cold reception from the public, because it was tOG 
advanced for the merchants and too novel for the 
universities. However, as time went on people began 
to realise its importance, and then we find it occupying 
the highest place among the mathematical classics. of the 
period. 

Among other 'writers whose treatises have helped 
. the spread of the numerals may be mentioned Alexander 

de Villa Die (c. 1246) and John of Halifax (c. 1250). 
A most determined fight against the spread of these' 

numerals was put up by the abacists who did not use 
zero but employed an abacus and the apices. But 
the writings of men like Leonardo succeeded in silenc
ing them, although it took two or three eenturies to 
do so. By the middle of the fifteenth century we find 
that these numerals were generally adopted by all the 
nations of western Europe, but they came into common 
use only in the seventeenth century. 

17. MISCELLANEOUS REFERENCES 'TO THE 
HINDU NUMERALS 

I ' 

Syrian Reference. The following reference to a 
pas'sageS in a work of Severns Sebokht (662) shows that 
the fame of the Hindu numerals had reached the banks of 

1 "Sed hoc totum et algorismum atque arcus pictagore quasi 
erroretn computavi respectu modi indorum." 

2 Smith and Karpinski, I. c., p. I; I • 
.3 Attention was first drawn to this passage by F. Nau. JA, 

n, I9I~ pp. 2:5-227; alsQ see J. Ginsburg, Bull. American Math. 
Soc., XXIII, 1917, p. 36,8. 
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Abu Sahl Ibn Tamim (950) 

Ibn Tamim, a native of Kairwan, a village in Tunis 
in the north of Mrica, wrote in his commentary on the 
Sefer Yesirah: "The Indians have invented the nine 
signs for marking the units. I have spoken sufficiently 
of them in a book that I have composed on the Hindu 
calculation, known under the name of Hisdb al-ghobar."1 

AI-Nadtm (987) 

In the Fihrist, the author AI-Nadim includes the 
Hindu numerals in a list of some two hundred alphabets 
of India (Hind.) These numerals are called hindisah. 2 

AI-Bfruni (1030) 

AI-Biruni resided in India fO,r nearly thirteen years 
(1°17-1°3°) and devoted himself to the study of 
the arts and sciences of the Hindus. He had also a 
remarkable knowledge of the Greek sciences and liter
ature, so he was more qualified than any contemporary 
or even anterior Arab writer to speak with authority 
about the origin of the numeral~. He wrote two 
books, viz., Kitdb al-arqam ("Book of Ciphers") and 
Tazkira ft al-hisdb w' al-madd bi al-arqam aI-Sind w'al
Hind ("A treatise on arithmetic and the system 0'£ 
counting with the ciphers of Sindh and lndia"). In 
his Tarikh aI-Hind ("Chronicles of India"), he says: 
"As in different pa~ of India the letters have 
different shapes, the numerical signs too, which are 
called aJika, differ. The numerical signs which we use 
are derived from the finest forms of the Hindu signs."s 
At another place he remarks: "The Hindus use the 

:1 Reinaud, I.c., p. 399. 
2 Kitdb al-Fihrist, ed. G. Flugel, II, pp. 18-19. 
3 Albertini's India, English translation by E. C. Sachau, London 

2nd ed., 1910, Vol. I, p. 74. 
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numeral signs in arithmetic in the same way as we do. 
I have composed a treatise showing how far possibly, 
the Hindus are ahead of us in this subject."l In his 
Athar-tll-Btikiytf2 ("Vestiges of the Past," written in 
1000 A.D.) AI-Biruni calls the modern numerals as 
al-arqam aI-hind, i.e., "the Indian Ophers" and he has 
mcidentally referred to their. distinction from two other 
systems of expressing numbers, viZ" the sexagesimal 
system and the alphabetic system (Hartl! al-juma/). 

Abenragel (1048) 

It has been stated by Ali bin Abil-Regal Abul
Hasan, called Abenragel, in the preface to his treatise 
on astronomy. that the invention of reckoning with 
nin_e ciphers is due to the Hindu philosophers.3 

Saraf-Eddin (I I7z) 

Mahmud bin Qajid al-Amilni Saraf-Eddin of Mecca 
wrote a treatise, entitled Fi a/-handasa w'al arqam al
hindi ("On geometry and the Indian ciphers"). ~ 

Alka/asadl (died 1486) • 

In his commentary of the T alkhis of, Ibn Albanna, 
Abul Hasan Ali Alkalasidi states: "These 'nine signs, 
called the signs of ,the ghobar (dust), are those 
that are employed very frequently in our Spanish pro
vinces and in the countries of Maghrib and of Africa. 
Their origin is said to have been attributed by tradition 
to a man of the Indian nation. This man is said to have 
taken some fine dust, spread it upon a table and taught 

I Ibid, I, p. 177. 
2 The Chronology of Ancient Nations, ed:" by Sachau, London, 

1879, pp. 62 and Ip. . 
8 J. F. Montuc1a, Historie des Mathlmatiqllu, vol. r, p. 316. . 
'H. Suter, Die Mathematiker lind Astronomer der Ararbe IifId 

ihre Werke. Leipzig, 1900, p. u6. 
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the people multiplication. division and other opera
tions."l 

Behd Eddin (c. 1600) 

Referring to the numerals Beha Eddin observes: 
"The Hindu savants have, in fact, invented the nine 
known characters."%' 

In the quotatio~s from Arab scholars given above, 
the term Hind has been used for India, and Hindi for 
Indian. Hind is the term generally used in Arabic and 
Persian literature for India. In early writings distinc
tion was sometimes made between Sind and Hind. 
Thus AI-Masudi and AI-Biruni used Sind to denote the 
countries to the west of the river Indus. This distinc
tion is clearly in evidence in Ibn Hawkal's map, re
produced in Elliot and Dawson's History of India. There 
were others who did not make this distinction. Thus 
Istakri (912) uses Hind to denote the whole of India.s 

Again in the Sha"'hndmd of Firdausi," Sind has been used 
for a river as well as for a country, and Hind for the 
whole of India. In later times this distinction dis
appeared completely. According to the lexicographers 
Ibn Seedeh (died 1066) and Firouzabidi (1328-1413). 
Hind is "the name of a well known nation" and ac
cording to El-Jowharee (1008) it denotes "the name of 
a country." Instances of the use of Hind to denote 
India in the literature of the Arabs can be multiplied at 
pleasure. 

Carra de Vaux5 has suggested that the. word Hind 

1 fA, J, 1863, pp. ~9f. 
Z Kholasif al-hisib, translated into French by A. Marre, NolIV. 

Ann. Math., V. 1864. p. z66. 
S Elliot and Dawson's His/ory of India, II, p. 41Z. 

<l English translation by A.G. Warner and E. Warner, London, 
1906. 

5 Carra de Vaux, Scientia, XXI, 1917, p. z73. 
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does not probably mean India but is really derived from 
end (or hend) signifying "measure," "arithmetic" or 
"geometry." He concludes that the expression "the 
signs of hind" means "the arithmetical signs" and not 
"the signs of India." As regards the use of the adjec
tive hindi by certain scholars in connection with the 
numerals, he conjectures that it has probably been 
employed through confusion for hindasi. 

Carra de Vaux's derivation of the word hind from 
end or hend cannot be accepted. It has no support 
from Arabic lexicography. Moreover, the word hind 
is a very ancient one. It occurs in the Avesta1 both in 
the earlier Yasna and in the later (Sassanian) Vendidad. 
The word also occurs in the cuneiform inscriptions of 
Darius Hystaspes. The Pehlavi writings before the 
Arab conquest of Iran also show the word hind. In all 
those cases it means India. 

The word hindi is an adjective formed from hind 
and means i "Indian". The fact that in a few isolated 
cases, it has been confused with the word hindasi, can
not make us conclude that this has happened in all 
cases. 

The terms Hindasa, etc. The words hindasa, 
hindisa, handasa, hindasi, handasi, etc., have been stated 
by competent authorities to be adjectives formed 
from hind, meaning "Indian". Kaye 2 and Carra 
de Vaux3 oppose this interpretation. Relying 
on the lexicon of Firouzabadi they assert that these 
terms are derived from the Persian andazah, meaning 
"measure." There is no doubt that the word hindasi 
denotes "geometrical" in the Arabic language. But 

1 YaSlla. x. 141; YI., x. 104 (Mihir Yast). 
2 Kaye, JASB, III. 1907, p. 489, also JASB. VII, 1911, 

pp. 810[. 
3 Carra de Va~x, I.e. 
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when this term is used in connection with an explana
tion of the rule of "double false position" or the method 
of "proof by nines" or in connection with the "numeral 
notation," we have to admit that it had some other 
significance also. As the arithmetical rules designated 
by the term htildasi are found in Hindu arithmetic prior 
to their occurrence in Arabia, it follows that hindasi also 
means Indian. The term himiasi, hindasa or handasa has, 
therefore, two meanings, one "geometrical" and the 
other "Indian". The controversy regarding the meaning 
of this term which was set at rest by Woepcke,l has 
arisen again because Kaye and Carra de Vaux have refus
ed to recognise both meanings of this term. '2 It may be 
pointed out here that as one of the meanings of hindasi is 
synonymous with hindi, there is no wonder that the 
two words were sometimes confused with each other, 
especially by scribes who did not understand the text. 

European References. Isidorus oj Seville. The 
nine characters (of the ghobar type), without zero, are 
given as an addition to the first chapter of the third 
book of the Origines by Isidorus of Seville in which 
the Roman numerals are under discussion. Another 
Spanish copy of the same work (of 992 A.D.) 
contains the numerals in the corresponqing section. 
T~e writer ascribes an Indian origin to them in the 
following words: "Item de figuris arithmetice. Scire 
debemus in Indos subtilissimum ingenium habere et 
ceteris gentes eis in arithmetica et geometria et ceteris 
liberalibus disciplinis concedere. Et hoc manifestum 

1 Woepcke, lA, I, 1863, pp. 27£. See also Suter's article 
on hantlPJa in the Enryclopaedia of Islam and Rosen's Algebra of 
Mohammad Ben MtlSa, London, 183 I, pp. 196f. 

2 It will not be difficult to point out in any literature words 
having more than one meaning. Occasionally these meanings have 
no connection. Whenever such a word is used, the appropriate 
meaning h~s to be deduced from the context. 
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est in nobem figuris, quibus designant unum-quemque 
gradum: cuinslibet gradus. Quarum hec sunt forma." 1 

Rahbi ben Ezra (1°92-1167) 

Rabbi Abraham ibn Meir ibn Ezra in his work, Sefer 
ha-mispar ("the Book o'r Number"), gives' the Hindu 
forms of the numerals. He knew of the Hindu origin 
of the numerals for he states: "that is why the wise peo
ple of India have designated all their numbers through 
nine and have built forms for the nine ciphers."2 

Leonardo of Pisa 

Leonardo of Pisa in his work, Liber Abaci (1202), 
frequently refers to the nine Indian figures. At one 
place he says: "Ubi ex mirabili magisterio in arte per 
novem figuras indorum introductus" etc. In another 
place, as a heading to a separate division, he writes "De 
cognitione novem figurarum yndorum" etc., "Novem 
figure ,indorum he sunt 9 8 7 6 5 4 3' 2 1. "B 

Alexander de Villa Dei 

Alexander de Villa Dei (c. 1240) wrote a commen
tary on a set of verses called Carmen de Algorismo. In 
this commentary he writes: "This boke is called the 
boke of algQrim or augrym after lewder use. And this 
boke tretys of the Craft of Nombryng, the quych crafte 
is called also algorym. Ther was a kyng of Inde the 
quich heyth Algor & he made this craft...... Algor
isms, in the quych we use teen figurys of Inde."4. 

1 Quoted, by Smith and Karpinski. I.e., p. 138. 
2 Sefer ba-Mirpar, Dar Bt«b der zabl, ein bebraircb-aritbmetircber 

Work der R. Abrabam ibn Brra, Moritz Silberberg, Frankfurt a 
M., 1895, p. 1. 

3 Liber Abaci, Rome, 1857; quoted by Smith and Karpinski, 
I.e., p. 10. 

4 Smith and Karpinski, I.e., p. II. 
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Maximus Planudes (C. 1330) 

Maximus Planudes states that "the nine sym~o]s 
come from the Indians."l 

1 Waschke's German Translation, Halle, 1878, p. 3. 
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TABLE I-Kharo,thi Numerals 

Saka, Parthian and Asoka 
Ku~ana Inscriptions Inscs. 

3J 40 I I I 

J.J3 SO II 1/ 2. 

333 60 /1/ ; 

'::;33 } 70 X I!I! 4 

3333 80 IX 1/11/ S 

-(t 100 /IX 6 

,(11 
zoo J IIX 7 

jllJ 300 Xx 8 

1') iJ 12.2. ? 10 

)(} ~})111 2.74 J 2.0 
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TABLE XIV-Development of Nagari Numerals 
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TABLE XV-Nuflleral Forms in Modern Hindll Scripts 
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CHAPTER II 

ARITHMETIC 

I. GENERAL SURVEY 

Terminology and Scope. Arithmetic forms the 
major part of the Hindu works on ptijigapita. The word 
pa!igapita is a compound formed from the words pati, 
meaning "board," and gapita, meaning "science of cal
culation;" hence it means the science of calculation 
which requires the use of writing material (the board).l 
It is believed that -this term originated in a non-Sanskrit 
literature of India, a vernacular of Northern India. The 
oldest Sanskrit term for the board is pha/aka or palla, 
not pdti. The word pa'li seems to have entered into 
Sanskrit literature about the beginning of the seventh 
century A.D.2 The carrying out of mathematical calcula
tions was sometimes called dhflJi-karnJa ("dust-work"), 
because the figures were written on dust spread on a 
board or on the ground. Some later writers have used 
the term ryakta-gapita ("the science of ~alculation by 
the 'known''') for pa!igartita to distir''5llish it {rom 
algebra which was called aryakta-gapita ("th,e s'cienct.· of 
calculation by the 'unknown' "). The terms.pd!igariila 
and dhfl/f-karma were translated into Arabic wheh. 
Sanskrit works were rendered into that language. The 
Arabic equivalents are i/m-hisab-a/-takht ("the science cf... 

1 Paper being scarce, a wooden board was generally used 
for making calculations even upto the 19th century. 

2 B. Datta, American Math. Monthly, XXXV, p. 52.6. 
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calculation on the board") and hisdb-a/-ghobdr ("calcula
tion on dust") respectively. 

Bayley, Fleet and several others suspect that the 
origin of the term Paf! in Hindu Mathematics lies in 
the use of the board as an abacus. This conjecture, 
however, is without foundation, as no trace of the use 
of any form of the abacus is found in India. 

According to Brahmagupta1 there are twenty 
operations and eight determinations in ptifiga!1ita. He 
says: 

"He who distinctly and severally knows the twenty 
logistics, addition, etc., ~nd the eight determinations 
including (measurement by) shadow is a mathemati
cian." 

The twenty logistics, according to Prthudakasvami, 
are: (I) samkafita (addition), (2) tyavakafita or tyldkafita· 
(subtraction), (3) gll!1ana (multiplication), (4) bhtigahtira 
(division), (5) varga (square), (6) varga-lilli/a (square-root), 
(7) ghana (cube), (8) ... ~hana-'mlla (cube-root), (9-13) 
pafica jdti (the five rules of reduction relating to the 
five standard forms of fractions), (14) trairtiJtka (the 
rule of thtee), (15) 1!Yasta-frairtiJika (the inverse rule of 
three), (16) pafcartiJika (the rule of five), (17) sapta
rtiJika (the ruk' of seven), (18) nat'artifika (the rule of 
nine), (19) ektidafartifika (the rule of eleven), and (20) 
bf..2(i(ia-pr:;tibhd!1r/a (barter and exchange). The eight 
rleterminations are: (1) lJIifraka (mixture), (1,) fre(ihi 
(~r[lgression or series), (,) kfetra (plane figures), (4) 
4hdta (excavation), (5) citi (stock), (6) krakacika (saw), 
(7) rtifi (mound), and (8) chq)'ti (shadow) . 

. Of the operations named above, the first eight have 
been considered to be fundamental by M aha vira and 
later writers. The operations of duplation (doubling) 

1 BrSpSi, p. 172 • 
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and mediatloh (halving), which were considered funda
mental by the . Egyptians, th~ Greeks and some Arab 
and western scholars, do not occur in the Hindu 
mathematical treatises. These operations were essential 
for those.. who did not know the place-value system of 
notation. They are not found in Hindu works, all of 
which use the place-value notation. 

Sources.. The only works available which deal 
exclusively with patigapita are: the Bakhshalj A1anllscript 
(c. 200), the Trifatikd (c. 750), the Gapita-sara-samgraha 
(c .. 850), the Ga!1ita-tilaka (I039), the Lfldvati (II 50), the 
Ga!lita-kaumtldf (1356), and the Pd,tf-sdra (1658). These 
works contain the twenty operations and the eight 
determinations mentioned above. Examples are also 
given to illustrate the use of the rules enunciated. 

Besides these there are a number of astronomical 
works, known as Siadhdnta, each of which contains a 
section dealing with mathematics. Aryabhata I (499) 
was the first to include a section on mathematics in his 
Siddhdnta, the Aryabha![ya. Brahmagupta (628) followed 
Aryabhata in this respect, and after him it became 
the general fashion to include a section on mathematics 
in a Siddhdnta work. l The earlier Siddhdnta works do 
not possess this feature. The Siirya-siddhdnta (c. 300) 
does not contain a section on mathematics. The same 
is true of the V dsi:f!ha, the Pitdmaha and the Romaka 
Siddhantas. Bhaskara I and Lalla, 2 alt~ough zealous 
followers of Aryabhata I, did not emulate hi~ in in
cluding a section on mathematics in their astronomical 
works. 

1 Amongst such works may be mentioned the Mahti-J'iddhdnta 
(950), the Siddhanta-lekhara (1036), the Siddhanta-tatft'o-viveka (1658), 
etc. 

2 It is stated by Bhaskara II that Lalla wrote a separate treatise 
on pa/lgolJita. 
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Exposition and Teaching. In India conciseness of 
composition, especially in scientihc matters, was highly 
prized. The more compact and brief the composition, 
the greater was its value in the eyes of the learned. 
It is for this reason that the Indian treatis.es contain 
only a brief statement of the known formula:: and results, 
sometimes so concisely expressed as to be hardly 
understandable. This compactness is more pronounced 
in the older works; for instance, the exposition in the 
Aryabha![ya is more compact than in the later works. 

This hankering after brevity, in early times, was 
due chiefly to the dearth of writing material, the 
fashion of the time and the method of instruction fol
lowed. The young student who wanted to learn 
pa/i'ga!1ita was hrs,t made to commit to memory all the 
rules. Then he was made to apply the rules to the 
solution of problems (also committing the problems to 
memory). The calculations were made on a Pall on 
which dust was spread, the numbers being written on 
the dust with the tip of the fore-finger or by a wooden 
style,. the figures not required being rubbed out as the 
calculation proceeded. Sometimes a piece of chalk or 
soap-stone was used to write on the Pali. Along with 
each step in the process of calcul;!.tion the sutra (rule) 
was repeated by the student, the teacher supervising 
and helping the student where he made mistakes. After 
the student had acquired sufficient proficiency in solving 
the problems contained in the text he was studying, the 
teacher set him other problems-a store of graded 
examples (probably constructed by himself or borrowed 
from other sources) being the stock-in-trade of every 
professional teacher. At this stage the student began 
to understand and appreciate the rationale of the easier 
rules. After this stage was reached the teacher gave 
proofs of the more difficult formulre to the pupil. 
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It will be observed that the method of teaching 
pursued was extremely defective in so far as it was in 
the first two stages purely mechanical. A student 
who did not complete all the three stages knew practi
cally nothing more than the mere mechanical applica
tion of a set of formulre committed to II).emory; and 
as he did not know the rationale of the formulre he 
was using, he was bound to commit mistakes in. their 
application. It may be mentioned that not many 
teachers themselves could guide a pupil through all the 
stages of the te~ching, and the earnest student, if he 
had a genuine desire to learn, had to go to some seat 
of learning or to some celeberated scholar to complete 
his training. 

Mathematics is and has always been the most 
difficult subject to study, and as a knowledge of higher 
mathematics could not be turned to material gain there 
were very few who seriously undertook its study. In 
India, however, the religious prac.tices of the Hindus 
required a certain amount of knowledge of astronomy 
and mathematics. Moreover, there have always been, 
from very early times, a class of people brown as 
gatzaka whose profession was fortune-telling. These 
people were astrologers, and in order to impress their 
clients with their learning, they used to have some 
knowledge of mathematics and astronomy. Thus it 
would appear that instruction in mathematics, upto a 
certain minimum standard, was available almost every
where in India. As always happens, some of the pupils 
got interested in mathematics for its own sake, and 
took pains to make a thorough study of the subject ap.d 
to add to it by writing commentaries or independent 
treatises. 

Decay of Mathematics. All this was true when the 
times were normal. In abnormal times when there were 
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foreign invasions, internal warfares or bad government 
and consequent insecurity, the study of mathematics 
and, in fact, of all sciences and arts languished. 
Al-Birunl who visited north-western India after it had 
been in a very unsettled state due to recurrer..t Afghan 
invasions for the sake of plunder and loqt complains 
that he could not find a pat/t/it who would explain to 
him the principles of Indian mathematics. Although 
Al-Biruni's case was peculiar, for no respectable pat/t/it 
would agree to help a foreigner, especially one belonging 
to the same class as the invaders and the despoilers of 
temples, yet we are quite sure that in the Punjab there 
were very few good scholars at that time. We, however, 
know of at least one very distinguished mathematician, 
Sripati, who probably lived in Kashmir at that time. 

It is certain, however, that after the 12th century 
very little original work was done in India. Com
mentaries on older works were written and some new 
works brought out,.. but nope of these had sufficient 
merit as regards exposition or subject matter, so as to 
displace the works of Bha.skara II, which have held 
undisputed sway for nine centuries (as standard text 
books). 

The Fundamental Operations. The eight funda
mental' operations of Hindu gat/ita are: (I) addition, (2) 
subtraction, (3) multiplication, (4) division, (5) square, 
(6) square-root, (7) cube and (8) cube-root. Most of 
these elementary processes have not been mentioned in 
the Siddhanta works. Aryabha~a I gives the rules for 
finding the square- and cube-roots only, whilst Brahma
gupta gives the cube-root rule only. In the works on 
arithmetic (pdflgat/ita) , the methods of addition and 
subtraction have not been mentioned at all or men
tioned ve.t:y briefly. Names of several methods of 
multiplication have been mentioned, but the methods 
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themselves have been either very briefly described or 
not described at all. The modern method of division 
is briefly described in all the works and so are the 
methods of squaring, square-root, cubing and cube
root. 

Although very brief descriptions of these funda
mental operations are available, yet it is not difficult to 
reconstruct the actual procedure employed in perform
ing these operations in ancient India. These methods 
have been well-known and taught to children, practi
cally without any change, for the last fifteen hundred 
years or more. . They are still performed in the old 
fashion on a Pali ("board") by those who have obtained 
their primary training in the Sanskrit pathasala and not 
in the modern primary school. The deta:ils of these. 
methods are also available to us in the various com
mentaries, viz., the commentary of Prthudakasvami and 
the several commentaries on Bhaskara's LlIavatf. 

As already mentioned, the calculations were per
formed on sand spread on the ground (dht'ilf-karma l

) 

or on a palf ("board"),. Sometimes a piece of chalk 
or soap-stone (pdtrt!u-Iekha or fJJetavartrf) was used to 
write on the Pdlf.2 As the figures written were big, 
so several lines of figures could not be contained on 
the board. Consequently, the practice of' obliterating 
figures not required for subsequent work was common. 
Instances of this would be found in the detailed method 
of working (the operations) given hereafter. 

That all mathematical operations are variations of 
the two fundamental operations of addition and sub
traction was recognised by the Hindu mathematicians 

1 Bhaskara II, SiSi, candragrahalJtidhikira, 4. 
2 Bhaskara II: kha.fikiyt1 rekht1 tlccbt14Ja ... , i.e., "having drawn 

lines with a chalk •.. ," quoted by S. Dvivedi in his History of Mathe-
matics (in Hindi), Benares, 1910, po. 41. 

9 
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from early times. Bhaskara I (c. 525) states:1 

"All arithmetical operations resolve into two cate
gories though usually considered to be four.2 The 
two main categories are increase and decrease. Addi
tion is increase and subtraction is decrease. These two 
varieties of operations permeate the whole of mathema
tics (gapita). So previous teachers have said: 'Multipli
cation and evolution are particular kinds of addition; 
and division and involution of subtraction. Indeed 
every mathematical operation will be recognised to 
consist of increase and decrease.' Hence the whole of 
this science should be' known as consisting truly of 
these t~o only." 

2. ADDITION 

Terminology. Aryabhata II (950) defines addition 
thus: 

"The making into one of several numbers is 
addition."3 . 

The Hindu name for addition is .ralhkaiita (made 
together). Other equivalent terms commonly used .are 
saJhkalalla (making together), miirapa (mixing), sam
me/ana (mingling together), prak.fepapa (throwing to
gether), sal";yqjana (joining together), eki'karapa (making 
into one),yukti,yoga (addition) and ab~ydsa,4 etc. The 
word sa,iJlealita has been used by some writers in the 
general sense of the sum of a series. 5 

The Operation. In all mathematical and astrono
mical works, a knowledge of the process of addition is 

I The quotation is from his commentary on the Ar:yabha.t[ya. 
2 i.e., addition, subtraction, multiplication and division. 
3 MSi, p. 143. . 
4 This "\\'ord has been used in the sense of addition in the 

SlIlba only. It is used for multiplication in late!' works. 
:; E.g., Trif, p.2; GSS, p. 17. 
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taken for granted. Very brief mention of it is made 
in some later works of elementary character. Thus 
Bhaskara II says in the Lfidvati: 

"Add the figures in the same places in the direct 
or the inverse order."1 

Direct Process. In the direct process of addition 
referred to above, the numbers to be added are written 
down, one below the other, just as at present, and a line 
is drawn at the bottom below which the sum is written. 
At .first the sum of the numbers standing in the units 
place is written down, thus giving the first figure of the 
sum. The numbers in the tens place are then adged 
together and their sum is added to the figure in the 
tens place of the partial sum standing below the line 
and the result. substituted in its place. Thus the figure 
in the tens place of the sum is obtained; and so on. 
An alternative method used was to write the biggest 
addend at the top, and to write the digits of the sum 
by rubbing out correspondil1g digits of this addend. 2 

Inverse Process. In the inverse process, the num
bers standing in the last place (extreme left) are added 
together and the result is placed below this last place. 
The numbers in the next place are then added and so 
on. The numbers of the partial sum are corrected, if 
necessary, when the figures in the next vertical line are 
3dded. For instance, if 12 be the sum of the numbers 
in the last place, 12 is put below the bottom line, 2 

being directly below the numbers added; then, if the 

1 L, p. z; direct (krull/a), i.e., beginning from the units place; 
inverse (1Itkrama), i.e., beginning fm,m the last place on the 
left. The commentator Gangadhara says: l21ikdnd1JI vdmatol,atirili 
vilarklftIa ekasthdnddi .J'ojana~JJ krama/J IIlkramaslll t1f1()'t1sthdnddi yojana,!l, 
i.e., "Accordi'ng to the rule 'the numerals increase (in value) to
wards the left', the addition of units first is the direct method, 
the addition of figures in the Jast place first is the inverse method." 

2 Dvivedi, History of !vIa/hell/alies, Benares, 1910, p. Go. 
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sum of the numbers in the next place is 13 (say), 3 is 
placed below the figures added and I is carried to the 
left. Thus the figure 2 of the partial sum 12 is rubbed 
out and substituted by 3.1 

The Arabs used to separate the places by vertical 
lines, but this w,:as not done by the Hindus. 2 

3. SUBTRACTION 

Terminology. Aryabhata II (950) gives the fol
lowing definition of subtraction: 

. "The taking out (of some number) from the 
sarvadhana (total) is subtraction; what remains is called 
fCfa (remainder)."B 

The terms VYlltkalita (made apart), VYlltkalana 
(making apart), fodhana (clearing),patana (causing to fall), 
viyoga (separation), etc., have been used for subtraction. 
The terms fCfa (residue) and antara (difference) have 
been used for the remainder. The minuend has been. 
called sarvadhana or vtyojya and the subtrahend viyojaka. 

The Operation. Bhaskara II gives the method of 
subtraction thus: 

"Subtract the numbers according to their places in 
the direct or inverse order."4 

1 The Manoraiijana explains the process of addition thus: 
Example_. Add 2, 5, 32, 193, 18, 10 and 100. 

Sum of units 2,5,2,3,8,0,0 20 
Sum of tens 3,9,1,1,0 14 
Sum of hundreds 1,0,0, I 2 
Sum of sums -3'60-

The horizontal process has been adopted by the commentator 
so that both the 'direct' and 'inverse' processes may be exhibited 
by a single illustration. It was never used in practice. 

2 Cj. Taylor, Liltiwali', Bombay, 1816, Introduction, p. 14. 
a MSi, p. 143. 
• L, p. 2. 
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Direct Process. Suryadasa 1 explains the proceSs 
of subtraction with reference to the example. 

1000 _. 360 

thus: 
"Hence making the subtraction as directed, six 

cannot be subtracted from the zero standing in the 
tens place, so taking ten and subtracting six from it, 
the remainder (four) is placed above (six), and this ten 
is to be subtracted from the next place. For, as the 
places of unit, etc., are .multiples of ten, so the figure 
of the subtrahend that cannot be subtracted from the 
corresponding figure of the minuend is subtracted from 
ten, the remainder is taken and this ten is deducted 
from the next place. In this way this ten is taken to 
the last place until it is exhausted with the last figure. 
In other words, numbers up to nine occupy one place, 
the differentiation of places begins from ten, so it is 
known 'how many tens there are in a given number' 
and, therefore, the number that cannot be subtracted 
from its own place is subtracted from the next ten, 
and the remainder taken." 

The above refers to the direct process, in which 
subtraction begins from the units place. 

Inverse Process. The inverse process is similar, 
the only" difference being that it begins from the· last 
place 0f the minuend, and the previously obtained 
partial differences are corrected, if required. The 
process is suitable for working on a Pd!~ (board) where 
figures can be easily rubbed out and corrected. This 
process seems to have been in general use in India, and 
was considered to be simpler than the direct process. 2 

1 In his commentary on the Lildvali. 
~ According to Gat\gadhara, the inverse process of working 

is easier in the case ·of subtraction, and the direct in the case of 
addition. 
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4. MULTIPUCATlON 

Terminology. The common Hindu name for 
multiplication is gU!1ana. This term appears to be the 
oldest as it occurs in Vedic literature. The terms hanana, 
vadha, k,aya, etc. wh1ch mean "killing" or "destroying" 
have been also used for multiplication. These terms 
came into use after the invention of the new method of 
multiplication with the decimal place-value numerals; 
for in the new method the figures of the multiplicand 
were successively rubbed out (destroyed) and in their 
places were written the figures of the product. 1. 

Synonyms of hanana (killing) have been used by Arya
bhata P (499), Brahmagupta (628), 'Sridhara (c. 750) 
and later writers. These terms appear also in the 
Bakhshali Manuscript. 3 

The term ab~dsa has been used both for addition 
and multiplication in the Sulba works (800 B.C.). This 
shows that at that early period, the process of multiplica
tion was made to depend on that of repeated addition. 
The use of the word parasparakrtd1!1 (making together) 
for multiplication in the Bakhshali Manuscript4 is evi
dently a relic of olden times. This ancient terminology 
'proves that the definition of multiplication was "a pro
cess of addition resting on repetition of the multiplicand 
as' many times as is the number of the multiplicator." 
This definition occurs in the commentary of the Arya
bha![ya by Bhaskara I. The commentators of the Lflavatf 
give the same explanation of the method of multipli
cation. 5 

1 See the kopala-sandhi method of multiplication, pp. 13 sff. 
2'A, ii. 19, 26. etc. 
3 BMs. 6~ verso. 
4 BMs. 3 verso. 
5 Colebrooke, HindH Algebra. p. 13;. 
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The multiplicator was termed gllt!Ya and the multi
plier gurzaka or gurzaMra. The product was called 
gurzana-phala (result of multiplication) or praryutpanna 
(lit. "reproduced," hence in arithmetic "reproduced by 
multiplication"). The above terms occur in all known 
Hindu works. 

Methods of Multiplication. Aryabhata I does 
not mention the common methods of multiplication, 
probably because they were too elementary and too well
known to be included in a Siddhanta work. Brahma
gupta, however, in a supplement to the section on 
mathematics in his Siddhanta, gives the names of some 
methods with very brief descriptions of the processes: 

"The multiplicand repeated, as in gO//lntrikd, as 
often as there are digits! in the multiplier, is severally 
multiplied by them and (the results) added (according 
to places); this gives the product. Or the multiplicand 0 

is repeated as many times as there are component parts2 

in the multiplier."3 • 
"The multiplicand is multiplied by the sum or the 

difference of the multiplier and an assumed quantity 
and, from the result the product of the assumed quantity 
and the multiplicand is subtracted or added."4 

Thus Brahmagupta mentions four methods: (1) 
gomntrikd, (2) kharzrja, (3) bheda and (4) if/a. The 
common and well-known method of kapa/a-sandhi has 
been omitted by him. 

1 khatttfo, translated as "integrant portions" by Colebrooke. 
2 bhedo, i.e., portions which added together make the whole. 

or aliquot parts which multiplied together make the entire 
quantity . 

. : BrSpSi, p. 209; Colebrooke, I.e., p. 319. 
4 BrSpSi, p. 209. Colebrooke (I.e., p. 320) thinks that this is 

a method to obtain the true product when the multiplier has been 
taken to be too great or too small by mistake. This view is 
incorrect. 
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Sridhara mentions four methods of multiplication: 
(I) kapata-sandhi, (2) tastha, (3) riipa-vibhaga and (4) 
sthdna-vibhdga. 11ahivira mentions the same four. 
Aryabhara II mentions only the common method of 
kapata-sandhi. Bhaskara II, besjdes the' above four, 
mentions Brahmagupta's method of i.f!a-gutlana. The 
five methods given by Bhaskara n were mentioned 
earlier by Sripati in the SiddMnta-fekhara. Gal!eSa1 (IS45) 
mentions the gelosia method of multiplication under 
the name of kapata-sandhi and add~ that the intelligent 
can devise many more methods of multiplication. The 
method is also given in the Ga!1ita-/l/anjarf. We have 
designated it as kapa/a-sandhi (b). 

Seven2 distinct modes of multiplication 'employed 
by the Hindus are given ,below. Some of these are 
as old as 200 A.D. These methods were transmitted 

. to Arabia in the eighth century and were thence com
municated to Europe, where they occur in the writings 
of medireval mathematicians. 

Door-junction Method. The Sanskrit term for the 
method is kapdta-sandhi., Sridhara3 describes it thus: 

"Placing the multiplicand below the multiplier as in 
kapata-sandhi," multiply successively, in the direct or 
inverse order, moving the multiplier each time. This 
method is called kapata-sandhi." 

Aryabha!a Irs (950) gives the following without 
name: 

, 1 Commentary on the Lfliiz1atl, MSS No. I. B. 6. in the 
Asiatic Soc. of Bengal, Calcutt:!, pp. 17, 18. In this work only 
two methods are given, (1) kapii.ta-sandhi and (2) kapii.ta-sandhi (b). 

2 Or ten if we count also the sub-divisions under each head. 
:I TriJ, pp. ,f. 
4, kapil/a means "door" and sandbi means "junction"; hence 

kapiita-sandhi means "the junction of doors." , 
5 lv1Si, p. 14,; the inverse method only has been given. 
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"Place the first figure of the multiplier over the 
last figure of the multiplicand, and then multiply suc
cessively all the figures of the multiplier by each figure 
of the multiplicand." -

Sripati1 (1039) gives the name kapdta-sandhi and 
states: 

"Placing the multiplicanq below the multiplier as 
in the junction of two doors multiply successively (the 
figures of the multiplicand) by moving it (the multiplier) 
in the direct or inverse order." 

Maha vira refers to a method known as kapd!a
sandhi, but does not give the details of the process. 2 

Bhaskara II gives the method but not the name, while 
Naraya1).a (1356) gives the method in almost the same 
words as Sridhara, and calls it kapdta-sandhi. 

The main features of the method are (i) the relative 
positions of the multiplicand and the multiplier and 
(ii) the rubbing out of figures of' the multiplicand and 
the- substitution in their places of the figures of the 
product. \ The method owes its name kapdfa-sandhi to 
the first feature, and the later Hindu terms meaning 
"killing" or "destroying" for multiplication owe their 
origin to the second feature. The occurrence of the 
terms hanana, vadha, etc., in the works of Aryabhata I 
and Brahma~upta, and in the Bakhshali Manuscript 
ihow beyona. doubt that this method was known in 
India about 200 A.D. 

. The following illustrations3 explain the two pro
cesses of multiplication according to the kapdfa-sandhi 
plan: 

J. SiSe, xiii. z; CT, 15. 
2 GSS, p. 9. 
3 The illustrations are based on the accounts given in the 

commentaries on the LiM/lall', eSp'ecially the Monorailjana which 
gives more details. 
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Direct Process: This method of working does not 
appear to have been popular. It has not been mentioned 
by writers after the I Ith century, Sripati (1039) being 
the last writer to mention it. 

Example. To multiply 135 by 12. 
The numbers are written down on the Pd!i thus: 

12 
135 

The first digit of the multiplicand (5) is taken and 
multiplied with the digits of the ~ultiplier. Thus 
5 X 2= 10; 0 is written below 2, and I is to be carried 
over.! Then 5 X 1=5; adding I (carried over), we 
get 6. 5 which is no longer required is rubbed out and 
6 written ln its place. Thus we have 

12 
_ 13 60 

The multiplier is then'moved one place towards the left, 
and we have 

12. 
13 60 

Now, 12..iS multiplied by 3. Tne details are: 3 X 2=6; 
this 6 added to the figure 6 below 2 gives 12.. 6 is 
rubbed out and 2. substituted in its place. I is carried 
over. Then 3 X 1=3; 3 plus 1 (carried over)=4· 3 is 
rubbed out and 4 substituted. After the multiplier 12 has 
been moved another place towards the left, the figures 
on the Pdlf stand thus: 

12 
1420 

Then, 1 X 2=2; 2+4=6; 4 is rubbed out and 6 
substituted. I X 1= 1, which is placed to the left of 6. 

! For this purpose it was probably noted in a separate portion 
of the pap by the beginner. 
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As the operation has ended, 12 is rubbed out and the 
pdP has 

1620 

Thus the numbers 12 and 135 have been killed' and a 
new number 1620 is born (praryutpanna).2 

The reader will note that the position of the 
multiplier and its motion serve two important purposes, 
viZ" (i) the last figure of the multiplier indicates the 
digit of the multiplicand by which multiplication is 
to be performed and, (ii) the product is to be added 
to the number standing underneath the digit of the 
multiplier multiplied. 

Sometimes the product of a digit of the multipli
cand and the multiplier extends beyond the last place 
of the multiplier. In such cases, the last figure of the 
partial product is noted separately. The reader should 
note this fact in the case, 13 5 X 99, by performing the 
operation according to the above process. 

The beginner was liable to commit mistakes in such 
cases, (i) of not correctly taking into ~ccount the 
separately noted number, or (ii) of rubbing out the 
digit of the multiplicand beyond the last dig~t of the 
multiplier. For these reasons, this process was not 
in general use and the inverse process was preferred. 

Inverse Method: There appear to have been two 
varieties of the inverse method. 

(a) In the first the numbers are written thus: 
12 

135 
Multiplication begins with the last digit of the multipli
cand. Thus 1 X 2=2; 1 is rubbed out and 2 substi-

1 This explains the use of the term hanan'J (killing) and its 
synonyms for multiplication, 

~ Hence the product was termed pra!Jlllpan1ll1. 
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tuted; then I X I = I, this is written to the left; 1 the 
multiplier 12. is moved to the next figure. The work 
on the pa!i stands thus: 

12. 

1235 
Then, 3 X 2=6; 3 is rubbed out and 6 substituted; then 
3 X 1=3 and 3+2=5; 2 is rubbed out and 5 substituted 
in its place. The multiplier having been moved, the 
work on the pati stands thus: 

12. 

15 65 
Now, 5 X 2= 10; 5 is rubbed out and 0 substituted in 
its place; then 5XI=5; 5+1=6; 6+6=12; 6 is 
rubbed out and 2 substituted, and 1 is carried over; 
then 1+ 5 =6, 5 is rubbed out and 6 substituted in 
its place. The pa/f has now, 

1620 
as the product (pratyutpanna). The figures to be carried 
over are noted down on a separate portion of the 
pa/f and rubbed out after addition. 

(b) In the second the partial multiplications (i.e., 
the multiplications by the digits of the multiplicand) 
are carried out in the direct manner. These partial 
multiplications, however, seem to have been carried out 
in the inverse way, this being the general fashion. The 
following example will illustrate the method of working: 

Example. Multiply 324 by 753 
The multiplier and the multiplicand are arranged 

thus: 
753 . 

324 

1 Or the alternative plan: I X 1 = I and then I X 2 = 2, thus 
giving 12 in the place of I in the multiplicand, etc. 
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Multiplication begins with the last place of the 
multiplier. 3 X 7 gives 2.I; I 'is placed below the 7 of the 
multiplier and 2. to its left, thus: 

753 
21 32.4 

Then 3 X 5 gives 15; 5 is placed below the 5 of the 
multiplier and I carried to the left; the 1 obtained in 
the previous step is rubbed out and (1+ 1)=2. is 
substituted, giving 

753 
225324 

Then 3 X 3 gives 9; the 3 of the multiplicand is rubbed 
out and 9 substituted. The work on the pdfi now 
stands thus: 

753 
2.2592.4 

The multiplier 1S now moved one place to the right 
giving 

753 
2.25924 

Then multiplying 7 by 2 we get 14. This 14 being 
set below the 7 gives 

753 
2.39924 

Multiplying 5 by 2. and setting the result below it, we 
obtain 

753 
240 92.4 

Finally multiplying 3 by 2. and rubbing out 2., which is 
required no longer, a"nd substituting 6 in its place, 
we get 
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The multiplier is ~then moved one step further giving 

753 
240 964 

Multiplying by 4 the digits of the multiplier 753, and 
setting the results as before we obtain 

(i) 753 

(ii) 
.243764 

7H 
243964 

753 

multiplying 7 X 4 and setting the result; 

multiplying 5 X 4 ahd setting the result; 
(iii) 

243972 multiplying 3 X 4 and setting the result. 

It play be again remarked that the position and 
motion of the multiplier play a very important part 
in the above process. The digits of the multiplier are 
also successively rubbed out in order to avoid confusion, 
thus 7 is rubbed out at stage (i), 5 at (ii) and 3 at (iii). 

The following variation of the above process is 
also found: 1 

"Multiplicand 135, multiplier 12; the multiplier 
placed at the last place of the multiplicand gives 

I~ 

135 
According to the rule 'the numerals progress to the 
left' the last figure of the multiplicand (the figure I) 
is multiplied by It. Then after moving (It) we get 

12 

I235 
Again, the figure 3 next to the last of the multi

plicand being multiplied by the multiplier 12 gives 
12 

126 5 
3 

1 Lilii~'4tylfddhara!1a by Krpariima Daivajiia, Asiatic Society 
of Bengal, Calcutta, Ms. No. III. F. 110. A. 
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Then after movmg (12) we get 
12 

1265 
3 

143 

Again, multiplying the first figure 5 of the multi
plicand with the multiplier 12, we get 

12 

1260 

36 

Then rubbing out the multiplier, the numbers 

1260 

36 

being added according to places gIve 1620." 

Transmission to the West. The kapata-sandhi 
method of multiplication was transmitted to the Arabs 
who learnt the decimal arithmetic from the Hindus. It 
occurs in the works of AI-Khowari'zmi (825), AI-Nasavi1 

(c. 1025) Al-Ha~~ar2 (c. II75), AI-Kalasacti J (c. 1475) 
and many others. The following illustration is taken 
from the work of AI-Nasavl who calls this method 
ai-aJua! ai-hindi and tdrik ai-hindi ("the method of the 
Hindus"): 

Example. To multiply 

43 
$09 

32 4X 753 

~9n 
2t$'J~2 

324 
753 

Product' 245972. 

753 
753 

1 F. Woepeke, I (6), p. 407. 
2 H. Suter, Bibl. Math., II (3), p. 16. 
3 Ibid, p. 17. 
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In the above the arrangement of the multiplicand 
and multiplier is just the same as in the Hindu method. 
The multiplier is moved in the same way. As the 
work is performed on paper, the figures are crossed 
out instead of being rubbed out. 

It may be mentioned that in Europe, the method 
is found reproduced in the work of Maximus Planudes. 

Gelosia Method. The method known as the 
'gelosia',l has been described in the Gat'ita-maiijarf 
(16th centur') as the kapata-sandhi method. It appears 
also in Ga1).eSa's commentary on the Lfldvati. As the 
description of the kapata-sandhi given by the older 
mathematicians is incomplete and sketchy, it is difn
cult to say whether Ga_r:1eSa is right in identifying the 
gelosia method with the kapata-sandhi of older writers. 
In our opinion Ga1).eSa's identification is incorrect.:.! 

We are at present unable to say definitely whether 
this method is a Hindu invention or was borrowed 
from the Arabs who are said to have used it in the 
13th century.s It occurs in some Arab works of the 
14th century, and also in Europe about the same 
time. Ga1).esa was undoubtedly one of the best mathe
maticians of his time and the fact that he identified 
this method with the kapata-sandhi which is the oldest 
known method shows that the gelosia method must 
have been in use in India from a long time before 
him. 

The only available description of the method runs 
as follows: 

"(Con:;truct) as many compartments as there are 
places in the multiplicand and below these as many 

1 We shall designate it as kapa/a-sandhi (h) method.-
2 Cf the quotation from Sripati given before, p. 137. 
3 Smith, History, II, p. I 15. 
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as there are places in the multiplier; the oblique lines 
in the first, in the one below, and in the other (com
partments) are produced. Multiply each place of the 
multiplicand, by the places of the multiplier (which are) 
one below the other and set the results in the com
partments. The sum taken obliquely on both sides of 
the oblique lines in the compartments gives the product. 
This is the kaPala-sandhi.'" 

The following illustration is taken from Ga.Q.esa's 
commentary on the Lfltivatf: 

To Multiply 135 by 12 

I 3 

1 

2 

1 6 2 o 

Cross Multiplication Method. This method has 
been mentioned by Sridhara, Mahavira, Sripati and some 
later writers as the tastha method. These writers, how
ever, do not explain the method. Sridhara simply 
states: "The next (method) in which (the multi
plier) is stationary is the tastha."2 The_ method is 
algebraic and has been compared to tiryak-gutJana or 
vqjrabqyasa (cross multiplication) used in algebra. 3 It has 
been explained by Ga.Q.eSa (c. 1545) thus: 

1 Translated from the Garzita-maiijari of Gar.:tda, son of 
phul)c;lhiraja. 

2 Trif, p. 3. _ 
3 Colebrooke, I.c., p. 171, fn. 5. 

10 
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"That method of multiplication in which the 
numbers stand in the ~ame place,t is calh:d tastha
gU!1ana. It is as follows: after setting the multiplier 
under the multiplicand multiply unit by unit and note 
the result underneath. Then as in vt!jrdbl!Jdsa multiply 
unit by ten and ten by unit, add together and set 
down the result in the line. Next multiply unit by 
hundred, hundred by unit and ten by ten, add together 
and set down the result as before; and so on with the 

. rest of the digits. This being done, the line of results 
is the- product."2 

This method was known to the Hindu scholars 
of the 8th century, or earlier. The method seems to 
have travelled to Arabia and thence was transmitted to 
Europe, where it occurs in Pacicli's Sumas and is stated 
to be "more fantastic and ingenious than the others." 
GaJ_lesa has also remarked that "this (method) is very 
fantastic and cannot be learnt by the dull without the 
traditional oral instructions." 

Multiplication by Separation of Places. This 
method of multiplication known as sthdna-kharrt}a, is 
based on the separation of the digits of the multiplicand 
or of the muftiplier. It has been mentioned in all the 
works from '6z8 A.D. onwards. Bhaskara II describes 
the method as follows: 

"Multiply separately by the places of figures and 
add together.'" 

With reference to the example 135 X 12, B,haskara II 
explains the method thus: 

1 In contra-distinction to the method in which the multiplier 
moves from one place to another. 

2 Gal)eSa's commentary on the Lildvoti, i, 4~6. 
S Smith (I.e., II, p. lIZ) quotes from this work. 
'L, p. 3. 
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"Taking the digits separately, viZ" 1 and 2, the 
multiplicand being multiplied by them severally, and 
the products added together according to places, the 
result is 1620." 

Various arrangements appear to have been em
ployed for writing down the working. Some of these 
are given below: 

(i)l 135 

(iiY 

12 

12 12 12 

1 3 5 
1260 

36 

1620 

135 135 
1 2 

270 

135 
1620 

Zigz~g Method. The method is called gomutrikd.4-
It has been described by Brahmagupta. It is in all 

1 In a manuscript used by Taylor, see his Luau/ati, pp. 8-9. 
2 This arrangement is found in the commentary of Ganga

dhara on the Ludvati, in the library of the Asiatic Society of 
Bengal, Calcutta. 

3 Found in Gangadhara, I.e. 
4 The word gomlJtrikd, means "similar to the course of cow's 

urine," hence "zigzag." Colebrooke's reading gosutriM is in
correct. The method of multiplication of astronomical quantities 
is called gomlJtrikd even upto the present day by the pat:\<;lits. 
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essentials the same as the sthal1a-khanda method. The 
following illustration is based on th~ commentary of 
Pfthudakasvaml. 

Example. To multiply 1223 by 235 

The numbers are written thus : 

2 1223 

3 1223 
5 1223 

The first line of figures is then multiplied by 2, the 
process beginning at the units place, thus: 2 X 3 =6; 3 is 
rubbed out and 6 substituted in its place, and so on. 
After all the horizontal lines have been multiplied by 
the c?rresponding numbers on the left in the vertical 
line, the numbers on the Pd!l stand thus: 

2 4 4 6 
3 669 

6 I I 5 
2 8 740 5 

after being added together as in the present method. 
The sthdna-khattrja and the gO/lIIttrikd methods resem

ble the modem plan of multiplication most closely. The 
sthdna-khaprja method was employed when working on 
paper. 

Parts Multiplication Me~hod. This method is 
mentioned in all the Hindu works from 628 A.D. 
onwards. Two methods come under this head: 

(i) The multiplier is broken up into two or more 
parts whose sum is equal to it. The multiplicand is 
then multiplied severally by these and the results added. 1 

(ii) The multiplier is broken up into two or more 
" aliquot parts. The multiplicand is then multiplied by 

] Thus IZX 135=(4+8)X 135=(4X 135)+(8x 135), 
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one of these, the resulting product by the second and 
so on till all the parts are exhausted. The ultimate 
product is the result. 1 

. 1:'hese methods are found among the Arabs and the 
Italians, having been obtained from the Hindus. They 
were known as the "Scapezzo" and "Repiego" methods 
respectively among the Italians. 2 

Algebraic Method. This method was known as i!!a
gut/ana. Brahmagupta's description of the method has 
been already quoted. Bhaskara II explains it thus: 

"Multiply by the multiplicator diminished or in
creased by an assumed number, adding or sul::t:racting 
(respectively) the product of the multiplicand and the 
assume<;l number."3 

This is of two kinds according as we (i) add or 
(ii) subtract an assumed number. The assumed number 
is so chosen as to give two numbers with which 
multiplication will be easier than with the original 
multiplier. The two ways are illustrated below: 

(i) 135XI2=135X(12+8)-I35X8 

(ii) 

=27°0--1080=1620 

135 X 12=135 X (12-2)+135 X 2 , 
=135°+27°=1620 

This method was' in use among the Araqs4 and in 
Europe5

, obviously under Hindu influence. 

1 Thu~ 12 x 13 5 = 3 X 135 X 4. 
2 Smith, History, n, p. 117. 
3 L, p. 3., 
4 E.g., Behi Eddin (c. 1600). See G. Enestrom, Bibl. Math., 

VII (3), p. 95. 
5 E.g., Widman (1489), Riese (1522), etc. See Smith, I.e., 

p. 120. 
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5. DIVISION 

Terminology. Division seems to have been regard
ed as the inverse of multiplication. The common Hindu 
names for the operation are bhdgahdra, bh4Jana, harapa, 
chedana, etc. All these terms literally mean "to break 
into parts," i.e., "to divide," excepting harapa which 
denotes "to take away." This term shows the relation 
of division to subtraction. The dividend is termed 
bhdJja, hdrya, etc., the divisor bhdJaka, bhdgahara or simply 
hara, and the quotient labdhi "what is obtained" or 
labdha. 

The Operation. Division was considered to be a 
difficult and tedious operation by European scholars 
even as late as the 15th and r6th centuries; 1 but in 
India the operation was not considered to be difficult, 
as the most satisfactory method of performing it had 
been evolved at a very early period. In fact, nQ Hindu 
mathemat~cian seems to have attached any great im
portance to this operation. Aryabhata I does not men
tion the method of division in his work. But as he has 
given the modern methods for extracting square- and 
cube-roots, which depend on division,2 we conclude 
that the method of division was well-known in his 
time and was not described in the A~abha!fya as it 
was considered to be too elementary. Most Siddhanta 
writers have followed Aryabhata in e~cluding the 
process of division from their works, e.g., Brahma
gupta (628), Sripati (r039), and some others. 

A method of di~ision by removing common factors 
seems to have been employed in India before the inven
tion of the modern plan. This removal of common 

1 Smith, I.e., p. 13 2 • 

2 He has used the technical term labdha for the quotient. 
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factors is mentioned in early Jaina works. l' It has 
been mentioned by Mahavira who knew the modern 
method, probably because it was con~idered to be 
suitable in certain particular cases: 

"Putting down the dividend and below it the 
divisor, and then, having performed division by the 
method of removing common factors, give out the 
resulting (quotient)." 2 

The modern method of division is not found in 
the Bakhshali Manuscript, although the name of the 
operation is found at several places. The absence of 
the method may be due to the mutilated form of the 
text, although it is quite possible that the method was 
not known at that early period (zoo A.D.). 

The Method of Long Division. The modern 
method of division is explained in the works on 
pd!iga(lita, the -earliest of which, Sridhara's TriiatikJ, 
gives the method as follows: 3 

"Having removed the common factor, if any, from 
the divisor and the dividend, divide by the divisor 
(the digits of the dividend) one after another in the 
inverse4. order." 

Mahavlra says:5 

"The dividend should be divided by the divisor 
(which is) placed below it, in the inverse order, after 
having performed on them the operation of removing 
common factors." 

1 Tatvarthadhigama-sutra, Bhafya of Umasvati (c. 160, ed. by 
H. R. Kapadia, Bombay, 19z6, Part I, ii. P. p. H5. 

2 GSS, p. I I. The method would not give the quotient un-
less the dividend be completely divisible by the divisor. 

S Trij, p. 4. 
4. Pratiloma. 
5 GSS, p. IIj cf. Rangacarya's translation. 



ARITHMETIC 

Aryabhata II gives more details of the process: 1 

"Perform division 'having placed the divisor below 
the dividend; subtract from (the last digits of the divi
dend) the proper multiple of the divisior; this (the 
multiple) is the ·partial quotient, then moving the divisor 
divide what remains, and so on." 

Bhaskara II;2 Naraya.Q.a8 and others give the same 
method. 

The following example will serve to illustrate the 
Hindu method of performing the operation on a paji: 

Example. Divide 1620 by 12. 

The divisor 12 is placed below the dividend thus : 
1620 

12 

The process begins from the extreme left of the 
dividend, in this case the figure 16. This 16 is divided 
by 12. The quotient 1 is placed in a separate line, 
and 16 is rubbed out and the remainder 4 is substituted 
in its place. The subtraction is made by rubbing out 
figures successively as each figure of the product to be 
subtracted is obtained. Thus, the partial quotient I, ~ 
being written, the procedure is 

1620 I 
~-,..----;--

12 line of quotients 

1 X 1=1, SO I of the dividend is rubbed out (as 
1-1=0); then I X 2=2, so 4 is substituted in the 
place of 6 (as 6-2=4). The figures on the Pa!i are: 

420 

12 

1 MSi, p. 144. 

I 

line of quotients . 

2 BM.skara gives the process briefly as follows: "That number, 
by which the divisor being multiplied, balances the last digit of 
the dividend gives the (partial) quotient, and so on." (L, p. 3) 

"S GK, i. 16. 
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The divisor 1.2 is now moved one place to the 
right giving 

420 I 

I 2 line of quotients 

42 is then divided by 12. The resulting quotient. 3 
is set in the. "line of quotients," 42 is rubbed out and 
the remainder 6 substituted in its place. The figures 
now stand thus: 

60 
12 line of quotients 

Moving the divisor one place to the right, we have 
60 
12 

On division being performed, as before the resulting 
quotient 5 is set in the "line of quotients" and 60 is 
rubbed out leaving no remainder. The line of quo
tients], has 

135 
which is the required resul1o. 

The above process, when the figures are not 
obliterated and the successive steps are written down 
one below the other, becomes the modern method 
of long division. 

The method seems to have been invented in India 
about the 4th century A.D., if not earlier. It was trans
mitted to the Arabs, where it occurs in Arabic works 
from the 9th century onwards:2 From Arabia the 
method travelled to Europe where it came to be known 
as the galley (galea, bate!lo) method.8 In this variation 

1 The <Cline of quotients" was usually written above the divi
dend. 

Z Al-Khowarizmi (c. 82.5). Al-Nasavi (c. 102.5); cf. Smith, I.e., 
pp. 13 8-1 39. 

3 Also called the 'scratch method'. 
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of the method, the figures obtained at successive stages 
are written and crossed out, for the work is carried out 
on paper (where the figures cannot be rubbed out). 
The method was very popular in Europe from the 
15th to the 18th century. 1 The above example worked 
on the galley plan would be represented thus: 

I 

II 

III 

4 
H~20 
it2 
1 

t 
~6 

t0tO 
ttt2 

U 
fJ_ 
4~ 
t~t0 
1ttt 

i 

1 

13 

135 

Comparing the successive crossing out of the figures 
in I, IT and III, with the rubbing out of figures in the 
corresponding steps according to the Hindu plan, it 
becomes quite clear that the galley method is eXActly 
the same as the Hindu method. The crossing out of 
figures appears to be more cumbrous than the elegant 
Hjpdu plan of rubbing out. 

The Hindu plan of moving the divisor as the 
digits of the quotient were evolved, although not 
essential, was also copied and occurs in the works of 
such well-known Arab writers as AI-Khowarizmi (825), 
AI-Nasavl (c. 1025) and others. The medireval Latin 
writers called this feature the antirioratio. 

'I For details see Smith, J.G., pp. 136-139. 
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6. SQUARE 

Terminology. The Sanskrit term for square is 
varga or krti. The word varga literally means "rows" 
or "troops" (of similar things). But in mathematics it 
'Ordinarily denotes the square power and also the square. 
figure or its area. Thus Aryabhata I says:l 

"A square figure of four equal sides 2 and the 
(number representing its) area are called varga. The 
product of two equal quantities is also varga." 

How the word varga came to be used in that sense 
has been clearly indicated by Thibaut. He says: "The 
origin of the term is clearly to be sought for in the 
graphical representation of a square, which was divided 
in as many vargas or troops of small squares, as the 
side contained units of some measure. So the square 
drawn with a side of five padas length could be divided 

. into five small vargas each containing five small squares, 
the side of which was one pad a long."3 This expla
nation of the origin of the term varga is confirmed by 
certain passages in the Sulba works. 4 

The term krti literally means "doing," "making" 
or "action." It carries with it the idea of specific 
performance, probably the graphical representation. 

Both the terms varga and krti have been used in 
the mathematical treatises,. but preference is given to 
the term varga. Later writers, while defining these. terms 
in arithmetic, restrict its meaning. Thus Sridhara says:15 

• 
1A, .ii. 3. 
2 The commentator ParameSvara remarks: "That four sided 

figure whose sides are equal and both of whose diagonals are 
also equal is called samacaturalra ("square")." 

3 Thibaut, Sulba-sutras, p. 4 8. 
4 ApS!, iii. 7; KSI, iii. 9; cf. B. Datta, American Math. 

MonthlY, XXXIII, 193 I, p. 37~. 
5 Tril, p. ~. 
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"The product of two equal numbers is varga.'~ 
PrthudakasvamP, Mahavira·2 and others gIve 

similar definitions. 
The Operation. The occurrence of squaring as an 

elementary operation is characteristic of Hindu arith
metic. The method, however, is not simpler than direct 
multiplication. It was given prominence by the Hindu 
writers probably because the operation of square-root 
is the exact inverse of that of squaring. Although the 
method first occurs in the Brdhlna-sphu!a-siddhdnta, there 
is no doubt that it was known to Aryabhata I as he 
has given the square-root method. 

Brahmagupta gives the method3 very concisely 
thus: 

"Combining the product, twice the digit 1n 

the less 4 (lowest) place into the several others (digits), 
with its (i.e., of the digit in the lowest place) square 
(repeatedly) gives the square." 

Sridhara (750) is more explicit;5 
"Having squared the last digit multiply the rest 

of the digits by twice the last; then move the rest of 
the digits. Continue the process of moving (the remain-

1 Cf Colebrooke, i.c., p. 2.79. 
2 GSS, p. 12.. 
3 The method is oot mentioned in the chapter on Arithmetic, 

but seems to have been mentioned as an afterthought in the 
form of an appendix, (BrSpSi, p. 212.). 

·1 RdfBrt;na~JJ has been translated by Colebrooke as "the less 
portion." This translation is incorrect. He says that "'the text 
is obscure" (p. 32.2, fn. 9), for according to his translation the 
rule becomes practically meaningless. The term rdlerunafJI must 
be translated by "the digit in the lowest place." Dvivedi agrees 
with the above interpretation (p. 2.12.). The method taught here 
is "the direct method of squaring." 

5 Tril, p. 5. The translation given by Kaye. and Ramanu
jacharia is incorrect. (Bib!. Ala/b., XIII, 1912.-1,). 
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ing digits after each operation) to obtain the square." 

Mahavira1 (850) gives more details: 

"Having squared the last (digit), multiply the rest 
of the digits by twice the last, (which is) moved for
ward (by one place). Then moving the remaining 
digits continue the same operation (process). This 
gives the square." 

Bhaskara IP writes: 

"Place the square of the last (digit) over itself; and 
then the products of twice the last (digit) and the 
others (i.e., the rest) over themselves respectively. Next, 
moving the number obtained by leaving the last digit 
(figure), repeat the procedure." 

. He has remarked that the above process may be 
begun also with the units place.3 

The following is the method of working on the 
Pdli, the process beginning from the last place, accord
ing to Sridhara, 1Iah:ivira, Bh:iskara II and others: 

To square 125. 

The number is w~itten down, 

12 5 

The last digit is I. Its square is placed over itself. 

I 

12 5 
Then twice the last digit 2 X 1=2; placing it below the 
rest of the figures (below 2 or below 5 according as 
the direct or inverse method of multiplication is used) 

1 GSS, p. 12. 

2L, p. 4. 
:1 L, p. 5. 
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and rubbing out the last digit I, the work on the 
pdf! appears as 

1 

25 
2 

Performing multiplication by 2 (below) and placing the 
results over the respective figures, we get 

15 0 

25 
One round of operation is completed. Next. movmg 
the remaining digits, i.e., 25, we have 

15 0 

25 

Now, the process is repeated, i.e., the square of the 
last digit (2) is placed over itself glvmg 

154 
25 

Then, placing twice the last digit (i.e., 2 X 2=4) below 
the rest of the digits and then rubbing out 2, we 
have 

154 
5 
4 

Performing multiplication, 4 X 5 = 20, and placing it 
over the corresponding figure 5, (i.e., 0 over 5 and 2 

carried to the left), the work on the Pdll appears as 
15 60 

5 
Thus a second round of operations 1S completed. 

Then moving 5 we have 
15 60 

5 
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Squaring 5 we get 25, and placing it over 5 (i.e., 5 
over 5 and 2 carried to the left) we have 

15 62 5 
5 

As there are no 'remaining figures' the wor'k ends. 
5 being rubbed out, the Pd!! has 

15 62 5, 
the required sqllare. 

According to Brah~agupta and also Bhaskara II, 
the work may begin from the lowest place (i.e., the 
units place). The following method is indicated by 
Brahmagupta: 

To square .125. 
The number is written down 

12 5 
The square of tLe digit in the least place, t.e., 52=25 
is set over it thus: 

c 
25 

12 5 
Then, 2 X 5 = 10 is placed below the other digits, and 
five is rubbed out, thus: 

25 
12 

10 

Multiplying by 10 the rest of the digits, i.e., 12, and 
setting the product over them (the digits), wt;,. have 

1225 
12 

lQ 

Then rubbing out 10 whiCh IS not required and 
moving the rest of the digits, i.e., 12, we have 

122J 

12 
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Thus one round of operations is completed. 
Again, as before, setting the square of 2. above it 

and 2. X 2=4 below I, we have 
1625 
1 

4 
Multiplying the remaining digit 1 by 4, and setting 
the product above it, we have 

562.5 
1 

Then, movmg the remaining digit I, we obtain 

562 5 
I 

Thus the second round of operations is completed. 
Next setting the square of I above it the process 

is completed, for there are no remaining figures, and 
the result stands thus: 

15 62.5 
Minor Methods of Squaring. The identity 

(i) n2=(n-a)(n+a)+a2 

has been mentioned by all Hindu mathematicians as 
affording a suitable method of squaring in some cases. 
For instance,,, 

15 2=IOX 20+2.5=2.25. 
Brahmagupta says: 
"The product of the sum and the difference of the 

number (to be squared) and an assumed number plus 
the square of the assumed number give the square."l 
Sridhara (750) gives it thus: 

"The square is equal to the product of the sum 
and the difference of the given number and an assumed 

1 BrSpSi, p. 212. 
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quantity plus the square of the assumed quantitv.m 
Mahavlra, Bhaskara II, Nariy~a and others also give 
this identit'y. 

The formula 
(ii) (a+b)2 = d'+b2+2ab, 

or its general form 
(a+b+t+ .... )2 =.az+bz+cl+ .... +zab + .. 

has been given as a method' of squaring. Thus 
Maha,vira 2 says: 

"The sum of the squares, of the two or more' 
portionss of the number together with their products 
each with the others multiplied by two gives the 
square." , . 

Bhaskara IP gives: 
"Twice the product of the two parts plus the 

square of those parts gives the square." . 
The formula 
(iii) n2= I --j- 3 + 5 + .... to n terms 

has been mentioned by Sddhara and Mahavira. 
Sridhara~ says: 
"(The. square of a number) is the sum of as many 

terms in the series of which one is the first term and 
two the common difference." 

1 Tn!, p. 5. 
2 GSS, p .. 13. 
S The word sIMI/a has been used in the original. This word 

has been generally used in the sense of 'notational place.' 
Following the commentator, we have rendered it by "portion." As 
a given number, say, IZ.5, can be broken into parts as 50+40+35 
or as 100+ 20+ 5, and as the rule applies to both, it is immaterial 
whether the word <slMna' is translated by <place' or ·portion.' 
This rule appears to have been given as an explanation of the 
Hindu method of squaring used w!th the place-value numerals. 

4 L, p. 4. G Tn1, p. 5. 

11 
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thrice the succeeding;1 then (at 
product of the square of the 
multiplied by three; and then 
the cube of the succeeding." 
Mahavira states: 2 

the' next place) the 
succeeding and last 
(at the next place) 

"The cube of the last, the product of thrice its 
square and the remaining, the square of the remaining 
multiplied by thrice the last; placing of these, each 
one place before the other, constitutes here the process." 
Bhaskara II is more explicie 

"Set down the cube of the last; then the square 
of the last multiplied by three times the succeeding; 
then the square of the succeeding multiplied by three 
times the last and then the cube of the succeeding; 
these placed so that there is difference of a place between 
one result and the next,4 and added give the cube. The 
given number is distributed into portions according to 
places, one of which is taken for the last and the next 
as the first and in like manner repeatedly (if there be 
occasion). Or the same pr.ocess may be begun from 
the first place of figures for finding the cube." 

The method may be illustrated by the following 
example: 

1 Purva, adi, lit. "preceding". We have rendered them by 
"succeeding" to be in conformity with the general convention so 
as to a,"oid confusion. 

2 GSS. p. 15 (47). 
It will be observed that the "addition of the cube of the 

remaining" does not occur in the rule. This has to be under
stood from the previous stanza which says that the cubes of 
all the parts are to be added. See the translation of the previous 
stanza given on pp. r66£. 

3 L, p, ~. 
4 Sfhiinanfaratvena has been translated by Colebrooke by 

«<according to places." This translation is incorrect and does oot 
give the true significance of the term. 
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Example. To cube 12.34. 

The given number has four places, i.e., four por
tions. First we take the last digit I and the succeed
ing digit 2., i.e., 12., and apply the method of cubing 
thus: 
(i) Cube of the last (1 3

) 

(ii), Thrice the square of the 
last (3.12) multiplied by 
the succeeding (z) gives 
(Z·3· 12) - 6 (placing at the next 

place) 
(iii) Thrice the square of the 

succeeding multiplieo 
by the last gives (3.Z2.1) IZ (placing at the next 

I 
place) 

(iv) Cube of the succeeding 
(Z3) - 8 (placing at the next 

place) 

Thus 123 is the sum I7z8 

After this we take the next figure 3, i.e., the 
number 12.3, and in this consider 12 as the last and 
3 as the succeeding. Then the method proceeds thus: 

(i) The cube of the last 
(12 8) as already obtaineJ:! 

(ii) Thrice the square of 
the last multiplied by 
the succeeding, i.e., 
3.1 Z2· 3 

(iii) Thrice the square of 
the succeeding multi
plied by the last, i.e., 
3·3 2

•1Z 

(iv) Cube of the succeed
ing, i.e., 32 

Thus 1233 is the sum 

32.4 

1860867 

(placing at the next 
place). 

" " 

" " 
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Now the remaining figure 4 is taken, so that the 
number is 1234, of which 123 is the last and 4 the 
succeeding. The method proc~eds thus: 

(i) Cube of the last, i.e., 
(123)3 as already ob
tained 1860867 

Oi) Thrice the square of 
the last into the suc
ceeding, i.e., 3.(123)2.4 J 8 1 ~ 48 (plating at the next 

(iii) Thrice the square of the 
succeeding into the last, 
i.e., 3.42.123 

(iv) Cube of the last i.e., 43 

Thus (1234)3 is the sum 1879080904 

place) 

" " 
" 

The direct process-that in which the operation 
begins with the units place-can be similarly performed. 

Minor Methods of Cubing. The formula 

(i) (a+b)3 = a8+ 3a2b+ 3ab2+'b~ 

and the corresponding result 

(a+b+c+ . ... )3 = a3+ 3a2(b+c+ .... )+ 3a(h+c+ .. )2 
+ (b+c+ .... )3 

are implied in the Hindu method of cubing given 
above. Mahavira1 gives the following explanation: 

"The squares of the last place2 and the nexe 
are taken, and each (square) is multiplied by the 
other and by three. The sum of these products and 
the cubes of both (lit. all). the places is the cube; the 

IGSS,p. r5. 
2 Slhdna, meaning the number represented by the figure 

standing in that place. 
3 A~ya, lit. "other," meaning the number represented by the 

figures standing ~n the other places. 
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procedure is repeated (if necessary).1 
Sripati and Bhaskara IP state the formula in the 

form 
(a+b)8 = a8+ 3ab (a+b)+b3 

"Thrice the given number multiplied by its two 
parts, added to the sum of the cubes of those parts, 
gives the cube." 
Narayal_las says 

"Thrice the (given) number multiplied by both 
parts, added to the cubes of the parts, is the cube of 
the sum." 

The formula 
(ii) n3 = n(n+a)(n-a)+a'.l(n-a)+a3 

has been mentioned by MiM.vira40 in these words: 
"The continued product of the given number, the 

sum and the difference of the given number and ah 
arbitrary quantity, when added to the smaller of these 
multiplied by the square of the arbitrary number, and 
the cube of the arbitrary number, give the cube (of 
the given number)." 

Expressions for n8 involving series have been given 
by Sridhara, -Mahivira, Sripati and Nirayal_la. The 
formula 

(iii) nS 
= ~ { 3r (r-I)+I } 

1 Thus (2.34)3 is considered as 
(2.00+ 30+4)8=(2.00)3+ 3.2.002(30+ 4) + 3.2.00(30 + 4)2 

+(30+4)8 
Then the procedure is repeated for obtaining (30+4)3. CJ. 
English translation, p. 17. note. 

2 GT, 2.7; L, p. 5. 
3 GK, i. 2.3. 
4 GSS, p. 15. 
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is given by Sddhara in these words: 
"The cube (of a given number) is equal to the 

series whose terms are formed by applying the rule, 
'the last term multiplied by thrice the preceding 
term plus one: to the terms of the series whose first 
term is zero, the common difference is one and the 
last term is the given number."l 

Mabavira gives the above in the form 

n 
n3 = 3~ r(r-I)+n 

2 

He 2 says: 
"In the series, wherein one is the first term as 

well as the common difference and the number of terms 
is equal to the given number (n), multiply the preceding 
term by the immediately following one. The sum of 
the products so obtained, when multiplied by three and 
added to the last term (i.e., n) becomes the cube (of n)." 
Naraya~a3 states: 

"From the series whose first term and common 
difference are each one, (the last term" being the given 
number) the sum of the series formed by the last term 
multiplied by three and the preceding added to one, 
gives the cube (of the last term)." 

Mahavira has also mentioned the results, 
(iv) X3 = x+3x+5x+ .... to x terms, 
(v) x 3 = X2+(X-I){I+3+ .... +(2X-I)}, 

1 TriJ, p. 6. The translation given by Kaye and Ramanu
jacharia (Bibl.Math., III, 1912-13) is" incorrect. They admit 
their inability to follow the meaning (see p. 209, note). S. Dviveru 
has misinterpreted the rule, and gives an incorrect explanation 
in a note on p. 6. The reading saike is incorrect. 

2 GSS, ii. 45. 
8 GK, j. 22. 
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in these words: 1 

"The cube (of a given number) is equal to the 
sum of the series whose first term is the given number, 
the common difference is twice that number, and the 
number of terms is (equal to) that number. 

"Or the square of the given number when added 
to the product of that number minus one (and) the 
sum of the series in which the first term is one, the 
common difference two and the number of terms (is 
equal to) that number,· gives the cube." 

8. SQUARE-ROOT 

Terminology. The Hindu terms for the "root" are 
nlf21a and pada. The usual meaning of the word milIa 
in Sanskrit literature is "root" of a plant or tree; but 
figuratively the foot or lowest part or bottom of 
anything. Its other meanings are "basis," "founda~ 
tion," "cause," "origin," etc. The word pada means 
"the lower part of the leg" (figuratively the lower· part 
or basis of anything), "foot," "part," "portion," "side," 
"place," "cause," "a square on a chess-board," etc. 
The meanings common to both terms are "foot," "the 
lowest part or basis of anything," "cause" or "origin." 
It is, therefore, quite clear that the Hindus meant by the 
term varga-mula ("square-root") "the cause or origin 
of the square" or "the side of the square (figure)." 
This is corroborated by the following statement of 
Brahmagupta: 2 

"The pada (root) of a krti (square) is that of which 
it is the square." 

Of the above terms for the "root," milIa is the 
oldest. It occurs in the Anl9ogadvara-siltra (c. 100 B.C.), 

] GSS, ii. 44. 
2 BrSpSi, xviii. 3j. 
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and in all the mathematical works. The term pada 
seems to have come into use later on, i.e., from the 
seventh century A.D. It occurs first in the work of 
Brahmagupta (62.8). 
. The term lIlula was borrowed by the Arabs who 

translated it by jadhr, meaning "basis of square." The 
Latin term radix also is a translation of the term mula1

• 

The word karant is found to have been used in the 
Sulba works and Prikrta literature as a term for 
the square-root. In geometry it means a "side." In 
later times the term is, however, reserved for a surd, 

. i.e., a square-root which cannot be evaluated, but which 
may be represented by a line. 

The Operation. The description of the method 
of finding the square-root is given in the Aryabha![ya 
very concisely thus: 

"ALways divide 2 the even place by twice the 
square-root (upto the preceding odd place); after 
having subtracted from the odd place the squareS 
(of the quotient), the quotient put down at the next 
place (in the line of the root) gives the root."· 
The method may be illustrated thus: 

Example. Find the square-root of 54756. 

I For further details see Datta, American Math. MonthlY, 
XXXIV, pp. 4zo-4~3, also XXXVIII, pp. 371-376. 

:I In dividing, the quotient should be taken as great as will 
allow of the subtraction of its square from the next odd place. 
This is the force of the .Sanskrit text as pointed out by the com
mentators Bhaskara I, Nilakantha and others. 

3 The "square" is mentioned and not the "square of the 
quotient," as in the beginning the greatest possible square is to 
be subtracted, there being no quotient. 

4 A, ii. 4. Translations of the rule have been given before 
by Rodet UA, 1880, II), Kaye UASB, 1907 and 1908, III and 
IV resp.), Singh (BCMS, 1927, XVIII), Clark (Aryabha!fYa) and 
others. Of these Kaye'S translation is entirely incorrect. 
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The odd and even places are marked by vertical 
and horizontal lines. The different steps are then as 
indicated below: 

Subract square 
Divide by twice the 

root 

Subtract square of 
quotient 

Divide by twice the 
root 

Subtract square of 
quotient 

4) 14 (3 
12. 

2.7 
9 

16 
16 

root =2. 

Placing quotient at the 
next place, the root 
=13 

Placing quotient at the 
next place, the root 
=2.34 

The process ends. The root IS 2.34. 

It has been stated by G. R. Kaye that Aryabhata's 
method is algebraic in character, and that it resembles 
the method given by Theon of Alexandria. Both his 
statements are incorrect. 2 

• 

The following quotations from Siddhasena Gat).i 
(c. 550) in his commentary on the Tatvarthadhigama
sutra3 will prove conclusively that the Hindu method of 
extracting the square-root was not algebraic. In con
nection with the determination of the circumference of 
a circle of 100,000 yojanas, he says: 

"The diameter is one hundred thousand yojanas; 
that multiplied by one hundred thousand yojanas be
comes squared; this is again multiplied by 10 and then 

1 JASB, III and IV, in the papers entitled "Notes on Indian 
Mathematics, I and II." 

l! See Singh, i.t., for details: also Clark, Aryabha,tiya, pp. 2.3f. 
:I '" 111. 11. 
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the square-root (of the product) extracted. The root 
will be the circumference of the circle. Now to find 
the number ofyojanas (by extracting the square-root) we 
obtain in succession the figures 3,1,6,2,2 and 7 of the 
root, the number appearing below (that is, as the last 
divisor) is 632454. This being halved becomes the 
number three hundred thousand sixteen thousands two 
hundred and twenty seven. The number in excess as 
the remainder is this 484471; .... " 

"Then on multiplication by 4 will be obtained 
7560000000000. The square-root of this will be the 
chord. In finding that (root) will be obtained in suc
cession the figures 2,7,4,9,5 and 4; .... " 

It.is evident that Aryabhata's plan of findiitg the 
square-root has been: followed in the above cases as 
the digits of the root are evolved successively one by 
one. 

, Later writers give more details of the process. 
Thus Sridhara says: . 

"Having subtracted the square from the odd place, 
divide the next (even) place by twice the root which 
.has been separately placed (in a line), and after having 
subtracted the square of the quotient, write it down 
in the line; double what has been obtained above (by 
placing the quotient in the line) and taking this down, 
divide by it the next e~en place. Halve the doubled 
quantity (to get the root)."l 

Mahavlra,2 Aryabha~a lIB and Sripatif. give the rule 
in the same way as Sridhara. Bhaskara II, however, 
makes a slight variation, for he says: 

1 Tri!, p.~. For an illustration of the method of worlcing 
oq a pali, see A. N. Singh, BCMS, XVIII, p. 129. 

2 G~S, p. q. 
:I MSi, p. 145. 
'SiJe, xiii. fj CT, 23· 
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"Subtract from the last odd place the greatest 
square number. Set down double the root in a line, 
and after dividing by it the next even place subtract 
the square of the quotient from the' next odd place 
and set down double the quotient in the line. Thus 
repeat the operation throughout all the figures. Half 
of the number in the line is the root."1 

The method of working on the Pa!i may be illus
trated as below: 

Example. Find the square-root of 54756 

The given number is written down on the pdti 
and the odd and even places are marked by vertical 
and horizontal lines thus: 

1- 1 - 1 

5475 6 

Beginning with the last odd place 5, the greatest square 
number 4 is' subtracted. Thus 4 subtracted from 5 gives 
1. The number 5 is rubbed out and the remainder 1 

substituted in its place. Thus after the first operation 
is performed, what stands on the Pd!i is 

-1-1 

1475 6 

Double the root 2, i.e., 4, is permanently placed in a 
separate portion of the pdti which has been termed 
pankti ("line"). Dividing the number Upto the next 
even mark by this number in the line, i.e., dividing 14 
by 4 we obtain the quotient 3 and remainder 2. The 
number 14 is rubbed out and th~ remainder.1 written 

1 L, p. 4. The line in Bhaskara II's method contains the 
doubled root, whilst in that of Aryabhara 1, it contains 'the 
root. See Singh, I.e. 
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in its place; thus on the Pafi we have now 

4 (3 quotient 
1ine of toot • 

The square of the quotient 3 '2=9 is subtracted from 
the figures upto the next odd mark. This gives (2.7 - 9) 
=18. 2.7 is rubbed out and IS substituted in its place. 
Double the quotient 3 is now set in the line giving 46. 
The figures on the pafi stand thus: 

-I 
46 18 J 6 The quotient 3 having 

line of root been rubbed out. 

Dividing the numbers upto the next even mark by the 
number in the line, i.e., dividing 185 by 46, the quotient 
is 4 and remainder 1. 185 is rubbed out and the remain
der I substituted in its place. The figures on the Pdfi 
are now 

(4 quotient 
. line of root 

Subtracting square of the quotient the remainder is nil, 
so that 16 is rubbed out. The quotient 4 is doubled 
and set in the line. The Pd!i has .now 

468 r f The quotient 4 having been rubbed out. 
Ine 0 root 

Half the number in the line, i.e., 468 = 2.34 is the root. 
z 

Along with the Hindu numerals, the method of 
extracting the square-root given above, seems to have 
been communicated to the Arabs about the middle of 
the eighth century, for it occurs in precisely the same 
fonn in Arabic works on mathematics. 1 In Europe 

1 E.g., AI-Nasavi (zo:q); see Suter, Bib/. Math., VII, 
p. 114 and Woepcke, JA (6), t. 1, 1863' 
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it occurs in similar form in the wfltlllgS of Peurbach 
(1423-J461), Chuquet (1484), La Roche (1520), Gemma 
Frisius (1540), Cataneo (1546) and others.' 

9. CUBE-ROOT 

Terminology. The Hindu terms for the cube
root are ghana-mula, ghana-pada. These terms have 
already been discussed before. 

The Operation. The first description of the 
operation of the cube-root is found in the Aryabha/!Ja. 
It is rather too concise: 

"Divide the second agh(Jna place bY' thrice the 
square of the cube-root; subtract from the first aghana 
place the square of the quotient multiplied by thrice 
the preceding (cube-root);, and (subtract) the cube (of 
the quotient) from the ghana place; (the. quotient put 
down at the next place (in the line of the root) gives 
the root)."2 

As has been explained by all the commentators, 
the units place is ghana, the tens place is first aghana, 
the hundreds place is second aghana, the thousands place 
is ghana, the ten-thousands place is first aghana and so 
on. After marking the places as ghana, first aghana and 
second aghana, the process begins with the subtraction 
of the greatest cube number from the figures upto 
the last ghana place. Though this has not been ex-

1 See Smith, History, II, pp. 144-148. 
2 A, ii. 5. Translations of this rule have been given by 

Rodet, Kaye, Singh, Clark, Sengupta and others. Kaye's transla
tion is entirely inaccurate. Other translations, though free, give 
the correct result. Clark's use of the words "the (preceding) 
ghana" is somewhat misleading. The portion at the end, within 
brackets, is common to this· and the preceding rule for the ex-
traction of the square-root. . 
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plicitly mentioned in the rule, the' commentators say 
that it is implied in the expression ''ghanasya mula· vargetJa" 
etc. ("by the square of the cube-root" etc.) The 
method may be illustrated as below: 

Example. Find the cube-root of 1953 I 25. 
The ,places are divided into groups of three by 

marking them as below: 

Subtract cube 
Divide by thrice square 

of root, i.e. 3.12 

Subtract square of quo-. 
tient multiplied by 
thrice the previous 
root, i. e., 2. 2 • 3. 1. 

Subtract cube of quotient, 
• 8 I.e., 2. 

Divide by thrice square 
ot the root, i.e., 3. lz.2 

Subtract square of 
quotient multiplied by 
thrice the previous 
root, i.e., j2. 3. IZ 

Subtract cube of quo
tient, i.e., ~ a 

Thus the cube-root = l2. 5 

1 - -1- - J 
I9HU~ 
I .......... 

3) 9 (2 .... 
6 

3~ 
12. 

233 
8 

432.) 22.P·(1 
2.160 

912. 
900 .. 

12.5 
IZ~ .. 

(c) Root=I 

(a)1 Placing quotient 
after the root 
1 give,s the 
root 12. 

(b) 

(e:) 

(a) Placing quotient 
after the root 
12. gives the 
root 12.5 

(b) 

(c) 

It will be evident from the above illustration that 
the . present· method of extracting the cube-root is a 
contraction of Aryabhata~s method. 

The method given above occurs in all the Hindu 
mathematical works. For instance, Brahmagupta says: 

lThe quotient in division is to be taken as great as will allow 
the two subsequent operations (b) and (c) to be carried ollt. 
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"The divisor for the second aghana place is thrice 
the square of the cube-root; the square of the quotient 
multiplied by three and the preceding (root) must be 
subtracted from the next (aghana place to the right), 
and the cube (of the quotient) from the ghana place; 
(the procedure repeated gives) the root."1 

Sridhara gives more details of the process as 
actually performed on the Pd/f, thus: 

"(Divide the digits beginning with the units place 
into periods of) one ghana place and two aghana places. 
From the (last) ghana digit subtract the (greatest pos
sible) cube; then taking down the remainder and the' 
third pada (i.e., the second aghana digit) divide it by 
thrice the square of the cube-root which has been 
permanently placed in a separate place; place the quo
tient in the line; subtract the square of this (quotient) 
multiplied by thrice the last root from the next (a ghana) 
digit. Then as before subtract the cube (of the quo
tient) from its own place (i.e., the ghana digit). Then 
take down again the third pada (i.e., second aghana digit), 
and the rest of the process is as before. (This will 
give) the root."2 

Aryabhata II follows Sridhara and gives details as 
follows: ~ 

"Ghana (i.e:, the place f(om which cube is sub
tracted), bhdjya (i.e., the "dividend" place) and fod0'a 
(i.e., the "minuend" place) are the denominations (of 
the places). Subtract the (greatest) cube from its own 
place (i.e., from the numbers upto the last ghana digit); 
bring down the bhdjya digit. and divide ie by thrice 
the square of the cube-root which has been permanently 

1 BrSpSi, p. 17,; if. Colebrooke, I.c., p. z80. 
2 Trif, pp. 6[, . 
a Literally, its own place. 

IZ 



ARITHMETIC 

placed. Place the quotient in the line (of the root)~ 
The square of this (quotient) multiplied by thrice the 
previous root is subq:act.ed from its own place (i.e., the 
iodl?Ya place) and its cube from the ghana place. If the 
above operations be possi1?le then this (i.e., the number 
in the line) is the root so far. Then bringing down 
the bh4Jja digit continue the process as before (till it 
ends)."l 

The component digits of the numb~r whose cube
root is to be found are divided into groups of three 
(one ghana and two aghanas) each. The digits upto the 
last ghana place (proceeding from left to rigHt) give 
the first figure of the root (counting from the left). 
The following period of three digits (to the right) gives 
the second figure of the root and so on. While work
ing on the pdP, the digits of the number. whose root 
is to be found are first marked and the method pro
ceeds as follows: 

Example. Find the cube-root of 195312.5. 
The number is written thus: 

\- -1- - \ 
1953 12 5 

From the last ghana digit (marked by a vertical 
stroke), the greatest cube is subtracted. Here 1 8 being 
subtracted from I gives zero. So I is rubbed out. 
The cube-root of I II is placed in a separate line. The 
figures on the Pdli stan:! thus: 

--\--\ I 

line of root 

Then to obt?-in the second figure of the root, the. 
second aghana (i.e., 9) is taken below and divided by 

1 Jl.-ISi, p. 145. The interpretation given by Dvivedi of line 
2. of the rule as printed in his edition (p. 145) is incorrect. 
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thrice the square of the root (i.e., the 'number in the 
line). Thus we have 

--1--1 
953 12 5 

3) 9 (2 
6 

3 

quotient 

The quotient is taken to be 2, because if it were taken 
to 'be 3, the rest of the procedure cannot be carried 
out. This quotient (2) is set in the line. The first 
aghana is then brought down and we have, on sub
tracting the square of the quotient multiplied by thrice 
the previous root, the following: 

--j--j 12 

953 12 5 line of root 

3) 9 (2 quotient 
6 
35 

22. 3. 1 = 12 

23 
On bringing down the ghana digit 3, and then 

subtracting the cube of the quotient We get 225 as 
below, and the process on the period formed by the 
digits 953 is completed and the figure 2 of the root is 
obtained: 

-- 1- -I 
253 12 5 

3) 9 (2 12 

6 line of root 

35 
12 

233 

2 3 = 8 

225 
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The figur~s 953 are then rubbed out and the 
remainder 225 is substituted. After this the process is 
. as before, i.e., thus 

- -I 
225 12 5. 

12..2 ·3 - 43 2 ) 22p ( 5 12 

.2160 line of root 

912 

52
• 12 .3 - 900 

125 
53 - 12 5 

0 line of root 

The process ends as all the figures in the. number 
are exhausted. The root is 125, the number in the line 
of root. As there is no remainder, the root is exact. 

The necessity for rubbing out figures ar~ses, as the, 
pa!i is not big enough to contain the whole of the 
working. The three digits constituting a period are 
considered together. The figures upto the next second 
aghana have to be brought down and the operation of 
division performed separately, because tue quotient is 
obtained by trial. As has been already explained, this 
division is performed by rubbing out the digits of the 
dividend (and not as in the working given above). 
If the operations were carried out on the figures of the 
original number, and if the quotient taken were found 
to be too big, then it would not be possible to restore 
the original figures and begin the work again, ·as 
will have to be done in case of failure. 

10. CHECKS ON OPERATIONS 

The earliest available description of a method of 
checking the results of arithmetical operations, the 
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direct as well as the inverse, is found in the Mahdsid
dhdnta1 (c. 950). It says: 

"Add together the own digits of the numbers 
forming the multiplicand, multiplier, and product upto 
one place; 2 such should be done with the dividend, 
divisor, quotient and remainder, etc. Then if the 
number (of one digit) obtained from the product of 
those numbers (that have been already obtained) from 
the multiplicand and the multiplier be equal to that 
obtained from the product, the multiplication is true. 
If the number, which results from the product of those 
obtained from the quotient and the divisor, added to 
that from the remainder, be equal to that obtained from 
the dividend, the division is true. Add together the 

. digits of a number, its (nea.rest) square-root (in integers) 
and of the remainder. If the number, obtained from the 
square of that (number) which is obtained from the 
square-root plus the number obtained from the remain
der, be equal to that which results from the given num- . 
ber, the root-extraction is true. If the number, resulting 
from the cube of the number obtained by adding the 
digits of the cube-root p)us the number obtained from 
the remainder, be equal to the number resulting from the 
given number, then the operation is correct. Such are 
the easy tests for correctness of multiplication etc." 

. The rationale of the above rules will be clear from 
the following: Let 

n = dmdm - 1 • ••••• d2d1 

be a number of 1)1 digits written in the decimal place
value notation. Let S1 denote the sum of its digits, 

1 MSi, p. 4~ 2. 

2 That is, the digits of the number should be added together; 
the digits of the sum thus obtained should be again added and 
the process should be continued until there remains a number 
of one digit only. 
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52 the sum of the digits of 51> and so on. 
Then 

n = d1 +IOd2+ ........ +IO",-ldm , 

51 = d1+d2+da+ ........ +dm 

so that 
n-51 = 9(d2+IIda+ ....... . ). 

Therefore, 

n == 51 
Similarly 

(mod. 9), 

(mod. 9), 
(mod. 9), 

51 :=:: 52 
S2~Sa 

5k - 1 ==== 5,. (mod. 9), 
where 5k is a number of one digit only, say n', which 
is certainly less than or equal to 9. 

Adding the congruences, we obtain 

n === n' (mod. 9). 

Thus the number obtained by adding the digits ~f a 
number repeatedly is equal to the remainder obtained 
by dividing that number by nine. 

Now, if there be a number N which is equal to the 
continued product of p other numbers nt, n2 • na ••••• , np 
plus or minus another number R, then we write 

N = nl"ti2 .n3 • •• • n'/) _± R 
Now, let 

nl === n'l (mod. 9) 
1J2 === n'2 (mod. 9) 

np == n' p (mod. 9) 
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Multiplying the congruences, we obtain 
n.n2 •• •• np == n'pn'2'" .n'p (mod. 9). 

Further let 
R == r' (mod. 9) 

Therefore . 
n1 .n2.na •••• np±R == n'1.n'2'" .n'p ± r' (mod. 9)' 

Hence 
N== n'l.n'Z ...... n'p ± r' (mod. 9). 

In particular, if 
n1 = n2 = ........ = np = n, say 

then will 
n' J = n' 2 = .......... = n' p = n'. 

Therefore, 
N = fJ1>±R 

and N == n'P±r' (mod. 9)' 
From the aboye follow easily the rules of the 

lvIahdsiddhdnta. 
The following rule for testing multiplicati0n is 

given by Naraya1,1a1 (1356): 
"The remainders obtained on division of each of the 

multiplicand and the multiplier by an optional number 
are multiplied together and then divided by the optional 
number. If the remainder so obtained be equal to the 
remainder obtained on dividing the product (of the 
multiplicand and the multiplier) by the optiQnal number, 
then, it is correct." / 

It must be noted here that a complete set of rules 
for checking by nines is first found in India. Methods 
for test~g multiplication and division were probably 

1 Quoted by S. Dvivedi, History of Mathematics (in Hindi), 
Benares, 1910, p. 79. 
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known to the Hindus much earlier. But as these tests 
were not considered to be among the fundamental opera
tions, they were not mentioned in the works on pa!i
gapita. 1 NarayaQ.a seems to be the first Hindu mathe
matician to give rules for testing operations by the 
casting out of any desired number. 

In the works of early Arab writers the methods 
of testing multiplication, and division without remainder, 
by the check of nines are given, while a complete set 
of rules for testing all operations is found ·first in the 
works of A vicenna 2 (c. 1020) who calls his method the 
"Hindu" method. Maximus Planudes 3 also ascribes an 
Indian origin to the check of nines. ./ 

There is thus no doubt as to the Hindu origin 
of the check of nines. Before Aryabhata II, it was 
probably use~ to test multiplication and division only. 
It was perhaps in this imperfect form when it. was com
municated to the Arabs. Thereafter, the method was 
probably perfected independently both in Arabia and 
India. This would account for the difference in the 
formulation of the rules by the Arabs and by Aryabhata 
II, the author of the Mahasiddhanta. 4 It is, however, 
certain that the Hindus did not borrow the method 
from the Arabs, because Aryabhata II wrote before Avi
cenna. Beha Eddins (c. 1600) gives the check of nines 
in exactly the same form as Aryabhata II. 

1 Besides the above works, the check of nines is also quoted 
by Sumatihar~a (1618) from an anterior writer Bijadatta, in his 
commentary on the Kara!1a-Je.ufilhala of Broskara II, ed. by: Madhava 
Sastri, Bombay, 1901, i. 7. 

2 F. Woepcke, JA(6), I, 1863, pp. 500 ef sq. 
3 Vide Delambre, Hisfoire de I'Astronomie Ancienne, t. I, 

Paris, 1817, pp. 518 fT. 
"Noted by B ... Datta, JASB, XXIII, 192.7, p. 2.65. 
5 Kbolasaf al-hisab, French translation by A. Marre, Nouvelles 

Annalts d. Math., t. v, 1846, p. 2.63. 
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II. FRACTIONS 

Early Use. In India, the knowledge of fractions can 
be traced back to very early times. In the oldest known 
work, the J!._J!}'eda, the fractions one-half (ardha) and 
three-fourths (tri-Pdda 1

) occur. In a passage of the 
Maitrdya!1i Samhitt12 are mentioned the fractions one
sixteenth (kaJd), one-twe1fth (ku!!ha), one-eighth (faph:J) 
and one-fourth (pdda). In the earliest known mathe
matical works, the Sulba-sutra, fractions have not only 
been mentioned, but have been used in the statement 
and solution of problems. 3 

The ancient Egyptians and Babylonians are known 
'.0 have used fractions with unit numerators, but there 
is little evidence of the use by these people of what are 
called composite fractions. The occurrence of the 
fraction three-fourths in the J!._gveda is probably "the 
oldest record of a composite fraction known to us. 
The Sanskrit compound tri-pdda literaIly means "three
feet." Used as a number it denotes that the measure 
of the part considered bears the·sam~ ratio to the whole 
as three feet of a quadruped bear to the total number 
of its feet. The term pdda, however, is a word numeral 
for one-fourth, and the compound tri-pdda is formed 
exactly on the same principle as the English term three
fourths. 4 In the Sulba, unit fractions are denoted by the 
use of a cardinal number with the term bhdga or amfa;. 
thus panca-dafa-bhdga ("fifteen-parts") is equivalent to 
one-fifteenth,5 sapta-bhdga ("seven-parts") is equivalent 
to one-seventh,6 a_nd so on. The use of ordinal numbers 

1 RV, x. 90. 4. 
2 iii. 7. 7. 
3 B. Datta, Sulba, pp. 2. I 2. ff. 
4 tri=three and pada=fourth. 
• ApS/, x. 3; KSI, v. 8. 
f> KSI, vi. 4. 
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with the term bhdga or amfa is also quite common, e.g., 
paiicama-bhdga ("fifth part") is equivalent to one-fifth. 1 

Sometimes the word bbdga is omitted, probably for the 
sake of metrical convenience. 2 Composite fractions like 
3/8 .and 2/7 are called tri-a!!ama ("three-eighths") and 
dvi-saptama ("two-sevenths") respectively. In the Bakh
shiH Manuscript the fraction 3/8 is called trya!!a ("thtee
eighths") and 3 g- is called trcryastraya!!a ("three-three
eighths").3 Instances of the formation of fraction 
names on the above principle are too numerous in later 
works to be mentioned here. The present method of 
expressing fractions is thus derived from Hindu sources 
and can be- traced back to 3,000 B.C. 

Weights and Measures. The division of the units 
of length, weight, money, etc., into smaller units for the 
sake of avoiding the use of fractional quantities has 
been common amongst all civilised peoples. It is an 
index of commercial activity and the development of 
commercial arithmetic. The Hindus have used systems 
of weights and measurClS from the earliest times. The 
Satapatha Brdbma!la4. (c. 2,000 B.C.) gives a very mint ute 
subdivision of time. According to it there are 30 

IlJtlhurta in a day, r5 kfpra in a Illllburta, 15 itarhi in a 
k!pra, 15 iddnf in an itarbi and 15 prd!la in an iddnf. 
Thus one prd!la is approximately equivalent to one
seventeenth of a second. It is improbable that the' 
ancient Hindus had any appliance for measuring 
such small intervals of time. The subdivision is entire
ly theoretical, and probably made for philosophical 
reasons. It, nevertheless, shows that the Hindus must 

1 ApSI, ix. 7, x. 2; KSI, v. 6. 
2 When the fractions have unit numerators, only the deno

minators are mentioned. This practice is quite common in later 
works also, e.g., ,alIa (sixth)=-/i in L, p. 7 etc. 

II BMs, 10 ,'crso. 
<\ xii, 3. 2. I. 
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have been in possession of a satisfactory arithmetic of 
fractions even in those early times. The Arthaldstra 
of Kautilya1 contains a section dealing with weights 
and measures which were in use in India in the fourth 
cen,_tury B.C. In the Lalitavistara2 Buddha is stated . 
to have given the following system of linear measures: 

7 paramd(1u raja 
7 re(1u 
7 tru!i 
7 
7 
7 
7 
7 
7 
7 

vdtdyana raja 
lala raja 
etjaka raja 
go raja 
lik.fd raja 
sar.fapa 

yava 

I re(1u 
- I tru!i 

I vdtdyana raja 
- I lala raja 
- I etjaka_ raja 
- I go rtf/a 
- I lik!ti raja 
- I sar.fapa 

I yava (breadth of barley) 
- I anguli parva (breadth of 

finger) 
12. anguli parva - I vitasli 

2. vitasli I hasta (cubit) 
4 hast a I dhanu 

1000 dhanu I krola 
4 hola I yo/ana 
According to the above table, the smallest Hindu 

measure of length, a paralndr;u3 = I' 3 X 7-10 inches. 
All the works on pa/fga(1ita begin with definitions 

of the weights and measures employed in them. The 
earlier ones contain a special rule for the reduction of 
a chain of measures into a proper fraction;' It may 
be mentioned that the systems of weights and measures 

1 The Arthoiastro of KOII!i!Jo, ed. by R. Shamsastri, Bangalore, 
1919. 

2 Lotitavistoro, ed. R. Mitra, Calcutta, 1877, p. 168. 
3 Paroma!lll is the smallest particle of matter. Thus according 

to the Hindus, the diameter of a molecule is l' 3 X 7-1(). 

4 The process is called vallf'-sot'or!1ana a~d occurs in the TriJatika 
(p. 12) and the GalJita-tilak.a (p. 39) and not in later works. 
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given in different works are different from each other. 
They are the ones current at the time and in the locality 
in which the book was composed. / 

Terminology. The Sanskrit term for a fraction 
, is bbinna. It means "broken.;' The European terms 

jraclio,jraction, roupl, rollo, or rocto etc., are translations 
of the term bbinna, having been derived from the Latin 
jraclus (jrangere) or ruplus meaning "broken." The 
Hindu term bhinna, however, had a more general 
meaning in so far as it included numbers' of the form, 

(~ ± J)' ( ~ of J)' (~± J of i) or, ( a ± ~). 
These forms were termed jali, i.e., "classes," and the 
Hindu treatises contain special rules for their reduction 
to proper fractions. Sridhara and MaHav:1ra each enu
merate six jalis, while Brahmagupta gives only five and 
Bhaskara II following Skandasena reduces the number 
to four. The need for the division of fractions into 
classes arose out of the lack of proper symbolism to 
indicate mathematical operations. The only opera
tional symbol used by the Hindus was a dot~ for the 
negative sign. 

The other terms employed for the fraction are 
bhaga and milia, meaning "part" or "portion." The term 
kald which originally, in Vedic times, denoted one
sixteenth came to be later on employed for a fraction. 
Its earliest use as a term for fraction occurs in the 
Sufba works. 

Writing of Fractions. From very early times 
(c. 200 A.D.) the Hindus wrote fractions just as we do 
now, but without the dividing line. When several 
fractions occurred in the same problem, they were in 
general separated from each other by vertical and 

1 Generally placed over the number to be subtracted. 
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horizontal lines. Illustrations of the Hindu method of 
writing groups of fractions will be found in the 
examples that will be given hereafter. 

Reduction to Lowest Terms. Before performing 
operations with fractions, it was considered necessary 
to reduce them to lowest terms. The process of reduc
tion was called apavartana, but was not included among 
the operations. It is not given in the Hindu works, 
but seems to have been taught by oral instruction. That 
the method has been in use in India from the earliest 
centuries of the Christian era, cannot be doubted; for 
it is mentioned in a non-mathematical work, the 
Tattvdrtha(/hfgama-sutra-bhdlYal by Umasvati (c. 150) 
as a simile to illustrate a philosophical discussion: 

"Or, as when the expert mathematician, for the 
purpose. of simplifying operations, removes common 
factors from thy numerator and denominator of a 
fraction, there is no change in the value of the fraction, 
so ...... " 

Reduction to Common Denominator. The 
opc;ration of reduction to a common denominator 2 is 
required when fractions are to be added or subtract
ed. The process is given a prominent place and is 
generally mentioned along with addition and subtrac
tion. Brhmagupta3 gives the reduction along with the 
processes of addition and subtraction thus: 

"By the multiplication of the numerator and deno
minator of each of the (fractional) quantities by the 
other denominators, the quantities are reduced to a' 
common denominator. In addition, the numerators are 
united. In subtraction their difference is taken." 

Iii. 52. 
2 Kald-SOl'arnana or sat'ar!1al1.J, or samachheda-vidhi. 
3 BrSpSi. p.' 172 • 
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Sridhara1 says: 
"To reduce to a common denominator, multiply 

the numerator and denominator of each (fraction) by 
the other denominators." 

All other works also contain this rule. 
Fractions in Combination. It has already been 

remarked that due to the lack of proper symbolism, 
the Hindu mathematicians divide combinations of frac
tions into four classes. They are: 

(1)2 Bhaga, i.e., the form (~± J ± j ± .... ). 
usually written as 

.----r-I b I ~--'----'I j \ or I ~ I'd \ ; I · 
where the dots denote subtraction. 

(2l Prabhdga, i.e., the form (~ of ~ of j .... .. ), 
written as 

I b I ~ 1;1 
(3)4 Bhdgdnubandha, i.e., the form 

b ,(i) (a + -) 
C 

or (ii) P_ + !: of .t + !_ of (p + ~ of p_) + .... 
q s q II' q S q 

1 Tri1, p. 10. The translation given by Kaye is incorrect. 
2 BrSpSi, p. 175; Trif, p. 10; GSS, p. 33 (55, 56); MSi, p. 146; 

L, p. 6. I 

3 Tn1, p. 10; GSS, p. 39 (99); MSi, p. 146; L, p. 6. 
4 Tn1, p. 10; GSS, p. 41 (ll ~); MSi, p. I48; L, p. 7. These 

forms are termed riipa-bhaganubandha ("association of an integer and 
a fraction") and bhtiga-bhtigdnubandha ('"association of fractions of' 
fractions") respectively. 
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written as 

(i) ·I·~ I or (ii) 
c' 

(4)1 Bhagapavaha, i.e., the form 

(i) (a - !!_) 
c 

or (ii) P_ 
q 

written as 

.r q 
t of (1!_ -:_·ofP.)-.... 
/I q! q 

r of f!__ 

(i) I'~ I or (ii) 

Besides the above four forms, Sridhara, Mahavira, 
and some others give two more. 

(5)2 Bhaga-bhaga, i.e., the form 

( a -+ t:_) or (p_ -+ ':. ) 
c q S 

There does not appear to have been any notation 
for division, such compounds being written as, 

1 BrSpSi, p. 176; GSS, p. 43 (rz6); MSi, p. 148; L, p. 7. 
These forms are termed rupa-bhagapavaha and bhdga-bhagapavaha 

respectively. 
2 Tril, p. II; GSS, p. 39 (99). 
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just as for bhagdnubandha. That division is to be per
formed was known from the problem; I e.g., I -:- -~ 
was written as .fat}-bhaga-bhaga,2 i.e., "one-sixth bhaga
bhaga" or "one divided by one-sixth."s 

(6),' Bhaga-mal!, i.e., combinations of forms enume
rated above. Mahavira remarks that there can be 
twenty-six variations of this type.:I The following 
example is given by Sridhara. 6 

"What is the result when half, one-fourth of one
fOl!rth, one divided by one-third, half plus half of 
itself, and one-third diminished by half of itself, are 
added together?" 

In modern notation this is 

~+(t of U+(i-:-O+(4+! of 4)+(i-~ of ~). 
In the old Hindu notation it was written as 

1 I I I I I 

2 4 4 I 2 3 
3 I '1 

2 2 

l It is only in the Bakhshal1 Manuscript that the term 11M is 
sometimes placed before or after the quantity affected. 

2 Cf, Trii, p. II. 

B GSS, p. 41 (112) gives z-:-~ as lripada bhaktalJ1 dvikalJ1, i.e., 
"two divided by three-fourths." 

fo Trii, p. 12; GSS, p. 4S (138). 
~ As there are five primary classes enumerated by Mahavira, 

so the total number of combinations is 
5C2+ IICa+ 5C" + GCs = 26. 

6 Trii, p. IZ. 
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The defect of the notation is obvious: [IT] can be 

read also as l + h and I ; I can be read also as I}; so 

that the exact meaning of the notation can be under
stood only by a reference to the question. 

The rules for the reduction of the first two classes 
are those of addition or subtraction, and multiplication. 
The rule for the reduction of the third and fourth 
classes (from ii) are given together by Brahmagupta: 

"The (upper) denominat<;:lr is multiplied by the 
.J.:nominator and the upper numerator by the same 
~cjenominator) increased or diminished by its own 
l1umerator."L 

The rule for bbaganubandba is given by Srldhara2 as 
fOllows: 

(i) "In bbaganubandba, add the numerator to the 
product of the whole number and the denominator." 

(ii) "Multiply the denominator by the lower deno
nunator and (then) the numerator by the same lower 
denominator increased by its. own numerator." 

Other writers give similar rules for reduction in the 
case of bbaganubandba. 

The following examples will explain the proc;:ess of 
working: 

1 BrSpSi, p. 176. The reduction of the form a ± ~ has been 
given separately (p. 173). 

2 Trif, p. 10. Rule (i) is for the reduction of a+ ~ and rule (ii) 
'1 for the reduction of the form 

3 Trif, p. I I. 

13 

':+ (' f -:,.4-. ~ f (a + (' fa) 
b d. 0 b . fOb Ii 0 b . 
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Reduce to a proper fraction: 

3!+! of 3~+! of (3~+!- of 3A)+~+t of ~+!- of 
H+l of ~). 

This was written as 

3 
I I 

2 2 

I I 

4 3 
I I 

6 4 

Adding denominators to numerators of the lower 
fractions, and applying rule (i) to left-hand top com
partment to reduce it to a proper fraction, we get 

7 I 

2 2 

5 4 
4 3 
7 5 
6 4 

Now performing multiplication as directed, i.e., mul
tiplying the denominator of the first fraction by all the 
lower denominators and the numerator by the sum of 
the numerators and denominators of the lower frac
tions, we get 

7 X...I>X 7 - 245 and 'X 4 X Ii - 11 0 :! 4 1r-~' --:r a 4"-"""2"""4 

t.e., 

Then making denominators similar (savar{1ana), we 
have 
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performing the addition we have W or 5+i as the 
result. 

The rule for bhagapavaha is given in all the works 
on pa!fga!lita. It is the same as that for bhciganubandha, 
except that "addition" or "increase" is replaced by 
"subtraction" or "decrease" in the enunciation of the 
rule for bhagapavdha. 

Lowest Common Multi.ple. Mah:1vira 1 was the 
first amongst the Indian mathematicians to speak of 
the lowest common multiple in order to shorten the 
process. He defines niruddha (L. C. M.) as follows: 

"The product of the common factors of the 
Jenominators and their resulting quotients is called 
nirtlddha. " 

The process of reducing fractions to equal deno
minators is thus described by him: 2 

"The (new) numerators and denominators. obtained 
as products of multiplication of (each original) numera
tor and denominator by the (quotient of the) nimddha 
(i.e .• L. C. M.) divided by the denominator give frac
tions with the same denominator." 

Bhaskara IP does not mention nimddha but observes 
that the process can be shortened. He says: 

"The numerator and denominator may be multi
plied by the intelligent calculator by the other deno
minator abridged by the common factor." 

The Eight Operations. Operations with frac
tions were known in India froJ'll very eady times, the 
method of performing them being the same as now. 

I GSS, p. 33 (56). 
2 GSS. p. 33 (56). 
3 L. p. 6. 
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Although Aryabhata does not mention the elementary 
operations, there is evidence to show that he knew the 
method of division by fraction by inverting it. All the 
operations are found in the Bakhshali Manuscript (c. 200). 

Addition and Subtraction. These operations 
wete performed after the fractions were reduced to a 
common denominator. Thus Sddhara says:l 

"Reduce the fractions to a common denominator 
and then add the numerators. The denominator of a 
whole number is unity." 

Brahmagupta and Mahavlra give the method under 
Bhdgqjdti. Mahavlra differs from other writers in giving 
the methods of the summation of arithmetic and geo
metric series under the title of addition (samkaJifa).2 
Later writers follow Sddhara. 

Multiplication. Brahmagupta says:8 
"The product of the numerators divided by the 

product of the denominators is the (result of) multipli
cation of two or more fractions." 

While all other writers give the rule in the same 
way as Brahmagupta, Mahavira refers to cross reduction 
in order to shorten the work: 4 

"In the multiplication of fractions, the numerators 
are to be multiplied by the nume,rators and the deno
minators by denominators, after carrying out the process 
of cross reduction/ if that be possible." 

1 Trii, p. 7. 
'Z Cf GSS, pp. 28 (2%) if. 
3 BrSpSi, p. 173. 
" GSS, p. 25 (2). 
5 Vajrdpavartana-vidhi, i.e., "cancellation crosswise," thus 

21'\., ;'16 

lxt= X =i=J. 
31« 'c:.I4 



FRACTIONS 

Division. Although the elementary operations are 
not mentioned _in the Aryabhtl/{ya, the method of division 
by fraction is indicated under the Rule of Three. The 

f T 1 jxi 
Rule 0 hree states the resu t as 1" 1 When these 

quantities are fractional, we get an expression of the 
.!!_x_!_ 

form ~, for the evaluation of which Aryabhata I 
m 
n 

states: 
"The multipliers and the divisor are multiplied by 

the denominators of each other." 
As will be explained later on (p. 204) the quantities 

are written as 

E8 
Transferring the denominators we have 

DIJ 
') [" l' li' hI' anc ~ er ormlng mu tip catlon, t e resu t IS mbd' 

The above interpretation of a rather obsc~re linea 
in the Aryabhaj[ya is based on the commentaries of 
Suryadeva and Bhaskara 1. Thus Suryadeva says: 

1 Wh f h" Hf'''' . h A' "d d ere = p ata, t.e., rUlt, t = ICC a, z.e., eman or 
requisi~on" p' pramapa, i.e., "argument." 

2 A, p. 43. Previous writers seem to have been misled by 
the commentary of Paramesvara which is very vague; cJ; Clark 
(p. 40) and P. C. Sengupta (p. 1.5). , 
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"Here by the word guttakara is meant the multiplier 
and multiplicand, i.e., the phala and iccha quantities that 
are multiplied together. By bhdgahdra is meant the 
prallJdpa quantity. The denominators of the phah and 
icchd are taken to the pratlldtta. The denominator of the 
praJlldpa is taken with the phala and icchd. Then multi
plying these, i.e., (the numerators of) the phala and iccbd 
and this denominator, and dividing by (the product of) 
the numbers standing with the pratlldtJa, the result is the 
quotient of the fractions." 

Brahmaguptal. gives the method of division as fol-· 
lows: 

"The denominator and numerator of the divisor 
having been interchanged, the denominator of the 
dividend is multiplied by the (new) denominator and 
its numerator by the (new) numerator. Thus division 
of proper fractions is performed." 

Sridhara'l adds the following to the method of 
multiplication: 

"Having interchanged the numerator and deno
minator of the divisor, the operation is the same as 
before.":! 

MaM.v'ira4 explains the method thus: 
"After having made the numerator of the divisor5 

its denominator (and vice versa) the operation is the 
same as in multiplication." 

"Or,6 when (the fractions constituting) the divisor 

l. BrSpSi, p. 173. 
2 TriJ, p. 8. 
3 i.e., the same as that of multiplication. 
;; GSS, p. 26 (8). 
5 Mahavira uses the term pramo!1a-roJi for divisor, showing 

thereby its connection with the <rule of three.' 
G This is similar to the way in which Aryabhata I ~xpresses 

the method. 
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and dividend are multiplied by the denominators of 
each other and these products are without denomina
tors, (the operation) is as in the division of whole 
numbers." 

Square and Square-root. Brahmagupta2 says: 
"The square of the numerator of a proper fraction 

divided by the square of the denominator gives the 
square." 

"The square-root of the numerator of a proper 
fraction divided by the square-root of the denominator 
gives the square-root." 

Other works contain the same rules. 
Cube and Cube-root. Sridhara3 gives the rule 

as follows: 
"The cube of the numerator divided by the cube 

of the denominator gives the cube, and the cube-root 
of the numerator divided by the cube-root of the 
denominator gives the cube-root." 

Other works give the same rules. 
Unit Fractions. Mahavlra has given a number of 

rules for expressing any fraction as the sum of a 
number of unit fractions. 4 These rules do not occur 
in any other work, probably because they were not 
considered important or useful. 

(1) To express I as the sum of a number (n) of 
unit fractions. 

The rule for this is: 5 

"When the sum of the different quantities having 

1 The term for whole number is sakata. 
2 BrSpSi, p. 174. 
3 Trif, p. 9. 
4 There is no technical term for unit fraction. The term 

used is rupdlhfaka-rdfi, i.e., "quantity. with one as numerator." 
5 GSS, p. 36 (75). 
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one for their numerator is I, the (required) denomina
tors are such as, beginning with I, are in ·order multi
plied by 3, the first and the last being multiplied again 
by 2. and j-." 

Algebraically the rule is 

I I I I I I 1=-+ -+ -+ -+ .... + - + --. 2. 3 3 2 33 3 n-2 2..3 n-2 

(2. ) To express I as the' sum of an odd number of 
unit fractions. 

The rule for this is stated thus: 1 

"When the sum of the quantities (fractions) having 
one for each of their numerators is one, the denomina
tors are such as, beginning with two, go on rising in 
value by one, each being further multiplied by that 
which is (immediately) next to it and then halved." 

Algebraically this is 

I I I I' 1=--+--+ .... + +-
2..3.A 3·4·A (2.n-I).2n.& 2.n.& 

(3) To express a unit fraction as the sum of a number 
of other fractions, the numerators being given. 2 

The rule for this is: 
"The denominator of the first (of the supposed or 

given numerators) is the dc;nominator of the sum, that 
of the next is this combined with its numerator and 
so on; and then multiply (each denominator) by that 
which is next to it, the last being multiplied by its 
own numerator. (This gives the required denomina
tors)." 

1 GSS, p. 36(77). 
2 Each may be one. GSS, p. 36(78). 
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Algebraically this gIves: . 
~= a 1 + a2 + .... 
n n (n+a1) (n+a1)(n+a1+aZ) 

-r ar - 1 

(n+a1+aZ+' ... + ar - 2)(n+ a1+all+ .... +ar - 1) 

, 
By taking a l =az= ... =ar = I, we get unit fractions. 

When these are not unity, the fractions may not be in 
their lowest terms. 

(4) To express atry fraction as the sum of unit fractions. 
The rule is: 1 

"The denomipator (of the given fraction) when 
combined with an optionally chosen number and then 
divided by the numerator so as to leave no remainder, 
becomes the denominator of the first numerator (which 
is one); the optionally chosen quantity when divided 
by this and by the denominator of the sum is the 
remainder. To this remainder the same process is 
applied." 

Let the number i be so chosen that q+i is an 

integer = r; then the rule gives 
p 

p I i -=-+-q r r.q 

of w:hich the first is a unit fraction and a similar process 
can be employed to the remainder to get other unit 
fractions. In this case the result depends upon the 
optionally chosen quantities. 

1 GSS, p. 37(80). 
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(5) To express a unit fraction as the sum of two other 
unit fractions. 

The following two rules are given: 1 

(i) "The denominator of the given sum multiplied 
by a properly chosen number is the (first) denominator, 
and this divided by the previously chosen number minus 
one gives the other; or (ii) the two denominators are 
the factors 2 of the denominator of the sum, each multi
plied by their sum." 

Expressed algebraically the rules are: 

(i) I I I 3 

n = p.n + p.n 
P-I 

(ii) I I + ....,--;-1---:--;" 
a.b - a(a+b) b(a+b) 

(6) To express alIY fraction as the slim of two other 
fractions ,vhose Ilumerators are given. 

The rule for this is: 4 

"Either numerator multiplied by a chosen number, 
then combined with the other numerator, then divided 
by the numerator of the sum so as to leave no remainder, 
and then divided by the chosen number and multi
plied by the denominator of the sum gives rise. to one 
denominator. The denominator corresponding to the 
other (numerator), however, is this (denominator) 
multiplied by the chosen quantity," 

1 GSS, p. 37(85). 
2 hara-hdra-Iabdha, lit. "the divisor and quotient by that 

divisor." 
3 The integer p is so chosen that n is divisible by (p- I). 
4 GSS, p. 38(87). 



THE RULE OF THREE 2.0; 

Algebraically the rule is 

a b 
ap+b n + ap+b n 

IJJ X P --;;;- X pXp 

m 
n 

A particular l case of this would be 

In a b 
n = an+b + an+b 

- --xn m m 
provided that (an+b) is divisible by m. 

(7) To express a given fraction as the sum of an even 
dumber of fractions whose numerators are previously assigned. 

The rule for this is: 2 

"After splitting up the sum into as many parts, 
having one for each of their numerators, as there are 
pairs (among the given numerators), these parts are taken 
-as the sum of the pairs, and (then) the denominators 
are found according to the rule for finding two frac
tions equal to a given unit fraction." 

12. THE RULE OF THREE 

Terminology. The Hindu name for the Rule of Three 
terms is trairtifika ("three terms," hence "the rule of 
three terms"). The term trairtifika can be traced back 
to the beginning of the Christian era as it occurs in the 

1 Evidently, the chosen number p must be a divisor of n, 

d h h 
ap+b. . 

an suc t at -;;;-15 an mteger. 

The solution given does not hold for any values of a and 
b, but only for such values as allow of an integer p to be- so 
chosen as to satisfy the required conditions. 

2 GSS, p. 38(89)' 
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Bakhshal1 Manuscript,l in the Aryabba!rya and in all 
other works on mathematics. About the origin of the 
name Bhaskara I (c. 525) remarks: 2 "Here three 
quantities are needed (in the statement and calculation) 
so the method is called trairafika ("the rule of three 
terms")." 

A problem on the rule of three has the form:: 
If p yields j, what will i yield? 

In the above, the three terms are p, j and i. The 
Hindus called the term p, pramapa ("argument"), the 
term j, phala ("fruit") and the term i, iccha ("requisi
tion"). These names are found in all the mathematical 
treatises. Sometimes they are referred to simply as 
the first, second and third respectively. Aryabhata II 
diffe1;s from other writers in giving the names mana, 
vinimaya and iccha respectively to the three terms. It 
has been pointed out by most of the writers that the 
first and third terms are similar, i.e., of the same deno
mination. 

The Method. Aryabhata I (499) gives the follow
ing rule for solving problems on the Rule of Three: 

"In the Rule of Three, the phala ("fruit"),. being 
multiplied by the iecha ("requisition") is divided by the 
pramapa ("argument"). The quotient is the fruit 
corresp.onding to the ieeba. The denominators of one 
being multiplied with the other give the multipliet 
(i.e., numerator) and the divisor (i.e., denominator)."3 

1 The term rdJi is used in the enumeration of topics of 
mathematics in the Sthandnga-siJtra (c. 300 B.C.) (Siitra 747). There 
it probably refers to the Rules of Three, Five, Seven, etc. 

2 In his commentary on the Aryabha!iYa. 
3 The above corresponds to dryd 2.6 and the first half of drya 

2.7 of the Ga!1itapdda of the Aryabha!iya; compare the working of 
Example I, where the interchange of denominators takes place. 
See also pp. 19SJ. 
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Brahmagupta gives the rule thus: 
"In the Rule of Three prama!Ja ("argument"), 

phala ("fruit") and iccha ("requisition") are the (given) 
terms; the first and the last terms must be similar. The 
iccha multiplied by the phpla and divided by the pramapa 
gives the fruit (of the demand)."l 

Sridhara states: 
"Of the three quantities, the pramat1a ("argument") 

and iccha ("requisition") which are of the same deno
mination are the first and the last; the phala ("fruit") 
which is of a different denomination stands in the 
middle; the product of this -and the last is to be divided 
by the first."2 

Mahavira writes: 
"In the Rule of Three, the iccha ("requisition") and 

the pramapa ("argument") being similar, the result is 
the product of the phala and iccha divided by the 
prama"pa."3 

Aryabha!a II introduces a slight variation in the 
terminology. He says: 

"The first term is called mana, the middle term 
vinimaya anc;l the last one iccha. The first and the last 
are of the same denomination. The last multiplied by 
the middle and divided by the first gives the result.'" 

Bhaskara II, Narayat;la and others give the rule in 
the same form as Brahmagupta or Sridhara. 

The Hindu method of working the rule may be 
ilhistrated by the following examples taken from the 
Trifatika: 

1 BrSpSi, p. 178. 
2 Trif. p. 15. 
3 GSS, p. 58(2). 
4 MSi. p. 149. 
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Example 1.1 "If one pala and. one kar.fa of sandal 
wood are obtained for ten and a half pana, for how 
much will be obtained nine paia and one kar.fa?" 

Here 1 pala and 1 kar.fa=ll pala, and 9 pala and 
I kar.fa=9>' pala are the similat quantities. The "fruit" 
1O! patJa corresponding to the first quantity (I! pala) 
is given, s'o that 

pramdtJa (argument) - I{-
phaia (fruit) = 104 
icchd (requisition) - 9! 

The above quantities are placed in order as 

I 10 9 
I I I 

4 2 4 

Converting these into proper fractions we have 

I ! 12~ 13~ I 
Multiplying the second and the last and dividing by 
the first, we have 

~ _ -v~¥ 
Or transferring denominators ~ == 2 1·4·37 palLi U.il.±J 5. 2 -4 

- 4 pllrapa, 13 papa, 2. kdki!1i and 16 vard!aka. 
In actual working the intermediate step 

-4j-x¥ 
t 

1 TriJ, p. 15. 
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was not written. The denominators of the multipliers 
were transferred to the side of the divisor and that 
of the divisor to the multipliers, thus giving at once 

21.4·37 
5. 2 .4 

Example II. 1 "Out of twenty necklaces each of 
which contains eight pearls, how many necklaces, each 
containing six pearls, can be made?" 

Firstly, we have 

I 1 1 8 1 2 0 I 
The result (performing the operation of the Rule of 
Three) is 160 pearls. 

Secondly, perform the operation of the Rule of 
Three on the foHowing: 

If 6 pearls are contained in one necklace, how 
many necklaces will contain 160 pearls? 

Placing the numbers, we have 

1 6 I 1 I 160 I 

Result: necklaces 26, part of necklace lI]. 
Inverse Rule of Three. The Hindu name for the 

Inv:erse Rule of Three is ryasta-trairt1iika (lit. "inverse 
rule of three terms"). After describing the method of 
the Rule of Three the Hindu writers remark that the 
operation should be reversed when the proportion is 
inverse. Thus Sridhara observes: 

"The method is to multiply the middle term by 
the first and to divide by the last, in case the proportion 
is different."2 

~ Tri!, p. 17. 
2 Tn!, p. 18. 



2,08 ARITHMETIC 

Mahavira says: 
"In the case of this (proportion) being inverse, the 

operation is reversed." 1 

Bhaskara II writes: 
"In the inverse (proportion), the operation 1S re

versed." 2 

He furth.er observes: 
"Where with increase of the iccha (requisition) 

the phala decreases or with its decrease the phala in
creases, there the experts in calculation know the method 
to be the Inverse Rule of Three."s 

"Where the value of living beings is regulated by 
their age; and in the case of gold, where the weight 
.and touch are compared; or when heaps are subdivided: 
let the Inverse Rule 'of 'three be used."5 

Example: Example II given under the Rule of 
Three above has been solved also by the application 
of· the Inverse Rule as .follows: 

\ M" 
~'Statement i 8 I 20 I 6 I Result: necklaces l_ij 

Here if the iccha, i.e., the number of pearls in a 
necklace, increases, the phala, i.e., the number of neck
laces, decreases, so that the Inverse Rule of Three is 
applied. . 

Appreciation of the Rule Qf Three. The Rule of 
Three was highly appreciated by the Hindus because 

1 GSS, p. 58(z). 
'ZL, p. 17. 
3 L, p. 17. 
, "When heaps oi grain, which have been meted with a small 

mea~ure, are again meted with a larger one, the number decreases 
.... ,J (Com. of Suryadasa). 

'SL. p. IS. 
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of its simplicity" and its univers9J. application to ordinary 
'problems. The method as evolved by the Hindus gives 
a ready rule which can be applied even by the "ignorant 
person" to solve problems involving proportion, with
out fear of corrunitting, errors. Varahamihira (50S) 
writes: 

, "If the sun performs one complete revolution in a 
year, how much does he accomplish in a given number 
of days? Does 11-0t even an ignorant person calculate. 
the sun in such problems by simply scribbling with ,a 
piece of chalk?"l 

Bhas~ara II has eulogised the method highly. at 
several places in his work. His remarks are: 

"The Rule of Three is indeed, (the essence of) 
arithmetic." 2 

"As Lord Sri Narayat;ta, who relieves the sufferings 
of birth and death, who is the sole primary cause of the 
creation of the universe, pervades this universe through' 
His own ~estations as worlds, paradises, mountains, 
rivers, gods, men, demons, etc., so does the Rule of 
Three pervade the whole of the science of calculation . 
.. .. Whatever is computed whether in algebra or in, 
this (arithmei\c) by means 6f multiplication and division 
may be comprehended by the sagacious learned as the 
Rule of ,\hree. What' has been composed' by the sage~ 
through the multifarious methods and operations such 
as miscellaneous rules, etc., teaching its easy variations, 
is simply with ~he object of increasing the comprehen
sion of the duller intellects like ourselves.m 

On another occasion Bhaskara II observes: 

1 PSi, iv. 37. 
2 L, p. 15. The same remark occurs in SiSi, Golddhytiya, 

Prafnatihytjya, verse 3. 
3 L, P.,76. . 

14 
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"Leaving sq~aring, square-root, cubing and cube-, -
root, whatever is calculated is certainly variation 
of the Rule of Three, nothing else. For increasing 
the comprehension of duller intellects like ours, what 
has been written in various ways by the learned sages 
having loving hearts like that of the bird cakora" has 
become arithmetic." I 

Proportion in the West. The history of the 
Hindu rules of proportion shows how much the West 
was indebted to India for its mathematics. The Rule· 
of Three occurs in the treatises of the Arabs and 
medireval Latin writers, where the Hindu name ~Rule 
of Three' has been adopted. Although the Hindu 
names of the terms were discarded, the method of 
placing the terms in a line, and arranging' them so 
that the first and last were similar, was adopted. Thus 
Digges (1572) remarked,2 "Worke by the Rule ensueing 
...... Multiplie the last number py the seconde, and 
diuide the Product by the first number," ... "In the 
placing of the three numbers this must be observed, 
that the first and third be of one Denomination." 
The rule, as has been already stated, was perfected in 
India in the early centuries of the Christian era. It was 
transmitted to the Arabs probably in the eighth century 
and the'nce travelled to Europe, where it was held in 
v,ery high esteemS and called the "Golden R,ule." 

Compound Proportion. The Hindu names for 
compound proportion are the Rule of Five, the Rule of 

1 Si5i, Golddhyaya, Prafnadhyaya, verse 4. 
2 Quoted by Smith, I,c. p. 488. 
S The Arabs, too, held the method in very high esteem as 

is evidenced by Al-Blrunt's writing a separate treatise, Fi rafikat 
a/-hind ("On the rafika of the Hindus") dealing with the Hindu 
Rules of Three or more terms. Compare also India (I. 3 13) where 
an example of Iyasta-trairafika, ("the Inverse Rule of Three") is 
given. 
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Seven, the Rule of Nine, etc., according 'to the number 
of terms involved in the problems. These are some
times grouped under the general appellation of the 
"Rule of Odd Terms." The above technical terms 
as well as the rules were well-known in the time of 
Aryab4a~a I (499), although he mentions the Rule of 
Three only. That the distinction between the Rule of 
Three and Compound Proportion is more artificial 
than real was stressed by Bhaskara I (c. 525) in his com
mentary on the Aryabha!!ya. He says: 

"Here Acarya Aryabha~a has described the Rule of 
Three only. How the well-known Rules of Five, etc. are 

. to be obtained? I say thus: The Ad.rya has described 
only the fundamentals of anupata (proportion). All 
others such as the Rule of Five .. etc., follow from that 
fundamental rule of proportion. How? The Rule of 
Five, etc., consist of combinations of the Rule of Three 
.... In the Rule of Five there are two Rules of Three, 
in the Rule of Seven, three Rules of Three, and so on. 
This I shall point out in the examples." 

Remarks similar to the above concerning the 
Rules of Five, Seven, etc., have been made by the com
mentators of the Li'lavati, especially by GaI).eSa and 
Suryadasa.1 

In problems on Compound Proportion, two sets of 
terms are given. The first set which is complete is 
called pramatra pak!a (argument side) and the second 
set in which one term is lacking is called the icchti 
pak:fa (requisition side). " 

The Method. The rule relating to the solution 
of problems in compound proportion has been. given 
by Brahmagupta as follows: . 

"In the case of odd terms beginning withl three 

1 Noted by Colebrooke, .I.c., p. 35, note. 
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terms 1 upto eleven, 'the res~lt is obtained. by transpos4lg 
the fruits of. both 'sides, from one side to the other, 
and then Qividing the prod\Ict of ~he larger set of te~s 
by the product of the smaller set. 1n all the fr~ctiot1s 
the transposition of denominators, in like nlanner, takes 
place on both sides."::! 

Sddhara says: 
"Transpose the. two fruits from one side to tht: 

other, then havitlg transposed the denominators (also 
in like manner) and multiplied the numbers (so obtained 
on each side), divide the side with'the larger number of 
terms' by the othet (side)."ll 

Mahavira6 and Aryabhata IP'have given the rule in 
the 'Same way as Sridhara. ,Bha,skara II has given it 
thus: ' 

"IiI the ·rules of five, seven, nine or' more terms, 
after having taken the phala (fruit) and cbid" from its 

1 It should be 'observed that, as stat«d above, the Rule of 
Three is a particular case of the above Rule of Odd terms. 
Brahmagupta ,is the only Hindu writer to have included the Rule 
of Three also in the above rule. Some Arab writers have fol
lowed him in this respect by not writing the terms of the Rule 
of Three in a lli1e, but arranging them in compartments, as for 
the other rules of odd terms. 

2 BrSpSi, 'po 178. 
S TriJ, p. 19. 
4 GSS, p. 62 (3 2). 
5lvfSi, p. ISO, rules 26 and 27 (repeated with a slight varia

tion). 
6 The commentators differ as regards the interpretation of 

this word. Some take it to mean. "divisor," i.e., "denominator," 
while others say that it means "the fruit of the other side." The 
rule is, however, correct with either interpretation. The first 
interpretation, however, brings Bhaskara's version in line with 
those of his predecessors.' It may be mentioned here that Arya
bhata II repeats the rule twice. At first he does not direct the 
transposition of denominator, and at the second time he does so. 
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own side to the other, the ,product of the larger set of 
terms divided by the p):oduct 'qf. the smaller set, gIves 
the result' (or produce sought)."1 

Illustration. We shall illustrate the Hindu method 
of 'working by solving the following example taken 
from the Lz"/avati: 

«If the interest of a hundred in one month be,five, 
what' will be the interest of 16 in .12, months? Also 
find the time knowing the interest and principal; and tell' 
the principal kno~ing the time, and interest," 
To find interest: 

The first set of terms (prama{1a pakfa) is: 
100 nifka, 1 month, 5 nifka, (phala) 

The second set (iccha pak/a) is: 
16 ni.fka, 12 months, '~ ni.fka 

The terms are'now w.citten in compartments 2 as below: 

100 16 - I-
'I 12. -
5 0 

1 L, p. 18, ' 
2· The terms of the same denomination are written in com

pa.;tments in the same horizontal line. 
3 The figures are written in compartments in order to faci

litate the writing of fractions and also to denote the side whicl;l 
contains more terms after transposition of fruits. Sometimes, 
the compartment corresponding _to an absent term is left vacant 
as we find in a copy of Munlsvara's Pdfisara (in the Government 
Sanskrit Library ~t Benares). When the terms are written in 
compartments, the symbol 0 to denote the unknown or absence 
of a term is unnecessary. In 'some commentaries on the Lildvati 
(Asia~c Society of Bengal manuscripts) we find the numbers 
written without compartments, but in such cases the symbol 0 

is used to denote the absence of a terrt;. After transposition, the 
side on which 0 occurs contains a smaller number of terms than 
the other. ' 
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In the above 5 (written lowest) is the "fruit" of the 
first side, and there is no "fruit" on' the second side. 
Interchanging the fruits we get 

100 16 
I 12 

a 5 
The lat;ger set of terms is on the second "side." The 
product of the numbers is 960. The product of the 
numbers on the side of the smaller set of terms is 100. 

Therefore, the required result is m=¥, written as 
14 gl or 9 ni!ka, fraction liJ 
To find Time: 

Here the sides are 

and 
100 ni!ka, I month, 5 ni!ka 
16 ni!ka, x months, 4";- ni,fka 

The terms are written as 

100 16 
I 0 

S 48 
S 

Transposing the fruits, i.e., transposing the numbers in 
the bottom compartment, we get 

100 16 
I 0 ----

48 5 
5 

. Transposing the denominators we have 
100 I 16 

I 0 
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Here, the larger set of terms is on the first side and 
their product is 4800. The product of the numbers 
on the side of the smaller set is 400. Therefore, the 
result is 

~ - 12. months. 
400 

To know the principal: 

The first side is 

100 ni~ka, I month, 5 ni~ka 
The second side is 

x ni~ka, 12. months, ¥ nifka 

This is written as 

160 0 

I 12 

After transposition of fruits (i.e., the terms in the 
bottom cells) we ,pave 

100 0 

I 12 

48 5 
5 

Transposing denominators we get , 

100 0 

I 12 

48 5 
5 

The product of the numbers in the larger set divided 
by the product of the numbers in t~e smaller set, gives 



u6' 

\
4800] = 16 niska . 
. 3"00 • 

Rule of Three as a Particular Gase. Accordin_g 
to Brahmagupta, the above method '~ay be applied to 
the Rule of Three. Taking the first example solved 
under the Rule of Three, above, and placing the terms 
we have 

"2I () 
1 

z 
5 37 

, 4' 4 

Tt~sposing 'the fruits, we ~ave 

2.1 O. 

z 

37 5 
4 4 

Transposing denominators, we get 

21 0 

2. 

37 5 
4 4 

Therefore, the result is 21·37·4 as before. 
, z·5·4 

If we consider the term corresponding to the un
known as the fruit, the.terms should be set as below: 

1 Here, we consider: pala of sandal wood as the "fruit" 
of ¥-- pa!,Q (money). The previous method forces us to consider 
¥ pa!1o as . the "fruit" or fue middle term, because the "first" 
and "fuird" are directed to be alike. It will be observed that 
any of the terms may be considered to be the fruit in the alter
native method given here. 
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5 37 
__£1_1_ 

2.1 

2. 0 

Hence, as before/ the result is 37.4.
21 

5.4. 2 

2.17 

The above method of working the Rule of Three 
is found among the Arabs, I.! although it does not seem 
to have been used in India after Brahmagupta. This 
points to the indebtedness of the Arabs to Brahma
gupta especially, for their knowledge of Hindu arith
metic. 

VI ritten as above the method of working the Rule 
of Three appears to be t1;le same as the method of 
proportion. In the ·same way the rule of other odd 
terms, when properly translated into modern symbolism, 
is nothing but the method of proportion. It has been 
stated by Smiths that the Hindu methods of solution 
"fail to recognize the relation between the Rule of Three 
and proportion.,1 This statement appears to have been 
made without sufficient justification, for the solutions 
have been evidently obtained by the use of the ideas 
of proportionality and variation. The aim of the 
Hindu works is to give a method which can be readily 
used by common people. For this very reason, the 
cases in which the variation is inverse have been 
enumerated. Considered as a method which stimulated 
the ~tudent to think for himself, the method is certainly 

1 The product of the numbers on the side of the larger set 
is divided by the product of the numbers on the side of the 
smaller set. 0 in this case is not a number. It is the symbol 
for the unknown or absence. 

2 Thus Rabbi ben Ezra wrote 4~ G~ for 47: 7=6~: x. See 
Sm)th, 1.&., p. 489f. 

3/.&., p. 488. 



2.18 ARITHMETIC 

defective, but for practical purposes, it is, in our 
opinion, the best that could be devised. 

13. COMMERCIAL PROBLEMS 

Interest in Ancient India. The custom of 
taking interest is a very old one. In India it can be 
definitely traced back to the time of pa1).ini (c. 700 B.C.) 
who in his Grammar lays down rules validating the use 
of the suffix ka to number names in case of "an interest, 
a rent, a profit, a tax or a bribe given."1 The interest 
became due every month and the rate of interest was 
generally given per hundred,02 although this was not 
always the case. The rate of interest varied in cUfferent 
localities and amongst different classe,s of people, but 
an interest of fifteen per cent per year seems to have 
been considered just. Thus in Kautilya's Arthafastra, 
a work of the fourth century B.C., it is laid down: "an 
interest of a pa!1a and a quarter per month per cent is 
just. Five pa!1a per month per cent is commercial 
interest. Ten pa!1a per. month per cent prevails in 
forests. Twenty pa!1a per month per cent prevails 
among sea traders."3 The Gotama Sutra states: "an 
interest of five map; per' twenty (kar!apa!1a) is just."f. 

Interest in Hindu Ganita. The ordinary pro
blems relating to the finding out of interest, principal 
or time etc., the other quantities being given, occur in 
the section dealing with the Rule of Five. The Hindu 

1 Pat;lini's Grammar, v. i. ZZ, 47, 49. 
2 It has been - pointed out by B. Datta that the idea of per 

cent first originated in India. See his article in the American 
Mathematical MonthlY, XXXIV, p. 530. 

3 Arthaiasfra, edited and translated into English by R. Sham
sastry, Mysore, III, ii, p. 2.14. 

4 Gotama Stifra, xii. 2.6. Since 2.0 mala equal a karlaPa!1a, 
the rate is- 15 per cent annually. 
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works generally contain a section called miiraka-tyavt1-
bdra ("calculations relating to mixed quantities'·) in 
which occur miscellaneous problems on interest. The 
contents of this section vary in different works, according 
to their size and scope. Thus the Aryabha!!ya contains 
only one rule relating to a problem on interest, whilst 
the Gat/ita-sara-samgraha has a large number of such 
rules and problems. 

Problem involving a Quadratic Equation. Arya
bha!a I (499) gives a nile for the solution of the 
following problem: . 

The principal sum P(=IOO) is lent for one month 
(interest unknown=x). This unknown interest is then 
lent out for I( = six) months. After this period the 
original interest (x) plus the interest on this interest 
amounts to A(=sixteen). The rate-interest (x) on the 
principal (P) is required. 

The above problem requires the solution of the 
quadratic equation 

tx2+px-Ap = 0, 

- P/2±\/(P/2.)2+Apt 
which gives x = t . 

The negative value of the radical does not give a 
solution of the problem; s~ the result is 

VApt+(P/z)"-Pfz 
X=, t 

This is stated by Aryabhata I as follows: 
"Multiply the sum of the interest on the principal 

and the interest on this interest (A) by the time (I) and· 
by the principal (p). Add to this result the square of 
half the principal (CP/Z)2}. Take the square-root of, 
this. Subtract half the principal (P/z) and divide the 
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remainder by the time (I). The result will be the 
(unknown) interest (x) on the principal."l 

Brahmagupta (628) gives a more general rule. His 
problem is: 

The principal (p) is lent out for 11 months and the 
unknown interest on this (=x) is lent out for 12 month~ 
at the same rate and becomes 4. To find x. 

This gives the quadratic 

X2 + pll X _ Ap/l = 0, 

12 '2 
whose solution is 

x = ± v' AP/1+ (pII) '2 _p/I. 
. '2 212 2./2 

The negative value of the .radical does not give a 
solution of the problem, so it is discarded. 

Brahmagupta states the .formula thus: 
"Multiply the principal (P) by its time (11) and divide 

by the other time (/2) (placing the result) at two plflces; 
~.fultiply the first of these by the mixture (A). Add 
to this the square of half the other. Take the square
root of this (sum). From the result subtract half the 
other. This will be the interest (x) on the principal."2 

Other Problems. Mahavira (850) gives two 
other types of problems on "mixture" requiring the 
solution of simultaneous equations. As an example of 
the first type may be mentioned the following:! 

"It has been ascertained that the interest for I! 
months (t=rate-tlme) on 60 (c=rate-capital) is 2~ (i= 

lA, p. 41. The Sanskrit terms are: mH/a=principal, phala 
=interest. 

2 BrSpSi, p. 183. This rule is also given by Mahavira, GSS. 
p. 71 (44). 

a GSS, p. 69(32.). 
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rate-interest). The interest ,(on the unknown capital P) 
.for. an unknown period (T) is 2,4 (=1), and 60 (=m 
=P+ T) is the time combined with the capital lent out. 
What is the time (T) and what is the capital (P)?" 

The problem gives: 

iPT 
cl 

P+T -

1 

m 

'(r) 

(2) 

P- T = ± V 1J12- c~ X 41 t . 

Hence 

T = ~ (HI ~ V m2 
- c~ X 4f) 

t 
and 

The above .result is stated by Mahavira thus: 

"From the square of the mixture (m) subtract the 
.rate-capital (c) diyided by the rate-interest (i) multiplied 
by the rate-time (I) and four times the given interest 
(41). 'Then the operation of, sankrama(la1 is performed 
in .relation to the square-root of 'this and the mixture 
(m)." 2 

The second type of problems may be illustrated by 
the following example: 

"The interest on 30 (P) is 5 (1) for an unknown 

1 Given the numoers a and b, the process of sankramal;la is the 
. " a+b d a-b 

finding out of half thea sum and difference t.e. -2- an -2-' 

2 GSS, p. 68(29)' It should be noted that both the signs 
of the radical are used. 
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period (T), and at an unknown rate of interest (i) per 
100 (c) per 1 ~ month (t). The mixture (m=i+ T) 
is 12!. Find i and T."l 

The solution is given by 

T = ! (m ± v m 2 _ cl1.4) . P , 

and consequently 

. _ ~ (' =F V 11 cl1.4 ) t - ~ m IN -----p- . 

Mahavlra states the solution thus: 
"The rate-capital (c) multiplied by its time (I) and 

the interest (I) and the square of two (=4) is divided 
by the other capital (P). Then perform the operation 
of sankramatla in relation to the square-toot of the 
remainder (obtained as the result of subtracting the 
quotient so obtained) from the square of the mixture 
(m) and the mixture."2 

Miscellaneous Problems on Interest. Besides the 
problems given above various other int(!resting prob
lems are found in the Hindu works on pd!igarrila. 
Thus Brahmagupta gives the solution of the following 
problem: 

Example. In what time will a given sum s, the 
interest on which for I months is r, become k times 
itself? 

The rule for the solution of the above i5:3 

"The given sum" multiplied by its time and divided 

I GSS, p. 69(34). 
2 GSS, p. 69(33). 
3 BrSpSi, p. 181. 

'·The Sanskrit term used is prama!1a (argument). 
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by t~e Interest, 1 being multiplied by the factor2 less 
one, IS the time ~~equired)." 

The Ga{lita-sdra-samgraha (850) contains a large 
number of problems relating to interest. Of these may 

. be mentioned the following: 

(I) "In this (problem), the (given) capitals are (CI =) 
40, (c2=) 30, (cs =) 20 and (c4=) 50; and the months 
are (/1=) 5. (/2=) 4, (/3=) 3 and (/4=) 6 (respectively). 
The sum of the interests is (m=) 34. (Assuming'the 
rate of interest to be the same in each case, find the 
amounts of interest ~ each case)." S 

Here, if the rate of interest per month for I be r, 
dlen 

Xs 
. cs/

s 
= ..... . 

where Xl> Xu Xs,' . • . •• are' the interests earned on the 
capitals Cu C2 , Cs,' • • • •• in II> 12> 13 , • • • • •• months res 
pectively. 

or 

Therefore, 

X l+X2+X3+· • ~ • 
= Clil+C2/2+CstS+" 

,-

I The Sanskrit term used is phala (fruit). 
2 The Sanskrit term used is gU!la (multiple). 
3 GSS, p. 70 (3 8). 

.'7t 

. etc. 

for the solution 



224 -ARITHMETIC 

of the above problem. 1 

(2) "(Sums represented by) 10, 6, ; and 15 are the 
(various given) amounts of interest, and 5, 4,; and 6 
are the (corresponding) months (for which the interests 
have accrued); the sum of the (corresponding) capital 
amounts is seen to be 140. (Assuming the rate of 
interest to be the same in each case, find out these 
capital amounts)."! 

(3) C'Here (in this problem) the (given) capital 
amounts are 40, 30, 20 and ~o; and 10, 6, 3 and 15 are 
the (corresponding) amounts of interest; 18 is the 
quantity representing the mixed sum of the respective 
periods of time. (Find out these periods separately, 
assuming the .rate of interest to be the same in each 
case)."8 

(4) "The interest on 80 for 3 months is unknown; 
7-!- is the mixed sum of that (unknown quantity taken 
as the) capital lent O,ut and pf the interest thereon 
for I· year'. What is the capital here and what the 
intere:;t?"· 

(5) "The mixed sums (capital+interest) are 50, 58 
and 66; and the months (during which interests have 
accrued) are h 7 and 9 (respectively). Find out what 

1 GSS, p. 70(37). The formula clearly shows that Mahavira 
knew the algebraic identity 

a+ ,,+ e+ .. 
- b+d+f+··" 

2 GSS, p. 70(40). The solution is given by Rule 39 on the 
~ame page. 

3 GSS, p. 70 (43). The solution is given by Rule 42 on the 
<saJ;Ile page. 

• GSS, p. 71(46). This is similar to Aryabhata's problem 
given before (p. 217). 
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the interest is (in each case, the capital being the same)?"l 
(6) "The mixed sums of the capital and periods of 

interest are 21, 23, and 25; here (in this problem) the 
amounts of interest are 6, 10 and 14. What is the 
common capital?"2 

(7) "Borrowing at the rate of 6 per cent and then 
lending out at the rate of 9 per cent, one obtains in 
the way of differential gain 8 I at the end of 3 months. 
What is the capital (utilised here)?"3 

(8) "The monthly interest on 60 is exactly 5. The 
capital lent out is 3 5; the (amount of the) instalment 
(to be paid) is 15 in (every) 3 months. What is the 
time of discharge of that debt?"4 

(9) "The mixed sum (of the capital amounts lent 
out) at the rates pf 2, 6 and 4 per cent per mensem is 
4400. Here the capital amounts are such as have equal 
amounts of interest accruing after 2 months. What 
(are the capital amounts lent, and what is the equal 
interest)?"5 

(10) "A certain person gives once in 1 2 days an 
instalment of 2~, the rate of interest being 3 per cent 
(per mensem). What is the capital amount of the debt 
discharged in 10 months?"6 

(11) "The total capital represented by 8520 is in
.rested (in parts) at the (respective) rates of 3, 5 and 8 
per cent (per month). Then, in this investment, in 5 

1 GSS, p. 71 (48). The solution requires the use of the 
identity 

2 GSS, p. 72 (5 2 ). 

3 GSS, p. 72 (55). 
4. GSS, p. 73(59). 
5 GSS, p. 73(61). 
6 GSS, p. 7,(65). 

15 

a ( a - c 
T= T= b-d· 
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months the capital amounts lent out are, on being 
diminished by the respective amounts of interest, 
(found to be) equal in value. (W.hat are the respective 
amounts invested thus?)"l 

(12) "The total capital represented by 1 3 740 is 
invested (in parts) at the (respective) rates of 2, 5 and 9 
per cent (per month), then, in this investment, in 4 
months the capital amounts lent out are, on being 
combined with the (respective) amounts of interest, 
(found to be) equal in value. (What are the respective 
amounts thus invested?)"2 

(13) "A certain man borrows a certain (unknown) 
sum of money at an interest of 5 per cent per month. He 
pays the debt in instalments, due every -!- of a month. 
The instalments begin wid~ 7 and increase in arithmeti
cal progression, with 7 as the common-difference. 60 is 
the maximum amount of instalment. He gives in the 
discharge of his debt the sum of a series in arithmetical 
progression consisting of -¥ terms. After the payment 
of each instalment, interest is charged only on that 
part of the principal which remains to be paid. What 
is the total payment corresponding to the sum of the 
series, what is the interest (which he paid), what is the 
time of the discharge of the debt, (and what is the 
principal sum borrowed)?"3 

Barter and Exchange. The Hindu name for barter 
is bbdtt(ia-prati-bhdtt!la ("commodity for commodity"). 
All the Hindu works on Pd!fgattita contain problems 
relating to the exchange of commodities. It is pointed 
out in these works that problems on barter are cases 
of compound propo~tion, and can be solved by the 

1 Gss, p. 74(67). 
2 GSS, p. 74(67). 
3 GSS, pp. 74f, (72-732-). The text of the problem is verv 

obscure. The translation given here is after Rangacarya. 
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Rule of Five, etc. A typical problem on barter is the 
following: 

«If three hundred mangoes be had in this market 
for one drafJl1JJa, and thirty ripe pomegranates for a papa, 
say quickly, friend, how many (pomegranates) ~hould 
be had in exchange for ten mangoes?"l 

Other Types of Commercial Problems. Of 
various other types of commercial problems found in the 
Hindu works may be mentioned (I) problems on part
nership and proportionate division, and (2) problems 
.relating to the calculation of the fineness of gold. 2 

Most of these problems are essentially of an algebraic 
character, but they are included in pd!/'gapita (arithmetic). 
The formula: giving the solution of each type of 
examples precede the examples. These formula: 
ate too numerous to be mentioned. The following 
examples, however, will illustrate the nature and the 
scope of such problems: 

(I) A horse was purchas~d by (nine) dealers in 
partnership, whose contributions were one, etc., upto 
nine; and was sold by them for five less than five 
hundred. 'Tell me what was each man's share of the sale
proceed. 

(2) Four colleges, containing an equal number of 
rupils, were invited to partake of a sacrificial feast. 
1'>.. fifth, a half, a third and a quarter (of the total number 
of pupils in the college) came from the respective 
colleges to the feast; and added 10 one, two, three and 
four, they were found to amount to eighty-seven; or, 
with those declucted, they were sixty-seven. Find the 
actual number of the pupils that came from each 
college. 

1 L, p. 20. 

2 Such problems are found in the Lf/dvati, the Ga!Jita-sara
samgraba, the Trifatikd, etc. 
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(3) Three (unequal) jars of liquid butter, of water 
,and of honey, contained thirty-two, sixty and twenty-four 
pala respectively: the whole was mixed together and the 
jars filled again. Tell me the quantity of butter, of 
water and of honey in each jar. 1 

(4) According to an agreement three merchants 
earned out the operations of buying and selling. The 
capital of the first consisted of six plirat/a, that of the 
second of eight ptlratza, but that of the third was 
unknown. The profit obtained by these men was 96 
purat/a. In fact the profit obtained by him (the third 
person) on his unknown capital happened to be 40 
puratra. What was the amount thrown by him into 
the transacti:on and what was the profit of each of the 
other two merchants?2 

(5) There were four merchants. Each of them 
obtained from the others half of what he had with him 
(at the time of the respective transfers of money). Then 
they all became possessed of equal amounts of money. 
What was the measure of money each had to start with?3 

(6) A great man possessing powers of magical 
charm and medicine saw a cock fight going on, and 
spoke separately in confidential language to both the 
owners of the cocks. He said to one, "If your bird 
wins, then you give the stake-money to me. If, however, 
your bird loses then I shall give you two-thirds of that 
stake-money." He went to the owner of the other cock 
and promised to give three-fourths (of his stake-money 
on similar conditions). In each case the gain to him 
could be only 12. (gold-pieces). Tell me, 0 ornament 

1 This and the two previous examples are given by P~thudaka
svaml to illustrate Rule 16 of the ga{1itJdhydya of the Brdhma-Jphtl!a
.siddhdnta. 

2 GSS, p. 94(223-5)' 
3 GSS, p. 99(267g). 
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on the head of mathematicians, the money each of the 
cock-owners had staked. 1 

(7) The mixed price of 9 citrons and 7 fragrant 
wood-apples is 107; again the mixed price of 7 citrons 
and 9 fragrant wood-apples is lOr. 0 arithmetician, 
tell me quickly the price of a citron and of a wood
apple, having distinctly separated those prices . .2 

(8) Pigeons are sold at the rate of 5 for 3 (papa): 
sarasa birds at the rate of 7 for 5 (patta), swans at the 
rate of 9 for 7 (patta) and peacocks at the rate of 3 for 9 
(patta). A certain man was told to bring at these rates 100 

birds for 100 (papa) for the amusement of the king's son, 
and was sent to do so. What (amount) does he give 
for each (of the various kinds of birds that he buys)?3 

(9) There are I part (of gold) of I vartta, I part of 
2 vartta, I part of 3 vartta, 2 parts of 4 vartla, 4 parts of 5 
varpa, 7 parts of 14 vartta, and 8 parts of 15 vartta. Throw
ing these into the fire, make them all into one (mass), and 
then (say) what the vartta of the mixed gold is. This 
mixed gold is distributed among the owners of the fore
going parts. What does each of them get?4 

(10) Three pieces of gold, of 3 each in weight, and 
of 2, 3 and 4 varpa (respectively), are added to (an 
unknown weight of) gold of 13 varpa. The resulting 
varpa comes to be 10. Tell me, 0 friend, the measure 
(of the unknown weight) of gold. 5 

I GSS, pp. 99-IOO(27~-2-2-)' 
2 GSS, p. 84(140 2-2 2). 
3 GSS, p. 85(15 2-3). 
4 GSS, p. 88 (170-1+). 
5 GSS, p. 89(18 I). Similar examples occur in the Triialikti 

(p. 26) and the LiidIJati (p. 25). 
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14. MISCELLANEOUS PROBLEMS 

Regula Falsi. The rule of false position is found 
in all the Hindu works. l Bhaskara II gives prominence 
to the method and calls it t"!/a-karma ("rule of 
supposition"). He describes the method thus: 

"Any number, assumed at pleasure, is treated as 
specified in the particular question, being multiplied 
and divided, increased or diminished by fractions (of 
itself); then the given quantity, being multiplied by the 
assumed nurpber and divided by that (which has been 
found) yields the number sought. This is called the 
process of supposition."-2 

Sridhara takes the assumed number to be one. 3 

Mahavlra gives a large variety of problems to which 
he applies the rule.· Gat:leSa in his commentary on the 
Lfidllatf remarks, "In this method, multiplication, divi
sion, and fractions only are employed." The following 
examples will illustrate the nature of the problems 
solved by the rule of supposition: 

(I) Out of a heap of pure lotus flowers, a third, a 
fifth, a sixth were offered respectively to the gods Siva, 
ViglU and Surya and a quarter was presented to Bhavaru. 
The remaining six were given to the venerable preceptor. 
Tell quickly the number of lotuses.o 

(2) The third part of a necklace of pearls, broken in 

1 The method originated in India and went to Europe through 
Arabia. There is a medixval MS., published by Libri in his 
His-loire, I, 304 and possibly due to Rabbi ben' Ezra in which the 
method is attributed to the Hindus. For further details and 
references, see Smith} His-tory, II, p. 437, foot-note I. 

~ L, p. 10. 

3 See the rule on siambhoddefa, Tril, p. 13. 
" These problems occur in chapters iii and iv of the GatJita

sara-s-amgraha. 
~ L, p. I I. Cj GSS, p. 48 (7). 
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an amorous struggle, fell to the ground; its fifth part 
rested on the couch; the sixth part was saved by the 
wench; and the tenth part was taken by her lover: 
six pearls remained strung. Say, of how many pearls 
was the necklace composed?L 

(3) One-twelfth part of a pillar, as multiplied by :fo 
part thereof,' was to be found under water; ..fo of the 
remainder, as multiplied by ft thereof, was found 
buried in the mire below; and 20 hasta of the pillar were 
found in the air (above the water). 0 friend, give out 
the length of the pillar.'2 

(4) A number of parrots descended on a paddy 
feld, beautiful with crops bent down through the weight 
of ripe corn. Being scared away by men, all of them 
suddenly flew off. One-half of them went to the 
east, one-sixth went to the south-east; the difference 
between those that went to the east and those that 
went to the south-:east, diminished by half of itself 
and again diminished by half of this (resulting 
difference), went to the south. The difference between 
those that went to the south and those that went 
to the south-east diminished by two-fifths of itself 
went to the south-west; the difference between 
those that went to the south and those that went to I 

the south-west, went to the west; the difference between 
those that went to the south-west and those that went 
to the wes't, together with three-sevenths of itself went 
to the north-west; the difference between those that 
went to the north-west and those that went to the west 
together with seven-eighths of itself, went to the north; 
the sum of thos~ that went to the north-west and those 
that went to the north, diminished by two-thirds of itself 
went to the north-east; and 280 parrots were found to 

1 Trif, p. 14, • cf. GSS, p. 49 (17-22) for a similar example. 
2 GSS,p. 55(60). Cj. Trif, p. 13. 
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remain in the sky above. How many were the parrots 
in all?1 

The Method of Inversion. The method of 
inversion called vilomagati ("workj{lg backwards") is 
found to have been commonly used in India from very 
early times. Thus Aryabhata I says: 

"In the method of inversion multipliers become 
divisots and divisors become multipliers, addition be
comes subtraction and subtraction becomes addition."2 

Brahmagupta's description is more complete. He 
says: 

"Beginning from the end, make the multiplier 
divisior, the divisor multiplier; (make) addition subtrac
tion and subtraction addition; (make) square square
root, and square-root square; this gives the required 
quantity."3 

. The following examples will illustrate the nature 
of problems solved by the above method: 

(I) What is that quantity whic:p when divided by 
7, (then) multiplied by 3, (then) squared, (then) increased 
by 5, (then) divided by!, (then) halved, and then 
reduced to its square-root happens to be the number 
5 ?' 

(2) The residue of degrees of the sun less three, 
being divided by seven, and the square-root of the 
quotient extracted, and the root less eight multiplied by 
nine, and to the product one being added, the amount is 

1 GSS, pp. 48f (u-16). 
2 A, GatJitapada, 28. 
B B,.SpSi, p. 301. The method occurs also in GSS, p. 102 

(z86); MSi, p. 149; L, p. 9; etc. 
4 GSS, p. 102 (287). Examples of this type are very common 

in Hindu arithmet~c. They were also very corpmon in Europe. 
Smith in his History. II,. quotes two such problems from an 
American arithmetic of ~he 16th century. 
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a hundred. When does this take place on a Wednesday?l 
Problems on Mixture. The Hindu works on 

pdtiga!1ita contain a chapter relating to problems on 
mixture (mifraka-l!Javahdra). Miscellaneous problems on 
interest, problems on allegation, and various other 
types of problems, in which quantities are to be 
separated from their mixture, forll! the subject matter 
of mifraka-l!Javahdra. A c~apter c'on mixture" (De' 
mescolo) is found in early Italian works on arithmetic, 
evidently under Hindu influence. 2 

Some of the problems of this chapter are deter
minate and some are indeterminate. A few relating to 
interest and allegation have already been given. 3 The 
following are some others: 

(I) In the interior of a forest, 3 heaps of pomegra
nates were divided (equally) among 7 traveller~, leaving 
I fruit as remainder; 7 (of such heaps) were divided 
among 9, leaving a remainder of 3 (fruits), again 5 (of 
such heaps) were divided among 8, leaving 2 fruits as 
-remainder. 0 mathematician, what is the numerical 
value of a heap?& 

(2) On a certain man bringing mango fruits home, 
his elder son took one fruit first and then half of what 
remained. The younger son did similarly with what 
was left. He further took half of what was left there
after; and the other took the other half. Find the 
number of fruits brought by the father?5 

1 Colebrooke, cha, p. 333 (18). 
2 Smith, Hislory. II, p. 58S, note 4. 
3 See commercial problems, pp. 216ff; also problems on pro

portionate division (prak!epa-kara!1a): Trif, p. 1.6; GSS, p. 
75(79~); MSi, pp. 154-15 5· 

4 GSS, p. S2 (IZSg). Such problems are given under the 
rule of vallikA-k.u!!i'kara by Mabavira. 

!I GSS, p. S2 (13 1i). ' 
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(3) A certain lay follower of Jainism went to a Jina 
temple with four gate-ways, and having taken (with him) 
fragrant flowers offered them in worship with devotion 
(at each gate). The flowers in his hand were doubled, 
trebled, quadrupled and quintupled (respectively in 
order) as he arrived at the gates (one after another). 
The number of flowers offered by him was sixtyl at 
each gate. How many flowers were originally taken 
by him? 

(4) The first man has 16 azure-blue gems, the 
second has 10 emeralds, and the third has 8 diamonds. 
Each among them gives to ~ach of the others 2 gems 
of the kind owned by himself; and then all three men 
come to be possessed of equal wealth. What are the 
prices of 'those azure-blue gems, emeralds and dia
monds?2 

(5) En what time will four fountains, being let 
loose together, fill a cistern, which they would severally 
fill in a day, in half a day, in a quarter and in a fifth 
part of a day?3 

Problems involving Solution of Quadratic 
Equations. The solution of the quadratic equation 
has been known in In~ia from the time of Aryabhata I 
(499). Problems on interest requiring the solution of 
the quadratic equation have already been mentioned. 
Mahivlra and BM.skara II give many other problems. 
Mahivira divides these problems into two classes: 
(i) those that involve square-roots (mula) and (ii) those 

1 GSS, p. 79 (I 1 2~-1 1 l~). The printed text has pafica ("five"). 
According to it the answer is 43/12 which appears absurd. There 
are some other problems in the printed edition which give such 
absurd results. All those arc,. we presume, due to the defects of 
-the mss. consulted by the editor. So here we have made the 
emendation <sixty.' 

2: GSS, p. 87 (165-166). 
3 BrSpSi, p. 177 (com.); L, p. 23. 
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that involve the square (varga) of the unknown. The 
first type gives a single positive answer, while the second 
type has two answers corresponding to the two roots 
of the quadratic. Bhaskara II deals with the first type 
of problems only in his pa!igatlita, the Lflavati. The 
second type of problems, involving the square of the 
unknown has been treated by him in his Bijagattita 
(algebra). The following examples will illustrate the 
nature and scope of such problems: 
Problems involving the square-root: 

(I) One-fourth of a herd of camels was seen in the 
forest; twice the square-root of that had gone to 
mountain slopes; and three times five camels were found 
1.0 remain on the bank of a river. What was the numeri
cal measure of that herd of camels?l 

(2.) Five and one-fourth times the square-root (of i 
herd) of elephants are sporting on a mountain slope; 
Eve-ninths of the remainder sport on the top of the 
mountain; five times the square-root of the remainder 
sport in a forest of lotuses; and there are six elephants 
then (left) on the bank of a river. How many are the 
dephants?2 

(3) In a garden beautified by groves of various 
kinds of trees, in a place free from all living animals, many 

1 GSS, p. 5 I (34). The problem belongs to the type of the 
mt,ta-jdti, and leads to an equation of the form x-(bx+cVx+a) =0. 

The method of solution is given in GSS, p. 50 (33). 
2 GSS, p. 52 (46). The problem is of the fefa-muia variety. 

It gives the equation 
X_!l4

1Vx-& (x-¥VX) -5 vx-¥-VX _~(X __ 24I,.Vx) = 6. 

Mabavira reduces it by putting Z = x--¥Vx -~ (x- -¥Vx). 
to Z- 5 V Z =6. In the general case a similar equation is again 
obtained, which is again reduced, and so on till the equation 
is reduced to the form, x-bVx = d, from which x can be easily 
obtained. 
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ascetics were seated. Of them the number equivalent 
to the square-root of the whole collection were practis
ing yoga at the foot of a tree. One-tenth of the 
remainder, the square-root (of what remained after 
this), ~ (of what remained after this), then the square
root (of what remained after this), i (of what remained 
after this), the square-root (of what remained after this), 
-} (of what remained after this), the square-root 
(of what remained after this), -t (of what remained 
after this), the square-root (of what remained after this), 
-! (of what remained after this), the square-root (of what 
remained after this)-these parts consisted of those who 
were learned in the teaching of literature, in religious law. 
in logic, and in politics, as also of those who were 
versed in controversy, prosody, astronomy, magic, 
rhetoric and grammar, as well as of those who pos
sessed an intelligent knowledge of the twelve varieties 
of the miga-Mstra; and at last 12 ascetics were seen (to 
remain without being included among those mentioned 
before). 0 excellent ascetic, of what numerical value 
was this collection of ascetics?1 

(4) A single bee (out of a swarm of bees) was seen, 
in the sky; -t of the remainder (of the swarm), and {
of the remainder (left thereafter) and again -k of the 
remainder (left thereafter) and a number of bees equal 
to the square-root of the numerical value of the swarm, 
were seen in lotuses; and two bees were on a mango 
tree. How many were there?2 

(5) Four times the square-root of half the number 
of a collection of boars went to a forest wherein tigers 

1 GSS, p. 52 (42-45). The problem is of the same variety 
as the above one. The substitution will have to be made 6 times 
to reduce the resulting equation. 

2 GSS, p. 53 (48). This problem is of the dviragra-fe,a-mfiJa 
variety. 
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were at play; 8 times the square-root of fo of the remain
der went to a mOU1'l.tain; and 9 times the square-root 
of ~ of the (next) remainder went to the bank of 
a river; and boars equivalent in (numerical) measure to 
~ 6 were seen to remain in the forest. Give the numerical 
measure of all those boars.! 

(6) The sum of two (quantities, which are respec
tively equivalent to the) square-root (of the numerical 
value) of a collection of swans and (the square-root of the 
same collection) as combiped with 68, amounts to 34:
How many swans there are in that collection?2 

(7) Partha (Arjuna), irritated in fight, shot a quiver 
of arrows to slay KarQ.a. With half his arrows, he 
parried those of his antagonist, with four times the 
square-root of the quiver-full, he killed, his horses; 
with three he demolished the umbrella, standard and 
bow; and with one he cut off the head of his foe. 
How many were the arrows, which Arjuna let fly?3 

. (8) The square-root of half the number of a swarm 
of bees is gone to a shrub of jasmin; and so are eight
ninths of the whole swarm; a female is buzzing to one 
remaining male that is humming within a lotus, in 
which he is confined, having been allured to it by its 

1 GSS, p. H'(56). This problem ig of the amfa-mtila variety, 
wherein fractional parts of square-roots are involved. The prob
lems give equations, of the form 

x-a1\lb1x - ,a2Vb2(x-al...Jli;X~ 

-as y'i:ba
r[ (7:x-:---=-al~Vb.X:--r,:.bl=x")--a::-2V-Y;b=2(;:::x=a=1="J=;:b=1=XO-) :_ ... =k. 

By repeated substitutions Mahavira reduces the equation to the 
form x - Av'Bx - c = O. 

2 GSS, p. 56 (68). This problem is of the muia-mifra variety, 
wherein the sum of square-roots is involved. It gives an equa
tion of the form \Ix +V;>(+d = .m. 

aL,p.I6. 
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fragrance at night. Say, lovely woman, what is the 
number of bees. 1 

Problems involving the square of the unknown: 
(9) One-twelfth part of a pillar, as multiplied by -io 

part thereof, was found under water; .Jrr of the remainder, 
as multiplied by -A: thereof, was found buried in the 
mire, and 20 hasta of the pillar were found in the air. 
o friend, give the measure of the length of the 
pillar. 2 

, (10) A number of elephants (equivalent to) -fn- of 
the herd minus z, as multiplied by the same (Yu of the 
herd minus 2), is found playing in a forest of sal/ok! 
trees. The remaining elephants of the herd equal in 
number to the square of 6 are moving on a mountain. 
How many are the elephants?S 

, 
15. THE MATHEMATICS OF ZERO 

It has been shown that the zero was invented in 
India about the beginning of the Christian era to help 
the writing of numbers in the decimal scale. The 
Hindu mind did not rest satisfied till it evolved the 
complete arithmetic of zero. The Hindus included 
zero among the numbers (saJikhyd), and it was used 

1 L, p. 16. 
2 GSS, p. 55 (60). The problem gives the equation 

x 2 1.3 x 2 

(x - --) - -- (x- -- )2-20 
. 12.30 20.16 12_;0 - . 

Also solved by regula jaisi. MahflVlra puts (x - _I_X2)= Z' and 
12.,30 

then solves the quadratic 

z - _3_ Z2= ZOo 
_ 320 

The roots of this are then used to get the values of x. 
• S GSS, p. 55 (6;). 
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in their arithmetic at the time when the original of 
the BakhshaH Manuscript was written, about the third 
century A.D. The operation of addition and subtrac
tion of zero are incidentally mentioned in the Pafica
siddhdntikd of Vadhamihira (505). The complete 
decimal arithmetic is found in the commentary of 
Bhaskara I (c. 525) on the Aryabha/[ya. The results of 
operations by zero are found stated in the work of 
Brahmagupra (628) and in all later mathematical treatises. 
The treatment of zero in the arithmetic of the Hindus 
is different from that found in their algebra. In order, 
therefore, to bring out this difference clearly, we give 
separately the results found in pd!igapita (arithmetic) 
J.nd in bfiagapita (algebra). 

Zero in Arithmetic. The Hindus in their arith
metic define zero as the result of the operation 

a-a=o 
This definition is found in Brahmagupta's work1 and 
is repeated in all later works. It is directly used in the 
operation of su'btraction. In carrying out arithmetical 
operations, the results of the operations of addition, 
subtraction and multiplication of zero and by zero 
are required. The Hindus did not recognise the opera
tion of division by zero as valid in arithmetic; but 
the division of zero by a number was recognised as 
v:llid.. Niraya1).a in his pd!igapita (arithmetic) has clearly 
stated this distinction: . 

"Here in pd/igapita, division by zero is nOt'recog
nised, and therefore, it is not mentioned here. As it 
is of use in bfiagapita (algebra), so I have mentioned 
division by zero in my Bfiagattita."2 

1 BrSpSi, p. 309. Cf. B. Datta, BCMS, XVIII, pp. 165-176 for 
some other details regarding operations with zero. 

2 GK, remark subjoined to i 30 .. 
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cipher. A number divided by zero IS kha-hara (that 
number with zero as denominator). The product 9f 
(a number and) zero is zero, but it must be retained as 
a multiple of zero (kha-gurza), if any further operations 
impend. Zero having become a multiplier (of a number), 
should zero afterwards become a divisor, the number 
must be understood to be unchanged. So likewise 
any number, to which zero is added, or from which it 
is subtracted (is unaltered)."l 

In the Bijagarz/ta, the same results are given with 
the addition that if a quantity is subtracted from zero, 
its sign is reversed, while in the case of addition the sign 
remains the same. 

Zero as an Infinitesimal. It will be observed 
that Brahmagupta directs that the results of the opera
tions x -7 0 and 0 -7 x should be written as ~ and ~ 
respectively. It is not possible to tell exactly what he 
actually meant by these forms. It seems that he did 
not specify the actual value of these forms, because the 
value of the variable x is not known. Moreover, the 
zero seems to have been considered by him as an 
infinitesimal quantity which uttimately reduces to 
nought. If this surmise be correct, Brahmagupta is 
quite justified in stating the results as he has done. 

The idea of zero as an infinitesimal is more in evi
dence in the works of Bhaskara II. He says: "The 
product of (a number and) zero is zero, but the number 
must be retained as a multiple of zero (kha-glltza), if any 
further operations impend." He further remarks that 
this operation is of great use in astronomical calculations. 
It will be shown in the section on Calculus, that 
Bhaskara II has actually used quantities which ultimately 
tend to zero, and has successfully evaluated the differen
tial coefficients of certain functions. He has, moreover, 

lL, p. 8. 
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used the infinitesimal increment J'(x)ox of the function 
J(x), due to a: change ox in x. 

The commentator Krt':t;la proves the result 0 X a = 0 

= aX 0 as follows: 
"The more the multiplicand is diminished, the 

smaller is the product; and, if it be reduced· in the ut;.. 
most degree, the product is so likewise: now the utmost 
diminution of a quantity is the same with the reduction 
of it. to nothing; theref'ore, if the multiplicand be nought, 
the product is cipher. In like manner, as the multiplier 
decreases, so does the product; and, if the multiplier be 
nought, the product is so too." . 

In the above zero is conceived of as the limit of a 
diminishing quantity. 

Infinity. The quotient of division by zero of a 
Bnite quantity has been called by Bhaskara II as kha
hara, which is synonymous with kha-cheda (the quantity 
with zero as denominator) of Brahmagupta. Regard
ing the value of the kha-hara, Bhaskara II remarks: 

"In this quantity consisting of that which has 
cipher for its divisor, there is no alteration, though many 
may be inserted or extracted; as no change takes place 
in the infinite and immutable God, at the period of the 
destruction or creation of worlds, though numerous 
('rders of beings are absorbed or put forth."1 

From the above it is evident that Bha.skara II 
a 

knew that 0 = 00 and 00 + k = 00. 

1 BBf, pp. 5-6. G. Thibaut (Asrronomie, Astrology und Ma
thematik" Strasbourg, 1899. p. 72.) thought that this passage was 
an interpolation. There appears no justification. for considering 
this as an interpolation, as the passage occurs in the oldest 
known commt:otary and in. all copies of the work so far found. 
ef. Datta, i.e., p. 174. 
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Gal)eSa remarks that !!__ is "an indefinite and unli-
o 

mited or infinite quantity: since it cannot be determined 
how great it is. It is unaltered by the addition or 
subtraction of finite quantities: since in the preliminary 
operation of reducing both fl'actional expressions to a 
common denominator, preparatory to taking their sum 
or difference, both numerator and denominator of the 
finite quantity vanish." 

Kr~l)a remarks: 
"As much as the divisor is diminished, so much is 

the quotient increased. If the divisor is reduced to the 
utmost, the quotient' is to the utmost increased. But, 
if it can be specified, that the amount of the quotient 
is so much, it has not been raised to the utmost: for a 
quantity greater than that can be assigned. The quo
tient, therefore, is indefinitely great, and is rightly 
termed infinite." 

Regarding· the proof of: ± k = .; KnWa makes 

the same remarks as Ganesa. He, however, goes a 
step further when he say~ that 

a _ b - - -. 
o 0 

This is illustrated by him through the instance of the 
shadow of a gnomon, which at sun-rise and sun-set 
is infinite; and is equally so whatever height be given 
to the gnomon, and whatever number be taken 
for the radius. "... Thus, if the radius be I 2.0; and 
the gnomon be 1, 2, 3 or 4; the expression deduced 
from the proportion, as sine of sun's altitude is to 
sine of zenith distance, so is gnomon to shadow, 
becomes J 2 0 24 0 3 60 or 4 8 0 Or if the gnomon be -0, -U-' -0 -0- . , , 
as it is usually framed, 12 fingers, and radius be taken 
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as 3438, 1.20, 100 or 90, the expression will be ~, 
~, ~ or I QuSQ, which are all alike infinite."l 
. Indeterminate Forms. Brahmagupta has made the 
lilcorrect statement that 

o 
-=0 
o 

Bhaskara II has sought to correct this mistake of 
Brahmagupta. According to him 

L · a·8 1m -- = a. 
8 ~o 8 

His language, however, in stating this result is defective, 
[or he calls the infinitesimal 8 zero, not being in 
possession of a suitable technical term. That, in the 
above case, he actually meant by zero a small quantity 
tending to the limiting value zero, is abundantly clear 
from the use he makes of the result in his Astronomy. 
Taylor2 and Bapu Deva Sastri3 are also of this opinion. 

Bhaskara has given three illustrative examples. 
They are: 

(i) 
( XXO) . xxo+ -z-

Evaluate = 63. 

° 
From this he derives the result x = 14, which is 

correct if we consider 0= 8, a small quantity tending 
to zero. His other examples are: 

(ii) {(~+X-9)2+(~+X-9)} ° = 90 

giving x = 9; and 

1 All the aboy'e passages are taken from the respective com
mentaries. They have been noted by Colebrooke, I.e. 

2 LfJdlvat/~ Bombay, 18 16, p. 29. 
3 His Bija-ga?lita (in Hindi), Pt. 1, Benares. 1875, p. 179 it sq. 
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giving X=2. 1 

Bha.skara II's result 
a 
-Xo=a 
o 

is, however, not quite correct, as the form is truly 
'indeterminate and may not always have the value a. 
His attempt, however, at such an early date to assign 

a meaning to the form ~, and his partial solution of the 
o 

problem are very creditable, seeing that in Europe 
mathematicians made similar mistakes upto the middle 
of the nineteenth century A. D.2 

.1 The answers of this and the previous example are incorrect 
because 0 2 has been taken to be equal to o. 

2 Martin Ohm (1828) says: "If a is not zero, but b is zero,' 
then the quotient alb has no meaning" for the quotient "multi
plied by zero gives only zero and not a, as long as a is not zero." 
Lehrbllch der niedern AnalYsis, Vol. I, Berlin, 1828, pp. lID, 112. 
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186; Taittiriya, 57 

Briihma-sphuta-siddhiinta, 8, 59, 
89, 156, 228, 241 

Brahmi numerals, 25; early 
occurrence and forms, 2. 5; 
period of invention, 37; 
relation with letter forms, 
33; resume, 37; theories 
about .their origin, 28 

BJ:hat-k~etra-samasa, 79 
Brhat-samhita, 55, 59 
Brnda, 163 
Brockkhaus, 65 
Buddha, 2, 36, 187 
Buhler, 16, 17, 19,21,23,24,30, 

33, 35, 37,45,47,49,60,74 
Burnell, 30, 75 

Caire, 97 
Cajori, 88 
Capella, 92 
Caraka,2. 

C 
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Carra de Vaux, 97, 100, 101, 102. 
Cataneo, 175 
Catur, 13 
Chandal_1-sutra, 58, 75, 76, 77, 86 
Chatterjee, C.D., 53 
Chaya, 12.4 
Checks on operations, 180 
Chedana, I 50 
Chid, 212. 
Chuquet, 175 
Citi, 12.4 
Clark, W.E., 64, 65, 66, 67, 170, 

171 , 175, 197 
Coedis, G., 43 
Colebrooke, 134, If5, 145, 147, 

15 6, 164,177,2.11,2.33,245 
Commercial Problems, 218; 

barter and exchange, 226; 
interest in ancient India, 2. I 8; 
interest in Hindu gaQita, 
2 I 8; other problems, 220; 
other types of, 227; pro
blem involving a quadratic 
equation, 2.19 

Cowell, E.B., and Neil, R.A., 7 
Cube, 162; minor methods of, 

166; terminology, 162; the 
operation, 163' 

Cube-root, 175; terminology, 
175; the operation, 175 

Cullaniddesa, 4 
Cunningham, 28, 2.9 

Dantidurga, 40 
Darius, 23 

D 

Darius Hystaspe~, 101 

Dasa, 9, 12, 13 
Dasagltikft, 64, 65, 66, 71 
Dasagur;til_1 samjiia, 13 
Dasagur;tottara sarhjiia, 10 

Dasa-ko~i, 13 
Da§a-lak~a, 13 

Dasa-sahasra, 13 
Datta, B., 7, 61,65,81, 84, 85, 

I 23, 15 5, I 70, I 84, 185, 2 I 8, 
243 

Deccke, W., 16 
Decimal place-value system, 38; 

epigraphic instances, 40; 
forms, 39; important features, 
38; inventor unknown, 49; 
place of invention. of the 
new system, 48; their sup
posed unreliability, 44; time 
of invention, 49 

Delambre, 184 
Devendravarmar;ta, 40 
Dharma-sutra, 17 
Dhul1, 8; karma, 8, 123, 129 
Digges, 2.10 
Digha-Nikftya, 7 
Division, 150; terminology, 150; 

the method of long, 151; 
the operation, 150 

Divyavadana, 7 
Djahiz, 97 
Dramma, 2.27 
Dvivedi, S., 59, 12.9, 131, 15 6, 

168, 178, 183, 241 

E 

Ekiidasa-rasika, 124 
Ekanna-catvarirhsat, 14 
Ekanna-virhsati, 14 
Eklkarar;ta, qo 
Ekona, 14 
El-jowharee, 100 
Elliot, 100 
End, 101, see hend 
Enestrom, G., 149 
Euting, J., 23 

_Fihrist, 98 
Firdausi, 100 

F 
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Firouzibadi, 100, 101 
Fleet, 51., 60, 65, 67, 12.4 
Fliigel, G., 98 
Fractlons, 185; addition and sub

traction, 196; cube and cube
root, 199; division, 197; early 
use, 185; lowest common 
multiple, 195; multiplication, 
196; reduction in combina
tions, 190; reduction to 
common denominator, 189; 
reduction to lowest terms, 
189; square and square-root, 
199; terminology, I 88; the 
eight operations, 195; unit 
fractions, 199; writing of, 188 

~ Frisius, Gemma, 175 

G 

Gar:taka, 12.7 
GaQeSa, 136, 145, 146, HI, 

2.30, 2.44 
Gatigadhara, 131, IB, 147 
Ganguli, 65. 
GaQ.ita, 4, 5, 6,7,8,83, 12.8, 130; 

avyakta. 12.3; vyakta, 12.3 
Gar.llta-kaumudi, 12.5 
_GaQ.ita-maiijari, 136, 144, 145 
GaQitanuyoga, 4 
GaQita-sara-samgraha, 80, 12.5, 

2.19, 2.2.3, 2.2.7, 2.30, 2.40 
GaQita-tilaka, 12.5 
Gerbert, 93, 94 
Ghana, 8, 124, 162, 177, 

178, 179; pada, 175 
Ginsburg, J',95 
Gomutrika, 13 5, x 47, 148 
Gotama-sutra, 2.I8 
GUQaka~ 135 
GUQallia, 135, 198 
GUQana, 1 %4, 13 4; i~!a, I; 6, 149; 

phala, 135; tastha, 146; 
tiryaka, 145; 

GUI,lya, 135 

H 

Halifax, John of, 95 
Hall,- F., 81 
Halle, 104 
Halsted, G.B., 38, 39 
Hanana, 134, 139 
Handasa, 102. 
Handasi, 101, 102. . 
Hara, 150 
HaraQa, 150 
Harya, 150 
Heath, 50 
Hemcandra, 12. 
Hend,loI 
Hetuhila, I I 

Hetvindriya, I I 
Hind, 100, 101 
Hindasa, 101, 102. 
Hindasi, 101 

. Hindi, 100, 101, 102. 
Hindisah, 98, 101 
Hindu Numerals in Arabia, 88; 

Arabic reference, 96; definite 
evidence, 93; European re
ferences, 102.; in Europe, 92.; 
miscellaneous references, 95; 
Syrian reference, 95; the 
terms hindasa, etc., 101 

Hisab-al-ghohar, 98, 12.4 
Hunter, G.R., 19, 2.9 

I 

Ibn Albanna, 99 
Ibn Hawkal, 100 
Ibn Seedeh, 100 
Ibn Tarik, 89 
Ibn Wahshiya, 96 
Iccha, 198, 2.04-2.08; pak~a, 2.II, 

2.1; 
Idaru, 186 
Ilm-hisab-altakhta, 12.3 
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Indraji, Bhagvanlal, 6, 2.6, 35-37 
Infinity, 2.43 
Inscription, Ahar Stone, 42., 52.; 

at Po Nagar, 44; Belhari, 40; 
Buchkila-of Nagbhata, 
41 ; Deogarh Jaina-of 
Bhojadeva, 42.; Dholpur, 60; 
fromDhauli, 33; from Girnar, 
33; from Kanheri, 41, 42.; 
Ghatiyala-of Kakkuka, 41; 
Gurjara-45; Gwalior-of 
Allah, 42.; Gwalior-of the 
reign of Bhojadeva, 42., 82.; 
Hathigumpha, 6; Hindu, 60; 
J unar, 47; Kanheri, 40; 
Kharosthl, 2.1; K~atrapa, 
34; Nanaghat, 2.5, 2.6; of 
Asoka, 16, 20,21,23,28,34; 
of Bauka, 4 I; of the Ku~anas, 
22, 34; of Rudradaman, 47; 
of the Parthians, 2. I; of the 
Sakas, 2 I; of Samanta 
Devadatta, 41; of Sambor, 44. 
of Srivijaya, 44; of Yasovar
maQ.a, 43; Pehava, 42; 
Sanskrit and old Canarese, 43; 
Siyadoni stone, 43; stone, 45; 
word numerals in, 59 

Isidorus of Seville, 102 
I~ta, 135 
h.takarma, 230 
Intakri, 100 
!tarhi, 186 

Jacobi, H., 7 
Jadhr, 170 

J 

J aivardhaQ.a II, 40, 82. 
Jaladhi, 13 
Jarez de Ie Frontera, 94 
Jad, 188 
Jinabhadra GaQ.i, 61, 79 
John, 96 

Jones, Sir W., 16 
Jyoti~a, 8 

K 

Kaccayana's Pali Grammar, I I 

Kaiyyata, 63 
Kikil).l, 206 
Kala, 185, 188 
KalasavarQ.ana, 8 
KalhaQ.a, 50 
Kalidasa, Z 

Kalpasutra, 6, 7 
KiQ.<;ia, 18 
Kailkara, 10 
Kapadia, H.R., 80, 151 
Kapatasandhi, I 34, I 3 5, I 36, 

137, 143, 144, 145 
Karahu, II 
KaraQ.a, 50 
KaraQ.a-kuruhala, 184 
KaraQ.i, 170 
Karpinski, 97; see Smith 
Kaqa, 206 
Katapayadi system, 69; first 

variant, 70; second variant, 
71; third variant, 72; fourth 
variant, 72-

Kathana, IZ 

Katyayana, 58, 6; 
Kautilya, 2; Arthasastra of, see 

Arthasastra 
Kiyastha, 50 
Kaye, G. R., 44, 45', 46, 47, 

48, 59, 60, 65, 85, 101,102., 
156, 168, 170, 17(, 175, 190 

Keith, see Macdonell 
Kerala system, 72. 
Kern, 65 
Kha-cheda, 24;; -hara, 242., 24h 

244; -guQ.a, 2.42 
Khalif aI-Mansur, 89 
Khalif Walid, edict of, 89 
KhaQ.9a,1 3 5 
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Khat).9a-khadyaka, 89 
Khara vela, 6 
Kharogh'i numerals, 21; early 

occurrence, 2 I; forms and 
origin, 2.2.; lipi, 2 I 

Kharva, I;; maha, 13 
Khata, 12.4 
Kopp, 16 
Koti, 10, II, 12, 13 
Koti-ko~i, 11, 12. 
Kotippakoti, 12. 
Krakacika, 1 24 
Krama, 131 
Kr~t).a, 2.43, 244 
Krti, 1 55, 169 
K~etragaQita, 7, 8 
K~ipra, 186 
K~iti, 13; maha, 13 
K~obha, 13; maha, 1,3 
K~obhya, 10 
K~ol').i, 13; maha,. 13 
Kumuda, 12 
Ku~~ha, 185 
Kugaka,8 

L 

Labdha, 150 
Laghu-Bhaskariya, ~9 
Lahiri, 65 
Lakkha, II 

Lak~a, 11, 13 
Lalitavistara, 10, -37, 187 
Lalla, 61, 87, 12.5 
Langdon, 25, 2.9 
La Roche, 175 
La~yayana, 58 
Lekhapaiicasika. 50 
Lekhaprakasa, 50 
L"onardo Fibonacci of Pisa, 94, 

103 
Lespius, 16 
Lilavatl, 125, 131, 132, 133, 

134, 13 6, 137, 144, 145, 

146, 147, 211, 213, 227, 
229, 230, 235, 241, 2.45; 
Gat).eSa's commentary, 144, 
145, 146 

Lowest Common Multiple, 195 

M 

Macdonell and Keith, 9 
Madhya, 9, 1 3 
Maha-Bhaskariya, 59, 80 
Mahibja, 13 
MaMkathana, 12 
Mahasaroja, 13 
Mahavlra, 5, 13, 5~, 56, 57, 

77, 80, 13 6, 137, 145, 15 I, 
156, 157, 161, 162, .164, 166, 
167, 168, 172, 188, 191, 192., 
195, 196, 198, 199, 205, 
208, 2. I Z, 220, 2.2.2., 2.24, 
2.30, 233, 235, 237, 23 8, 
240, 241 

Mahmud bin Qajid al-Amuni 
Saraf-Eddin, 99 

Maitrayat).l Samhita, 9, 18, 185 
Majjhima Nikaya, 4 
Malayagiri, 79 
Mana, 2.04, 2.05 
Manoraiijana, 132, 1'37 
Marre, A., 100, 184 
Marshall, 19 
Martin, Ohm, z46 
Ma:?a, 218 
Mathematics, appreciation of, 3; 

decay of, 127; Hindus and, 3; 
in Hindu education, 6; of 
zero, 2;8; scope and develop
ment of Hindu, 7 

Maximus Planudes, 104, 144, 184 
Mazumdar, R.C,59 
J\feasures, see weights 
Megasthenes, Z 1, ; 7 
Mihir Yast, 101 
Milindapaiiho, 7 
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Mille; 9 
Miscellaneous problems, 230; 

problems involving solution 
of quadratic equations, 234; 
problems involving the 
square of the unkown, 238; 
problems involving the 
square-root, 23-5; problems 
on mixture, 2;3; regula falsi, 
230; the method of inver
sian, 232 

Misraka, 124; vyavahara, 219, 233 
Misrar:ta, 1 30 
Mitra, Rajendra Lal, 10,97, 187 
Mohammad, 88 
Mohammad Ben Musa, 102 
Mohenja-dara, 19; and Harappa, 

,19, 2" 29; and the Indus 
Valley civilizatian, 17; dis
coveries at, I; finds of, 20 

Montucla, J.F., 99 
Mudd, 7 
Mudrabala, 11 
MJ.lhurta, 186 
Mukerjee, Sir Asutosh, 17 
Mula, 169, 170, 220, 234; amsa, 

237; dviragra se~a, 236; 
ghana, 124, 175; jati, 235; 
misra, 2 37; se~a, 23 5; varga, 

• I.?-4, 169 
Multiplication, I 34; algeb-

raic methads, 149; Brahma
gupta's method,. 136; by 
separatian of places, 146; 
cross-multiplication method, 
145; direct process, I 3 8; daar
junction method, 13P; gel asia 
methad, 144; inyerse method, 
139; methods" of, 13 5: parts
method, 148; terminology, 
134; transmissian to. the 
west, 143; zigzag method, 
147 
17 

Munisvara, 2 I 3 
Myriad, 9 

Nagabala, 10 
Nagad script, 39 
Nagarjuna, 2 
Nahuta, 12 
Nai~idha-carita, 85 
Nallino, 83 
Narada, 4 
Naraya!).a, 13, 137, 152, i6I, 

162, 167, 168, '18" 184, 
205, 240 

Nau, F., 95 
Nava, 13;-dasa, 15 ;-vimsati, 15 
Nava-rasika, 124 . I - . • 

Neil, R.A., see Cawell 
Nikharva, 10, 13 
Nilaka!).~ha, 67, 170 
Ninmihuta, 1 z. 
Nirabbuda, 12 
Niravadya, 1 I 
Niruddha, 195 
Ni~ka, 213, Z.t4, 215, 216 
Niyuta, 9, 10, 12 
Notation, abjad, 89; decimal 

place-value, 3; difference 
from ather, 27; epigraphic 
instances of decimal place
value, 40; Greek alphabetic, 
50; 'places o.f, 12; scale of, 9 

Numeral, ghobar, 89, '9°,91,9" 
94; Hieratic and Demotic, 28; 
Hindu, , 8; Khara~!hi and 
Semitic, 28 

Numeral notation, J; Brahmi, 
25; earliest, 19; in spo.ken 
language, . 13; Kharo.~thi, 
21; terminology, 9 

Numerical, Aso.kan-6gures, 37; 
development of ·symbolism, 
16 
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Nyarbuda, 9,10, 13 

o 
Ojha, 17, 24 
Oldenburg, 4 
Operations, checks on, 180 

P 

Padoli, 146 
Pada, 155, 169, 170, 177 
Padma, I 3; maha, I 3 
Paduma, 12 
Pal).a, 206, 216, 218, 227, 229 
Pafica, 13 
Pafica-rasika, 12.4 
Panca-siddhantika, 59, 78, 79, 

239 
PaI)ini, 2, 18, 33, 63, 218 
Pailkti, 173 
Pannavami-sutra, 37 
Papyrus Blacas, 24 
Paramesvara, 67, 1 5 5, 197 
Parardha, 9, 1 3 
Parasparakrtatp, 134 
Pargiter, 58 
Pari karma, 8 
Patala, 18 
Patana, 132 
Patanjali, 2,63, 85 
Pari, 8, 124, 126, 12.9, 138, 

139, 140, 141, 148, 15 2, 
157,15 8, 159, 173,174,177, 
178, 180 

l'atigaQita, 8, 82, 123, 126, u8, 
151, 184, 187, 195, 222, 2.26, 
227, 233, 235, 239, 240 

Patisara, 125, 2. 13 
Pana, 123 
Panopadhyflya, 50 
Peurbach, 175 
Phala, 198, 2.04, 205, 206, 2.08, 

212,216,220,223, 22.8 
Phalaka, I 23 

Phoenician forms (of numerals), 
24 

Phoenician script, 17 
Pingala, 75, 76, 77 
Place-value, date of invention 

of the notation, 86; In Hindu 
li~erature, 83; ir> Jain cano
meal works, ~3; in literary 
works, 85; 10 works on 
philosophy, 85; invention of 
system, 51; new notation 
53; principle, 39; the decimai 
notation, 40; the decimal 
system, 43 

Plate, Cambay-;-of Govinda, 43; 
C~argaon-of Huvi~ka, 47; 
Clacole, 40; Daulatabad--of 
Sati.kargaQ.a, 41; Dhiniki 
Copper, 40; Grant of Avani
varmaI)a, 42; Grant of 
Balavarmal).a, 42; Gurjara 
Grant, 40, 45, 48; Kadab 
60; PaQ9ukesvara-of Laiita~ 
suradeva, 41; Ragholi, 40, 
82; Sangli-of Ra!itrakuta 
G~vindatfija,43;Torkhedi, 41 

Prabhaga, 190 
Prake~pa karal).a', 233 
Prlikrta, 170 
Prak~epaQa, 130 
PramaI)a, 198, 204, 205, 223 ; 

rasi, 198; pak!ia, 2.11, 213 
Pratiloma, 15 I 

Pratyutpanna, 135, 139, 140 
Prayuta, 9, 12, 13 
Princep, James, 33 
Prthudakasvami, 77, 12.4, 129, 

148, 156, 163, 228 
Pulisa, 61, 79 
PUQ<;larika, 12 
PurliI)a, 2, 84, ~6, 2.06, 228; 

Agni, 58, 59, 62, 84, 86; 
Vayu, 84; Vi~l).u, 84 
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Purva, 164 

R 
Rabbi ben Ezra, 96, 103, 2 I 7, 

23 0 

Radix, 170 
RajatarailgiI.11, 50 
Rajju, 8 
Ramanujacaria, 156, 168 
Ramayat:\a, 2 

Rangacarya, 151, 226 
Rasi, 8, 124; rtiparhsaka, 199 
Ray, H.C., 17 
Ray, Sir P.c., 85 
Regula falsi, 2~0, 238 
Reiniud, 97, 98 
J~gveda, 9, 15, 17, IS, 20, 

57, 18 5 
Rhys Davids, 7 
Riese, 149 
Rodet, 65, 66, 170 , 175 
Rosen, 102 

Rule of Three, 203 ; apprecia
tion of, 208; as a particular 
case, 216; compound propor
tion, 2 10; illustration, 2 I 3 ; 
inverse, 207; proportion in 
the west, 210; terminology, 
203; the method, 204, 2 II 

Rupa, 6 
Rupa-vibhaga, 136 

S 

Sachau, E.C., 98, 99 
Sadgurusi~ya, 71 
Sadratnamala, 70 
Sahasra, 9, 12, 13 
Sakala, 199 
Salila, 10 

Samacaturasra, 155 
Samapta-lambha, I I 

Samavayanga-sutra, 6, 37 
Samkalana, 130 

SamkaJita, 124> 130, 196 

Sarhkhya, 238 
Sarhkhyuna, 4, 6, 7 
Sammelana, 1;0 

Samudra, 9, 10 

Samyojana, 130 
Sanatkumara, 4 
Sankaracarya, 85 
Sankha, 13 

Sankhyayana srauta sutra, 10 

Sankramana, 22 I, 222 
Sanku, 13 

Sapha, 185 
Sapta, 13 

Sapta-rasika, 124 
Saritapati, 13 

Sarvabala, I I 

Sarvadhana, 1,2 r, 

Sarvajiia, I I 

Sarvanukramat:\l, 71 
Sastri, Madhava, IS4 
Sastri, Sambasiva, 67 
Sata, 9, 12, 13; ko~i, 13 

Satavahana, 25 

Satottara ganana, 10 ; sarhjiia, 10 

Savarnana, 194 
Script, Indian, 16; Niigari, 39; 

North Semitic, 17; Phoeni
cian, 17; South Semitic, 16, 
17 

Sebokht, 89, 93, 95, 96 
Sefer ha-Mispar, 103 

Sefer Yesirah, 98 
Senart, E., 26 
Sengupta, 175, 197 
Se~a, 132 
Shamasastri, R., 6, 19, I~7, 218 
Siddhanta, 3, 125, 128, 

13 5, 15 0; B r2.hma-sphu~a, 8, 
59, 89, 15 6, 228, 241; Maha, 
125, 18 I, 183, 184, 240; 
Parasar, 3; Pitamaha, 3, 12 5; 

.Pulisa, 59, 62, 79, 86; 
Romaka, 125; Sekhara, 125, 
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136; Surya, 3, 59, 62, 125; 
Tattva-viveka, 125; Vasi~tha, 
3, 12 5 _ 

Siddhasena Gal).i, 80, hI 

Siladitya VI, 52 . 
Silberberg, Moritz, 103 
Sindhind. 97 
Singh, A.N., 170, 171, 172, 

173, 115 
Sir~aprahelika, 12 
Sitanath, Sri, 76 
Skandasena, 188 
Smith, 144, 146. 149, 15 0, 153, 

154, 175, 210, 217, 230, 232, 
233; and Karpinski, II, 27, 
30, 48, 80, 83, 88; 89, 90, 
95,10; • 

Sodhana, 1)2 
Sodhya, 177, 178 
Sogandhika, 12 
Square, 155; minor methods of 

squaring, 160; terminology, 
15 5; the operation, 1 56 

Square-IO.qt, 169;' terminology, 
169; the operation, 170 

Srauta-sutra, 58 
SredhI, 124, 
Sridhara, '8, '13, 134, 136, 

145, In, 156, 157. 160, 
161. 162, 163, 167; 168, 
172, 177.1 188, 190, 191, 
192, 193. 196, 198, 199, 
20 5, 207, 212, .230, 240 

Sridharacarya, see Sddhara 
Srihar~a, 85 . 
Srlpati, 128,' 136, 137, 13 8, 
, - 144, '145, qo, 167, 172 

Stambhoddesa,2;0 
Sthana,. 12, 161, I 66;-khat:1C;la, 

146, 1'48 

133; inverse process, 133; 
terminology, 132; the opera
tion, 132 

Sulba 130,134,155, 170, 185, 
188 

Sumatihar~a, 184 
Sunya. 38. 54. 77;-bi'ndu, 81,85 
Suryadasa, 133, 197, 208, 2. I I 

Suryadeva, 67, 71 
Susruta, 2 
Sllter, H., 5 1,99, 102, 143. 174 
Sutra, 4 
SvetavarI,li, 129 

T 

Taccheda, 2.41 
Taittiriya Sarhhita, 9, 14, 15; 

Brahmal)a, see Brahmal)a 
Talkhis, 99 
Tallak~at:la, II 

Tantric, 19 
Tarik aI-hindi, 143 

. Tastha, .136, 145; gUt;lana, see 
gUlJ.ana 

Tattvarthadhigama-sutra, 80, 
151, 171 

Taylor, 16, 29. 13 2 , 147, ~45 
Theon of Alexandria, 171 
Theophanes, 89 
Theory, Indraji's, 35 
Thibaut, 155 
Ti!iIambha, I I 

Trairasika, 124, 203, 204; 
vyasta, 124, 207, 210 

Tri, 13; pada, 185 
Triprasna, 5 
Trisatikfl, 59, 125, IP, 187.,205, 

227, 229 
Tropfke,80 

u StM.nanga-sutra, 8, 204 
Subandhu, 8 I, 82, 85 
Subtraction, 132; direct process, 

Umasvati, 2, 80, I J I, 189 
una-virhsati, 15; tririlsat, 15 
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Upani~ad, Chandogya, 3, 58; 
Mut:_l<;laka,4o 

Uppala, 12 
U tkrama, I; I 
Utsailga, 10 
Uttara, 163 
Uttaradhyayana-sutra, 4 

Vadava, 10 
Vadha, 134 

V 

Vajasaneyi sarilhita, 9,'15 
Vajrabhyasa, 145, 146 
Vajrapavartana-vidhi, 196 
Vallika-kuttikara, 23) 
Valmiki, 2 
Varahamihira, 61, 79, 209, 239 
Vararaka, 206 
Varga, 8, 65, 66, 67, 69, 124, 

155, 156, 235; mula, see 
mula; - varga, 8 

Vart:_la, 6;, 2.29 
Vasavadatta, 81, 85 
Vasi~!ha, 17 
Vedanga, 7, 19;-jyoti~a, 7, 58 
Vedisrl, 25 
Vibhutangama, II 
Vidya, apara, 4; Brahma, 4; 

nak~atra, 4; para, 4; rMi, 4 
Vikalpa, 8 
"liinaya Piraka: 4, 7 
'linimaya, 204, 205 
Visamjna-gati, 1 I 
Viv:lha, 10 
Vivara, 10 
Viyoga, 132 
Viyojaka, 1; Z 
Viyojya, 13 Z 
Vrnda, 13 
Vyasabh:l~ya, 85 
Vyavahara, 8;-sutra, 84 
Vyavakalita, IZ4 
Vyavasthana-prajnapti, II 

Vyutkalana, 1; 2 
Vyutkalita, 124, 13.1. 

W 

Wahshiya, 97 
Warner, A.G., and Warner, E., 

100 
Waschke, 104 
Weber, 16, 17, 37, 58 
Weights and Measures, 186 
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PREFACE 

The present work forms Part II of our History of 
Hindu Mathematics and is d~voted to the history of 
,Algebra in India. It is intended to be a source book, 
and the subject is treated topicwise. Under each topic' 
are collected together and set forth in chronological 
order translations of relevant Sanskrit texts as found in 
the Hindu mathematical works. This plan necessitates 
a certain amount of repetition. But it shows to the 
leader at a glance the improvements made from century 
to century 

To gather materials for the book we have examined' 
all the published mathematical treatises of the Hindus 
as well as most of the important manuscripts available in 
Indian libraries, a list of the most important of which 
has already been included in Palt I. We have great 
pleasure in once more expressing our thanks to the autho
rities of the libraries at Madras, Bangalore, Trivandrum, 
Tripunithura, Baroda, Jammu, and Benares, and those 
ot the India Office (London) and the Asiatic Society 
(t[ Bengal for supplying transcripts of manuscripts or 
sending them to us for consultation. We are indebted 
also to Dr. R. P. Paranjpye, Vice-Chap.cellor of the 
Lucknow University, for help in securing for our use 
several manuscripts or their transcripts from the State 
libraries in India and the India Office. 

In translating Sanskrit texts we have tried to be as 
literal and faithful as possible without sacrificing the 
spirit of the original, in order to preserve which we have 
at a few places used literal translations of Sanskrit tech-



meal terms instead of modem terminology. For in
stance, we have used the term 'pulveriser' for the equa
tion ax+0'=I, and the term ~Squate-nature' for the 
equation Nx2+c )'2. 

The use of symbols-letters of the alphabet to de
note unknowns--and equations are the foundations 
of the science of algebra. The Hindus were the first 
to make systematic use of the letters of the alphabet to 
denote unknowns. They were also the first to classify 

. and make a detailed study of equations. Thus they may 
be said to have given birth to the modern science of 
algebra. 

A portion of the subject matter of this book has been 
available to scholars through papers by various authors 
and through Colebrooke's Algebra' with Arithmetic and 
Mensuration from the Sanscrit of Brahmegupta and Bhas
cara, but about half 'of it is being presented here for the 
hrst time. For want of space it has not been possible 
to give a detailed comparison of the Hindu achievements 
in Algebra with those of other nations. For this the 
reader is referred to the general works on the history of 
mathematics by Cantor, Smith, and Tropfke, to Dixon's 
History of the Theory of Numbers and to Neugebauer's 
Mathematische Keilschrift-Texte. A study of this book 
along with the above standard works will reveal to the 
reader the remarkable progress ~n algebra made by the 
Hindus at an early date. It will also show that we are 
indebted to the Hindus for the technique and the 
fundamental results of algebra just as we owe to them the 
place-value notation and the elements of our arithmetic. 

We have pleasure in expressing our thanks to Mr. 
T. N. Singh and Mr. Ahmad Ali for help in correcting 
.proofs and to Mr. R. D. Misra for preparing the index 
to this volume. 
LUCKNOW 

March, 1938 
BIBHUTIBHUSAN DATTA 

AVADHESH NARAYAN SINGJ{ 
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CHAPTER III 

ALGEBRA 

I. GENERAL FEATURES 

Name for Algebra. The Hindu name for the 
science of algebra is bijaga(1ita. Bija means "element'" 
or "analysis" and ga(1ita "the science of calculation." 
Thus bijaga{1ita literally means "the science of calcula
tion with elements" or "the science of analytical 
calculation." The epithet dates at least as far back I 

as the time of Prthudakasvami (860) who used it. 
Brahmagupta (628) calls algebra ktt//aka-ga(1ita, Ot; 

simply kIt!/aka.1 The term ku/!aka, meaning "pulve
riser", refers to a branch of the science of algebra 
dealing particularly with the subject of indeterminate 
equations of the first degree. It is interesting to find 
that this subject was considered so important by the 
Hindus that the whole science of algebra was named 
after it in the beginning of the seventh century. Algebra 
is also called avyakta-ga(1ita or ':the science of calculation 
with unknowns" (alD'akta=unknown) in contradistinc
tion to the name vyakta-gattita or "the science of calcu
lation with knowns" (tyakta=known) for arithmetic 
Including geometry and mensuration. 

Algebra Defined. Bha.skara II (I I 50) has defined 
algebra thus: 

"Analysis (bijtl) is certainly the innate intellect 
assisted by the various symbols (1IortJo), which, for the 

lSee Bibhutibhusan Datta, "The scope and development 
of the Hindu Ga.Q.ita," IHQ, V, 1929, pp. 479-512; particularly 
PP·489f. 
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instruction of duller intellects, has been expounded 
by the ancient sages who enlighten mathematicians as 
the sun irradiates the lotus; that has now taken the name 
algebra (bijagatzita)."l 

That algebraic analysis' requires keen intelligence 
and sagac.ity has been observed by him on more than 
one occaSlOn. 

"Neither does analysis consist in symbols, nor are 
there different kinds of analyses; sagacity alone is ana
lysis, for wide is imagination."2 

"Analysis is certainly clear intelligence."3 . 
"Or intelligence alone is analysis."4 
In answer to the question, "if (unknown quantities) 

are to be discovered by intelligence alone what then 
is the need of analysis ?" he says: 

"Because intelligence is certainly the real analysis; 
symbols are its helps. The innate intelligence which has 
been expressed for the duller intellects by the ancient 
sages, who enlighten mathematicians as the sun hradi
ates the lotus, with the help of various symbols, has 
now obtained the name of algebra."5 

Thus, according to Bhaskara II, algebra may be de
fined as the science which treats of numbers expressed by 
means of symbols, and in which there is scope and pri
mary need for intelligent artifices and ingenious devices. 

Distinction from Arithmetic. What distinguishes 
algebra from arithmetic, according to the Hindus, will be 
found to some extent in their special names. Both deal 
with symbols. But in arithmetic the values of the sym
bols are vyakta, that is, known and definitely determinate, 

1 BBi, p. 99. 
3 L, p. 15; SiSi, Go/a, xiii. ;. 
5 BBi, p. JOO. 

2 BBi, p. 49; SiSi, Go/a, xiii. ,. 
4 BBi,p. 49. 
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while in algebra they are avyakta, that IS, unknown, 
indefinite. The relation between these two branches 
of ga(lita is considered by Bhaskara II to be this: 

"The science of calculation with unknowns is the 
source of the science of calculation with knowns."l 
He has put. it more explicitly and clearly thus: 

"Alg~bra is similar to arithmetic in respect of rules 
(of fundamental operations) but appears as if it were 
'indeterminate. It is not indeterminate to the intelligent; 
it is certainly not sixfold,2 but manifold."3 

The true distinction between arithmetic and. algebra, 
besides that of symbols employed, lies, in the opinion 
~ ,f Bha,skara II, in the demonstration of the rules. 
He remarks: , 

"Mathematicians have declared algebra to be com
putation attended with demonstration: else there would 
be no distinction between arithmetic and algeb.ra."4 

The truth of this dictum is evident in the treatment 
of the gU(la-karma in the Li/avati and the madhyamdharatta 
in the BijagatJita. Both are practically treatments of 
problems involving the quadratic equation. But 
whereas in the former are found simply the applica
tions of the well-known formulre for the solution of 
such equations, in the latter is described also the rationale 
of those formulre. Similarly we sometimes find included 
in treatises on arithmetic problems whose solutions 
require form,ulre demonstrated \1n books on algebra. 
The method of demonstration has been stated' to be 
"always of two kinds: one geometrical (k.fctragata) and 

1 BBi, p. I. 

2 The reference is to the six fundamen'tal operations recognised 
in algebra as well as to the six subjects of treatment which are 
essential to analysis. 

3 L, p. 15. 'BB~, p. 1%7. 
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the other symbolical (raJigata)."l We do not 'know who 
was the first in India to use geometrical methods for 

I demonstrating al gebrai cal rules. Bh:iskara II (I I 50) 
ascribes it to "ancient teachers."2 

Importance of Algebra. The early Hindus regard
ed algebra as a science of great importance and utility. 
I n the opening verses of his treatise3 on algebra Brahma
gupta (6z8) observes: 

"Since questions can scarcely be known (i.e., 
solved) without algebra, therefore, I shall speak of 
algebra with examples. 

"By knowing the pulveriser, zero, negative and 
positive quantities, unknowns, elimination of the middle 
term, equations with one unknown, factum and the 
Square-nature, one becomes the learned professor 
(acarya) amongst the learned."'" 

Similarly Bhiskara II writes: 
"\Vhat the learned calculators (samkhyap) describe as 

the originator of intelligence, being directed by a wise 
being (satpuru,fa) and which alone is the primal cause (bija) 
of all knowns (?!Jakla), I venerate that Invisible God as 
well as that Science of Calculation with Unknowns ... 
Since questions can scarcely be solved without the reason
ing of algebra-not at all by those of dull perceptions-
1 shall speak, therefore, of the operations of analysis."5 

1 BBi, p. lZ5. 2 BBi, p. 127. 
3 Forming chapter xviii of his Brdhma-sphu!a-siddhdnta. 
4 BrSpSi, xviii. 1-2.. 

5 In the first part of this passage every principal term has been 
used with a double significance. The term sdtiJkhydb (literally, 
"expert calculators") signifies the "Samkhya philosophers" in 
one sense, "mathematicians" in the other; ,.atpUrtff&l "the self
existent being of the Sarhkhya philosophy" or "a wise mathema
tician"; tJ";akta "manifested unlverse" or "the science of calculation 
with knowns." 



GENERAL FEATURES 

Naraya.Q.a (I;~O) remarks: 
"I adore that Brahma, also that science of calcula

tion with the unknown, which is the one invisible root
cause of the visible and multiple-qualitied universe, 
also of multitudes of rules of the science of calculation 
with the known."1 

p -

"As out of Him is deri¥ed this entire universe, 
visible and endless, so out of algebra follows the whole 
of arithmetic with its endless varieties (of rules). There
fore, I always make obeisance to Siva and also to 
(avyakta-) ga!1ita (algebra)."2 

He adds: 
"People ask questions whose solutions are not 

to be found by arithmetic; but their solutions can 
generally be found by algebra. Since less intelligent.. 
men do not succeed in solving questions by the rules of 
arithmetic, I shall speak of the lucid and easily intelli
gible rules of algebra."3 

Scope of Algebra. The science of algebra is broad
ly divided by the Hindus into two principal parts. Of 
these'the tlJ.ost import~nt one deals with analysis (bija). 
Tpe other part treats of the subjects which are essential 
for analysis. T.qey are: the laws of signs, the arith- ' 
metlc of zero (and infinity), operations with unknowns, . 
')urds, the pulveriser (or the indeterminate equation of 
the first degree), and the Square-nature (Of the so-called 
Pellian equation). To these some writers add con
currence and dissimilar operations, while others include 
them in arithmetic. 4 At the end of the first section 
of his treatise on algebra Bhaskara II is found to have 

1 NBi, I, R. I. 2 NBi, II, R. I. 

3 NBi, I, R, 5-6 • 
.. All writers, except Brahmagupta and Sripati, are of the latter 

, opinion. 
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observed as follows: 
"(The section of) this science of calculation which is 

essential for analysis has been briefly set forth. Next 
J shall propound analysis, which j's the source of pleasure 
to the mathematician.'11 

Analysis is stated by all to be of four kinds, for 
equations are classified into four varieties (vide itifra). 
Thus each class of equations has its own method of 
analysis. 

Origin of Hindu Algebra. The .origin of Hindu 
algebra can be definitely traced back to the period of 
the Sulba (800-500 B.C.) !lnd the Brt1hma{la (c. 2000 

B.C.). But it was then mostly geometrical.2 The 
geometrical method of the transformation of a square 
into a rectangle having a gi~en side, which is described 
in the important Sulba is obviously equivalent to the 
solution of a linear equation in one unknown, viZ" 

ax = cZ• 

The quadratic equation has its counterpart in the cons
truction of a figure (an altar) similar to a given one but 
differing in area from it by a specified amount. The usual 
method of solving that problem was to increase the 
unit of measure of the linear dimensions of the figure. 
One of the most important altars of the 0 bligatory Vedic 
sacrifices was called the 'Mahavedi (the Great Altar). 
It has been described to be of the form of an isosceles 
trapezium whose face is 24 units long, base 30 and 
altitude 36. If x be the enlarged unit of measure taken 
in increasing the size of the altar by m units of area, we 
must have 

6 (24X + 30x) 6 (24 + 30) + 3 x X = 3 X m, 
2 2 

1 BBi, p. 4,. 
2 Bibhutibhusan Datta, The Science oj the Sulba, Calcutta, 193Z./ 
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or 972X2 = 972 + m. 

Therefore x = \) I + !!!_. 
972 

If m be put equal to 972 (n-I), so that the area of 
the enlarged altar is n times its original area, we get 

x=Vn, 
some particular cases of which are described in the 
Su/ba.' The particular cases, when n = 14 or 14-f, are 
found as early as the Satapatha Brdhmat/a1 (c. 2000 B.C.). 

The most ancient and primitive form of the "Fire
altar for the sacrifices to achieve special objects" was 
the SYlnacit (or "the altar of the form of the falcon"). 

A 8 

F L E E' t: F' 
I 
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Fig. I. 

Its body (ABeD) consists of four sguares of one square 
purt/fa each; each of its wings (EFGH, E'F'G'R') is a 
rectangle of one puruftl by one PUrtI.fCl and a prddeJa 
(= I /10 of a purufa). This Fire-altar was enlarged in 

1 JBr, X. 2. 3. 7ff. 
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two ways: first, in which all the constituent parts were 
affected in the same proportion; second, in which the 
breadth of the portions LFGM and L'F'G'M' of the 
wings were left unaffected. If x be the enlarged unit 
for enlargement in the first case we shall have to solve 
the quadratic equation 

2XX 2.x+ 2.{x X (x.+~)}+ x X (x+ x )=7~ + m, 
5 10 

where fIJ denotes the increment of the Fire-altar in .size. 
2.m 

Therefore x 2 = I + -. 
15 

In particular, when m = 94, we shall have 

x 2 = I3h = 14 (approximately), 

which occurs in the Satapatha Brahma{1a. 
In the second case of enlargement the equation for 

x will be 
2.X X 2X+ 2{X x(x+ !)}+ x x(x+-h) = 7~ + m, 

or 

which is a complete quadratic ~quation. 
The problem of altar construction gave rise also 

to certain indeterminate equations of the second degree 
such as, 

(I) x 2 + y2 = Z2, 
(2) x 2 + a2 = Z2; 

and simultaneous indeterminate equations of the type 

ax + by + cZ + dw _= p, 
x+y+ z+ w=q. 

Further parti9liars -about these equations will be 
given later on. 
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2. TECHNICAL TERMS 

Coefficient. In Hindu algebra there is no syste
matic use of any special term for the coefficient. 
Ordinarily, the power of the unknown is mentioned 
when the reference is to the coefficient of that power. 
In explanation of similar use by Brahmagupta his 
commentator Prthudakasvami writes "the number 
(~~ka) which is' the coefficient of the square of the 
unknown is called the 'square' and the number which 
forms the <;oefficient of the ( simple) unknown is called 
'the unknown quantity.'''l However, occasional use 
of a technical term is also met with. Brahmagupta once 
~alls the coefficient samkhya2 (number) and on several 
other occasions gU{1aka, or gU{1akara (multiplier).s 
Prthudakasvaml (860) calls it anka" (number) or 
prak-rti (multiplier). These terms reappear in the wO.rks 
ofSripati (1039)5 and Bhaskara II (1150).6 The former 
also used rlipa for the same purpose.' 

Unknown Quantity. The unknown quantity 
was called in the Sthandnga-siitra8 (before 300 B.C.) 
yavat-tdvat (as many as or so much as, meaning 
an arbitrary quantity). In the so-called Bakhshali 
treatise, it was called yadrccha, vaiichd or kamika (any 
desired quantity).9 This term was' originally connected 
"ith the Rule of False Position.10 Aryabhata I (499) 

1 BrSpSi, xviii. 44 (Comr 
3 BrSpSi, xviii. 64, 69-71. 
6SiSe, xiv. 33-5. 
7 SiSe, xiv. 19. 

2 BrSpSi, xviii. 63' 
'BrSpSi, xviii. 44 (Com). 
e BBi, pp. 33-4. 

8 SlItra 747; if. Bibhutibhusao Datta, "The Jaina School 
of Mathematics," BCMS, XXI, 1929, pp. IIS-14S; particularly 
pp. 12.%-3· 

9 BMs, Folios 22., verso; 23, recto & verso. 
10 Bibhutibhusan Datta, "The Bakshshali Mathematics," BCMS, 

XXI, pp. 1-60; particularly l'P' 26-8,66. 
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calls the unknown quantity gulika (shot). This term 
strongly leads one to suspect that the shot was probably 
then used to represent the unknown. From the begin
ning of the seventh century the Hindu algebraists are 
found to have more commonly employed the term 
atyakta (unknown).l 

Power. The oldest Hindu terms for the power of a 
quantity, known or unknown, are found in the Uttard
d~yqyana-sutra (c. 300 B.C. or earlier).2 In it the second 
power is called varga (square), the third power ghana 
( cube), the fourth power varga-varga (square-square), 
the sixth power ghana-varga (cube-square), and the 
twelfth power ghana-varga-varga (cube-square-square), 
using the multiplicative instead of the additive principle. 
In this work we do not find any method for indicat
ing odd powers higher than the third. In later times, 
the fifth power is called varga-ghalla-ghdta (product of 
cube and square, ghdta=product), the seventh power 
varga-varga-ghana-ghata (product of square-square and 
cube) and so on. Brahmagupta's system of expressing 
powers higher than the fourth is scientifically better. 
He calls the fifth power panca-gata (literally, raised to 
the fifth), the sixth power fat/-gata (raised to the sixth) ; 
similarly the term for any power is coined by adding 
the suffix gata to the name of the number indicating that 
power.3 Bhaskara II has sometimes followed it consis
tently for the powers one and upwards.4 . In the 
A 11t!Jogadvdra-sutra5, a work written before the com
mencement of the Christian Era, we find certain interest
ing terms for higher powers, integral as well as fractional, 
particularly successive squares (varga) and square-roots 
(varga-Illtlla). According to it the term pratha!Jta-l'Clrga 

1 BrSpSi, xviii. 2, 41; SiSe, xiv. 1-2; BBi, pp. 7ff. 
2 Chapter xxx, 10, 11. 3 BrSpSi, xviii. 41, 4 2 . 

4 BBi, p. 56. 5 S ufra 142. 
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(first square) of a quantity, say a, means a2; dvitryavarga 
(second square) = (a2)2 = a4; trtiya-varga (third square) 
= «a2)2)2 = as; and so on. In general, 

nth varga of a = a2x2x2x '" to n tenn. = a2n• 

Similarly, prathama-varga-m.ula (first square-root) means 
Va; dvitrya-varga-mula (second square-root) = V (va) 
= a1/ 4; and, in general, 

nth varga-mula of a = a1/ 2n• 

Again we find the term trtfya-varga-mula-ghana (cube 
of the third square-root) for (a!/23)3 = a3/ S• 

The term varga for "square" has an interesting 
origin i·n a purely concrete concept. The Sanskrit word 
varga literally means "rows," or "troops" (of similar 
things). Its application as a mathematical term 
originated in the graphical representation of a square, 
which was divided into as many varga or troops of small 
squares, as the side contained units of some measure.! 

Equation. The equation is called by Brahma
gupta (628) sama-karatJa2 or samf-karatJa3 (making 
equal) or more simply sama4 (equation). Prthuda
kasvami (860) employs also the term samycf> (equality 
or equation); and Sripati (1039) sadrJi-kara!1a6 (making 
similar). Nanlyal).a (1350) uses the terms samf-karatJa, 
samya and samatva (equality). 7 An equation has always 
two pakJa (side). This term occurs in the works of 

1 G. Thibaut, SlIlba-siitras, p. 48. Compare also Bibhutibhusan 
Datta, "On the origin of the Hindu terms for root," Amer. Math. 
Moli., XXXVIII, 1931, pp. 371-6. 

2 BrSpSi, xviii. 63. 
3 BrSpSi,. xviii, subheading for the section on equations. 
'BrSpSi, xviii. 43. 
6 BrSpSi, xii. 66 (Com). 
6 SiJe, xiv. 1. 

7 NBi, II, R. 2-3' 
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Srldhara (C. 750), Padmanabha1 and others.2 
Absolute Term. In the Bakhshali treatise3 the 

absolute term is called drJya (visible). In later Hindu 
algebras it has been replaced by a closely allied term 
rupa4 (appearance), though it continued to be employed 
in treatises on arithmetic.5 Thus the true significance 
of the Hindu name for the absolute term in an algebraic 
equation is obvious. It represents the visible or known 
portion of the equation while its other part is prac
tically invisible or unknown. 

3. SYMBOLS 

. Symbols of Operation. There .are no special 
symbols for the fundamental operations in the Bakh
shaJi, work. Any particular operation intended is 
ordinarily indicated by placing the tachygraphic abbre
viation, the initial syllable of a Sanskrit word of that 
imp_Qrt, after, occasionally before, the quantity affected. 
Thus the operation of addition is indicated by yu (an 
abbreviation from yuta, meaning added), subtraction 
by + which is very probably from k.fa (abbreviated from 
k.faya, diminished), multiplication by gu (from gut/a 
or gut/ita, multiplied) and division by bhd (from bhdga or 
bh4Jita, divided). Of these again, the most systemati
cally employed abbreviation is that for the operation of 
subtraction and next comes that of division. In the 
ca~e of the other two operations the indicatory words 

1 The algebras of Sridhara and Padmanabha are not available 
now. But the term occurs in quotations from them by Bh:1s
kara II (BBi, pp. 6r, 67). 

2 BrSpSi, xviii. 4l.(Com); SiSe, xiv. 14,20; BBi, pp. 43-4. 
3 BMs, Folio 23, ·verso; Folio 70, recto and verso (c). 
4. BrSpSi, xviii. 43-4; SiSco xiv, 14. 19; etc. 
5 Trif, pp. 1 I, IZ. 
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are often written in full, Ot altogether omitted. In 
the latter case, the particular operations intended to 
be carried out are understood from the context. 
We take the following instances .from the Bakhshili 
Manuscript: 

(i)1 0 5 yu means ~ + l_, and I I yu 5 means ~ + l_. 
II I I I I I I 

(ii)2 

1

3 3 3 3 3 3 3 IOgU 
1111111 I 

means 3 X 3 X 3 X 3 X' 3 X 3 
X 3 X 10. 

(iii)3 0 111 J II 2 5 II 3 7 II 4 9 II 1 1 2 I 2+ I gtl 2 + I gu 2+ 
means 

XCI + ~) + { 2X( 1 + ~) - 5;} + {3X (1 + !) _ 7;} 
+ { 4X( 1 + !) - 9;}. 

(iv)4 I I I I bhd 36 
36 

1+1 I I means ( 1)( + 1 )( 1)( + 1 r 
2 3A+6 1 I-~ 1 :r 1-'4 1 11" 

(v)6 40 bhd 160 13 160 -
1 1 I means - X 13!' 

2 40 

In later Hindu mathematics the symbol for subtrac
tion is a dot, occasionally a small circle, which is placed 
above the quantity, so that "7 or "7 means -7; other 
operations are represented by simple juxtaposition. 

1 Folio 59,_recto. 2 Folio 47, recto. 
II Folio 25, verso. The beginning and end of this illustration 

are mutilated but the restoration is certain. 
, Folio 13, verso. !> Folio 42, recto. 
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-Bhiskara II (1150) says, "Those (known and unknown 
numbers) which are negative should be written with a 
dot (bindu) over them."! .A similar remark occurs in the 
algebra of NarayaQ.a (1350).2 Their silence about 
symbols of other fundamental operations proves their 
non-existence. 

Origin of Minus Sign. The origin of . or 0 as 
the minus sign seems to be connected with the Hindu 
symbol for the zero, o. It is found tc have been used 
as the sign of emptiness or omission in the early Bakh
shall treatise as \vell as in the later treatises on arithmetic 
(l,ide infra).3 It is placed over the number affected in 
order to distinguish it from its use in a purely numerical 
significance when it is placed beside the number. The 
origin of the Bakhshali minus sign { + ) has been the 
subject of much conjecture. Thibaut suggested its 
possible connection with the supposed Diophantine 
negative sign cit (reversed ¢, tachygraphic abbreviation 
for AENis meaning wanting). Kaye believes it. The 
Greek sign for minus, however, is not cit, but t. It is 
even doubtful if Diophantus did actually use it; or 
whether it is as old as the Bakhshal1 cross.4 Hoernle5 

presumed the Bakhshali minus. sign to be the abbrevia
tion ka of the Sanskrit word kanita, or nu (or nu) of nyuna, 
both of which mean diminished and both of which 
abbreviations in the Brahm! characters would be denoted 
by a cross. Hoernle was right, thinks Datta,~ so far as 
he sought for the origin of + in a tachygraphic abbre
viation of some Sanskrit word. But as neither the 
word kanita nor '!luna is found to have been used in the 
Bakhshali work in connection with the subtractive 

1 BBi, p. z. 
3 p. 16. 
5 lA, XVII, p. 34. 

2 NBi, I, R. 7. 
4. Cf Smith, History, II, p. 396. 

6 Datta, Bakh. Math., (BeMS, XXI), pp. 17-8. 
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operation, Datta finally rejects the theory of Hoernle 
and believes it to be the abbreviation kia, from klaya 
(decrease) which occurs several times, indeed, more 
than any other word indicative of subtraction. The 
sign for k[a, whether in the Br:1hml characters or in 
Bakhshali characters, differs from the simple cross ( + ) 
only in having a little flourish at the lower end of the 
vertical line. The flourish seems to have been dropped 
subsequently for convenient simplification. 

Symb'lls for Powers and Roots. The symbols 
for powers and roots are abbreviations of Sanskrit 
words of those imports and arc placed after the number 
affected. Thus the. square is represented by va (from 
.Iarga), cube by gha (from ghana), the fourth power by 
va-va (from varga-varga), the fifth power by va-gha-gha 
(from varga-ghana-ghdta), the sixth power by gha-va (from 
ghana-varga), the seventh power by va-va-gha-ghd (from 
varga-varga-ghana-ghdta) and so on. The product of two 
or more unknown quantities is indicated by writing bh,f 
(from Mdvita, product) after the unknowns with or with
out interposed dots; e.g., ),dva-kdgha-bhd or ydvakdghabha 
means (yd)2 (kJ)3. In the Bakhshali treatise the square
root of a quantity is indicated by writing after it mu, 
\vhich is an abbreviation for mula (root). For instance,1 

I I II .Y" 5 11111 41 
I I means V p + 5 = 4 

I 
III 7+ IJJ Ii 21 

. 1 I means V 11 - 7 = 2.. 

and 

In other treatises the symbol of the square-root 
is ka (from karapi, root or surd) which is usually placed 
before the quantity affected. For example,2 ka 9 lea 4.50 

1 Folio 59, recto; compare also folio 67, verso. 
2 BBi, p. 15. 
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k.a 75 ka 54 means V9 + Y 45 0 + V75 + V 54· 
Symbols for Unknowns. In the Bakhshali 

treatise there is no specific symbol for the unknown. 
Consequently its place in an equation is left vacant 
and to indicate it vividly the sign of emptiness is put 
there. For instance,l 

The use of the zero sign to mark a vacant place 
is found in the arithmetical treatises of later times when 
the Hindus had a well-developed system of symbols 
for the unknowns. Thus we find in the Trifatik.d2 of 
Sridhara (c. 750) the following statement of an arithme
tical progression whose first term (ad if;) is 20, number 
of terms (gaccha/l) 7, sum (gattitmil) 245 and whose com
mon difference (uttaraf;) is unknown: 

I tidi/J 20 I II 0 I gacchaf; 7 I gat1itall; 245 I 
This use of the zero sign in arithmetic was consi

dered necessary as algebraic symbols could not be 
used there. Lack of an efficient symbolism is bound 
to give rise to a certain amount of ambiguity in the re
presentation of an algebraic equation especially when 
it contains more than one known. For instance, in3 

5 .Yll 

I 

which means 

° I 

Yx + 5 = sand V x - 7 = t, 

~I 

different unknowns haye to· be assumed at different 
vacant places. 

1 B.Ms, Folio 2.2., verso. 
3 BMs, Folio ~9, recto. 

2 Trif, p. 2.9. 
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To avoid such ambiguity, in one instance which 
contains as many as five unknowns, the abbreviations of 
ordinal numbers, such as pra (from prathama, first), 
dvi (from dvitfya, second), Ir (from trlfya, third), ca 
(from call1rtha, fourth) and pam (from pancama, fifth), 
have been used to represent the unknowns; e.g.,l 

9 pra r. 7 dvi 

7 dvi 10/r 

which means 

10/r 8 ca II pam yutam jMam 
pra~yaika
(krameQa) 

8 ca II pam 9 pra 16117118119120 

-"'l( = 9) + x 2( = 7) = 16; X 2( = 7) + xa( = 10) = 17; 
xa( = 10) + x 4( = 8) = 18; x 4( = 8) + X 5( = Il) = 19; 
x 6( =- II) + X I ( = 9) = 20. 

Aryabha~a I (499) very probably used coloured shots 
to represent unknowns. Brahmagupta (628) mentions 
lItlrpa as the symbols of unknowns.2 As he has not at
tempted in any way to explain this method of symbolism, 
it appears that the method was already very familiar. 
Now, the Sanskrit word varpa means "colour" as 
well as "letters of the alphabet," so that, in later times, 
the unknowns are generally represented by letters of 
the alphabet or by means of various colours such as 
k(.~/aka (black), ntlak.a (blue), etc. Again in the latter 
case, for simplification, only initial letters of the names 
are generally written. Thus Bhaskara II (1 150) observes, 
"Here (in algebra) the initial letters of (the names of) 
knowns and unknowns should be written for implying 
them."3 It has been stated before that at one time 
the unknown quantity was called _ydvot-ttil'ol (as many 

1 Folio 1.7, verso. 2 BrSpSi, xviii. 1., 42., 51, etc. 
3 BBi, p. z; see also NBi, I. R. 7. 

Z. 
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as, so much as). In later times this name, or its 
abbreviati~n ya, is used for the unknown. According 
to the celebrated San,skrit lexicographer Amarasirhha 
(c. 400 A.D.), yavat-tavat denotes measure or quantity 
(mana). He had probably in view the use of that term 
in Hindu algebra to denote "the measure of an unknown" 
(avyakta mana). In the case of more unknowns, it is 
usual to denote the first by yavat-tavat and the remaining 
ones by alphabets or colours. Prthudakasvaml (860) 
says: 

"In an example in which there are two or more 
unknown quantities, colours such as _yavat-tavat, etc., 
should be assumed for their values."1 
He has, indeed, used the colours k.dlak..a (black), nllaka 
(blue), pitaka (yellow) and barf taka (green). 

Sripati (1039) writes; 
"Y avat-t(1vat (so much as) and colours such as ka/aka 

(black), nilaka (blue), etc., should be assumed for the 
unknowns."2 

Bhaskara II (II50) says: 
"Ydvat-tdvat (so much as), kti/aka (black), nilak..a 

(blue), pita (yellow), lobita (red) and other colours 
have been taken by the venerable professors a.s 
notations for the measures of the unknowns, for the 
purpose of calculating with them."3 

"In those examples where occur two, three or 
more unknown q'!lantities, colours such as yavat-tdvat, 
etc., should be assumed for them. As assumed by 
the previous teachers, they are: yavat-tavat (so much 
as), ka/aka (black), nr'laka (blue), pi'taka (yellow), 
lohitak.a (red), har/taka (green), svetaka (white), citraka 

1 BrSpSi, xviii. 5 I (Com). 
3 BBi, p. 7. 

2 SiSe, xiv. %. 
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(variegated), kapilaka (tawny) ,pi ngalaka (reddish-brown), 
dhllmraka (smoke-coloured)~ patalaka (pink), Javalaka 
(spotted), fyamalaka (blackish), mecaka (dark blue), 
etc. Or the letters of alphabets beginning with lea, 
should be taken as the measures of the unknowns in 
order to prevent confusion."l 

The 'same list with a few additional names of colours 
aRpears in the algebra of Narayal.la.2 This writer has 
further added, , 

"Or the letters of alphabets (var{1a) su'th as 
ka, etc., or the series of flavours such as madhura 
(:;weet), etc., or the names of dissimilar things with un
like initial letters, are assumed (to represent the 
unknowns)." , 

Bhaskara II occasiQnally employs also the tachygra
phic abbreviation of the names of the unknown 
quantities themselves in order to represen,t them in an 
equation. For example,3 in the following 

5 nla I ni 
I nla 7 ni 
I Ilia I ni 
I ilia I ni 

I Illll I va 
I IllII I va 

97 !lItt I Va 

I IlIU 2. Va 

ilia stands for Illa{1ikya (ruby), nifor (indra-)Ilila (sapphire), 
mu' for Illuktdphala (pearl) and va for (sad)vajra (diamond). 
He has observed in this connection thus: 

"(The maxim), 'colours such as yavat-tdvat, etc., 
should be assumed for the unknowns,' gives (only) one 
method of implying (them). Here, denoting them 

1 BBi, pp. 76f. 
2 NBi, I, R. 17-8. These verses have been quoted by Mura

Iidhara Jha in his edition of the Bijo,f',opila of Bhflskara II (p. 7, 
footnote 1). 

3 BB;, p. 50; compare also p. z8. 
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by names, the equations may be formed by the inteili
gent (calculator)." 

It should be noted that yavat-tavat is not a vartla 
(colqur or letter of alphabet). So in its inclusion in 
the lists of var(1a, as found enumerated in the Hindu 
algebras-though apparently anomalous-we find the 
persistence of an ancient symbol which was in vogue 
long before the introduction of colours to represent 
unknowns. To avoid the anomaly Muralidhara Jha l 

has suggested the emendation yavakasldvat (yavdka 
and also; yavtlka = red) in the place of yavat-tavat, 
as found in the available manuscripts. He thinks 
that being misled by the old practice, the expression 

yavakastdvat was confused by copyists with yavat-fdvat. 
In support of this theory it may be pointed out that 
yavaka is found to have been sometimes used by 
Prthu lakasvami to represent the unknown.2 Bhaskara 
II has once used simply yavat.s Narayana used it on 
several occasions. The origin of the use of names of 
colours to represent unknowns in algebra is very pro
bably connected with the ancient use of differently 
coloured shots for the purpose. 

4. LAWS OF SIGNS 

Addition. Brahmagupta (62.8) says: 
"The sum of two positive numbers is positive, 

of two negative numbers is negative; of a positive 
and a negative number is their difference.'" 
Mahivlra (850): 

"In the addition of a positive and a negative number 

1 See the Preface to his edition of Bhiskara's BijagafJita. 
t BrSpSi, xii. I, (Com); xii. 18 (ClJm). 
a BBi, p. ,0. 'BrSpSi, xviii. 30. 
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(the result) is (their) difference. The addition of two 
positive or two negative numbers (gives) as much posi
tive or negative numbers respectively."l 
Sdpati (1039): 

"In the addition of two negative or two pos1t!ve 
numbers the result is their sum; the addition of a posi
tive and a negative number is their difference." 2 

"The sum of two positive (numbers) is positive; 
of two negative (numbers) is negative; of a positive 
and a negative is their difference and the sign of the 
difference is that of the greater; of two equal positive 
and negative (numbers) is zero."3 
Bhaskara II (1150): 

"In the addition of two negative or two positive 
numbers the result is their sum; the sum of a positive 
and a negative number is their difference.'" 
Naraya1)a (1350): 

"In the addition of two posltlve or two negative 
numbers the result is their sum; but of a positive and a 
negative number, the result is their di!ference; subtract
ing the smaller nqrnber from the greater, the remainder 
becomes of the same kind as the latter."5 

Subtraction. Brahmagupta writes: 
"From the greater should be subtracted the smaller; 

(the final result is) positive, if positive from positive. 
and negative, if negative from negative. If, however, 
the greater is subtracted from the less, that difference 
is reversed (in sign). negative ,becomes positive and ' 
positive becomes negative. When positive is to be 
subtracted from negative or negative from positive, 

1 GSS, i. 50~I.-
3 SiSe. iii. 28. 
5 SBi, I, R. 8. 

2 JiSe, xiv. 3. 
"BBi, p. 2. 
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t'len they must be added together."l 
Mahavira: 

"A positi\'c number to be subtracted. from another 
number becomes negative and a negative number to be 
subtracted becomes positive."2 
Sripati: 

"A positive (number) to be subtracted becomes 
negative, a negative becomes positive; (the subsequent 
operation is) addition as explained before."3 
Bhaskara II: 

"A positive (number) while being subtracted be
comes negative and a negative becomes po'sitive; then 
addition as explained before."4 
Naraya~a: 

"Of the subtrahend affirmation becomes negatlon 
and negation affirmation; then addition as described 
before."o 

Multiplication. Brahmagupta says: 
"The product of a positive and a negative (number) 

is negative; of two· negatives is positive; positive mul
tiplied by 'positive is po=':'tive."6 
Mahavira: 

"In the multiplication of two negative or two 
positive numbers the result is positive; but it is negative 
tn the case of (the multiplication of) a positive and a 
negative nu~ber."7 
Sripati: 

"On multiplying two negative or two positive 

1 BrSpSi, xviii. 31- 2 • 

ft SiSe, xiv. 3. 
:I NBi, I. R. 9. 
7 GSS, i. 50. 

= GSS, i. p. 
4 B.Bi., p. 3. 
8 BrSP.Ji, xviii. H. 
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numbers (the product is) positive; in the multiplication 
of positive and negative (the result is) negative."! 
Bhaskara II: 

"The product of two positive or two negative 
(numbers) is positive; the product of positive and nega
tive is negative."2 
The same rule is stated by NarayaQa.3 

Division. Brahmagupta states: 
"Positive divided by positive or negative divided 

by negative becomes positive. But positive divided 
by negative is negative and negative divided by posi-
tive remains negative."4 , -
\Iahavira: . 

"In the division of two negative or two pos!t1ve 
numbers the quotient is positive, but it is negativ~ in 
the case of (the division of) positive and negative."5 
Sdpati: 

"On dividing negative by :legative or positive by 
positive, (the quotient) will be positive, (but it will be) 
otherwise in th~ case of positive and negative."6 

Bhaskara II simply observes: "In the case of divi
sion also, such are the rules (i.e., as in the case of 
multiplication)."7 Similarly NfuayaQa remarks, "What 
have been implied in the case of multiplication of 
positive and negative numbers will hold also in the 
case of division."8 

Evolution and Involution. Brahmagupta says: 
. "The square of a positive or a negative number is 

1 SiSt, xiv. 4'-
3 NBi, I, R. 9. 

• 5o GSS, i. 50. 
7 BBi, p. 3. 

2 BBi, p. 3. 
4 BrSpSi, xviii. 34. 
8 S;Se, xiv. 4 . 
8 NBi I, R. 10. 
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positive .... The (sIgn of the) root is the same as was 
that from which the square was derived."l 

As regards the latter portion of this rule the com
mentator P~thudakasvaml (860) remarks, "The square
root should be taken either negative or positive, as will 
be most suitable for subsequent operations to be carried 
on." 
Mahavlra: 

"The square of a positive or of a negative number 
is positive: their square-roots are positive and negative 
respectively. Since a negative number by its own 
nature is not a'square, it has no square-root."2 
Sripati: -

"The square of a poSitive and a negative number 
is positive. It will become what it was in the case of 
the square,root. A negative number by itself is non
square, so its square-root is unreal; so the rule (for the 
square-root) should be applied in the case of a positive 
number."3 
Bhaskara II: 

"The square of a positive and a negative number is 
positive; the square-root of a positive number is positive 
as well as negative. Ther.e is no square-root of a nega
tive number, because it is non-square."4 
Naraya1).a: 

"The square of a positive and a negative number is 
positive. The square-root of a positive number will 
be positive and also negative. It has been proved that 
a negative number, being non-square, has no square
root."5 

1 BrSpSi, xviii. 35. 
3 SiSe, xiv. S. 
5 NBi, I, R. 10. 

2 GSS, i. 52.. 
I BBi, p. 4. 
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,. FUNDAMENTAL OPERATIONS 

Number of Operations. The number of funda
mental operations in algebra is recognised by all Hindu 
algebraists to be six, viZ" addition, subtraction, multi
plication, division, squaring and the extraction of the 
square-root. So the cubing and the extraction of the 
cube-root which are included amongst the fundamental 
operations of arithmetic, are excluded from algebra. 
But the formula 

(a + b)3 = a3 + 3a2b + 3ab2 + b3, 
or (a.+ b)3 = a3 + 3ab(a + b) + !J3, 

IS found to have been given, as stated before, in almost 
J11 the Hindu treatises on arithmetic beginning with that 
of Brahmagupta (62.8). By applying it repeatedly, Maha
vira indicates how to find the cube of an algebraic ex
pression containing more than two terms; thus 

(0 + b + c + d + ... )3 
== a3 + 302(b + c + d + .... ) + 3o(b + c + d + ... )2 

+ (b + c + d + .... )3, 
= 03 + 302(b + c + d + .... ) + 3o(b + c + d + ... )2 

+ b3 + 3b2(c + d + ... ) + 3b(c + d + ...... ? 
+ (c + d + .... )3; 

and so on. 
Addition and Su,btraction. Brahmagupta says: 
"Of the unknowns, their squares, cubes, fourth 

powers, fifth powers, sixth powers, etc., addition and 
subtraction are (performed) of the like; of the unlike 
(they mean simply their) statement severally."1 
Bhaskara II: 

"Addition and subtraction are performed of those 

1 BrSpSi, xviii. 41. 
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of the same species Utili) amongst unknowns; of different 
species they mean their separate statement."! 
Narayat:ta: . 

"Of the colours or letters of alphabets (represent
ing the unknowns) addition should be made of those 
which are of the same species; and similarly sub
traction. In the addition and subtraction of those of 
different species the result will be their putting down 
severally." 2 

Multiplication. Brahmagupta says: 
"The product of two like unknowns is a square; 

the product of three or more like unknowns is a power 
of that designation. The multiplication of unknowns 
of unlike !:\pecies is the same as the mutual product of 
symbols; it is callea bbtivita (product or factum)."3 
Bhaskara II writes: 

"A known quantity multiplied by an unknown 
becomes unknown; the product of two, three or more 
unknowns of like species is its square, cube, etc.; and the 
product of those of unlike species is their bhdvita. 
Fractions, etc., are (considered) as in the case of knowns; 
and the rest (i.e.) remaining operations) will be the same 
as explained in arithmetic. The multiplicand is put 
down separately in as many places as there are terms in 
the multiplier and is then severally multiplied by those 
terms; (the products are then) added together according 
to the methods indicated before. Here, in the squaring 
and multiplication of unknowns, should be followed the 
method of multiplication by component parts, as ex
plained in arithmetic.'" 

The same rules are given by Naraya1)a.5 The fol-

1 BBi, p. 7. 
3 BrSpSi, xviii. 42. 

5 NBi, I, R. 21-.Z. 

2 NBi, I, R. 19. 
"BBi, p. 8. 
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lowing illustration amongst others, is given by BM.s
kara II: 

"Tell at once, 0 learned, (the result) of multiply
ing five yavat-tavat minus one known quantity by three 

yavat-tavat plus two knowns. 
"Statement: Multiplicand ya , ru i; multiplier ya 3 

ru 2; on multiplication the product becomes ya va 15 
.)la 7 ru 2."1 . 

The detailed working of this illustration is shown 
by the commentator Kfl?.Q.a (c. 1580) thus: 

'yo 'I ya 5 ru i I ya va 15 ya j 
ru 2 ya 5 ru i ya 10 TU i. " 

ya Va I 5 ya 7 ru i. 
Division. Bhaskara II states: 
"By whatever unknowns and knowns, the divisor 

is multiplied (severally) and subtracted from the divi
dend successively so that no residue is left, they cons
titute the quotients at the successive stages."2 

Narayat;a describes the method of . division in 
nearly the same terms.3 As an example of division, 
Bhaskara II proposes to divide 18x2 + 24XY - 12XZ 

- 12X+ ~2_ ~- ~+ 2Z2 + 4Z+ 2 by - ,5< 
- zy + Z + I. He simply states the quotient without 
indicating the differ~nt steps in the process. K!~.Q.a 
supplies the details of the process which are substantially 
the same as followed at present. 

Squaring. Only one rule for the squaring of an 
algebraic expression is found in treatises on algebra. 
It is the same as that stated before in the treatises on 
arithmetic, lliZ., 

. (0 + b)2 = a2 + bi + zab; 

1 BBi, p. 8. 2 BBi, p. 9. 
a NBi, I, R. 23. 
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or, III its general form, 
(a+b+c+d+ ... )2=a2+b2 +c2+d2+ .. :+2:Eab. 

Square-root. Fo.r finding the square-root of an 
algebraic expression Bhaskara II gives the following 
rule: 

"Find the square-root, of the unknown quantities 
which are squares; then deduct from the remaining terms 
t\vice the products of those roots two and two; if there 
be known terms, proceed with the remainder in the same 
\vay after taking the square-root of the knowns."l 
Naraya1).a says: 

"First find the root of the square terms (of the given 
expression); then the product of two and two of them 
(roots) multiplied by two should be subtracted from 'the 
remaining terms; (the result thus obtained) is said to be 
the square-root here (in algebra)."2 
Jiianaraja writes: 

"Take ,the square-root of those (terms) which are 
capable of yielding roots; the product of two and two ef 
these (roots) multiplied by two. should be deducted from 
the remaining terms of that square (expression); the re
sult will be the (required) root, so- say the experts in 
this (science)." 

6. EQUATIONS 

Forming Equations. Before proceeding to the 
actual solutien of an equation of any type, certain preli
minary operations have necessarily to be carried out 
in order to' prepare it for solution. Still more preli
minary work is that of forming the equation (s{{llIi
karatJa, samf-kara or sanJi-kriya; from Salna, equal and 

1 BBi, p. 10. 2 NBi, I, R. Z4. 
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kr, to do; hence literally, making equal) from the condi
tions of the proposed problem. guch preliminary 
work may require the application of one or more funda
mental operations of algebra or arithmetic. The 
operations preliminary to the formation of a simple. 
equation have been des.cribed by P-!=thudakasvami (860) 
thus: 

"In this case, in the pro blem proposed by the ques
tioner, yavat-tavaf is put for the value of the unknown 
quantity; then performing multiplication, division, etc., 
as required in the problem the two sides shall be care
fully made equal. The equation being formed in this 
way, then the rule (for its solution) follows."! 
Bhaskara II's descriptions are fuller: He says: 

"Let yavat-tdvat be assumed as the value of the un
known quantity. Then doing precisely as has been speci
fically told-by subtracting, adding, multiplying or 
dividing2-the two equal sides (of an equation) should 
be very carefully built .. "3 

Naraya.Q.a says: 
"Of these (four classes of equations), the linear 

equation in one unknown (will be treated) first. In 
a problem (proposed), the value of the quantity which 
is unknown is assumed to be yavat, one, two or any 
multiple of it, with or without an absolute term, which 
~\gain may be additive or subtractive. Then on the 
value thus assumed optionally should be performed, in 

1 BrSpSi, xviii. 43 (Com). 
S In his gloss Bhaskara II explains: "Every operation, such 

as multiplication, division, rule of three, rule of five terms, summa
tion of series, or treatment of plane figures, etc., according to the 
statement of the problem should be performed ...... " See BBi, 
p·44· 

8 BBi, p. 43. 



ALGEBRA 

accordance with the statement of the problem, the opera
tions such as addition, subtraction, multiplication, divi
sion, rule of three, double rule of three, summation, 
plane figures, excavations, etc. And thus the two sides 
must be made equal. If the~ equality of the two sides 
is not explicitly stated, then one side should be multi
plied, ~ivided, increased or decreased by one's own 
intelltgence {according to the problem) and thus the 
two sides must be made equal."l 

Plan of Writing Equations. After an equation is 
formed, writing it down for further operations is techni
cally called nyasa (putting down, statement) of the equa
tion. In the Bakhshali treatise the two sides of an 
equation arc put down one after the other in the same 
line without any sign of equality being interposed.2 

Thus the equations 

y x + 5 = s, Yx - 7 = t I 

appear ass 

I~ yll ///1/ 0 

I I 

The equation 

sa 0 7 + 
1 I 

x + 2X + 3 X 3X + 12 X 4X =---= 300 

IS stated as4 

~I 

I 0 I r.2 I /3 3 I 12 41 dr.fJltJ 300 . 
1.1 I I I I I 

This plan of writing an equation was subsequently 
abandoned by the Hindus for a new one in which the 
two sides are written one below the other without any 

1 NBi, II, R. 3 (Gloss). 
2 Datta, Bakh. Math., (BCMS, XXI), p.28. 
3 Folio S9, recto. "Folio 23, verso. 



EQUATIONS 31 

sign of equality. Further, in this new plan, the terms of 
similar denominations are usually written one below 
the other and even the terms of "absent denominations 
on either side are expressly indicated by putting zeros 
as their coefficients. Reference to the new plan is found 
as early as the algebra of Brahmagupta (628).1 Prthudaka
svami (860) represented the equation2 

10.'\." - 8 = .'\,"2 + I 

as follows: 
)'d va ° )'d 10 ru a 
_yd l'a 1 _yd ° rll I 

which means, writing x foryd 
X2.0 + X.IO - 8 

x 2 + X.O + I 

or ox2 + lOX - 8 = x 2 + ox + 1. 

If there be several unknowns, those of the same kind 
are written in the same column with zero coefficients, 
if necessary. Thus the equation 

197x - I 644Y - Z = 6302 

1S represented by Prthudakasvami thus:3 

yd 197 kd 1644 ni i ru 0 

yd 0 k.d 0 11i 0 ru 6302 
which means, puttingy fa._[ kd and Z for nf, 

197X - 1 644Y - Z + 0 = ox + oy + oz + 6302. 
The following two instances are from the Bija

gatrita of Bhaskara II (1150):4 

(I) yd 5 kd 8 fit 7 rll 90 
yti 7 kd 9 nt 6 rfi 62. 

r BrSpSi, xvii. 43 (vide infra, p. 33). Compare also BBi, p. 12.7. 
2 BrSpSi, xviii. 49 (Com). 3 BrSpSi, xviii. 54 (Com). 
'BBi, pp. 78, 101. 
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been thus made ... "1 

Sripati says: 
"From one (side) the square of the unknown 

and the unknown should be cleared by removing the 
known quantities; the known quantities (should be 
cleared) from the side opposite to that."2 
Similarly Bhaskara II: 

"Then the unknown on one side of it (the equation) 
should be subtracted from the unknown on the other 
side; so also the square and other powers of the un
known; the known quantities on the other side should 
be subtracted from the known quantities of another 
(i.e., the former) side."3 

Here we give a few illustrations. With reference 
to the equations from the commentary of Prthudaka
svami, stated on page 3 I, the author says: 

"Perfect clearance (samaJodhana) being made lfi 

accordance with the' rule, (the equation) will be 

ya VCJ I ya Ie 

ru 9" 
i.e., X2 - lOX = - 9. 

The following illustration is from the Bijaga{lita of 
Bha.skara II:4 

"Thus the two sides are 

ya Va 4 ya 34 ru 72 

ya va 0 ya 0 r11 90 

On complete clearance (samaJodhana), the residues. 
of the two sides are 

1 BrSpSi, xviii. 44 (Com). 
3 BBi, p. 44. 

2 SiSe, xvi. 17. 
4. BBl, p. 63. 
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"'" A •• A 'ya va 4 ya 34 ru 0 

ya va 0 ya 0 ru IS" 

i.e., 4-"2 - 34X = 18. 

Classification of Equations. The earliest Hindu 
classification of equations seems to have been according 
to their degrees, such as simple (technically called yaval
laval), quadratic (varg1), cubic (ghana) and biquadratic 
(varga-l)arga). Reference to it is found in' a canonical 
work of circa 300 B. c.l But in the absence of further 
corroborative evidence, we cannot be sure of it. Brahma
gl.1pta (62.8) has classified equations as: (I) equations 
in one unknown (eka-var!1a-samikaratta) , (2) equations 
in several unknowns (aneka-var!1a-samikara!1a) , and (3) 
equations involving products of unknowns (bhiivita). 
The first class is again divided into two subclasses, viZ., 
(i) linear equations, and (ii) quadratic equations (a1!Jakta
varga-samikararza). Here then we ha..-;e the beginning of 
ou'!: present method of classifying equations according to 
their degrees. The method of classification adopted 
by Prthudakasvami (860) is slightly different. His four 
classes are: (1) linear equations with one unknown, (2) 
linear equations with more unknowns, (3) equations with 
one, two or more unknowns in their second and higher 
powers, and (4) equations involving products of un
knowns. As the method of solution of an equation of 
the third class is based upon the principle of the elimina
tion of the middle term, that class is called by the name 
madhyalJJdharatta (from madhyama, "middle", dharatta 
"elimination", hence meaning "elimination of the mid
dle term"). For the other class~s, the old names given 
by Brahmagupta have been retained. This method of 
classification has been followed by subsequent writers. 

1 Sthdnanga-rlitra, Sutra 747. For further particulars see Datta, 
Jaina Math., (BCMS, XXI), pp. 119ff. 
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Bhaskara II distinguishes two types in the third class, 
viZ" (i) equations in one unknown in its second and 
higher powers and (ii) equations having two or more 
unkno~ns in thdr second and higher powers.' Accord-

. ing to Krl?l)a (1580) equations are primarily of two 
classes: (1) equations in one unknown and (z) equations 
in two or more unknowJls. The class (1), again, com
prises two subclasses: (i) simple equations and (ii) 
quadratic and higher equations. The class (2) has three 
subclasses: (i) simultaneous linear equations, (ii) equa
tions involving the second and higher powers of un
knowns, and (iii) equations involving products of un
knowns. He then observes that these five classes can 
be reduced to four by including the second subclasses 
of classes (1) and (2) into one class as madJ!yamaharapa. 

7. LINEAR EQUATIONS IN ONE UNKNOWN 

Early Solutions. As already stated, the geometrical 
solution of a linear equation in one unknown is found in 
the SIJlba, the earliest of which is not later than 800 B.C. 
There is a reference in the Sthdndtiga-siitra (c. 300 B.C.) 
to a linear equation by its name ()Ir1vat-tdl!at) which 
is suggestive of the method of solution! followed at 
-that time. \Y/ e have, however, no further evidence 
about it. The earliest Hindu record of doubtless value 
of problems involving simple algebraic equations and 
of a method for their solution occurs in the Bakhshali 
treatise, which \vas written very probably about the 
beginning of the Christian Era. One problem i5:2 

"The amount given to the first is not known. The 
second is given twice as much as the first; the third 

1 Datta, Jaina Math., (BeMS, XXI), p. 122.. 

2 BMs, Folio 23, recto. 



LINEAR EQUATIONS IN ONE UNKNOWN 
I 

thrice as much as the second; and the fourth fOLlr times 
as much as the third. The total amount distributed 
is 132. What is the amount of the first?" 

If x be the amount given to the first, then according 
to the probelm, 

x + 2X + 6x + 24X = 132. 

Rule of False Position. The solution of this 
equation is given as follows: 

" 'Putting any desired quantity in the vacant place' ; 
any desired quantity is I r I II; 'then construct the series' 

'multiplied' II I I 2 I 6 r 24 I; 'added' 33. "Divide the 
visible quantity' I 1:: I; (which) on reduction becomes 

(This is) the amount given (to the first)."! 

The solution of another set of problems in the 
Bakhshali treatise, leads ultimately to an equation of the 
type2 

ax+ b=p. 
The method given for its solution is to put any arbitrary 
valueg for x, so that 

ag+ b =p', say. 

Then the correct value will be 

x =p- P' +g. 
a 

1 Ibid. 2 Vide infra, pp. 41!f. 
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Solution of Linear Equations. Aryabhata I 
(499) says: 

c'The difference of the known "amounts" relating to 
the two persons should be divided by the difference of 
the coefficients of the unknown. l The quotient will. be 
the value of the unknown, if their possessions be equal."2 

This rule contemplates a problem of this kind: 
Two persons, who are equally rich, possess respectively 
a, b times a certain unknown amount together with c, d 
units of money in cash. What is that amount? 

If x be the unknown amount, then by the problem 

Therefore 

Hence the rule. 

ax+ c= bx+ d. 
d-c 

x=--b' a-

Brahmagupta says: 
"In a (linear) equation in one unknown, the differ

ence of the known terms taken in the reverse order, 
divided by the difference of the coefficients of the un
known (is the value of the unknown)."3 
Sri:pati writes : . 

"First remove the unknown from anyone of the 
sides (of the equation) leaving the known term; the 
reverse (should be done) on the other side. The differ
ence of the absolute terms taken in the reverse order 

1 The original is glllikJntara which literally means "the differ
ence of the unknowns." But what is implied is "the difference of 
the coefficients of the unknown." As has been observed by P:rthu
dakasvami, according to the usual practice of Hindu algebra, "the 
coefficient of the square of the unknown is called the square (of 
the unknown) and the coefficient of the (simple) unknown is called 
the unknown." BrSpSi, xviii. 44 (Com). 

2 A, ii. 30' 3 BrSpSi, xviii. 43. 
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divided by the difference of the coefficients of the 
unknown will be the value of the unknown."l 
Bha.skara II states: 

"Subtract the unknown on one side from that on the 
other and the absolute term on the second from that on 
the first side. The residual absolute number should be 
divided by the residual coefficient of the u~known; 
thus the value of the unknown becomes known."2 
Naraya.Q.a writes: 

"From one side clear off the' unknown and from the 
other the known quantities; then divide the residual 
known by the residual coefficient of the unknown. 
Thus will certainly become known the value of the 
unknown. "3 

For illustration we take a problem proposed by 
Brahmagupta : 

"Tell the number of elapsed days for the time when 
four times the twelfth part of the residual degrees 
increased by one, plus eight will be equal to the residual 
degrees plus one."4 "-

It has been solved by Prthudakasvami as follows: 
"Here the residual degrees are (put as) ydvat-tdvat, 

yd; increased by one, yd 1 rl'l 1; twelfth part of it, 
yd I r11 I . . yd l' ru I 

- . - - . ; four tImes thIS, ; plus the abso-
12 3 

I .. h yd I rtl 25 Th" 1/ 1 ute quantity elg t, 3 15 IS equa to t le 

residual degrees plus unity. The statement of both side·s 
tripled is 

1 SiSe, xiv. 15. 

3 NBi, II, R. 5. 

yd I 

yd 3 
rtl 25 
ru 3 

2 BBi, p. 44. 
, BrSpSi, xviii. 46. 



ALGEB.RA 

The difference between the coefficients of the unknown 
is 2. By this the difference of the absolute terms, 
namely 22, being divided, is produced the res(dual of the 
degrees of the sun, t I. These residual degrees should 
be known to be irreducible. The elapsed days can be 
deduced then, (proceeding) as before." 

In other words, we have to solve the equation 

which gives 

or 

T
4
2(X + I) + 8 = x + I, 

2X = 22. 

Therefore x = I I. 

The following problem and its solution are from the 
Bijagapita of Bha.skara II : 

"One person has three hundred coins and six 
horses. Another has ten horses (each) of similar value 
and he has further a debt of hundred coins. But they 
are of equal worth. What is the price of a horse? 

"Here the statement for equi-clearance is : 

6x + 300 = lOX - 100. 

Now, by the rule, 'Subtract the unknown on one side 
from that on the other etc.,' unknown on the first side 
being subtracted from the unknown on the other side, 
the remainder is 4X. The absolute term on the second 
side being subtracted from the absolute term on the 
first side, the remainder is 400. The residual kn'own 
number 400 being divided by the coefficient of the 
residual unknown 4X, the quotient is recognised to be 
the value of x, (namely) 100."1 

There are a few instances in the Bakhshali work 
where a method similar to that of later writers appears 

1 BBi, pp. 44f . 



LINEAR EQUATIONS WITH TWO UNKNOWNS 43 

to have been- followed for the solution of a linear 
equation. One' such problem is: Two persons start 
w:ith different initial velocities (aI' (2); travel on suc
cessive days distances increasing at different rates 
(hI' b2). But they cover the same distance after the 
same period of time. W'hat is the period? 

Denoting the period by x, we get 

a l + (ClI + bl ) + (al + 2bl ) + ... to x terms 
= 02 + (a2 + b2) + (02 + 2b2) + '" to x terms, 

or { a l + C\' 2 1 )bl } .\' = { Cl2 + (x -; I )b2 } x; 

whence _ z(a2 - al) + 
x - b I' I, 

I - '2 r 

which is the solution given in the Bakhshali work: 
"Twice the difference of the initial terms divided by 

the difference of the common differences, is increased by 
unity. The result will be the number of days in which 
the distance moved will be the same."l 

8. LINEAR EQUATIONS WITH TWO UNKNOWNS 

Rule of Concurrence. One topic commonly 
discussed by almost all Hindu writers goes by the 
special name of smikrOllla!ltl (concurrence). According 
tv Naraya.l)a (1350), it is also called smikrOll1tl and 
smik.rall/a.2 Brahmagupta (628) includes it in algebra 
while others consider it as falling within the scope of 
arithmetic. As explained by the commentator Ganga-, 
dhara (1420), the subject' of discussion here is "the 
investigation of two quantities concurrent or grown 
together in tl}.e form of their sum and difference." 

1 BMs, Folio 4, verso. 2GK,i. 31. 
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Or. in other words • .rankrama!1a is the Sblution of the 
simultaneous equations 

x+ y= a, 
x-y= b. 

So Brahmagupta and Sripati are perfectly right in think
ing that concurrence is trol y a topic for algebra. 

Brahmagupta's rule for solution is: 

"The sum is increased and diminished by the 
difference and divided by two; (the result will be the 
two unknown quantities): (this is) concurrence."! 

The same rule is restated by him on a different 
occasion in the form of a problem and its solution. 

"The sum and difference of the residues of two 
(heavenly bodies) are known in degrees and minutes. 
What are the residues? The difference is both added to 
and subtracted from the sum, and halved; (the results 
are) the residues."2 

Similar rules are given also by other writers.3 

Linear Equations. Mahavira gives the following 
examples leading to simultaneous linear equations to
gether with rules for the solution of each. 

Example. "The price of 9 citrons and 7 fragrant 
wood-apples taken together is 107; again the price of 
7 citrons and 9 fragrant wood-apples taken together 
is 101. 0 mathematician, tell me quickly the price 
of a citron and of a fragrant wood-apple quite sepa
rately."4 

If x, y be the prices of a citron and of a fragrant 

I-BrSpSi, xviii. 36. 2 BrSpSi, xviii. 96. 
3 GSS, vi. 2; MSi, xv. 21; SiSe, xiv. 13; L, p. 12 ; GK, i. jl. 
, GSS, vi. 140:t-142~. . 
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wood-apple respectively, then 

Or, in general, 

. 

9x+7Y= 107, 
7x+9Y = 101. 

ax+ by= in, 
bx + CD' = n • 

Solution. "From the larger amount of price multiplied 
by the (corresponding) bigger numoer of things sub
tract the smaller amount of price multiplied by the 
(correspon~ing) smaller number of things. (The re
mainder) divided by the difference of the squares of the 
;1.umbers of things will. be the price of each of the bigger 
Humber of things. The price of the other will be 
obtained by reversing the multipliers."1 

alit - btl an - bm 
Thus x = a 2 _ b2 ' Y = a2 _ b2 • 

Example. "A wizard having powers of mystic 
incantations and magical medicines seeing a cock-fight 
going on, spoke privately to both the owners of the 
cocks. To one he said, 'If your bird wins, then you give 
me your stake-money, but if you do not win, I shall give 
you two-thirds of that.' Going to the other, he promised 
in the same way to give three-fourths. From both of 
t'lem his gain would be only 12 gold pieces. Tell me, 
o ornament of the first-rate mathematicians, the stake
money of each of the cock-owners."2 

I.e., x - fY = 12, Y - !x = 12. 

Or, in general, 
c a 

_ X - dY = p, y - 7}x = p. 

1 GSS. vi. I 3 9~. 2 GSS, vi. 27o-z~. 
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Solution: l 

b(e + d) 
x = (c + d)b - (a + b)cP, 

d(a + b) 
Y = (0 + b)d - (c + d)oP, 

The following example with its solution is taken 
from the BfjagatJita of Bhaskara II : 

Example. "One says, 'Give me a hundred, friend, I 
shall then become twice as rich as you.' The o(her 
replies, 'If you give me ten, I shall be six times as rich 
as you.' Tell me what is the amount of their (res
pective) capitals ?"2 

The equations are 

x + 100 = 2.(y - 100), (I) 

Y + 10 = 6(x - 10). (2) 

Bhaskara II jndi.cates two methods of solving these 
equations. They are substantially as follows: 

First Method.s Assume 

x = 2Z.- 100, Y = Z + 100, 

so that equation (I) is identically satisfied. Substituting 
these values in the other equation, we get 

Z + IIO = I2.Z - 660; 

whence Z =.70 • Therefore, x = 40 , Y = 170 . 

Second Method. 4 From equation (I), we get 

x . .y - 300, 

and from equation (2) 

1 GSS, vi. 2.68a-9~. 
3 BBi, p. 46. 

x = -hey + 70 ). 

2 RBi, p. 4 1 • 

• RBi, pp. 78f. 
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Equating these two values of x, we have 

~ - 300 = t(y + 7 0 ), 

or I~ - 1800 =Y + 70; 

whence Y= 170. Substituting this value of y in any of 
the two expressions for x, we get x = 40. 

1 t is noteworthy that the second method of solution 
of the problem under consideration is described by' 
Bhiskara 11 in the section of his algebra dealing with 
"linear eqt..ations with several unknowns," while the 
first method in that dealing with "linear equations in one 
unknown." In this latter connection he has observed 
that the solution of a problem containing two unknowns 
ran sometimes be made by ingenious artifices to depend 
upon the solution of a simple linear equation. 

9' ... LINEAR EQUATIONS WITH SEVERAL UNKNOWNS 

A Type of Linear Equations. The earliest 
Hindu treatment of systems of linear equations involving' 
several unknowns is found in the Bakhshali treatise. 
One problem in it runs as follows: 

"[Three persons possess a certain amount of riches 
each.] The riches of the first and the second taken 
together amount to 13; the riches of the second and 
the third taken together are 14; and the riches of the 

.filst and the third mixed are known to be 15. Tell me 
the riches of each."l 

If Xl' X 2, X3 be the wealths of the three merchants 
respectively, then 

Xl + X2 = 13, x 2 + xa = 14, xa + Xl = 15. (I) 
Another problem is 

1 BMs, Folio 29> recto. The portions within [ ] in this and 
the fQllowing illustration have been restored. 
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"[Five persons possess a certain amount of riches 
each. The riches of the first] and the second mixed 
together amount to 16'; the riches of the second and the 
third taken together are known to be 17; the riches 
of the third and the fourth taken together are known to 
be 18; the riches of the fourth and the fifth mixed 
together are 19; and the riches of the first and the fifth 
together amount to 20. Tell me what is the amount 
of each."l 

i.e., Xl + X 2 = 16, X2 + xa = 17, xa + x 4 = 18, 
·'1(.'4 + X 5= 19, x5 + Xl = 20. (2) 

There are in the wo~k a few other similar pro
blems.2 Every one of them belongs to a system of 
linear equations of the type 

Xl + X 2 = aI' X 2 + Xa = a2, ... , 'Xn + Xl = an' (1) 
n being odd. 

Solution by False Position. A system of 
linear equations of this type is solved in ~he Bakhshall 
treatise substantially as follows: 

Assume an arbitrary value p for Xl and then 
calculate the values of x 2, Xa, ... corresponding to it. 
Finally let the calculated value of Xn + Xl be equal to b 
(say). Then the true value of Xl is obtained by the 
formula 

Xl = P + ~(an - b). 
In the particular case (1) the author3 aSiiumes the 

arbitrary value 5 for X,; then are successively calculated 
the values X'2 = 8, x'a = 6 and x'a + XiI' = II. The 
correct values are, therefore, 

Xl = 5 + (15 - II)/Z = 7, X2 = 6, Xa = 8. 

1 BMs, Folios 27 and 29, verso. 
2 BMs, Folio 30, recto; also see Kaye's Introduction, p. 40. 
3 BMs, Folio, 29, recto. 
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Rationale. By the process of elimination we get from 
equations (I) 

(a2-al)+(a4-a3)+· ... +(an-I-an-0+2Xl = an' 
Assume Xl p; so that 

(a2-al)+(a4-aa)+' .... +(an-l-an-0t2p = b, say. 

Subtracting 2(XI - p) = an - b. 

Therefore Xl = P + !(an - b). 

Second Type. A particular case of the type of 
equations (I) for which n = 3, may also be looked up
on as belonging to a different type of systems of linear 
equations, viZ" 
:g x - Xl = d I , :::E X - X 2 = d 2, • •• , :::E X - xn = an' (II) 
where :s X stands for Xl + X2 + ... + x n ' But it 
will not be proper to say that equations of this. type 
have been treated in the Bakhshili treatise. l They have, 
however, been solved by Aryabhata (499) and Mahivlra 
(850). The former says: 

"The (given) sums of certain (unknown) numbers, 
leaving out .one number in succession, are added to
gether separately and divided by the number of terms 
less one; that (quotient) will be the value of the 
whole."2 

n 
i.e., :2X =:::E dr/en - 1). 

r=l 

Mahavira states the solution thus: 
"The stated amounts of-the commodities add_ed to

gether should be divided by the number of men less 

1 The example cited by Kaye (BMs, Introd., p. 40, Ex. vi) 
which conforms to this type of equations is based upon a mis
apprehension of the text. 

2 A, ii. 29. 

4 
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one. The quotient will be the total value (of all the com
modities). Each of the stated amounts being subtract
ed from that, (the value) in the hands (of each will be 
found)."l 

In formulating his rule Mahavira had in view the 
following example: 

"Four merchants were each asked separately by 
the customs officer about the total value of their com
modities. The first merchant, leaving out his own invest
ment, stated it to be 22; the second stated it to be 23, 
the third 2.4 and the fourth 27; each of them deducted 
his own amount in the investment. 0 friend, tell me 
separately the value of (the share of) the commodity 
owned by each."2 

2.2.+ 2. 3 + 2.4+ 2 7 Here Xl + X 2 + X3 + X 4 = = 32 • 
4- 1 

Therefore Xl = 10, X 2 = 9, X3 = 8, x 4 = 5. 
Narayal}a says: 

"The sum of the depleted amouhts divided by the 
number of persons less one, is the total amount. On 
subtracting from it the stated amounts severally will be 
found the different amounts."3 

The above type of equations is supposed by some 
modern historians of mathematics4 to be a modification 
of the type considered by the Greek Thymaridas and 
solved by his well known rule Epalltbe11la, namely,5 

x + Xl + -'"2 + .... + ~'l:n-l = S, 

X +x1 = aI' x + X2 = a2,· •• , x + x n - l = an-I· 

1 GSS, v~. ·159. 2 GSS, vi. 160-2. 
3 CK, ii. 28. 
'Cantor, Vorlewngen fiber Geschichte der Mathematik (referred 

to hereafter as Cantor, Gnchichte), J, p. 624; Kaye, Ind. Math., p. 13; 
JASB, 1908, p. 135. 

o Heath, Greek Math., I, p. 94. 
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The solution given is 

_ (a1 + a2 + .... + ata- 1) - of x- . 
n-2 

But that supposition has been disputed by others. l 

Sarada Kanta Ganguly has shown that it is based upon 
a misapprehension. It will be noticed that in the Thy
maridas tYfle of linear equations, the value of the sum 
of the unknowns is given whereas in the Aryabhata 
type it is not known. In fact, Aryabhata. determines 
only that value. 

Third Type. A ,more generalised system of linear 
eguations will be 

bl '2 x - C1X 1 = aI' b2"2 x - C2X 2 = (/2' •.•• , 

b'll'2 x - c .. x .. = a .. ·. (III) 

Therefore _ _ 2. (a/c) 
"'" x - "2 (b Ie) - I· 

Hence X =.!!.z__ 2 (a/c) (/,. () 
.. Cr· '2 (ble) - I - c.:' I 

r = I, 2, J, . •. , n. 

A particular case of this type is furnished by the 
following example of Mahavira: 

"Three merchants begged money mutually from 
one another. The first on begging 4 from the second 
and 5 from the third became twice as rich as the others. 
The second on having 4 from the first and 6 from the 
third became thrice as rich. The third man on begging 
5 from the first and 6.from the second became five times 
as rich as the oth,ers. 0 mathematician, if you know 

1 Rodet, Lefons de Calm! d'Aryabha!a, JA, XII! (7), 1878; 
Sarada Kanta Ganguly, "Notes on Aryabhata," Jour. Bihar and 
Orissa Research Soc., XII, 192.6, pp. 88ff. 
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the citra-kuf!ak.a-lllilra,1 tell me quickly what was the 
amount in the hand of each."2 

That is, we get the equations 

x + 4 + 5 = 2(Y + Z - 4 - 5), 

_y + 4 + 6 = 3(Z + x - 4 - 6), 
Z + 5 + 6 = 5 (x + y - 5 - 6); 

or .l(X + y + Z) - 3X = 2.7, 

3(X + y + Z) - 4Y = 4 0 ; 

5 (x + y +Z) - 6Z = 66; 
a particular case of the system (III). Substituting In 

(I), we get 
x = 7, . Y = 8, Z = 9· 

In general, suppose a~.l' a ... 2,.... O ..... -h aT."+! .•• 
ar •n to be the amounts begged by the rth merchant 
from the others; and x.. the amount that he had 
initially. Then 

Xl -f- ~'al.m = bl ('2X- XI- '2'al,m), 

X 2 +:?: ' a2.m = b2(':2 X - x 2 - ::;g' a2.m), 

Xn + :a'a"..m = b",(":2 x - x", - ::;; 'a""m), 

where ::;g 'a
T

•m denotes summation from III = I to 111 = n 
excluding III = r. Therefore . 

:ax + (bl + 1);g'al .m = (bl + I) ('2 X - Xl)' 
:2 x + (b2 + 1)'2 '02.m = (b2 + 1) (:2 x - X 2), 

;2X + (bn + 1):2 'an,rn = (bn + I) ('2 X - x n ). 

Let kr = (b'l' + 1)::2 'orom, r . 1, 2, 3, .. :, n. 

1 This is the name given by Mahavira to problems involving 
equations of type (III). 

II GSS. vi. 2.53 2-5 2' 
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Then dividing the foregoing equations by b1+ I, 

bZ + I, .... , respectively, and adding together, we get 

( I I. I) 
::8 X b

1 
+ I + bz + I + ... + b

n 
+ I 

( kl kz k n ) ( ) + b + +b--+ + ... + b + = 11- I ::'8X. 
1 I Z I n' I 

( ~ ~ ~ ) 
::2 X = b

I 
+ 1 + b2 + I + ... + b

n 
+ 1 

. (hI b2 b,:.) 
-;- b

I 
+ I + b

2 
+ i + ... + b n + I - I • 

Whence 

x = {'{or.+ brk] + kr + brk2 + ... + kr + brkr- 1 _ 

r b I+ 1 .bz + I br_ 1 + I 

+ kr + b;'r+1 + .. , -+- k,. + brkn _ (n _ z)kr Il b r+1 + Ibn + I 5 

-: (br+l)(b~ +b b; +"'+b~ -1): 
I 1 2- I ,. I 

Mahavlra describes the solution thus: I 

"The sum of the amounts begged by each person is 
multiplied by the multiple number relating to him as 
increased by unity. \\lith these (products), the amounts 
at hand ate determined according to the rule I!!agtqIa
gl/na etc. I They are reduced to a common denominator, 
and then divided by the sum &minished. by unity of the 
multiple numbers' divided by themselves as increased 
by unity. (The quotients) should be known to be the 
amounts in the hands of the persons."z 

Problems of ~he above kind ha:..-e been treated also 
by Nanaya1).a (1357). He says: 

.. . 
l1'he reference is to rule vi. 24 I. 
2 GSS, vi. 25 I~-252~. 
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"Multiply the sum of the monies received by each 
person by his multiple number plus unity. Then pro
ceed as in the method for "the purse of discord." Divide 
the multiple number related to each by the same as 
increased by unity. By the sum diminished by unity 
of these quotients, divide the results just obtained. 
The quotients will be the several amounts in their pos
session."l 

One particular case, where bl = b2 = .... bn = I 

and C1 = C2 = ... = Cn = c, was treated by Brahmagupta 
(628). He gave the rule: 

"The total value (of the unknown quantities) 
plus or minus the individual values (of the unknowns) 
multiplied by an optional number being severally 
(given), the sum (of the given quantities) divided by the 
number of unknowns increased or decreased by the mul
tiplier will be the total value; thence the rest (can be 
determined)."2 

:::ax ± CXl = aI' -;ZX ± CX2 = °2, .... , ~x ± CXn = an' 

Therefore ~ x = a1 + a2 + ... + an. 
n±c 

Hence 

apd so on. 
Brahmagupta's Rule. Brahmagupta (628) states 

the following rule for solving linear equations involving 
several unknowns: 

"Removing the other unknowns from (the side of) 
the first unknown and dividing by the coefficient of the 
first unknown, the value of the firs_t unknown (is obtain
ed). In the case of more (values of the first unknown), 

1 GK, ii. 33f. 2 BrSpSi, xiii. 47. 
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two and two (of them) should be considered after re
ducing them to common denominators. And (so on) 
repeatedly. If more unknowns remain (in the final 
equation), the method of the pulveriser (should be 
employed). (Then proceeding) reversely (the values 
of other unknowns can be found)."l . 

Prthudakasvami (860) has explained it thus: ' 
"In an example in which there are two or more 

unknown quantities, colours such as )'alJat-tdvat, ,etc., 
should be assumed for their values. Upon them should 
be performed all operations conformably to the state
ment of the example and thus should be carefully framed 
'.wo or more sides and also equations. Equi-clearance 
should be made first between two and two of them and 
Sf) on to the last: from one side one unknown should be 
cleared, other unknowns reduced to a common denomi
nator and also the absolute numbers should be cleared 
from the side opposite. The residue of other unknowns 
being divided by the residual coefficient of the first un- I 

known will give the value of the first unknown. If 
there be obtained several such values, then with two and 
two of them, equations should be formed after reduction 
to common denominators. Proceeding in this way 
to the end find out the value of one unknown. If 
that value be (in terms of) another unknown then the 
coefficients of those two will be reciprocally the values 
of the two unknowns. If, however, there be present 
more unknowns in that value, the method of the 
pulveriser should be employed. Arbitrary values may 
then be assumed for some of the unknowns." 

It will be noted that the above rule embraces the 
indeterminate as well as the determinate equations. In 
fact, all the examples given by Brahmagupta in illustra-

1 BrSpSi, xviii. p. 
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tion of the rule are of indeterminate character. We 
shall mention some of them subsequently at their prope! 
places. So far as the determinate simultaneous equations 
are concerned, Brahmagupta's method for solving them 
will be easily recognised to be the san:e as our present 
one. 

Mahavira's Rules. Certain interest problems 
treated by Mahavira lead to simple simultaneous equa
tions involving several unknowns. In these problems. 
certain capital a,mounts (cI , C2, ca, ... ) are stated to 
have been lent out at the same rate of interest (r) for 
different periods of time (fI' 12, la,"')' If (iI' i2, 
is, ... ) be the interests accrued on the several capitals, 

. r/3ca 'a=--"" . 
100 

(i) If i1 + i2 + ia + .... = I, c.. and It' be known 
(for r = '1, 2, ... ), we have 

.' Icl/l 
11 = , 

c1tl + c2/2 + c3t3 + .... 
with similar values for i 2 , i3 , • ••• 

Oi) Or, if C1 + C2 + Cs + ... = C, i .. and 
(for r = I, 2, ... ), we have 

Ci1 /l1 

and so on. 

I .. be known 

(iii) Or, if we are given the sum of the periods 11 + 12 

+ ... = T, c .. and i .. , then 

I - Til lC1 

1 - illc1 + i21c2 + ..... ' 
with similar values for 12, '3'" .. 

Maha.vlra has givten separate rules for the. solution 



LINEAR EQUATIONS WITH SEVERAL UNKNOWNS 57 

of problems of each of the above three kinds.! 
Bhaskara's Rule. Bhaskara II has given practically 

the same rule as that of Brahmagupta for the solution 
of simultaneous linear equations involving several un
knowns. We take the following illustrations from his 
works. 

Example 1. "Eight rubies, ten emeralds and a 
hundred pearls which are in thy ear-ring were purchased 
by me for thee at an equal amount; the sum of the-price 
rates of the three sorts of gems is three less than the half 
of a hundred. Tell me, 0 dear auspicious lady, if thou 
be skilled in mathematics, the price of each."2 

If x, y, Z be the prices of a ruby, emerald and pearl 
respectively, then 

8x = lOY = IOOZ, 

x+y+z = 47· 
Assuming the equal amount to be w, says Bhaskara 

II, we shall get • 
x = w/S, y = 11)/10, Z = U'/100. 

Substituting in the remaining equation, we easily 
get w = 200. Therefore 

x = 25, Y = 20, Z = 2. 

Example 2. "Tell the three numbers which become 
equal when added with their half, one-fifth and one
ninth parts, and each of which, when diminished by 
those parts of the other two, leaves sixty as remainder."3 

Here we have the equations 

x + X/2 = Y + Y/5 = Z + Z/9, (I) 
Y Z Z x x y x---- y----=Z----=6o. (2) 
5 9 9 2 2 5 

1 GSS, vi. 37, 39, 4z. 
3 BBi, p. 5Z • 

2 BBi, p. 47. 
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The geometrical solution of the simple quadratic 
equation 

4h2- 4dh = - c2 

is found in the early canonical works of the Jainas (500-
300 B. C.) and also in the Tattvdrthddhigama-slilra of 
Umasvati (c. 150 B. C.),l as . 

h = ~Cd- v'd2
- (

2
). 

Bakhshali Treatise. The solution of the quadratic 
equation was certainly known to the author of the Bakh
shill treatise (c. 200). In this work there are some 
problems of the following type: A certain person 
travels s Jlojatla on the first day and b yojatla more on 
each successive day. Another who travels at the 
uniform rate· of S yojatla per day, has a start of t days. 
When will the first man overtake the second? 

If x be the number of days af(er which the first 
overtakes the second, then we shall have 

SCI + x) = x{ s + (x ~ I) b}, 

or bx2 - {2(S - s) + b}x = 2tS. 
Therefore 

V {2(S - s) + b}2 + 8btS + {2(S - s) + b'} 
x zb 

which agrees exactly w.ith the solution as stated in the 
Bakhsb:111 treatise. 

"The daily travel [S] diminished by the march of the 
first day [s] is doubled; this is increased by the COmm0.il 
increment [b]. That (sum) multiplied by itself is desig
nated {as the k.fepa quantity}. The product of the daily 

1 Datta, "Geometry in the Jaina Cosmography," Qlle/len lind 

Studien Ztlr Ges. d. Math., Ab. B, Bd. I (1931), pp. 2.45-254. 
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travel and the start [I] being multiplied by eight times 
the common increment, the k.fepa quantity is added. 
The square-root of this {is increased by the kjepa quan
tity; the sum divided by twice the common increment 
will give the required number of days} ."1 

Nearly the whole of the detailed working of the 
particular example in which S = 5, t = 6, s = 3 and 
b = 4~ is preserved.2 It is substantially as follows: 

SI = 30; S - s = 5 - 3 = 2; 2(S - s) + b = 8; 
{z(S - s) +};}2 = 64; 8St = 240; 8Stb = 960; {z(S - s) 
+ b}2 + 8Stb = 1024; V 1024 = 32; 32 + 8 = 40; 
40 -;- 8 = 5 = x. 

For another problem3 S = 7, t = 5, S = 5, b = 3; 

then 7 +v'88"9 
X= 6 . 

The formula for determining the number of terms 
(n) of an A.P. whose first term (a), common difference 
(b) and sum (s) are known, is stated in the form 

_ v'8bs -P (2a - b)2 - (za - b) 
n - zb . 

The working of the particular example in which s = 60. 
a = 1, b = 1 is preserved substantially as follows: 4 

8bs = 480; 2a = 2; 2a - b = I; (2a - b)2 = I; 

8bs + (2a - b)2 = 481; n = H - I + v' 481), etc. 

Aryabha!a I. To find the number of terms of an 
A.P., Aryabhata I (499) gives the following rule: 

1 EMs, Folio 5, tecto. 
2 BMs, Folio h verso; Compare also Kaye's Introduction, 

pp. 37,45· 
3 EMs, Fciio 6, recto and verso. 
4 BMs, Folio 65 verso. Working of this example has been 

continued on folios 56, verso and recto, and 64, recto. 
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"The sum of the series multiplied by eight times 
the common difference is added by the square of the 
difference between twice the first term and the common 
(,Hfference; the squar~-root (of the result) is diminished 
by twice the first term and (then) divided by the common 
difference: half of this quotient plus unity is the number 
of terms."l 

That is to say, 

_1{YSbs+(Za-b?-za+ } 
11-T,J b 1. 

The solution of a certain interest problem involves the 
solution of the quadratic 

tx2 + px - Ap =.0. 
Aryabhata gives the value of x in the form2 

_ yAp! + (plz)2 - plz 
x- t . 

Though Aryabhata I has nowhere indicated any method 
of solving the quadratic, it appears from the above two 
forms that he followed two different methods in order 
tc make the unknown side of the equation ax2 + b_" = c, 
a perfect square. In one case he multiplied both the 
sides of the equation by ¥ and in the other simply by a. 

Brahmagupta's Rules. Brahmagupta (628) has 
given two specific rules for the solution of the quadratic. 
His first rule is as follows : 

"The quadratic: the absolute quantities multiplied 
by four times the coefficient of the square of the un
known are increased by the square of the coefficient 
of the middle (i.e., unknown); the square-root of the 
result being diGlinished by the coefficient of the middle 

1 A, ii. 20. 

2 A, ii. 2'; vide Part I, pp. ZI9f. 
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and divided by twice the coefficient of the square of the 
unknown, is (the value of) the middle."l 

V¥t+ b2
- b t.e., x = . 

2.a 

The second rule runs as: 
"The absolute term multiplied by the coefficient of 

the square of the unknown is increa~ed by the square 
of half the coefficient of the unknown; the square-root 
of the result diminished by half the coefficient of the 
unknown and divided by the coefficient of the square 
of the unknown is the unknown."2 

J.e., 
_ Vat + (I '2.)2 - (biz) 

x - -- . 

The above two method~ of Brahmagupta are 
identical with those employed before him by Arya
bhata I (499). The rooto of the quadratic equation for 
the number of terms of an A.P. is given by Brahma
gupta in the first form: 3 

n 
V 8&s + (za - &)2 - (za - b) 

2.b 

For the solution of the quadratic Brahmagupta uses 
also a third formula which is similar to the one now 
commonly used. Though it has not been expressly des
cri bed in any rule, we find its application in a few 

1 BrSpSi, xviii. 44. It will be noted that in this rule Brahma
gupta has employed the term fJladl:!Ja (middle) to imply the 
simple unknown as well as its coefficient. The original of tlJe 
term is doubtless connected with the mode of writing the quadratic 
equation in the form 

ax"!. + bx+ 0 = ox2 + ox + c, 
so that there are three terms on each side of the equation. 

2 BrSpSi, xviii. 45. 3 BrSpS;, xii. 18. 
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instances. One of them is an interest problem: A certain 
sum (P) is lent out for a period (t1); the interest accrued 
(x) is lent out again at this rate of interest for another 
period (t2) and the total amount is A. Find x. 

The equation for determining x is 
t 

_2_X2+ x = A. ptl 

Hence, we have 
-----=-------,--

x = "\. I (pt1 )2 + Apt1 _pI!; 
\J 2/2 12 2/2 

I 

which is exactly the form in which Brahm~gupta states 
the result.1 

There is a certain astronomical problem which in
volves the quadratic equation2 

(72 + a2)x2 =f 2¥PX = 144(R2 _ p2), 
2 

where a = agra (the sine of tlIe amplitude of the sun), 
b = pa/abha (the equinoctial shadow of a gnomon I.Z 

anguli long), R = radius, and x = kO{1asatiktJ (the sine of 
the altitude of the sun when his altitude is 45°). 
Dividing out by (72. + a2), we have 

x 2 T 2mx =n, 
where 

_ nap _ 144(R2/2. _ p2) 
m- n- . 

72. + a2 
' 72. + a2 

Therefore, we have 

x = V In2 + n ± m, 
as stated by Btahmagupta. This result is given also in 
the Sflryasiddhanta3 (c. 300) and by Sripati (1039).4 

/ 

1 BrSpSi, xii. I5. Vide Part I, p. 2.2.0. 

2 BrSpSi, iii. 54-55. 3 SuSi, iii. 30-1. 
'SiSe, iv. 74. 
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Sridhara's Rule. Sddhara (c. 750) expressly 
indicates his method of solving the quadratic equation. 
His treatise on algebra is now lost. But the relevant 
portion of it is preserved in quotations by Bhaskara IF 
and others.2 Sridhara's method is: . 

"Multiply both the sides (of an equation) by a 
known quantity equal to four times the coefficient of the 
square of the unknown; add to both sides a known 
quantity equal to the square of the (original) coefficient 
of the unknown: then (extract) the root."3 

That is, to solve ax2 + bx = c, ' 
we have ¥2X2 + ¥bx = ¥c, 

or (zax + b)2 = ¥c + b2. 

Therefore zax + b = V 44" + b2• 

Hence x = \I¥c+ b2 
- b. _ 

za -
An application of this rule is found in Sridhara's 

TriJatika~ in connection with finding the number of 
terms of an A.P.4 

\l8bs -+ (za - b)2 - 1.(1 + b 
i.e., II = zb ' 

1 BBi, p. 61. 
2 Jnanaraja (qo~ in his Bfjaga1Jita and Suryadasa (1541) i' his 

commentary on Bhaskara's Bi_jagatzita. 
a "Caturahatavargasamai rupail) pak~adva yam gUQ.ayet, 

Avyaktavarganlpairyukl.iu pak\>au tata mularp." 
This is t};Ie reading of Sridhara's rule as stated by Jfi:inaraja and 
Suryadasa and accepted also by Sudhakara Dvivedi. But according 
to the reading of Kn1)a (c. 1580) and Ramakr~Q.a (c. 1648), which 
has been accepted by Colebrooke, the second line af the verse 
shauld be 

"Purvavyaktasya krte}:1 samarup:iQ.i k~ipet tayoreva" 
or "add to them known quantities equal ta the square of the 
original cocHident of the unknown." 

4 Trif, R. 41 • 
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where a is the first term, b the common difference and 
s the sum of n terms. 

Mahavlra. The only work of Mahavira (850) 
which, is available now is the Gatzita-sara-samgraha. As 
it is admittedly devoted to arithmetic we cannot 
expect to find in it a rule for solving the quadratic. 
But there are in it several problems whose solutions 
presuppose a knowledge of the foots of the quadratic. 
One problem is as follows: 

"One-fourth of a herd of camels was seen in the 
forest; twice the square-root of the herd had gone to the 
mountain-slopes; three times five camels were on the bank 
of the river. What was the number of ~hose camels ?"l 

If x be the number of camels in the herd, then 

tx+ 2VX+ 15 = X. 

Or, in general, the equation to be solved is 

a -/iX+ tyx+ d= x, 

or ( I - ~ )x - tV;; = d. 

Mahavira gives the following rule for the solution of 
this equation: 

"Half the coefficient of the ro.ot (of the unknown) 
and the absolute term should be divided by unity 
minus the fraction (i.e., the coefficient of the unknown). 
The square-root of the sum of the square of the coeffi
cient of the root (of the unknown) and the absolute 
term (treated as before) is added to the coefficient 
of the foot (of the unknown treated as before). The 
sum squared is the (unknown) quantity in this mula 
type of problems."2 

1 GSS, iv. 34. 2 GSS, iv. H. 
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{ 
CJ2 "'\. I( C/2)2 d r~ 

t.e., X = 1 _ aJb + \j 1 - alb + 1 - alb i ' 

which shows that Mahavlra employed the modern rule 
for Ending the root of a quadratic. His solution for the 
interest problem treated by Brahmagupta is exactly the 
same as that of the latter'! We shall presently show 
that he knew that the quadratic has two roots. 

Aryabhata II. The formula for the number 
of terms (11) of an A.P. whose Erst term (a), common 

'difference (b) and sum (s) are known is given by 
Aryabhata II (c. 950) as follows :2 

_ Vzbs+(a-bJz)2_ a +b/z 
n - b ' 

which shows that for solving the quadratic he followed 
the second method of Aryabhata I and Brahmagupta .. 

Sripati's Rules. Sripati (r039) indicates two 
methods of solving the quadratic. There is a lacuna 
in our manuscript in the rule describing the first method, 
but it can be easily recognised to be the same as that 
of Sridhara. 

"Multiply by four times the coefficient of the square 
of the unknown and add the square of the coefficient 
()f the unknown; (then extract) the square-root ......... 
(~ivided by twice the coefficient of the square of the 
unknown, is said to be (the value of) the'unknown." 

"Or multiplying by the coefficient of the square of 
the unknown and adding the square of h;llf the coeffi
cient of the unknown, (extract) the square-root. Then 
(proceeding) as before, it is diminished by half the 
coefficient of the unknown and diYid~d by the (:oefficient 

1 GSS, vi. 44. 2 AISi, xv. 50. 
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of the square of the unknown. This (quotient) is said to 
be (the value of) the unknown."l 

i.e., ax2 + bx = c, 
or a2x 2 + abx + (b/z)2 = at + (bjz)2. 

Therefore ax + biz =Vat + (b/z)2. 

Hence x = ! at + (blz)2 - b/z . 
a 

Bhaskara Irs Rules. Bhaskara- II (I I 50) says: 
"When the square of the unknown, etc., remain, 

then, multiplying the two sides (of the equation) by 
some suitable quantities, other suitable quantities should 
be added to them so that the side containing the unknown 
becomes capable of yielding a root (pada-prada). The 
equation should then be formed again with the root of 
this side and the root of the known side. Thus the 
value of the unknown is obtained from that equation."2 

This rule has been further elucidated by the ~uthor 
in his gloss as follows: . 

"When after p~rfect clearance of the two sides~ 
there remain on one side the square, etc., of the un
known and on the other side the absolute term only, 
then, both the sides should be multiplied or divided by 
-some suitable optional quantity; some equal quantities 
should further be added to or subtracted from both 
the sides so that the unknown side will become capable 
of yielding a root. The root of that side must be equal 
to the root of the absolute terms on the other side. 
For, by simqltaneous equal additions, etc., to the two 
equal sides the equality remains. So forming an equa
tion again with these roots the value of the unknown is 
found."3 

lSiSe,xiv. 17-8, 19. 
3 BBi, p. 61. 

2 BBi, p. 59. 
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It may be noted that in his treatise on arithmetic 
Bhaskara II has always followed the modern method of' 
dividing by the coefficient of the square of the un
known. I 

Jiianaraja (1503) and Gal).eSa (1545) describe the 
same general l?et~ods for solving the quadratic as 
Bhaskara II. 

Elimination of the Middle Term. The method 
of solving the qUJl.dratic was known amongst the Hindu 
algebraists by the technical designation madbyama
haratta or "The Elimination of the Middle" (from 
madf?yallJa = middle and dharatta = removal, or destroy
ing, that is, elimination). The origin of the name 
will be easily found in the principle underlying the 
method. By it a quadratic equation which, in its 
general form, contains three terms and so has a middle 
term, is reduced to a pure quadratic equation o'r a simple 
equation involving only two· terms and so having no 
middle term. Thus the middle term of the original 
quadratic is eliminate:d by the method generally adopted 
for its solution. And hence the name. Bhaskara II has 
observed, "It is also specially designated by the learned 
teachers as the madf?yamaharatta. For by it, the removal 
of one of the tw02 terms of the quad~aticJ the middle 
one, (takes place)."3 The name is, however, employed 
also in an extended sense so as to embrace the methods 
for solving the cubic and the biquadratic, where also 

1 L, pp. qff. 
2 Referring to the two terms on the unknown side of tne com

plete quadratic. Or the text vt1rgt1-rdjdt'fka~ya may be rendered as 
"of one out of the unknown quantity and its square." According 
to the commentators Suryadasa (1541) and Kr$Qa (1580), it implies 
"of one between the two square terms," viZ" the square of the 
unknown and the square of the absolute number. 

3 BBi, p. 59. 
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certain terms are eliminated. It occurs as early as the 
works of Brahmagupta (62.8).1 

Two Roots of the Qu~dratic. The Hindus recog
nised early that the quadratic has generally two root~. 
In this connection Bhaskara II has quoted the following 
rule from an ancient writer of the name of Padmanabha 
whose treatise on algebra is not available now: 

"if (after extracting roots) the square-root of the 
absolute side (of the quadratic) be less than the negative 
absolute term on the other side, then taking it negative 
as well as positive, two values (of the unknown) are 
found."2 

Bhaskara points out with the help of a few specific 
illustrations that though these double roots of the 
quadratic are theoretically correct, they sometimes lead 
to incongruity and hence should not always be accepted. 
So he modifies the rule as follows: 

"If the square-root of the known side (of the 
quadratic) be less than the negative absolute term 
occurring in the square-root of the unknown side, then 
making it negative as well as positive, two values of 
the unknown should be determined. This is (to ,be 
don'e) occasionally."3 

Example I. "The eighth part of a troop of monkeys, 
squared, was skipping inside the forest, being delight
fully attached to it. Twelve were seen on the hill 
delighting in screaming and rescreaming. How many 
were they ?"4 

1 BrSpSi, xviii. 2. 

2 "Vyaktapak~asya cenmulamanyapak~arl).arupataJ::t 
Alpam dhanarl).ag~rh krtva dvividhotpadyate mitil)."-BBi. 

p.67· 
3 BBi, p. 59; ,also compare the author's gloss on the same 

(p. 61). 
4 BBi, p. 65' 
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Solution. "Here the troop of monkeys is x. The 
square of the eighth part of tbis together with 12, is 
equal to the troop. So the two sides are l 

'if-4X2 + ox + 12. = ox2 + X + o. 

Reducing these to a common denominafor and then 
deletir.g the denominator, and also making clearance, 
the two sides become 

x 2 - 64X + 0 = ox2 + ox - 768. 
Adding the square of 32 to both sides and (extracting) 
square-roots, we get 

x- 32. = ± (ox + 16). 
In this instance the absolute term on the known side is 
smaller than the negative absolute term on the side of 
the unknown; hence it is taken positive as well as 
negative; the two values of x are found to be 48, 16." 

Example 2. "The fifth part of a troop of monkeys, 
leaving out three, squared, has entered a cave; one is' 
seen to have climbed on the branch of a tree. Tell how 
many are they ?"2 

Solution. "In this the value of the troop is x; its 
fifth part less three is ! x - 3; squared, ..ft x 2 - ~x + 9; 
this added with the visible (number of monkeys), n x 2 - !X + 10, is equal to the troop. Reducing to 
a c;ommon denominator, then deleting the denominator 
and making clearance, the two sides become 

x 2 - 5 5x + 0 = ox2 + ox - 2.50. 
Multiplying these by 4, adding the square of 55, and 

1-We have here followed the modern practice of writing the 
two sides of an equation in a line with the sign of equality inter
posed, at the same time, preserving the other salient feature of the 
Hindu method of indicating the absent terms, if any, by putting 
zeros as their coefficients. 

2 BBi, pp. 65ft'. 
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extracting roots, we get 
2X- 55 = ± (OX + 45). 

In this case also, as in the previous, two values are 
obtained: 50, 5. But, in this case, the second (value) 
should not be ac<?epted as it is inapplicable. People have 
no faith in the known becoming negative." 

The implied significance of this last observation is 
this: If the troop consists of only 5 monkeys, its 
fifth part will be I monkey. How can we then leave 
out 3 monkeys? Again, how can the remainder be said 
to have entered the cave? It seems to have also a 
wider significance. 

EXllmple 3. "The shadow of a gnomon of twelve 
fingers being diminished by a third part of the 
hypotenuse, becomes equal to fourteen fingers. 0 
mathematician, tell it quickly."l 

Solution. "Here the shadow is (taken to be) x. 
This being diminished by a third part of the hypotenuse 
becomes equal to fourteen fingers. Hence conversely, 
fourteen, being subtracted from it, the remainder, a 
third of the hypotenuse, is x - 14. Thrice this, which 
is the hypotenuse, is 3X - 42. The square of it, 

, 9X2 - 25 2.X + 1764, is equal to the square of the 
hypotenuse, x 2 + 144. On making equi-dearance, the 
two sides become 

8x2 - 252X + 0 = ox2 +'ox - 1620. 

Multiplying both these sides by 2 and adding the square 
of 63, the roots are 

4X - 63 = ± (ox + 2.7)· 
On forming an equation with these sides again, and 
(proceeding) as pefore, the values of x are 45/2., 9. 

1 BBi, pp. 66f. 
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(Thus) the value of the shadow is 45 J 2 or 9. The second 
value of the shadow is less than 14, so, on account of 
impracticability, it should not be accepted. . Hence it has 
been said 'twofold values occasionally.' This will be an 
exception to what has been stated in the algebra of 
Padmanabha, viZ"'" 

Known to Mahavira. It has been stated before 
that Mah:ivlra (850) knew that the quadratic has two 
roots. W/e shall now substantiate it by the following 
rules and illustrations from his work. 

"One-sixteenth of a collection of peacocks multi
plied by itself, was on the mango tree ; ~ of the remainder 
multiplied by itself together with 14 were on the 
talllala tree. How many were they?"l 

If x be the number of peacocks in the collection, the 
problem leads to the quadratic equation 

x x I 5X 15X 

16 x 16 + 16 X 9 X 16 X 9 + 14 = x. 

This is a particular case of the type of equations con
templated by the author 

a 
7jX2- x+ c= o. 

The following rule has been -given for its solution. 
"The quotient of its denominator divided by its 

numerator, less four times the remainder, is multiplied 
by that denominator (as divided by the numerator). 
The square-root of this should be added to and subtracted 
from that denominator (as divided by the numerator); 
half that is the total quantity."2 

Thus .": = bJa ± \f(b/a - 4C)b/a. 
2 

1 CSS, iv. 59. 2 GSS, iv. 57. 
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II. EQUATIONS OF HIGHER DEGREES 

Cubic and Biquadratic. The Hindus did not 
achieve much in the solution of the cubic and biquad
ratic equations. Bh:1skara II (1150) attempted the 
application of the method of the mad0'amaharapa (eli
mination of the middle) to those equations also so as 
to reduce them by means of advantageous transforma
tions and introduction of auxiliary quantities to simple 
and quadratic equations respectively. He thus antici
pated one of the modern methods of solving the biquad
ratic. "If, however," observes Bh:1skara II, "due to 
the presence of the cube, biquadrate, etc., the work (of 
reduction) cannot proceed any further, after the perfor
mance of such operations, for want of a root of the 
unknown side (of an equation), then the value of the 
unknown must be obtained by the ingenuity (of the 
mathematician)."l He has given two examples, one 
of the cubic and the other of the biquadratic, in which 
such reduction is possible. 

Example I. "What is that number, 0 learned man, 
which being multiplied by twelve and increased by the 
cube of the number, is equal to six times the square of 
the number added with thirty-five. 

Sollllion. "Here the number is x. This multiplied 
by twelve and increased by the cube of the number be
comes x 3 + 12X. It is equal to 6x2 + 35. On making 
clearance, there appears on the first side x 3 - 6x2 

+ 12X; on .the other side 35 .. Adding negative eight 
to both the sides and extracting cube-roots, we get 

x - 2. = ox + 3. 
And from this equation the number is found to be 5."2 

Example 2. "What is that number which being 

1 BBi, p. 61. 2BBi, p. 64. 



EQUATIONS OF HIGHER DEGREES 77 

multiplied by zoo and added to the square of the number, 
and then multiplied by 1. and subtracted from the 
fourth power of the number will become one myriad less 
unity? Tell that number if thou be conversant with the 
operations of analysis. 

Solution. "Here the number is x; multiplied by 
zoo it becomes zoox; added to the square of the number, 
becomes x 2 + .200X; this being multiplied by two, 
2x2 + 40QX ; by this being diminished the fourth power 
of the number, namely, this x4, becomes .0 - 2X2 

- 40ox. This is equal to a myriad less unity. Equi
clearance having been made, the two sides will, be 

X4 - zx2 - 400X = 0.0 + OX2 + ox + 9999. 
Here on adding four hundred x plus unity to the first 
side, the root can be extracted, but on adding the same 
to the other side, there will be no root of it. Thus the 
work (of reduction) does not proceed. Hence here 

, ingenuity (is called for). Here adding to both the sides 
four times the square of x, four I hundred x and uni,ty 
and then extracting roots, we get 

x 2 + ox + I = ox2 + 2.X + 100. 

Again, forming equation with these and proceeding as 
before, the value of x is obtained as 1 I. In similar 
instances the value of the unknown must be determined 
by the ingenuity o~ the mathematician."! 

Higher Equations. MaM.vira Gonsidered certain 
simple equations of higher degrees in connection with 
the treatment of the geometric series. They are ·of the 
type 

(i) tlXn = q, 

(t',') xn - I 
tlx_I=P; 
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where a is the first term of a G. P., q its gUtJadhana, i.e., 
(n+ I )th term, p its sum and x the unknown common 
ratio. 

To solve equation (i) Mahavira says, "That which 
on multiplication by itself as many times as the number 
of terms becGm~s equal to the gtitJadhana divided by the 
first term, is the common ratio."! 

. ,"1-t.e., x = v q/p. 
In other words x is the 11th root of q/p. But how to 
find such a root he does not attempt to indicate. His 
rule for solving an equation of the type (ii) is as follows: 

"That by which the sum divided by the first term 
is divisible again and again, subtracting unity every 
time, is the common ratio."2 

The method will be better understood from the 
solution of the following example: 

"(Of a certain seri~s in G. P.) the first term is 3, 
number of terms 6 and sum 4095. \'{That is the common 
ratio ?"3 

x 6 -- 1 

3 X-I = 40 95, Thus 

or ,(X5 + X4 + ,,\,.3 + x 2 + X + I) = 4095, 

a qUlntlc equation. Here dividing 4095 by 3 we get 
1365. Now let us try with the divisor 4; we nave 
(1365 - 1)/4 = HI; (HI - 1)/4 = 85; (85 - 1)/4 = 21; 

(21 - 1)/4 = 5; (5 - 1)/4 = I; (1 - 1)/4 = o. So the 
number 1365 is exhausted on 6 successive divisions by 4, 
in the way indicated in the rule. Hence x = 4. \Vhat 
suggested the method is clearly this: 

xn - I xn - I Xn - I X n - 1 - I 
a ---- -7- a = - -; - I = X ( ); 
X-I X-I X-I X-I 

1 GU, ii. 97. 2 GSS, ii. loI. 

3 GSS, ii. 102; compare also Rangacarya's note thereto. 
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which is divisible by x. However, the solution is 
obtain¢d in, every ca.se by trial only. 

Maha.vira has treated some equations of the fol
lowing general type :. 

t11 y b1x + t12 Y b:;-2-(x~--a-l-y~b=IX=) 

+ t13 \} b3~ (x - ttl yblx) - tt2 Y b2(x - ttl Y b1X)} 

+ ... + R =x; 

or (x - a1 Y 7i;X) - a2 y b2(x - a1 Y b1x) 

- a3 \} ba {(x - al Y blx) - a2 Y b2(x - al V br'K)} 

- ... =R. 
If there be r terms on the left hand side, then on 

rationalisation, we shall have an equation of 2T(h degree 
in x. By proper substitutions, the equation will be 
ultimately reduced to a quadratic equation of the form 

X-AyBX=R, 
whose solution is given by Mahavira as 

X={:4+ y~a+4R/Brx B. 

This result has been termed by him, the "essence" 
(j'ara) of the general equation. 1 Mahavira gives two 
problems involving eq~ations of the above type. 

(I) "(Of a herd of elephants) nine times the square
root of the two-thirds plus· six times the square-root 
of the three-fifths of the remainder (entered the deep 
forest); (tbe re1;llaining) 24 elephants with their round 
temples wet with the stream of exuding ichor, were seen 
by me in a forest. How many were the elephants (in 

1 GSS, iv. 5 I, 52. 
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the herd) ?"1 
If x be the number of elephants in the herd, then by 

the statement of the problem 

9\{f+ 6\)! (x- 9 \)2;)+ 24 =x. 

Put y = x -9-\) 2;"<"; then the equation becomes 

y - 6v' 3y/5 = 2.4· . 

Therefore . Y = 60 or ~f>f}-. 

Hence x-'9 \)Z; = 60, 

whence x == 150, 24. 

Again \)
2X -;> s-

X - 9 3 = :llj_, 

whence X = ~(61 ± 3 v' 385). 

Of the four values of 1>" obtained above, only the value 
x = 150 can satisfy all the conditions of the problem; 
others are inapplicable. That will explain why Mahl
vira has retained in his solution only -the positive sign 
of the radical. 

(2) "Four times the square-root of the half of a col
lection of boars went into a forest where tigers were at 
play; twice the square-root of the tenth part of the 
remainder multiplied by 4 went to a mountain; 9 times 
the square-root of half the remainder went to the bank 
of a river; boars numbering seven times eight were seen 
in the forest. Tell their number."2 

1 GSS, iv. 54-5' 2 GSS, iv. 56. 
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If x be the total number of boars in the collection, 

4V xJt. + 8Y 11()(X - 4V x/t.) 

+ 9\/ ~{(x - 4YX/Z) - 8Y lli(X - 4Y xjz)} 

+ 56 =x. 
Put y = x - 4 V x / 2.; then 

----===--
.y _. 8y Y/IO -- 9Y (y - 8y Y/IO)/1. = 56. 

Again put Z = y - 8Y Y/IO; then 

Z - 9YZ/2. = 56. 
---~ 

Therefore Z = (9 +V 8I ;- 4. 2 .5 6)2 X ~ = 128. 

Then .y - SYYfIO = uS; 

whence Y = (8 +V64 -: 10·4· 128/ X l]ZY = 160. 

Again 

hence x = (4 +Y16 + 4· 2. 160)2 X _~ = 200. 
2-

Note that according to the problem the positive 
value of the radical has always to be taken. 

IZ. SIMULTANEOUS QUADRATIC EQUATIONS 

Common Forms. Various problems involving 
_irnultaneous quadratic equations of the following forms 
have been treated by Hindu writers: 

x - _y = d} (-) x + Y = a J (--) 
b ··· f b···11 .'ry = ."9 = 

x2 + y2 = c}. ( ... ) x2 + y2 = C} (.) 
b ... tit + ... til 

.'\)'= X Y=(1 
6 
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For the solution of (i) Aryabhata I (499) states the 
following rule: 

"The square-root of four times the product (of 
two quantities) added with the square of their difference, 
being added and diminished by their difference and 
halved gives the two multiplicands."l 

!.e., x = ~ v' d::' + 4b + d), y = ¥ v' d2 + 4V - d). 
Brahmagupta (628) says: 
"The square-root of the sum of the square of the 

difference of the residues and two squared times tl:e 
product of the residues, being added and subtracted 
by the difference of the residues, and halved (gives) 
the desired residues severally ."2 

Naraya1)a (1357) writes: 
"The square-root of the square of the difference of 

two quantities plus four times their product is their 
sum."3 

"The square of the difference of the quantities to
gether with twice their product is equal to the sum of 
thei r squ~res. The square-root of this result plus twice 
the product is the sum."4 

For the solution of (ii) the following rule is given 
by M:JhaYlra (a50) : 

"Subtract four times the area (of a rectangle) from 
the square of the semi-perimeter; then by s(l1ikra11lCltzu5 

between the square-root of that (remainder) and the 
semi-perimeter, the base and the upright are obtained."6 

1 A. ii. 24. 2 BrSpSi, xviii. 99. 
3 GK, i. 3~. '" GK, i. 36. 
5 Given a and b, the process of sankrama!1a is the finding of 

half their sum and difference, i.e., a+b and a-b (see pp. 43f). 
2 2 

3 GSS, vii. u9~' 
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t.e., x = -!tea + Va 2 - 40), _y = -Ha - V-;;2 - 4b). 

Nadya1).a says: 
"The square-r0ot of the square of the sum minus 

four times the .product is the diff~rence."l 

For (iii) Mahivlra gives the rule: 
"Add to and subtract twice the area (of a rectangle) 

from the square of the diagonal and extract the square
roots. By sankralJla~a between the greater and lesser 
of these (roots), the side and upright (are found)."2 

i.e., x = ~(V C + 2b + V C - 2.b), 

Y = -Hv C + 2b - v C - 2b). 
For equations (iv) Aryabhata I writes: 

"From the square of the sum (of two quantities) 
subtract the sum of their squares. Half of the remain
der is their product."3 

The remaining operations will be similar to those 
for the equatigns (ii); so that 

x = ~(a +y' zc - a2), y = ~(a -v 2.C- a2). 

Brahmagupta says: 
"Subtract the square of the sum from twice the 

s~.m of the squares; the square-root of the remainder 
being added to and subtracted from the sum and halved, 
(gi ves) the desired residues."4 

Mahavlra,5 Bhaskara II6 and NirayaJ).a 7 have also 
treated these equations. 

Narayat;la has given two other forms of simul-

1 GK, i. 35.-
3 A, ii. 23. 
6 GSS, vii. 12.5~. 
7 GK,i. 37. 

2 GSS, vii. I27~. 
'BrSpSi, xviii. 98. 
e L, p. 39. 
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tancous quadratic equations, namely, 

x 2 + y2 = C} x 2 _ y2 = 1JI} . 
X -j = d ... (v) xy = b ... (VI) 

For the solution of (ll) he gives the rule: 
"The square-root of t\vice the sum of the squares 

decreased by the square of the difference is equal to the 
sum."1 

l.e., 
Therefore 

x, + y = V 2.C - d 2• 

x = ~(V 2c - d2 + d), _'Y = -Hv 2.C - d2 - d). 
For (pi) Naraya1)a writes: "-
"Suppose the square of the product as the product 

(of two quantities) and the difference of the squares as 
their difference. From them by stllikrallla will be 
obtaine4 the (sq\.lare) quantities. Their square-roots 
severally will give the quantities (required)."2 

We have 
x 2 _y2 = Ill} 

X:_y2 = b2 

These are of the form (i). Therefore 
--=-----;~ 

x 2 = ~(V!ll2 + 4b2 + m), y2 = 1(V!ll2 + 4h2 - m). 

\Vhence we get the values of x and y. 
Rule of Dissimilar Operations. The process 

of solving the following two particular cases of simul
taneous quadratic equations was distinguished by most 
Hindu mathematicians by the special designation vifama
ktfr/JJa3 (dissimilar operation) : 

1 GK, i. 33. 2 GK, i. 34. 
3 The name vi,afIJa-karlJla originated obviously in contra

distinction to the name salikramof!a. This is evident from the term 
1'iloma-.ratikrallJolJa used by Mah:5.~ira for vilanla-karma. 
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x 2 
- y2 = IJI} (0) 

••• 1 
X-)'=n 

" " } o Xw - yw = 111 (00) .\: + y = p ... II 

These equations are found to hayc been regarded by 
them as of fundamental importance. The solutions 
given are: 

for (i) 

for (ii) 

( Ill) X = -h- -- + 11 
~ n ' 

_l( + Ill) 
x-'! P p' 

Thus Brahmagupta says: 

( 
III ) 

Y =}---IJ' 
2 11 ' 

) ( m ) Y=:r p- p . 

"The difference of the squares (of the unknowns) 
o .1}, divided by the difference (of the unknowns) and the 

quotient is increased and diminished by the difference 
and divided by t\Y9; (the results will be the two 
unknown quantities); (this is) dissimilar operation."l 

The same rule is restated by him on a different 
occasion in the course of solving a problem. 

"If then the'difference of their squares, also the 
difference of them (are given): the difkrence of the 
squares 1S divided by the difference of them, and this 
(latter) is added to and subtracted from the quotient 
.and then divided by two; (the results are) the residues; 
whence the number of elapsed days (can be found)." 2 

Mahavira states: 
"The saJikrdmatJa of the divisor and the quotient 

of the two quantities is dissimilar (operation); so it is 
called by those who have reached the end of the ocean 
of mathematics."3 

Similar rules are given also by other writers.4 

1 BrSpSi, xviii. 36. 
3 GSS, vi. 2. 

" MSi, xv. 22; .ric" 

2 BrSpSi, xviii. 97. 

.~ GK, i. 32. 
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Mahavira's Rules. 1fahavira (850) has treated 
certain problems involving the simultaneous quadratic 
equations: 

Here 

II + X = tI, 

11+ y = b. 
IIrw = ax, 
US1}1 = u)'. 

,. x a-u 
-:r=y-=b-t/ 

Therefore 
rb - sa U=---
r-J 

(a-b) (a-b) (a-b) Hence ~'\; = --- r, y = -- s, 'W = 1-- a. 
r - S r - s rl} - sa 

In the above equations x,y are the interests accrued 
on the principal 11 in the periods r, s respectively and 
11' is the rate of interest per a. 

~1ahavlra states the result thus: 
"The difference of the mixed sums [a, b] multiplied 

by each other's periods [r, s], being divided by the 
difference of the periods, the quotient is known as the 
principal [11]'''1 

Again, there are problems involving the equations: 

11 + X = p, tlXW = alll, 

lJ + y = q. t!)'w = afl. 

W'here x, yare the periods for which the principal u 
is lent out at the rate of interest w per (l and Ill, n are the 
respective interests. 

Here 
»J _ X _P-II ------. 
11 Y q-u 

Therefore Illq - fP 
11= • 

111- n 

1 GSS, vi. 47. 2 GK, i. 
r/ma-karma originated obv}, 

flame saliR:raml1t!a. This is evid_i'll: L_ 

,11!11 used by MaM~lra for vi{allJa-karllJa. 
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x = (p - q) m, y = (p - q )n, 
m-n m-n 

Hence 

arm - n)2 w- l 

- (p - q)(mq- np)' 

Mahavira gives the rule: 
"On the difference of the mixed sums multiplied 

by each other's interests, being divided by the difference 
of the interests, the quotient, the wise men say, is the 
principal."l 

13· INDETERMINATE EQUATIONS OF THE FIRST 
DEGREE 

General S·urvey. The earliest Hindu algebraist 
to give a treatment of the indeterminate equation of the 
first degree is Aryabhata I (born 476). He gave a method 
for finding the general solution in positive integers 
of the simple indeterminate equation 

by - ax = c 
for integral values of a, b, c and further indicated how to 
extend it to get positive integral solutions of simultan
eous indeterminate equations of the first degree. His 
disciple, Bhiskara I (522), showed that the same 
method might be applied to solve by - ax = - c and 
further that the solution of this equation would follow 
from that of ~y ....:_ ax = - I. Brahmagupta and others 
simply adopted the methods of Aryabhata I and Bhis
kara 1. About the middle of the tenth century of the 
Christi,an Era, Aryabhata II improved them by point
ing out how the operations can in certain cases be 
abridged. considerably. He also noticed the cases of 
failure of the methods for an equation of the form 

1 GSS, vi. p. 
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~y - ax = ± c. These results reappear in the works of 
later writers. l 

Its Importance. It has been observed before that 
the subject of indeterminate analysis of the first de-gree 
~as considered so important by the ancient Hindu 
algebraists that the whole science of algebra was once 
named after it. That high estimation of the subject 
continued undiminishc<;l amongst the later Hindu mathe
maticians. Atyabhata II enumerates it distinctively 
along with the sciences of arithmetic, algebra, and 
astronomy.2 So did Bhaskara II and others. . As has 
been remarked by GaQ.eSa,3 the separate mention of the 
subject of indeterminate analysis of the first degree is 
designed to emphasize its difficulty and importance. 
On account of its special importance, the treatment
of this subject has been included by Bhaskara II in his 
treatise of arithmetic also, though it belongs parti
cularly to algebra. 4 It is also noteworthy that there is 
a work exclusively devoted to the treatment of this 
subject. Such a special treatise is a very rare thing in 
the mathematical literature of the ancient Hindus. This 
work, entitled K,,!!dkara-Jirollla!1i,5 is by one Devaraja, 
a commentator of Aryabhata 1. 

1 For "India's Contribution to the Tpeory of Indeterminate 
Equations of the First Degree," see the comprehensive llrticle of 
Professor Sarada Kanta Ganguly in jOllrn. Ind. Alath. Soc., XIX, 
193 I, Notes and Questions, pp. 110-120, 129-142; see also XX, 
1932, Notes and QllestiOlIJ". Compare also the Dissertation of 
D. M. Mehta on "Theory of simple continued i .... ctions (with 
special reference to the history of Indian l\lathematics)."-

2 MSi, i. 1. 

, 3 Vide his commentary on the Lfldl'ati of Bhftskara n 
4 Bhiiskara's treatment of the pulvcriscr in his J3[jagatJita is 

repeated nearly word for word in his Lfld/"att. 
5 There are four manuscript copies of this work in the Oriental 

Library, MYSQre. 
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Three Varieties of Problems. Problems whose 
solutions led the ancient Hindus to the investigation 
of the simple indeterminate equation of the first degree 
were distinguished broadly into three varieties. The 
problem of one variety. is to find a number (N) which 
being divided by two given numbers (a, b) will leave 
two given remainders (Rl' R2). Thus we have 

N = ax + Rl = by + R 2• 

Hence by - ax = Rl - R 2• 

Putting c = Rl ,_, R 2, 

we get by - ax = ±c 
the upper or lower sign being taken according as Rl 
> or < R2• In a pro blem of the second kind we are 
required to find a number (x) such that its product with 
a given number (a) being increased or decreased .by 
another given number .(v) and then divided by a 'third 
given number (~) will leave no remainder. In other 
words we shall have to solve 

ax± v - =Y 
~ 

in positive integers. The third variety of problems 
similarly leads to equations of the form 

by + ax = ± c. 
Terminology. The subject of indeterminate 

analysis of the first degree is generally called by the 
] Iindus hl!!aka, k1l!!t1kdra, kll!!ikdra or simply kll!!a. 
The names klt!!dkdm and kll!/a occur as early as the 
j\1ahd-Bhdskar[),a of BM.skara I (522).1 In the c9mmen
tary of the A1]'obho!fj'o by this writer we find the terms 
kll!/aka and kll!!okura. Brahmagupta has used kll!!ak",2 
h'!fdkdra,3 and k"!!Cl.4 Mah§,vira, it appears, had a 

1 MBh, i. 41, 49. 
3 BrSpSi, xviii. 6, 15l etc. 

2 BrSpSi, xviii. 2, II, etc. 
"BrSpSi, xviii. 20, 25, etc. 
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preferential liking for the name kti!!ikdra.1 

In a problem of the first variety the quantities 
(a, b) are called "divisors" (bhdgahara, bhdjak, cheda, 
etc.) and (R I , R2) "remainders" (agra, seta, etc.), while 
in a problem of the second variety, (3 is ordinarily 
called the "divisor" and y the "interpolator'" (kfepa, 
kfep:1ka, etc.); here a is called the "dividend" (bha}ya) , 
the unknown quantity to be found (x) the "multiplIer" 
(glltlaka, glltlakara, etc.) and y the quotient (phala). The 
unknown (x) has been sometimes called by Mahavira as 
rali (number) implying "an unknown number."2 

Origin of the name. The Sanskrit words ku/!a, 
hI//aka, ku!fdkara and kll!!ikara are all derived from the 
root kll!! "to crush", "to grind," "to pulverise" and 
hence etymologically they mean the act or process of 
"breaking", "grinding", "pulverising" as well as an 
instrument for that, that is, "grinder", "pulveriser". 
\Vhy the subject of the indeterminate analysis of the 
first degree came to be designated by the term kll!!aka 
is a question which will be naturally asked. GaDe~a 
(1545) says: "KII!!aka is a term for the multiplier, for 
multiplication is admittedly called by words import
ing 'injuring,' 'killing.' A certain given number being 
multiplied by another (unknown quantity), added or 
subtracted by a given interpolator and then divided by a 
given divisor leaves no remainder; that multiplier is the 
ku!/aka: so it has been said by the ancients. This is a 
special technical term."3 The same explanation as to the 
origin of the name kll//aka has been offered by Surya
dasa (1538), Kr~Da (c. 1580) and Ranganatha (1602).4 

1 GSS, vi. 792, etc. 2 GSS, vi. IIS~ff. 
3 Vide his commentary on the Liltivati of Bhaskara II. 
4 Vide the commentaries of Suryadasl on Li/dt'a/i and B[/a

gatti/a, of Krg1a on Bijag,4!iita, and of Ranganatha on Siddhdnla
Jiromat;li. 
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But it is one-sided inasmuch as it has admittedly in 
view a problem of the second variety where we have 
indeed to find an unknown multiplier. But the rules of 
the earlier .algebraists such as Aryabha!a I and Brahma
gupta were formulated with a view to the solution of a 
problem of the first variety. So the considerations 
which led those early writers to adopt the name IeII!taka 
must have been different. .MahavJra has once stated 
that, according to the learned, k!I!!fkara is another name 
for "the operation of prakfepaka" (lit., thro\ving, scatter
ing, implying division into parts).l In fact, his writ
ing led his translator to interpret ktlttikara as "propor-, 
tionate division", "a special kind of division or distribu
tion."2 Bhaskara I, who had in view a problem of the 
second variety, once remarked, "the number is obtained 
by the operation of pulverising (kil!/ana) , when it is 
desired to get the multiplier (gll!lakara) . ... "3 It will 
be presently shown'that the Hindu method of solving the 
equation ly - ax = ± c is essentially based on a process 
of deriving from it successively other similar equations 
in which the values of the coefficients (a, b) become 
smaller and smaller. 4 Thus the process is indeed the 
same as that of breaking a whole thing into smaller 
pieces. In our opinion, it is this that led the ancient 
mathematicians to adopt the name kll!!aka for the opera
tion. 

Preliminary Operations. It has been remarked 
by most of the writers that in order that an equation 

1 "Prak~epaka-karaY:lamidam ..... kuttikaro budhaissamuddi~
!arp"-GSS, vi. 79~. 

2 Vide <?,SS (English translation), pp. I I7, 300. 

3 "Krta-kuttana-Iabdha-rasimesam 
G~t:laki~~rp samusanti .... · . . ;'-MBh, i. 48. 

"" It has been expressly stated by Suryadeva Yajva that the 
process must be continued "yavaddharabh:1jyayoralpata." 
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of the form 
by - ax = ± c or by + ax = ± c 

may be solvable, the two numbers a and b must not have 
a common divisor; for, otherwise, the equation would 
be absurd, unless the number c had the same common 
divisor. So before the rules adumbrated hereafter 
can be applied, the numbers a, b, c must be made prime 
(drrfha = firm, niccheda = having no divisor, lIirapa
varta = irreducible) to each other. 

Thus Bhaskara I observes: 
"The dividend and dIvisor will become pnme to 

each other on being divided by the residue of their 
mutual division. The operation of the pulveriser 
should be considered in relation to them."l 

Brahmagupta says: 
"Divide the multiplier and the divisor mutu~lly 

and find the last residue; those quantities being divided 
by the residue will be prime to each other."2 

Aryabhata II has made the preliminary operations 
in successive stages. Tl1ese will be described bter on.3 

Sripati states: 
"The dividend, divisor and interpolator should 

be divided by their common divisor, if any, so that it 
may be possible to apply the method to be described."4 

"If the dividend and divisor have a common 
divisor, which is not a divisor of the interpolator then 
the problem would be absurd."5 
Bhaskara II writes: 

"As preparatory to the method of the pulveriser, 

1 MBh, i. 4I. 
3 Vide infra, p. 104. 
;; SiSe, xiv. 26. 

2 BrSpSi, xviii. 9. 
4 SiSe, xiv. 22. 
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.. the dividend, divisor and interpolator must be 
dtvided by a common divisor, if possible. If the 
number by which the dividend and divisor are divisible, 
does not divide the interpolator then the problem 
is absurd. The last residue of the mutual divi
sion of two numbers is their common divisor. The 
dividend and divisor, being divided by their common 
divisor, become prime to each other."! 

Rules similar to these have been given also by 
Nariyat;la,2 Jiiinaraja and Kamalikara.3 So in our 
subsequent trLatment of the Hindu methods for the 
solution in positive integers of the equation by ± ax 
= ± ,', we sha.ll always take, unless otherwise stated, 
a, b prime to each other. 

Solution of by - ax = ± c 

Aryabha!a l's Rule. The rule of Aryabhata I (499)4 
is rather obscure inasmuch as all the operations intend
ed to be carried out have not been described fully and 
clearly. So it has been misunderstood by many writers.s 
Following the interpretation of the rule by Bhaskara 
I (525), a direct disciple of Aryabhata I, Bibhutibhusan 
Datta has recently given the following translation:6 

1 L, p. 76; BBi, pp. 24f. 2 NBi, I, R. S 3-4. 
3 SiTVi, xiii. 179ff. 4 A, ii. 32 -3' 
Ii L. Rodet, "Les:ons de calcul d'Aryabhatta," JA, XIII, 

1878, pp. 303 If; G. R. Kaye, "Notes on Indian Mathematics. 
No. 2-Aryabhata," lASB, IV, 1908, pp. 1 II If; BCAlS, IV, p. S 5; 
N. K. Mazumdar, "Aryyabhatta's rule in relation to Indeterminate 
Equations of the First Degree," BCMS, III, pp 11-9; P. C. Sen 
Gupta, "Aryabhatiyam," JOUT. Dept. Let. Cal. Univ., XVI, 1927; 
reprint, p. Z7.; S. K. Ganguly, BCMS, XIX, 1928, pp. 170ff; 
W. E. Clark, Arrabha/[ya,of AI1'abha.ta, Chicago, 1930, pp. 42ff. 

6 Bibhutibhusan Datta, "Elder Aryabhata's rule for the 
solution of indeterminate equations of the first degl"ee," BCMS. 
XXIV, 1932, pp .. H-53. 
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"Divide the divisor corresponding to the greater 
remainder by the divisor corresponding to the smaller 
remainder. The residue (and the divisor corresponding 
to the smaller remainder) being mutually divided, 
the last residue should be mul6plicd by such an optional 
integer that the product being added (in case the number 
of quotients of the mutual division is even) or subtracted 
(in case the number of quotients is odd) by the difference 
of the remainders (will be exactly divisible by the last 
but one remainder. Place the quotients of the mutual 
division successively one below the otheL in a column; 
below them the optional multiplier and underneath it 
the quotient just obtained). Any number below (i.e., 
the penultimate) is multiplied by the one just above it 
and then added by that just below it. Divide the last 
number (obtained by doing so repeatedly!) by the divisor 
corresponding to the smaller remainder; then multiply 
the residue by the divisor corresponding to the greater 
remainder and add the greater remainder. (The result 
will be) the number corresponding to the two divisors." 

He has further shown that it can be rendered also 
as follows: 

"Divide the divisor corresponding to the greater 
remainder by the divisor corresponding to the smaller 
remainder. The residue (and the divisor corresponding 
to the smaller rem~inder) being mutually divided 
(until the remainder becomes zero), the last quotient 
should be multiplied by an optional integer and then 
added (in case the number of quotients of the mutual 
division is even) or subtracted (in case the number of 
quotients is odd) by the difference of the rem:tinders. 
(Place the other quotients of the mutual division succes-

1 The process implied here is shown in detail in the working 
of the examp!e on pages 113f. 
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sively one below the other in a column; below them the 
result just obtained and underneath it the optional in
teger). Any number below (i.e., the penultimate) 
is multiplied by the one just above it and then added 
by that just below it. Divide the last number (obtained 
by doing so repeatedly) by the divisor corresponding 
to the smaller remainder; then multiply the residue 
by the divisor corresponding to the greater remainder 
and add the greater remainder. (The result will be) 
the number corresponding to the two divisors." 

Aryabhata's problem is: To find a number (N) 
which being divided by two given numbers (a, b) will 
leave two given remainders (RI , R 2).1 This gives: 

N = ax + Rl = by + R 2• 

Denoting as before by c the difference between Rl and 
R 2, we get 

(i) by = ax + c, if Rl > R2, 

or (ii) ax = by + c, if R2 > Rl 

the equation being so writfen as to keep c always posi
tive. Hence the problem· now reduces to making either 

ax + c fry + c 
--b-- or a 

according as Rl > R2 or R2 > Rp a positive integer. 
So Aryabhata says: "Divide the divisor corresponding 
to the greater remainder etc." 

I It has already been stated (p. 90) that in a problem of the 
first variety which gives an equatlOn of the above form (and in 
which RI > R 2). 

a =:= divisor corresponding to greater remainder, 
b = divisor corresponding to lesser remainder, 

Rl = greater remainder, 
R2 = lesser remainder. 
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Suppose Rl > R 2 ; then the equation to be solved 
will be 

ax + c = by 
11, b being prime to each other. 

Let 
b) 11 (q 

bq 
'·Jb (ql 

r1ql -r2)r1 (q2 
r 2q2 

ra 
..... ..... 

r,n-l) r m-2 (qm-l 
r m- 1qm-l 

---,. m) r m-l (qm 
rm~ 

rm +1 
Then, we get l 

a = bq + rp 

b = r1ql + r2, 

r1 = r2q2 + r3, 
r2 = 1"3q3 + r" 

r m-2 = r m-lqm-l + rm , 

r m-l = '" ... qm + r m+l' 

(I) 

Now, substituting the value of a in the given equa
tion (I), we get 

Therefore 
by = (bq + r1)x + c. 

y = qX+)'1> 

1 When a < b, we shall have q = 0) r1 = a. 
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where 01 = r1x + c. 
In other words, since a = bq + rl' 

.Y = qX+J'1 
on putting 

(1) 
the gIven equation (I) reduces to 

fryl = r1_x + c. 
Again, since b = r 1ql + r 2 , 

putting similarly "'\,: = Q1J'1 + ·,'1 
the equation (1. I) can be further reduced to 

and so on. 

(1. I) 

(I. 2) 

Writing do,vn the succeSSive values and reduced 
cltuations In columns, we have 

(I) )' = QX-r)'I' l!h = r1x + c, 
(z) x = Ql)' + XI> 1"IX l = "2)'1 - c, 
(3) )'1 = Q2x l + )'2' "2)'2 = "ax , + c, 
(4) Xl = QaY3 -f- -\."2' 1"3X 2 = 1'4)'2 - c, 
(5) .)'2 = Q4x 2 -+- )'3' 1"4)'3 = 1"5X 2 + (:, 
(6) x 2 = t]5]3 + x 3 , 1",o;X3 = 1"6)'3 - c, 

(1. I) 
(I. 2) 
(1. ~) 
(1. 4) 
(1. j) 
(I. 6) 

(2n--I)Yn_l = Q2n-2xn-l +.)"" r2n-2)'n=r2n-Ixn_l +c, (I. 2n.- I) 
(zn) X"_1 = t]2n--l)'n + Xno r2n_IXn=r2n)',,-C, (I. zn) 
(211 + I) )'n = t]21.Xn -1-Yn+l' r2nJ'n+l = r21HIXn + c, (1. 2n -+- r) 

Now the mutual division can be continued either 
(i) to the fin"ish or (ii) so as to get a certain number of 
quotients and then stopped. In either case the number 
of quotients found, neglecting the first one (q), as is 
usual with Aryabhata, may be eycn or odd. 

Case i. First suppose that the mutual division 
is continued until the zero remainder is obtained. Since 
(/, b are prime to each other, the last but one remainder 
is unity. 

Subcase (i, 1_). Let the number of quotients be 
even. We then have 

7 
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mutual division, one below the other, in the form of a 
chain. Now find by what number the last remainder 
should be multiplied, such that the product being sub
tracted by the (given) residue (of the revolution) will 
be exactly divisible (by the divisor corresponding to 
that remainder). Put down that optional number 
below the chain and then the (new) quotient underneath. 
Then multiply the optional number by that quantity 
which stands just above it and add to the pwduct the 
(new) quotient (below). Proceed afterwards also in the 
same way. Divide the upper number (i:e., the multi
plier) obtained by this process by the divisor and 
the lower one by the dividend; the remainders will 
respectively be the desired ahargapa and the revolutions."l 

The equation contemplated in this rule 1S2 

ax - c '" b = a pOSltive mteger. 

This fotiD. of the equation seems to have been chosen 
by Bhaskara I deliberately so as to supplement the form 
of Aryabhata I in which the interpolator is a.lways 
made positive by necessary transposition. Further b is 
taken to be greater than a, as is evident from the 
following rule. So the first quotient of mutual division 
of a by b is always zero. This has not been taken 
into consideration. Also the number of quotients in 
the chain is taken to be even. 

1 MBh, i. 4 2 -4. 
The above rule has been. formulated with a view to its 

application in astronomy. 
2. As already stated on p. 90, when the equation is stated in 

this .fffCond form 
a = dividend, 
b = divisor, 
r = interpolator, 

..... - = multiplier, 
y = quotient. 
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He further observes: 

101 

"When the dividend is greater than the divisor, 
the operations should be made in the same way (i.e., 
according to the method of the pulveriser) after delet
ing the greatest multiple of the divisor (from the divi- ' 
dend). Multiply the (new) multiplier thus obtained by 
that multiple and add the (new) quotient; the (result 
will be the quotient here (required)."l 

That is to say, if in the equation 
ax ± c = by, 

t! = mb + a', we may' neglect the portion mb of the divi
dend and proceed at once with the solution of 

a'x ± c = Iry. 
Let .">( = a, y = ~ be ~ solution of this equation. Then 

a'a ± c = b~; 

.'. (mb + a')a ± c = bema + p), 
or aa ,± C = bema + ~). 
Hence x = a, y = ma + p is a solution of the 

given equation. 

Brahmagupta's Rules. For the solution of Arya- ' 
bhata's problem Brahmagupta (628) gives the following 
rule: 

"What remains when the divisor corresponding 
to the greater remainder is divided by the divisor corres
ponding to the smaller remainder-that (and the latter 
divisor) are mutually divided and the quotients are 
severally set down one below the other. The last 
residue (of the reciprocal division after an even number 
of quotients has been obtained~) is multiplied by 

1MBh, i.47. 
2 Compare the next rule: "Such is the process whC-Q the 

quotients (of mutual division) are even etc." 
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such an optional integer that the product being added 
with the difference of the (given) remainders will be 
exactly divisible (by the divisor corresponding to that 
residue). That optional multiplier and then the (new) 
quotient just obtained should be set down (underneath 
the listed quotients). Now, proceeding from the lower
most number (in the column), the penultimate is 
multiplied by the number just above it and then added 
by the number just below it. The final value thus 
obtained (by repeating the above process) is divided 
by the divisor corresponding to the smaller remainder. 
The residue being multiplied by t4e divisor correspond
ing to the greater remainder and added to the greater 
remainder will be the number in view."l 

He further observes: 
"Such is the process when the quotients (of mutual 

division) are even in number. Bu( if they be odd, 
wnat has been stated before as negative should be made 
positive or as positive should 'be made negative."2 

Regarding the direction for dividing the divisor 
corresponding to the greater remainder by the divisor 
corresponding to the smaller refl}ainder, Prthudakasvami 
(860) observes that it is not absolute, rather optional; 
so that the process may be conducted in the same way 
by starting with the division of the divisor correspond
ing to the smaller remainder by the divisor correspond
ing to the greater remainder. But in this case of inver
sion of the process, he continues, the difference of 
the remainders must be made negative. 

That is to say, the equation 
0'.= ax + c 

,~an be solved by transforming it first to the form 
ax = I?J' - c, 

1 BrSpSi, xviii. 3-5. 2 BrSpSi, xviii. 13. 
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so that we shall have to start whh-the division of b by a. 

Mahavira's Rules. Mahavira (850) formulates his 
rules with a view to the solution of 

ax±c 
b .J', 

in pOSItIve integers. He says: 
"Divide the coefficient of the unknown by the 

given divisor (mutually); reject the first quotient and 
then set down the other quotients of mutual division 
one belo~ the other. When the residue has become 
sufficiently small, multiply it by an optional number 
such that the product, being combined with the inter
rolator, which if positive must be made negative (and 
t'ice versa) in case (the number of quotients retained is) 
odd, will be exactly divisible (by the divisor correspond
ing to that residue). Place that optional number and 
the resulting quotient in order, under the chain of quo
tients. Now add the lowermost number to the product 
of the next two upper numbers. The number (finally 
obtained by this process) being divided by the given 
divisor, (the remainder will be the least value of the 
unknown)."l . 

This method has been redescribed by Maha.vira 
in a slightly modified form. Here he continues the 
mutual division until the remainder zero is obtained 
and further takes the optional multiplier to be zero~ 

"With the dividend, divisor and remainder reduced 
(by their greatest commol?- factor the operations should 
be performed). Reject the first quotient and set down the 
other quotients of mutual division (one below the other) 
and underneat':. t:hem the zer02 and the given remainder 

1 GSS, vi. II ~ ~ (first portion). 
2 \X' e have emended sagra of the printed text to khagra. 
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(as reduced) in succession. The remainder, being multi
plied by positive or negative as the number of quotients is 
even or odd, should be added to t he product of the next 
two upper numbers. The number (finally obtained by 
the repeated application of this process) whether posi
tive or negative, being divided by the divisor, the 
remainder will be (the least value of) the multiplier."l 

Aryabha!a II. The details of the process adopted 
by Aryabhata II (950) in finding the general solution of 
(ax ± c)/b = y in positive integers have been described 
by him thus: . 

"Set dO\vn the dividend, interpolator and divisor 
as stated (in a problem): this is the first operation. 

"Divide them by their greatest common divisor 
so as to make them without a common factor: this is the 
second operation. 

"Divide the dividend and interpolator by their 
greatest common divisor: the third operation. 

"Divide the interpolator and divisor by their ~ 
greatest common divisor: the fourth operatiort. 

"Divide the dividend and interpolator, then the 
interpolator (thus reduced) and divisor by their respec
tive different greatest common divisors: the fiJt/; operation. 

"On forming the chain from these (reduced 
numbers), if the remainder becomes unity, then the 
object (of solving the problem) will be realised; but 
if the remainder in it be zero, the questioner does not 
know the method of the pulveriser. 

"Divide the (reduced) dividend and divisor reci
procally until the remainder becomes unity. (The quo
tients placed one below the other successively will form) 

1 GSS. vi. I 3 6~ (first portion). Our interpretation differs from 
those of Rangacharya and Ganguly. 
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the (auxiliary) chain. Note down whether the number 
of quotients is even or odd. Multiply by the ultimate 
the number just at-Dve it and then add unity. The chain 
formed on replacing the penultimate by this result is 
the corrected one. :Multiply by the un-destroyed 
(i.e., corrected) penultimate the number just above 
it, then add the ultimate number; (now) destroy 
the ultimate. On proceeding ,thus (repeatedly) we 
shall finally obtain two numbers which are (techni
cally) called ktl!!a. I shall speak (later on) of those 
two quantities as obtained in the case of an odd number 
of quotients. If on dividing the dividend by the divisor 
once only the residue becomes unity, then the quotient 
is known to be the upper ku!!a and the remainder 
(i.e., unity) the lower ku!!a. 

"The upper and lower ku!!a thus obtained, being 
both multiplied by the interpolator of the given equation 
and then divided respectively by its dividend and divisor> 
the r~sidues will be the quotient and multiplier respec
tively. 

"In the Case of the third opel" :tion (having been 
performed before) multiply the upper hlt!a by the inter
polator' of the question and the lower kIt/!a by the inter
polator as reduced by the greatest common divisor. The 
same should be done reversely in the case of the fourth 
operation. In the case of these two operations, the kfl//a 
f\.fter being multiplied as indicated should be divided 
respectively by the dividend and divisor stated by the 
questioner; the residues will be the quotient and multi
plier respectively. 

"In the fifth operation, multiply the upper klltta 
by the greatest common divisor of the dividend and the 
interpolator, and the lower one by the other (i.e., the 
greatest common divisor of the given divisor and the 
reduced interpolator). The products are the intcr-
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mediate quotient and 'multiplier. Multiply the divisor 
of the question by the intermediate quotient and also 
its dividend by the intermediate multiplier, Difference of 
these products is the required intermediate divid.er. The 
intermediate quotient and multiplier are multiplied by the 
interpolator of the question and then divided by the 
intetmediate divider. The quotients thus obtained being 
divided respectively by the dividend and divisor of the 
question, the residues will be the quotient and multiplier 
( required). 

"The quotient and multiplier are obtaineq correctly 
by the process just described in the case of a positive 
interpolator when the chain is eyen and in the case of a 
negative interpolator if the chain is odd. In the case of 
an even chain and negative interpolator, also of an odd 
chain and positive interpolator, the quotient and multi
plier thus obtained are subtracted respectively from tne 
divi4end and divisor made prime to each other and the 
residues give them correctly."l . 

The rationale of these rules will be easily found to 
be as follows: '" 

(i) It will be noticed that to solve 
by=ax±c, I (I) 

in positive integers, Aryabhata II first finds the solution 
of 

. b=ax± 1. 

If x = a, y = ~ be a solution of this equation, we get 
btl = aa. ± I, 

or 
Therefore 
(ii) Let 

b(c{3) = a(ea) ± c. 
x = ca, y = etl is a solution of (I). 
a = a'g, c = c'g; then (I) reduces to 

by' = a'x ± e', 

1 MSi. ~vili. 1-14. 
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-<.vhere y' = y Ig. 
Let x = a, y' = (:l be a solution of 

fry' = a'x ± I, 

SO that we have 

Hence 

or 

b~ = a'a ± 1. 

bg,,'j3 = a'ge'a ± e'g; 

b(o(:l) = a(e'a) ± t'. 

Therefore x = ria, y = e(:l is a solution of (I). 
(iii) Let b = g'b', e =g'c"; then (I) reduces to 

b'y = ax' ± ,.!!, 
where x' = x Ig'. If x' = a, )' = /3 be a solution of 

by = ax' ± I, 

we have 

Therefore 
or 

b'(:l = aa ±I. 
b'g' e"fJ = ag' e" a ,± g' e", 

b(e"(3) = a(ea) ± e. 

Hence x = ca, _y = c"(:l is a solution of (I). 
(iv) Let a = a'g, e = e'g, b = b"g" and e' = e"g". 

Then the given equation ly = ax ± e reduces to 

b')' = a'x' ± e", , 
where x' = xjg", y' =yjg. Now, if x' = a, y' = (:l 
be a solution of 

b''y' = a:'x' ± I, 

we shall have, multiplying both sides by gg", 
b''gg''(:l = a' gg" a ± gg", 

or b(g(:l) = a(g" a) ± gg", 

b{e(~(:l)} = a{cJ1ta)} ± to. 
gg" gg" 
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Since gg" = a(g"a) -- b(g(3), we get 

b{ c(g(3) } = a{ __ c(gfla) } c 
a(g"a) -- b(g(3) a(g"a) -- b(g(3) ± . 

Therefore 
_ c(g"a) 

x - a(g,ia) __ b(g(3)' 
__ c(g(3) 

Y - a(g"a) -- b(g(3)' 

is a solution of the given equation try = ax ± c. Since 
c = c''gg'' = c"{a(g"a) -- b(g(3)}, both these values are 
integral. 

In each of the above cases the minimum values of 
x, y satisfying the equation by = ax ± c are given by the 
residues left on dividing the values of x,y as calculated 
above by b and a respectively, provided the two quo
tients are equal. 

Let x = P, Y = Q be the solution as calculated 
above; further suppose that 

P = m'b + p, Q = na + q; 
where m, n are integers such that p < b, q < a. 

If ,;; =1= ,1, the minimum solution is either 

x = p, } ( ) 
y = (n - m) a + q I 

according as m < or :> n. Now, if the interpolator c 
is positive, it can be shown that (2) is not a solution. 
For, if it were, 

bq- c . -- = x, an tnteger, 
a 

= (m - n)b + p > b. 
But q < d, therefore, 

bq- c _,._-- < b, 
a 
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which is absurd. Therefore, (1) must be the mInImUm 
solution in this case, not (2). 

Similarly, if the interpolator c is negative, it can 
be shown that (2) i'S the minimum solution, not (1). 

Hence the following rule of Aryabhata II : 
'"If the quotients (m, n) obtained in the case of any 

proposed question be not equal, then the (derived) 
value for the multiplier should be accepted and that of 
the quotient rejected, if the interpolator is positive. On 
the othe.r hand when the interpolator is negative, then 
the (derived) value for the quotient should be accepted 
and that for the multiplier rejected. How to. obtain 
the '"Juotient fmm the multiplier and the multiplier from 
the quotient correctly in all cases, I shall explain now. 
Multiply the (accepted) value of the multiplier by the 
c ividend of the proposed question, add its interpola):or 
and then divide by the divisor of the proposed question; 
the quotient is the corrected one. The product of the 
proposed divisor and the (accepted) quotient being 
added by the reverse of the interpolator and then divided 
by the dividend of the proposed question, the 'quotient 
is the (correct) multiplier."1 

He has further indicated how to get all positive 
integral solutions of the equation by = ax ± c after 
having obtained the minimum solution. 

"The (minimum) quotient and multiplier being 
added respectively with the dividend and divisor as stated 
in the question or as reduced, after multiplying both 
by an optional number, give variou,s other values."2 

That is to say, if x = a, Y = (} be the minimum 
solution, the general solution will be 

x = b"J + a, y = am + B. 

1 MSi, xviii. 15-8. 2 MSi, xviii. 20. 
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Sripati's Rule. Sripati (1039) writes: 
"Divide the dividend and divisor reciprocally 

until the residue is small. Set down the quotients 
one below the other in succession; then underneath 
them an optional number and below it the correspond
ing quotient, the optional number being determined. 
thus: (the number) by which the last residue must be 
multiplied such that the product being subtracted by 
the interpolator and then divided by the divisor (co.rres
ponding to that residue), leaves no remainder. It is 
to be so when the number of quotients is even; in the 
case of an odd number of quotients the interpolator, 
if negattve, must be first made positive and conversely, 
if positive, must be made negative; so it has been taught 
by the learned in this (branch of analysis). Now multi
ply the term above the optional number by it (the 
optional number) and then add the quotient below. 
Proceeding upwards such operati9n should be per
formed again and again until two numbers are obtained. 
The first one being divided by the divisor, (the residue) 
will give (the least value of) the multiplier; similarly 
the second being divided by the dividend, will give 
(the least value) of the quotient."l 

Bhiskara II's Rules. Bhiskara II (1150) des
cribes the method of. the pulveriser thus: 

"Dhride mutually the dividend and divisor made 
prime to each other until unity becomes tfle remainder 
in the dividend. Set down the quotients one under 
the other successively; beneath them the interpolator 
and then cipher at the bottom. Multiply by the 
penultimate the number just above it and add the 

lSiSe, xiv. 22-25. 

This rule is the same as that of Bhaskara I and holds under 
the same conditicns. (See pp. 99f). 
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ultimate; . then. reject that ultimate. Do so repeatedly 
until only. a pair of numbers is left. The upper one of 
these being divided by the .reduced dividend, the remain
der is the quotient; and the lower one being divided 
by the reduced divisor, the remainder is the multiplier. 

- Such is precisely the process when the quotients (of 
mutual division) are even in number. But when they 
are odd, the quotient and multiplier so obtained must 
be subtracted from their respective abraders and the 
residues will be the true quotient and multiplier."1 

Bhaskara·n then .,hows how the process of solving 
a problem by the method of the pulveriser can some
times be abbreviated to a great extent. He says: 

"The -multiplier is found by the method of the 
pulveriser after reducing the additive and dividend by 
their common divisor. Or, if the additive (previously 
reduced or not) and the divisor be so reduced, the 
multiplier found (by the method) being multiplied by 
their common measure will be the true one. 

"Such is the process of finding the multiplier and 
quotient, when the interpolator is positive. On sub
tracting them from their' respective abraders will be 
obtained the result for the subtractive inrerpolator."2 

Kn'Qa (c. 1580) gives the following rationale of these 
rules: 

We shall have to solve. in positive integers 
~J = ax ± c. (I) 

(i) Suppose g is the greate~t c.ommon measure of,a 
and c, so that a = a' g, c = c'g. Then 

by = a'gx ± c'g, 
or l:y' = a'x ± c', (1.1) 
wherey' =y/g. If x = a, y' = tJ be a solution of (1.1). 

1 BBi, pp. Z5f; L, p. 77. 2 BBi, p. z6; L, pp. 78, 79. 
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Then, forming the chain as directed in the rule, we get 
I 

I 

I 

.2. 

2 

I 

90 

o 
By the rule, "Multiply by the penul~mate the number just 
above it etc.," the two numbers obtained finally are 2430 
and 1530.1 Dividing these by 100 and 63 respectively, 
the remainders are 30 and 18. Hence x = 18, Y = 30. 

Secolld l11ethod. Reducing the dividend and the 
additive by their greatest common divisor (10), we have 
the statement: 

1 
1 
1 
2 
2 

Dividend = 10 
Divisor = 63 Additive = 9 

Since 63) 10 (0 

o 
10) 63 (6 

60 
3) 10 (3 

_2_ 
I 

1 Successive opemtions in the application of the rule are: 

1 1 1 1 
1 1 1 '\ 
1 1 ,900 '\ 
2 ~ 630 ~ 630 ~ 
~ 270 I ~ 270 ~ ~~~ ~ 

2430 
1530 
9~~ 
~'S,~ 
~~~ 

, 90 , 90 II ' 9.~ I '\ 9~ '\ 
9~ I 9~ 9.~ i 9.~ 

~~ 
90 

~ ~ I ~ ~ I ~ 
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we get the chain 
o 

.6 
3 
9 
o 

115 

By the rule, "Multiply by the penultimate etc.," we 
obtain finally the numbers 27 and 171. Dividing them 
respecti vely by 10 and 6;, we get the residues 7 and 45. 
Since the number of quotients of the mutual division 
is odd, subtracting 7 and 45 from the corresponding 
aSraders 10 and 6;, we get; and 18. In this case we 
!1.<:::gJ..ect 3. So x = 18; J,vhence by the given equation 
)' = 30. Or, multiplying the quotient ; as obtained 
above by the greatest common divisor 10, we get the 
same result y = ;0. 

Third z..,[ethod. Reducing the divisor and the additive 
by their gre~test common divisor (9), the statement is : 

Since 

Dividend = 100 

Divisor = 7 

I 

we get the chain 
I4 

.; 
10 

o 

Additive = 10 

By the rule, "Multiply by the penultimate etc.," we 
obtain the two number~ 430 and ;0. Dividing them , 
by 100 and 7 respectively, the residues are 30 and 2. 
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Multiplying the latter by the greatest common divisor 
9, we get x = 18 and y = 30. 

Fourth Method. Dividing the divisor and the addi
tive by their common measure (9) and again the dividend 
and the reduced additive by their common measure 
(10), we have 

Dividend = 10 

Divisor = 7 

Since 7) 10 (I 

we get the chain 

7 
3) 7 (2 

6 
I 

I 

2 

I 

o 

Additive = I 

By the rule, "Multiply by the penultimate etc.," we have 
finally the numbers 3 and 2. Dividing them by 10 and 
7 respectively, the residues are the same. Multiplying 
them respectively by the common measure 10 of the 
dividend and red':lced additive, and 9 of the divisor and 
additive, we get as before x = 18 and y = 30. 

Adding to these minimum values (18, ,0) of (x ... y) 
optional multiples of the corresponding abraders 
(63, 100), we get the general solution of 100X + 90 = 63)' 
in positive jntegers as x = 63m + 18, y = loom + 30, 
where IJl is any integer. 

Rules similar to those of Bha.skara II have been 
given by Nariya1).a,l JiHinaraja and KamaIakara.2 

1 NEi, I, R. 55-60. 
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Soltltion of by = ax ± I 

Constant Pulveriser. Though the simple indeter
minate equatioq. by = ax ± I is solved exactly in the 
same way as the equation by = ax ± c and is indeed a 
particular case vf the latter, yet on account of its special 
use in astronomical calculations! it has received separate 
consideration at the hands of most of the Hindu algebra
ists. It may, however, be noted that the separate treat
ment was somewhat necessitated by the physical· condi
tions of the problems involving the two types. In the 
case of by = ax ± c the conditions are such that the value 
(,f eithery or x, more particularly of the latter, has to be 
found and the rules for solution are formulated with 
lilat object. But in the case of the other (ry = ax ± I) 
the physical conditions require the values of bothy and x. 

The equation by = ax ± I is generally called by the 
name of sthira-ku//aka or the "constant pulveriser" (from 
sthira, meaning constant, steady). P~thudakasvami 
(860) sometimes designates it also as drcfha-ku//aka (from 
drcfha = firm). But that name disappeared from later 
Hindu algebras because the word drtfha was employed 
by later writers2 as equivalent to niccheda. (having no 
divisor) or nirapavarta (irreducible). The origin of the 
name "constant pulveriser" has been explained by 
Prtl: udakasvami as being due to the fact that the inter
pr:>lator (± I) is here invariable. Ga1).eSa3 (1545) explains 
it in detail thus: In astronomical problems involving 

1 Thus Bhaskara II observes, "This method of calculation is 
of great use in mathematical astronomy." (BBi, p. 3 I). He 
then points out how the solutions of various astronomical 
problems can be derived from the solution of the same indeter
minate equation. (BBi, p. 32; L, p. 81). 

2 This special technical use of the word dniha occurs befcre 
Brahmagupta (628) in the works of Bhaskara I (522). 

3 Vide his commentary on the Lilavati of Bhiskara II. 
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equations of the type fry - ax = ± c, th~ physical 
conditions arc such that the dividend (a) and the divisor 
(b) are constant but the interpolator (c) always varies; so 
for their solution different sets of operations will have 
to· be performed if we start directly to solve them all. 
But starting with the equation by - (/x = ± I, we can 
derive the necessary solutions of all our equations from 
a constant set of operations. Hence the name is very 
significant. A similar explanation has been given by 
Kr:;;Ifa (c. 15 80). 

Bhaskara I's Rule. Bhaskara I (5ZZ) writes: 
"The method of the pulveriser is applied also after 

subtracting unity. The multiplier and quotient are 
respectively the numbers above and underneath. Multi
plying those quantities by the desired number, divide by 
the reduced divisor and dividend; the residues are in 
this case known to be the (elapsed) days and (residues of) 
revolutions respectively."l 

In other words, it has been stated that the solution 
of the equation 

(/x - C 
--,---= y, 

b 
can be obtained by multiplying the solution of 

(/~'\. - I 
---'--=Y, b 

by c and then. abrading as before. In general, the 
solution of the equation ~y = (/X ± c in positive integers 
can be easily derived from that of by = ax ± 1. If 
x = n, y = (3 be a solution of the latter equation, we 
shall have 

Then 

1 MBh, i. 45. 

b(3 = en ± I. 

b(((3) = a(ca) ± c. 
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Hence x =ca. .y = ell is a solution of the former. The 
minimum solution will be obtained by abrading the 
values of x andy thus computed by h and a respectively, 
as indicated bef9re. 

Brahmagupta's Rule. To solve the equation 
by = ax - I, Brahmagupta gives the following rule: 

"Divide them (i.e., the abraded coefficient of the 
multiplier and the divisor) mutually and set down the 
quotients one below the other. The last residue (of the 
reciprocal division after an even! number of quotients 
has been obtained) is multiplied by an optional integer 
such that the product being diminished by unity will 
be exactly divisible (by the divisor corresponding to 
that residue). The (optional) multiplier and then this 
quotient should be set down (underneath the listed 
quotients). Now proceeding from the lowermost term 
to the uppermost, by the penultimate multiply the term 
just above it and then add the lowermost number. (The 
uppermost number thus calculated) being divided by the 
reduced divisor, the residue (is the quantity required). 
This is the method of the constant pulveriser."2 

Bhaskara II's Rule. Bhaskara II (1 I 50) writes: 
"The multiplier and quotient determined by sup

posing the additive or subtractive to be unity, multiplied 
severally by the desired additive or subtractive and then 
divided by their respective abraders, (the residues) will 
be those quantities corresponding to them (i.e., desired 
interpolators). "3 

This rule has been reproduced by Nariyal)a.4 W/e 
take the following illustrative example with its solution 

~ 

1 In view of the rule in BrSpSi, xviii. I3. 

2 BrSpSi, xyiii. 9-11. 3 BBi, p. 3 I; L, p. 81. 
'NBi, I, R. 61-
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from Bhaskara II :1 

22. IX + 65 
195 = y. 

On dividing by the greatest common divisor 13, 
we get 

17X + 5 
15 =y. 

Now, by the method of the pulveriser the solution of the 
equation 

17X + 1 . ;___:___ = )' 
15 

is found to be x-7,y=8. 11ultiplying these values by 
5 and then abrading by 15 and 17 respectively, we get 
the required minimum solution X= 5, y=6. 

Again a solution of 
17X - I 

15 =Y 

will be found to be x=8, Y=9. Multiplying these 
quantities by 5 and abrading by 15 and 17, we get the 
solution of 

to be X=10, Y=I1. 

17X - 5 =.Y 
15 

Solution of .~Y + ax = ± c 

An equation of the form l?J +- ax = ± c was gene
rally transformed by Hindu algebraists into the .form 
qy = - ax ± c so that it appeared as a particular case 
of try = £IX ± c in which a was negative. 

Brahmagupta's Rule. Such an equation seems to 

1 BBi, pp. 28, 31; L, pp. 77, 8r. 
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-
have been solved first by Brahmagupta (628). But his 
rule is rather obscure: "The reversal of the negative 
and positive should be made of the multiplier and inter
polator."l Prthudakasvami's explanation does not 
throw much light on it. He says, "If the multiplier be 
negative, it must be made positive; and the additive 
must be made negative: and then the method of 'the 
pulveriser should be employed." But he does not 
indicate how to derive the solution of the equation 

by = - ax + c (1) 
from that o{the equation 

by = ax - c (2) 
The method, however, seems to h~ve been this: 
Let x = a, y = ~ be the minimum solution of (2). 

Then we get 
b~ = ea - c 

or b(a - ~) = - a(a - b) + c. 
Hence x = a - b, y , a - ~ is the minimum solution of 
(1). This has been expressly stated by Bhaskara II and 
others. 

Bhaskara II's Rule. Bhaskara II says: 
"Those (the multiplier and quotient) obtained for 

a positive dividend being treated in the same manner 
give the results corresponding to a negative dividend.":! 

The treatment alluded to in this rule is that of 
subtraction from the. respective abraders. He has fur
ther elaborated it thus: 

"The multiplier and quotient should be deter
mined by taking the dividend, divisor and interpolator 
as positive. They will be the quantities for the 
additive interpolator. Subtracting them from their 

1 BrSpSi, xviii. 13. 2 BBi, p. 26. 
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respective abraders, the ,quantities for a negative inter
polator are found. If the dividend or divisor be nega
tive, the quotient should be stated as negative."! 

NarayaQa. Narayat;1a (1350) says: 
"In the case of a negative dividend find the multi

plier and quotient as in the case of its being positive 
and then subtract them from their respective abraders. 
One of these results, either the smaller one or the greater 
one, should be made· negative and the other positive."2 

Illustrative Examples. Examples with solutions 
from Bhaskara' II :3 

Example I. 13Y = -, 60x ± 3. 
By the method described before we find that the 

minimum solution of 

13Y = 60x+ 3 
is x = II, Y = 5 I. Subtracting these values f:t:.om their 
respective abraders, namely 13 and 60, we get 2 and 9. 
Then by the maxim. "In the case of the dividend and 
divisor being of different signs, the results from the 
operation of division should be known to be so," 
making the quotient negative we get the solution of 

13Y= - 60x+ 3 
as x = 2, Y = - 9. Subtracting these values again from 
their respective abraders (13, 60), we get the solution of 

13Y = ~ 60x - 3 

as x = II, Y= - 5 1. 

of 

Example 2. - lly = 18x ± 10. 
Proceeding as before we find the minimum solution 

1 BBi, p. 29. 
a BBi, p~. 29, ;0. 

lIy = 18x + 10 

2 NBi, I, R. 6;. 
.9 
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to be x = 8, Y = 14. These will also be the values 
of x and y in the case of the negative divisor but the 
quotient for the reasons stated before should be made 
negative. So the solution of 

- 11)1 = 1 8x + 10 

is x ~ 8, Y = - 14. Subtracting these (i.e., their 
numerical values) from their respective abraders, we get 
the solution of 

- 1~= 18x- 10 

as x = 3, Y = - 4. 
"Whether the diVIsor is positive or negative, the 

numercial values of the quotient and multiplier remain 
rhe same: when either the divisor or the dividend 
is negative, the quotient must always be known to be 
negative." 

The following example with its solution is from 
the algebra of Nftraya.t:J,a :1 

The solution of 
7y=-;oX±3· 

7Y= 30x + 3 
is x = 2, Y = 9. Subtracting these values from the res
pective abraders, namely 7 and 30, and making one of 
the remainders negative, we get x = 5. Y = - 21 and 
x = - 5, Y = 21 respectively as solutions of 

7Y= - 30x ± 3· 
Particular Cases. The Hindus also tound special 

types of general solutions of certain particular cases of 
the equation by + ax = c. For instance, we find in the 
Gatlita-sara-samgraha of MaM.vira (850) problems of the 
following type: . 

"The vartta (or colours) of two pieces of gold 
weighing 16 and 10 are unknown, but the mixture of 

NEi, I, Ex. 29. 
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them has the var(1a 4; what is the var(1a of each piece 
of gold ?"l 

If x,Y denote the required varpa, then we shall have 
16x + lOY = 4 X 26; 

or in general 

Therefore 
whence 

ax + by = c(a + b). 
a(x - c) = b(e - y); 
x=c±m/a, y=e=Fm/b, 

where m is an arbitrary integer. 
Hence the following rule of Mahavira : 
"Divide unity (severally) by the weights of the two 

ingots of gold. The resulting var(1a being set down at 
two places, increase or decrease it at one place and do 
reversely at the other place, by the unity divided by its 
own· quantity of gold (the results will be the corres-
ponding var!1a)."2 . 

He has also remarked thai "assuming an arbitrary 
value for one of the var(1a, the other can be found as 
before."3 

A variation of the above problem is found in the 
LiMvatf of Bha.skara II : 

"On mixing up two ingots of gold of var!1a 16 
and lois produced gold of var(1a 12.; tell me, 0 friend, 
the weights of the original ingots."4 

That is to say,. we shall have to solve the equation 
I6x + l~ = H(X +.y); 

or in general 
ax + by = cCx + y). 

Hence x = m(e - b), Y = mea - c), 
where m is an arbitrary integer. 

1 GSS, vi. 188. 
3 GSS, vi. 189. 

2 GSS, vi. 187' 
4 L, p. 1.6. 
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Hence the rule of BhlJ.skara II : 
"Subtract the resulting varpa from the higher 

varpa and diminish it by the lower varpa; the remain
ders mu.1tiplied by an optional number will be the 
weights of gold of the lower and higher varpa respec
tively."! 

In the above example c - b = 2, a - c = 4. So 
that, taking m = I, 2, or 1/2, Bhaskara II obtains the 
values of (x, y) as (2, 4), (4, 8) or (I, 2). He then 
observes that in the same way numerous other sets 
of values can be obtained. 

14. ONE LINEAR EQUATION IN MORE THAN 
TWO UNKNOWNS 

To solve a linear equation involving more than two 
unknowns the usual Hindu method is to assume arbi
trary values for all the unknowns except two and then 
to apply the method of the pulveriser. Thus Brahma
gupta _ remarks, "The method of the pulve~iser (should 
be employed), if there be present many unknowns (in 
an equation)."2 Similar directions have been given by 
Bhaskara II and others. 3 

One of the astronorpical problems proposed by 
Brahmagupta4 leads to the equation: 

197X - 1644Y - Z = 6302. 

Hence x = 1644Y + Z + 63 02. 
197 

The commentator assumes Z = 131. Then 

1 L, p. 25. 

3 BBi, p. 76. 

1644Y + 6433 :-: - - . 
~ - 197 ' 

2 BrSpSi, xviii. p. 
4 BrSpSi,_ xviii. 55. 
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hence by the method of the pulveriser 
x = 41, Y = I. 

The following example with its solution is from 
the algebra of Bhaskara II : 

"The numbers of flawless rubies, sapphires, and 
pearls with one person are respectively 5, 8 and 7; and 
o friend, another has 7, 9 and 6 respectively of the same 
gems. In addition they have coins to the extent of 90 
and 62. They are thus equally rich. Tell quickly, 0 
intelligent algebraist, the price of each gem~"l 

If x, y, Z reJ?resent the prices of a ruby, sapphire 
and pearl respectively, then by the question 

5"'" + !!Y + 7Z + 90 = 7X + 9Y + 6Z + 61. 

Therefore x = -.Y + Z + 2.8. 
2 

Assume Z = I; then 
x = -.Y+ 29. 

2. ' 

whence by the method of the pulveriser, we get 
x = 14 - m, y = Ull + I, 

where m is an arbitrary integer. Putting In = 0, I, 2, 3, ... 
we get the values of (x,y, z) as (14, I, I), (13,. 3, I), 
(12, 5, I), (II, 7, I), etc. Bhaskara. II then observes, 
"By virtue of a variety of assumptions multiplicity of 
values may thus be obtained." 

Sometimes the values of most of the unknowns 
present in an equation 'are assumed arbitrarily or in terms 
of anyone of them, so as to reduce the equation to a 
simple determinate one. Thus Bhaskara II says: 

"In case of two or more unknowns, x multiplied 
by 2 etc. (i.e., by arbitrary known numbers), or divided, 

1 BBi, p. 77. 
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increased or decreased by them, or in some cases 
(simply) any known values ,may be assumed for 
the other unknowns according to one's own sagacity. 
Knowing these (the rest is an equation in one un
known)."1 

The above example has been solved again by 
Bhaskara II in accordance with this rule thUs :2 

(I) . Assume x = 3Z, Y = 2.Z. Then the equation 
reduces to 

38Z + 90 = 45Z + 6~., 
Therefore Z = 4. Hence x = 12., Y = 8. 

(2.) Or assume y = 5, Z = 3. Then the equation. 
becomes 

5x +ql=7X + I 2.5· -
Whence x = 13. 

15. SIMULTANEOUS INDETERMINATE EQUATIONS 
OF THE FIRST DEGREE 

gdpati·s Rule. We have described before the rule 
of Brahmagupta for the solution of simultaneous equa
tions of the first degree.3 In the latter portion of that 
rule there are hints for the solution of simultaneous 
indeterminate equations by the application of the method 
of the pulveriser. Similar rules have been given by 
later Hindu algebraists. Thus Sripati (1039) says: 

"Remove the first unknown from anyone side of an 
equation leaving the rest, and remove the rest from the 
other side. Then find the value of the first by dividing 
the other side by its coefficient. If there be found thus 
several values (of the first unknown), the same (opera-

1 BBi, p. 44. 
8 See pp. 54f• 

2 BBi, p. 46. 
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tions) should be made again (by equating two and two 
of those values) after reducing them to a common deno
minator. (Proceed thus repeatedly) until there results 
a single value for an-unknown. Now apply the method 
of the pulveriser; and from the values (determined in 
this way) the other unknowns will be found by pro
ceeding backwards. In the pul veriser the t;rlultiplier 
will be the value of the unknown associated with the 
dividend and the quotient, of that with the divisor."1 

Bhaskara II's Rule. Bhaskara II (1150) writes: 
" Remove the first unknown from the second side 

of an equation and the others as well as the absolute 
number from the first side. Then on dividing the 
second side by the coefficient of the first unknown, its 
value will be obtained. If there be found in this way 
several values of the same unknown, from them, after 
reduction to a common denominator and then dropping 
it, values of another unknown should be determined. 
In the final stage of this process, the multiplier and 
quotient obtained by the method of the pul veriser 
will be the values of the unknowns associated with the 
dividend and the divisor (respectively). If there be 
several unknowns in the dividend, their values should be 
determined after assuming values of all buf~ne arbitrari
ly. Substituting these values and proceeding reversely, 
the values of the other unknowns can be obtained. If on 
so doing there results a fractional value (at any stage), 
+:he method of the pul veriser should be employed again. 
Then determining the (integral) values of the latter 
unknowns accordingly and substituting tht:m, the values 
of the former unknowns should be found proceeding 
reversely again."2 

A similar rule has been given by Jiianaraja. 

1 SiSe, xiv. IS-G. Z BBi, p. 76. 
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Example from Bhaskara Il: 
" (Four merchants), woo have horses 5, 33 6 and 8 

respectively; camels 2, 7, 4 and I ; whose mules are 8, 
2, I and 3 ; and oxen 7, I, 2. and 1 in number; are all 
owners of equal wealth. Tell me instantly the price of 
a horse, etc."l 

If x, y, z, w denote respectively the prices of a 
horse, a camel, a mule and an ox, and W be the total 
wealth of eac.h merchant, we have 

5X+.y+ SZ+ 7W= W (1) 
3X + 7Y + 2.Z + W = W (2) 
6x + 4Y + Z + 2W = IV (3) 
8x + y + 3Z + W = IV (4) 

Then x = !CU - 6Z - 6w), from (1) ahd (2) 
= l(3Y + Z - w), from (2.) and (3) 
= !(3Y - 2.Z + w), from (3) and (4) 

From the first and second values of x, we (get 
Y = ~(2.0Z + r6w) ; 

and from the second and third values, we have 
Y = -!(8Z - 5W). 

Equating these two values of Y and simplifying, 
20Z + r6w = 24Z - I51J1. 

Therefore Z = 3
1W

• 
4 

Take w = 4i; then 
Z=31 t , Y=76t, x=85 t. 

Special Rules. Bhbkara II observes that the 
physical conditions of problems may sometimes be such 
that the ordinary method of solving simultaneous in-

1 BBi. p. 79. 
9 
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determittate equations of the :first degree, which has 
been just explained, will fail to give the desired result. 
One· such problem has been described by him as 
follows: 

"Tell quickly, 0 algebraist, what number' is that 
which multiplied by 2.3 and severally. divided by 60 
and 80 leaves remainders whose ~um is 100."1 

Let the number be denoted by x ; the quotients by 
II, v; and the remainders by s, t. Then we have 

Z3X - .r 2.;X - f 
60 = II, 80 = 11 ; 

also $+ t= 100. 

_ 6011 + s _ 80v + t 
x- - . 

.2.3 2.; 
Ther~fore 

6011 + 8011 + S + t 
X= , 

46 
Hence 

or 3011 + 4011 + 50 X= • 2; 
For the solution of the above he observes: 
"Here, (although) there is more than one quotient 

(II, v) in the dividend, the value of any should not be 
arbitra:t;ily assumed; for on so doing the process will 
fail." 2 "In a case like this," continues he, "the (given) 
sum of the remainders should be so broken up that 
each remainder will be less than the divisor corres
ponding to it and further that impossibility will not 
arise; then must be applied the usual method.'" 

In the present example we thus suppose s = 40, 
t = 60. Hence we have 

16011 + 40 = 80v + 60 

1 BBi, p. 91 • :a BBi, p. 91f• 
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or 80v + 2.0 4V + I 
U=-~--= ; 

60 3 

whence by the method of the pulveriser, we get 
v = 3w + 2., 11 = 4W + 3· 

Therefore 2.40W + 22.0 
X= . 

'2.3 

Again, applying the method of the pulveriser in order to 
obtain an integral value of x, we have 

W = 2.3m + I, X = 2.40m + 2.0. 

If we take s = 30, t = 70, we shall find, by proceed
ing in the same way, another value of x as 2.40 m + 90. 

General Problem of Remainders. One type of 
simultaneous indetenninate equations of the first degree 
is furnished by the general problem of remainders, 
viZ., to find a number N which being severally divided 
by aI' a2, as, ... , a .. leaves as remainders r1, "2' r3 , ... , r .. 
respectively. 

In this case, we have the equations 

N = a1x 1 + r} = ar2 + "2 = asXs + "s = ... 
= a"x .. + " .. , 

The method of solution of these equations was 
known to Aryabhata I (499). For this purpose the 
term dvicchedagraf!J occurring in'his rule for the pulveriser 
must be explained in a different way so that the last line 
of the translations given before (pp. 94-5) will have to be 
replaced by the following: "(The result will be) the 
remainder corresponding to the product of the two 
divisors."} This explanation is, in fact, given by 
Bhaskara J, the direct disciple and earliest commentator 
of Aryabhata I. Such a rule is expressly stated by 

1 See Bjbhutibhusan Datta, BCMS, XXIV, 1932. 
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Brahmagupta.1 . 

The rationale of this method is simple: Starting 
with the consideration of the first two divisors, we have 

N = al x 1 + r1 = a:i>'2 + r2• 

By the. method described before we can find the 
minimum value a of Xl satisfying this equation. Then 
the minimum value of N will be ala + r1• Hence the 
general value of N will be given by 

N = tll(t/2! + a) + r l , 

= alaS! + ala + r l , . 

where t is an integer. Thus ala + r 1 is the remainder 
left on dividing N bya1a2, as stated by Aryabhata I and 
Brahmagupta. Now, taking into consideration the third 
condition, we have 

N = tllaS! + ala + r l = a~s + r s, 
which c~n be solved in the same way as before. Pro
ceeding in this way successively we shall ultimately 
arrive at a value of N satisfying all the conditions. 

P.rthudakasvami remarks: 
"\X'herever the reduction of two divisors by a 

common measure is possible, there 'the prodbct of the 
divisors' should be understood as equivalent to the 
product of the divisor corresponding to the greater 
remainder and quotient of the divisor corresponding 
to the smaller remainder as reduced (i.e., divided) by 
the common measure.2 When one divisor is exactly 
divisible by the other then the greater remainder is the 
(required) remainder and the divisor corresponding to 

1 BrSpSi, xviii. 5. 
2 i.e., if p be the L.C.Mo of a1 and 112, the general value of 

!'l satisfying the above two conditions will be 
N = pI + ala + r 1 

instead of N = 111 tZzl + ala + rIO 
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the greater remainder is taken as 'the product of the 
divisors.' (The truth of) this may be investigated by an 
intelligent mathematician by taking several symbols." 

E:!<;adlp/es from Bhaska"ra I : 
(I) "Find that number which divided by 8 leaves 5 

as remainder, divided by 9 leaves 4 as remainder and 
divide<;l. by 7 leaves I as remainder."l 

That is to say, we have to solve 

N = 8x + 5 = 9Y + 4 = 7Z + I. 
The solution is given substantially thus: The minimum 
value of N satisfying the first two conditions 

N = 8x + 5 = 9Y + 4 
is found by the method of the pulveriscr to be 13. 
This is the remainder left on dividing the number by 
the product 8.9. Hence 

N= 72t+ 13 = 7Z+ 1. 

Again, applying the same method we find the minimum 
number satisfying all the conditions to be 85. 

(2) "Tell me at once, 0 mathematician, that 
number which leaves unity as remainder when divided 
by any of the numbers from 2 to 6 but is exactly divisible 
by 7." 

By the same method, says Bhaskara I (p2), the 
number is found to be 721. By a different method 
Suryadeva Yajva obtains the number 301. It is in
teresting to find that this very problem was afterwards 
treated by Ibn-al-Haitam (c. 1000) and Leonardo 
Fibonacci of Pisa (c. 1202).2 

To solve a problem of this kind Bhaskara II adopts 

~ See his commentary on A, ii. '32-3, 
2 L.B. Dickson, His/ory of the theory of Numbers, Vol. II, 

referred to hereafter as Dickson, Ns"pbers II, pp. 59, 60. 
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two methods. One is identical with the method of 
Aryabhata I and the other follows fmm his general rule 
for the solution of simultaneous indeterminate equations 
of the first degree. They will be better understood 
from his applications to the solution1 of the following 
problem which, as Prthudakasvami (860) observes,2 was 
popular amongst the Hindus: 

To find a number N which leaves remainders 5, 4, 
3, 2 when divided by 6, 5, 4, 3 respectively. 

i.e., N = 6x + 5 = 5Y + 4 = 4Z + 3 = 3W + 2. 

(I) We have 
_ 5Y - 1 4Z - 1 3W - 1 

x- 6 ,Y= 5 ,Z= 4 . 

Now by the method of the pulveriser, we get from the 
last equation 

w = 41 + 3, Z = 31 + i, 
where I is an arbitrary integer. Substituting in the 
second equation, we get 

121+ 7 Y= . 
5 

To make this integral, we again apply the method of 
the pulveriser; so that 

1= 5S + 4, y = I2S + II. 

This value of Y makes x a whole, number. Hence we 
have finaU y 
111 = 20S + 19, Z = IF + 14,), = 12S + 11, X = 1OS+ 9 . 

. '.' N = 60S + 59. 
(2) Or we may proceed thus: 

Since N = 6x + 5 = 5Y + 4, 

1 BBi, pp. 85 f . 
II Vide his commentary on BrSpSi, xviii. 3-6. 
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we have 

But x must be 
Hence 
Again 

U- 1 
x= 6 . 

integral, so y = 61 + 5, x = 51 + 4. 
N = 301+ 29. 

N = 301 + 29 = 4Z + 3· 
t= 2Z- 13. 

15 
Since 1 must be integral, we must have Z = I 5 S + 14; 
hence t = 2S + I. Therefore 

.N= 60S + 59. 
The last condition is identically satisfied. Prthudaka

svami followed this second metho ~l to solve the above 
problem. 

Conjunct Pulveriser. The foregoing system of 
indeterminate equations of the first degree can be put 
into the forml 

byl = a1x ± c11 
by2 = a2x ± C2 

.?~ ..... ~~~.~.~~ J 
(1) 

On account of its important applications in mathematical 
astronomy this modified system· has received special 
treatment at the hands of Hindu algebraists from 
A::yabhata II (950) onwards. It is technically called 
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saf)ifli.f!aku!!aka or the "conjunct pulveriser" (from. 
ku!!aka = pulveriser and .satilili.f!a = joined together, 
related). 

For the solution of the above system of equations 
Aryabhata II lays down the following rule: 

I "In the solution of simultaneous indeterminate 
equations of the first degree with a common divisor, 
the dividend will be the sum of the multipliers1 and the 
interpolator the sum of the given interpolators."1! 

A similar rule is given by Bhiskara II. He says : 
"If the divisor be the same but the multipliers 

different then making the sum of the multipliqs the 
dividend and the sum of residues the residue (of a 
pulveriser), the investigation is carried on according to 
the foregoing method. This true method of the pul
veriser is called the conjunct pulveriser."3 

Rationale. If the equations (1) are satisfied by 
some. value a of x, then the same value will satisfy the 
equanon 
b()'l + Y2 + ... ) = (al + a2 + .. . )x + CCI + C2 + ... ) (2) .. 

Thus, if we can find the general value of x satis
fying equation (2), one of these values, at least, will 
satisfy all the equations (I). 

To illustrate the application of the above Bhaskara 
II gives the following example :4 

63Yl = 5X - 7 } ( ) 
63Y2 = lOX - 14 A 

Adding up the equations and dividing by the common 
factor 3, we get 

2IY=5 X -7, 

1 In the equations (I), aI' °2, ••• are called multipliers. 
2 MSi, xviii. 48. 3 BBi, p. 33; L, p. 8z. 
" BBi, p. 33 ; L, p. 82. 
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where Y = )'1 + Y2' By the method of the pulveriser 
the least positive value of x satisfying this equation is 
x = 14. This value of x is found to satisfy both the 
equations (A). 

Generalised Conjunct Pulveriser. A generalised 
case of the conjunct pulveriser is that in which the 
divisors as well as the multipliers vary. Thus we 
have 

b1Yl = a1x ± c1' 
b2Y2 = a2"">; ± c2 , 

bsYs = asx ± cs, 

Simultaneous indeterminate equations of this type have 
been treated by Mahavlra (850) and Sripati (1039). 
Mahavira says: 

"Find the least solutions of the hrst two equations. 
Divide the divisor corresponding to the greater solution 
by the other divisor (and as in the method of the pul
vcriser find the least value of) the multiplier with the 
difference of the solutions as the additive. That multi
plied by the divisor (corresponding to the greater 
solution) and then added by the greater solution (will be 
the value of the unknown satisfying the t\VO equations )."1 

A similar rule is given by Sripati: 
"Find the least solutions of the first two equations. 

Dividing the divisor corresponding to the greater solu
tion by the divisor corresponding to the smaller solution~ 
the residue (and its divisor) should be mutually divided. 
Then taking the difference of the numbers as the addi
tive, determine (the least value Df) the multiplier of the 
divisor corresponding to the greater solution in the 
manner explained before. Multiply that value by the 

1 GSS, vi. 1I5~, 136~ (last lines). 
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latter divisor and then add the solution (corresponding 
to it). The resulting number (severally) multiplied by 
the two multipliers and divided by the corresponding 
divisors wi11leave remainders as stated."l 

The rationale of these rules will be cleat from the 
following : ' 

Taking the first two equations, we have 

blYl = a1x ± cl' 
bzYz = azX ± cz· 

Suppose a l to be the least value df x satisfying the first 
equation as found by the method of the pulveriser. 
Then blm + aI' where m is an arbitrary integer, will 
be the general value of x satisfying that equation. 
Similarly, we shall find from the second equation the 
general value of x as bzn + az. If the same value of x 
satisfies both the equations we must have 

hzn + a z = hIm + aI' 

or bZIJ = hI'" + (al - az); 
-supposing al > az' Solving this equation, we can find 
the value of m and hence of bim + a l of x satisfying 
both the equations. The general value of x derived 
from this may be· equated to the value of x from the 
third equation and the resulting equation solved again, 
and so on. 

In illustration. of his rple Maha~ira proposed 
several problems. One of these has already been given 
(Part I, p. z33). Here are two' others: 

(1) "Five (heaps of fruits) added with two (fruits) 
were divided (equally) between nine travellers; six 
(heaps) added with four (fruits) were divided amongst 
eight; four (heaps) increased by one (fruit) were divided 

1 SiSe. xiv. %8. 
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amongst seven. Tell the number (of fruits in each 
heap)."! 

This gives the equations : 

9Yl = jX + 2. 8yz = 6x + 4. 7Y3 = 4X + 1. 

(ol) "The (dividends) are the sixteen numbers 
beginning with 35 and increasing successively by three; 
divisors are 32 and others successively increasing by ol ; 
and I increasing by 3 gives the remainders positive and 
negative. What is the unknown multiplier ?"2 

This gives the equations: 

';~1 = 35 X ± I, 34Yz = 38x ± 4, 303 = 4 IX ± 7, .,. 
Alternative Method. In four palm-leaf manus

cript copies of the Lildvati of Bhaskara II Sarada Kanta 
Ganguly discovered a rule describing an alternative 
method for the solution of the generalised conjunct 
pulveriser.3 There is also an illustrative example.· The 
genuineness of this rule and example is accepted by 
him; but it has been questioned by A. A. Krishna
swami Ayyangar4 who attributes them to some commc~
tato! of the work. His arguments are not convincing.;; 
The chief points against the presumption, which have 
been noted also by Ganguly, are: (I) the rule and example 
in question have not been mentioned by the eadier 
COmmentators of the Li/avati and (2.) they have not been 
liO far traced in any manuscript of the Bijaga!lita, though 
'the treatment of the pulveriser occurs nearly word for 

1 GSS, vi. I29!' :I GSS, vi. 138g. 
3 S. K. Ganguly, «Bhaskaracarya and simultaneous indeter

minate equations of the first degree," BCMS, XVII, 1926, pp. 89-
98 . 

.. A. A. Krishnaswami Ayyangar, "Bbaskara and samslishta 
Kuttaka," JIMS, XVIII, 19.29, 

r; For Ganguly's reply to Ayyangar's criticism see-JIMS, XIX. 
193 1• 
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word in the two works. Still we are in favour of 
accepting Ganguly's conclusion.1 The rule in question 
is this: 

"If the divisors as well as the multipliers be different, 
find the value of the unknown answering to the first 
set of them. That value being multiplied by the second 
dividend and then added by the second interpolator will 
be the interpolator (of a new kII//aka); the product of the 
second dividend and first divisor will be the dividend 
there and the divisor will be the second divisor. The 
value of the unknown multiplier determined from the 
kliltaka thus formed being multiplied by the first divisor 
and added by the previous value of the unknown multi
plier will be the value (answering to the two divisors). 
The dividend (for the next step) has been stated to be 
e.qual to the product of the two divisors. So proceed 
in the same way with the third divisor. And sq on 
with the others, if there be many." 

The rationale of this rule is as follows: Let (11 be 
the least value of x satisfying the first equation of the 
system~ viZ" 

Hence the general value is x = b1t + aI' where t is any 
integer. Substituting this value in the second equation, 
we get 

If t = 't be a solution of this equation, a value of x 

1 Of the four manuscripts containing the rule and example in 
question two are from Pun, in Oriya characters, with the com
mentary of Sddhara Mahapatra (1717); the other two, in Andhra 
characters and without any commentary, are preserved in the 
Oriental Libraries of Madras and Mysore. So these four manus
cript copies do not appear to have been drawn from the same 
source.- Thi.s is a strong point in favour of the genuineness of the 
rule and example. 
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satisfying both the equations will be ~ = bI"C + al. 
as stilted in the rule. Now the general value of t will 
be t = b2m + "C, where 01 is an integer. Hence 
x = bIt + al = blb2m + bl"C + al = blbam + a2• Subs
tituting this value in the third equation we can find the 
least value of m and hence a value of x answering to the 
three equations. And so on for the other equations. 

The example runs thus: 
"Tell me that number ".which multiplied by 7 and 

then divided by 62., leaves the remainder 3. That 
number again when multiplied by 6 and divided by 101 

leaves the remainder 5 ; and when multiplied by 8 and 
divided by I 7 leaves the remainder 9. Also (give) at 
once the process of the pulveriser for (finding) the 
number with the remainders all positive." 

Symbolically, we have 

(I) 6~1 = 7X - 3, IOIY2 = 6x - 5, 17Ya = 8x - 9; 

(2.) 6~1 = 7x + 3, 10lY2 = 6x + 5, 17)'3 = 8x + 9· 

16. SOLUTION OF NxS + I = y3 

Square-nature. The indeterminate 
equation 

Nx2 ± C=y2, 

quadratic 

if called by the Hindus Varga-prakrti or Krti-prakrti, 
meaning the "Square-nature."1 Bhaskara II (1150) 

states that the absolute number should be rupa, 2 

which means "unity" as well as "absolute number" in 
general. Kamalakara (1658) says: 

1 Vorg" = krti = "square" and proferti = "nature," "princi
ple," "origin," etc. Colebrooke has rendered the tetm 1'orga
proferti as "Affected Square," 

2 "Tatra n1pak~epapada~thari1 tavat"-BBi~ p. _H. 
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"Hear first the nature of the varga-prakrti: in it the 
square (of a certain number) multiplied by a multiplier 
and then increased or diminished by an interpolator 
becomes capable of yielding a square-root."l 

It was recognised that the most fundamental equa
tion of this class is 

Nx2+ I =y2, 

where N is a non-square integer. 
Origin of the Name: As regards the origin of 

the name varga-prakrti, Kr~l).a (I ~ 80) says: "That in 
which the. varga (square) is the prakrti (nature) is called 
the varga-prakrti; for the square of yavat, etc., is the 
prakrti (origin) of this (branch of) mathematics. Or, 
because this (branch of) mathematics has originated from 
the number which is the prakrti of the square of yavat, 
etc., so it is calkd the varga-prakrti. In this case the 
number-which is the multiplier of the square of yava!, 
etc., is denoted by the term prak.rti. (In other words) 
it. is the coefficient of the square of the unknown."2 
This double interpretation has been evidently suggested 
by the use of the term prakrti by Bbaskara II in two 
contexts. He has denoted by it sometimes the quantity 
N of the above equation as in "There the number 
which is (associated) with the square of the unknown is 
the prakrti;"3 and at.other times X2, as in "Supposing the 
square of one of the two unknowns to be the prakrti.'" 
Other Hindu alge~raists have, however, consistently 

1 SiTVi. xiii. %08. 

I See his commentary on the Bijago!1i1o of Bbaskara II. 
S "Tatra var_r:lavarge yo'ilkal:l sa prakrtil:t" (BBi, p. 100). 

Compare also "Tatra yavattavadvarge yo'rikaJ:!. sa prakrtil:l" 
(p. 107); "IHam hrasvam tasya varga}) prakrtya k~u.!)..!).o ... " (p. 33). 

, "Tatraikaril var_r:lakrtim prakrtirh prakalpya ... " (RBi. p. 106). 
Compare also "Sarupake vaIl~akrti tu yatra tatrecchaik:lril prakrtiril 
prakalpya ... " (p. 105). 
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employed the term prakrti to denote N only.l Brahma
gupta (62.8) uses the term guttaka (multiplier) for the 
same purpose.2 This latter term, together with its 
variation gutta, appears occasionally also in later works.3 

We presume that the name varga-prakrti origi
nated from the following consideration: The principle 
(prakrti) underlying the calculations in this branch of 
mathematics is to determine a number (or numbers) 
whose nature (prakrti) is such that its (or their) square 
(or squares, varga) or the simple number (or numbers) 
after certain specified operations will yield another 
number (or numbers) of the nature of a square. So the 
name is, indeed, very significant. This interpretation 
'3eems to have been intended, at any rate, by the earlier 
writers who used the term in a wider sense.4 It is 
perhaps noteworthy that we do not find in the works 
of Brahmagupta the use of the word prakrti either in 
the sense of N or of x 2• 

Technical Terms. Of the various technical terms 
which are ordinarily used by the Hindu algebraists in 
connection .with the Square-nature we have already 
dealt with the most notable one, prakrti, together with 
its synonyms. Others have been explained by Pfthu_' 
dakasvaml (860) thus : 

"Here are stated for ordinary use the terms which 

1 For instance, Prthudakasvami (860) writes: "The multiplier 
(of the square of the unknown) is 'known as the prakrti;" Sripati 
(1039) : "Krter-gu!_lako prakrtirbhrsoktal/' (SiSe, xiv. 32); 
Kamalakara : "Gut_lO yo rasi-vargasya saiva prakrtirucyate." 

2 BrSpSi, xviii. 64. 
3 For instance, Sr1pati employs the term gll!1aka (SiSe, xiv. 32); 

Bhaskara II and NarayaQa use gll{1Q (BBi, p. 42. ; NBi, I, R. 84). , 
4 For instance, Brahmagppta seems to have considered the scope 

of the subiect wide enough to include such equations as 
x + y = ,.2, X - Y = v2, >:J + I = V, 

amongst others (cf. BrSpSl~ xviii. 71.). 
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are well known to people. The number whose 
square, multiplied by an optional multiplier and then 
increased or decreased by another optional number, 
becomes capable of yielding a square-root, is designated 
by the term the lesser root (kani.f!ha-pada) or the first 
root (a{/ya-mtlla). The root which results, a~ter those 
operations have been performed, is called by the name 
the greater root (jyc.f!ha-pada) or the second root 
{a1!Ja-milla). If there be a number multiplying both 
these roots, it is called the augmenter (udvartaka) ; and, 
on the contrary, if there be a number dividing the roots, 
it is called the abridger (apavartaka)."l 

BM.skara II (Il~O) writes: 
"An optiol)lally chosen number is taken as the lesser 

root (brasva-mula). That number, positive or negative, 
which being added to or subtracted from its square 
multiplied by the prakrti . (multiplier) gives a result 
yielding.a square-root, is called the interpolator 
{k..Jcpaka).' And this (resulting) root is called the greater 
root (jyc.ffha-mula)."2 

Similar passages occur in the works of NaciyaJ)a,3 
Jnanara.ja and Kamalakara.' 

, The terms 'lesser root' and 'greater root' do not 
appear to be accurate and happy. For if x = m, y = n 
be a solution of the equation Nx2 + C = y2, m will be 
less than n, if Nand c are both positive. But if they 
are of opposite signs, the reverse will sometimes happen.5 

1 See Prthudakasvami's commentary on BrSpSi, xviii. 64. In 
the equation Nx't. ± c =.)'1., X = lesser root, y = greater root, 
.N = multiplier. and ( = interpolator. 

lIBB;, p. H. 
a NBi, I, R. 72. 
, SiTVi, xiii. 209. 

ft For instance, take the following example from Bhaskara II 
(BBi, p. 43) : 
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Therefore, in the latter case, where m > n, it will be 
obviously ambiguous to call m the lesser root and n 
the greater root, as was the practice in later Hindu 
algebra. This defect in the prevalent terminology was 
noticed by Kr~Q-a (15 80). He explains it th~s: "These 
terms are significant. Where the greater root is some
times smaller than the lesser root owing to the inter
polator being negative, there also it becomes greater 
than the lesser root after the application of the Principle 
of Composition."l The earlier terms, 'the first root' 
(adya-mula) for the value of x and 'the second root' or 
'the last root' (anrya-mula) for the value of y, are quite 
free from ambiguity. Their use is found in the algebra 
of Brahmagupta (628)".2 The later terms appear in the 
works of his commentator Prthudakasvami (860). 

The interpolator is called by Brahmagupta k,repa, 
prakfepa or prak,repaka.3 SrIpati occasionally employs 
the synonym k.fipti.4 When negative, the interpolator 
is sometin:es dist~nguished as 'the subtractive' (iodhaka). 

13X2 -I3=YZ. 
,One solution of it is given by the author as x = I, Y = 0; ,so that 
here the lesser root is greater than the greater root. The same is 
the case in the solution x = 2, Y = I of his example (BB/, p. 43) 

- 5X2 + 21 =y2. 
Brahmagupta gives the example (BrSpSi, xviii. 77) 

3X2 - 800 =y2, 
-ow hich has a solution (x = 20,Y = 20) where the two roots are equal. 

1 For example, by composition of the solution (1, 0) of the 
equation 13x2 - 13 = y2 with the solution (t, ¥) of the e/quation 
13X2 + I =.)'2, we obtain, after Bhaskara II, a new solution (J;!i_, 
~l!.) of the former, in which the greater root is greater than the lesser 
root. Similarly, by composition of the solution (2, 1) of the 
equation - 5X2 + 21 = y2 with the solution (!, ~) of the equation 
- 5x2 + 1 = )'2, we get a new solution (1, '4) of the former 
satisfying the same condition. 

2 BrSpSi, xviii. 64, 66f, 3 BrSpSi, xviii. 65. 
4 SiSe, xiv. 3 z. 

10 
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The positive interpolator is then called 'the additive.'l 
Brahmagupta's Lemmas. Before proceeding to 

the general solution of the Square-nature Brahmagupta 
has established two important lemmas. He says: 

"Of the square of an optional number multiplied 
by the gutJaka and increased or decreased by another 
optional number, (extract) the squa,re-root. (Proceed) 
twice. The product of the first roots multiplied by the 
gUt/aka together with the product of the second roots 
will give a (fresh) second root; the sum of their cross
products will be a (fresh) first root. The (corresponding) 
interpolator will be equal to the product of the (previous) 
interpolatprs."2 

The rule is somewhat cr'yptic because the word 
dZlidhii (twice) has been employed with double implica
tion. According to one, the earlier operations of finding 
roots are made on two optional numbers with two 
optional interpolators, and with the results thus obtained 
the subsequent operations of their composition are 
performed. According to the other implicJ.tion· of the 
word, the earlier operations are made with one optionally 
chosen number and one interpolator, and the subsequent 
ones are carried out after the repeated statement of those 
roots for the second time. It is also implied that in the 
composition of the quadratic roots their products may 
be added together or subtracted from each other. 

That is to say, if x = 0, y = ~ be a solution of the 
equation 

Nx2+ k =y2, 
and. x = 0', y = p' be a solution of 

Nx2 + k' =y2, 
then, a('~ording to the above, 

1 BrSpSi, xviii. 64-5' 2 BrSpSi, xviii. 64-5. 
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x = a~' ± a'~, y = ~~' ± N aa' 
is a solution of the equation 

In other words, if 

then 

N:y2 + kk' = _)'2. 

Na? + k = ~2, 

. Na'2 + k' = ~'~, 

147 

N( a~' ± a'f3)2 + kk' = (~~' ± N 0.')2. (I) 
In particular, taking u = 0.', f3 = ~', and k = k', 

Brahmagupta finds from a solution x = a, y = ~ of the 
equation 

a solution x = 2a~, y = f32 + Na2 of the equation 

Nx2+ k2 =y2. 
That is, if 

then 

This 
Corollary. 

N(2af3)2 + k 2 = (~2 + N(2)2. (II) 
result will be hereafter called !3.rahmagtlpta's 

Description by Later Writers. Brahmagupta's 
Lemmas have been described by Bhaskara II (I 150) thus: 

"Set down suc,cessively the lesser root, greater root 
and interpolator; and below them should be set down 
in order the same or another (set of similar quantities). 
From them by the Principle of Composition can be 
obtained numerous roots. Therefore, the Principle of 
Composition will be explained here. (Find) the two , 
cross-products of the two lesser and the two greater 
roots; their sum is a lesser root. Add the product of 
the two lesser root.s multiplied by the prakrti to the 
product of the two 'greater roots; the sum will be a 
greater root. In that (equation) the interpolator will be 
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the product of the two previous interpolators. Again 
the difference of the two cross-products is a lesser root. 
Subtract the product of the two lesser roots multiplied 
by the prakrti from the product of the two greater roots; 
(the difference) will be a greater root. Here also, the 
interpolator is the product of the two (previous) inter
polators."1 

Statements similar to the above are found in the 
works of Narayalfa2 (1350), Jiianarija (1503) and 
Kamalakara3 ( 1658) . 

. Principle of Composition. The above results 
are called by the technical name, Bhavana (demonstration 
or proof, meaning anything demonstrated or proved, 
hence theorem, lemma; the word also means composi
tion or combination). They are further distinguished as 
Samasa Bhavana (Addition Lemma or Additive Composi
tion) and Antara Bhavana (Subtraction Lemma or Sub
tractive Composition). Again, when the Bhtivana is made 
with two equal sets of roots and interpolators, it is 
called Tufya Bhdvana (Composition of Equals) and when 
with two unequal sets of values, Atllfya Bhdvana (Compo
sition of Unequals). Kr~l).a has observed that when it 
is desired to derive roots of a Square-nature, larger in 
value, one should have recourse to the Addition Lemma 
and for smaller roots ,one should use the Subtraction 
Lemma. 

Brahmagupta's Lemmas were rediscovered and 
recognised as important by Euler in 1764 and l?y 
Lagrange in 1768. 

Proof. The proof of Brahmagupta's Lemmas has 
been given by Knl).a substantially as follows: 

1 BBi, p. 34. 2 NBi, I, R. 72-7 5~' 
3 SiTVi, xiii. 210-214. 
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Na2 + k = ~2, 
Na'2 + k' = (3'2. 

Multiplying the first equation by (3'2, we get 
... Na2W2 + k(3'2 = ~2(3'l. 

149 

Now, substituting the value of the factor 13'2 of the 
interpolator from the second equation, we get 

Na2f3'l + k(Na''!' + k') = 13213'2, 
or Na2(3'l. + Nka'2 + kk' = 13213'2. 

Again, substituting the value of k from the first equa
tion in the second term of the left-hand side expression, 
we have 

or 
Adding 

Na'2(3'2 + Na'}.(132 - Na2) + kk' = 13 2p'2, 

N(a2(3'2 -+ u''!(32) + kk' = (32(3'2 + N 2a2(/2. 

± zNal3a'(3' to both sides, we get 
N( aW ± a'(3)2 + kk' = ((3(3' ± N aa')2. 

Brahmagupta's Corollary follows at once from the 
above by putting a' = a, /3' = !3 and k' = k. 

General Solution of the Square-Nature. It is clear 
from Brahmagupta's Lemma (I) that when two solutions 
of the Square-nature, 

Nx2 -+ I =y2, 
are known, any number of other solutions can be found. 
For, if the two solutions be (a, b) and (a', h'), then two 
other solutions will be 

x = al/ ± a'b, y = bb' ± Naa'. 
Again, composing this solution with the previous ones, 
we, shall get other solutions. Further, it follows from 
Brahmagupta's Corollary that if Ca, b) be a solution of 
the equation, another solution of it is (ub, b2 + N(2). 

Hence, in order to obtain a set of solutions of the 
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Square-nature it is necessary to obtain only one solu
tion of it. For, after having obtained that, an infinite 
number of other solutions can be found by the repeated 
application of the Principle of Composition. Thus 
Sdpati (1039) observes: "There will be an infinite (set 
of two rootS)."l Bhaskara II (II50) remarks: "Here 
(i.e., in the solution of the Square-nature) the roots are 
infinite by virtue of (the infinitely repeated application 
of) the Principle of Composition as well as of (the 
infinite variety of) the optional values (of the first 
rootS)."2 Nariya.Q.a (1350) writes, "By the Principle of 
Composition of equal as well as unequal sets of roots, 
(will be obtained) an infinite number of roots."3 

Modern historians of mathematics are incorrect in 
stating that Fermat (1657) was the first. to assert that 
the equation Nx2 + 1 = y2, where N is a non-square 
integer, has an unlimited number of solutions in inte
gers. 4 The existence of an infinite number of integral 
solutions was clearly mentioned by Hindu algebraists 
long before Fermat. 

Another Lemma. Brahmagupta says: 
"On dividing the two roots (of a Square-nature) by 

the square-root of its additive or subtractive, the roots 
for the interpolator unity (will be found)."5 

That is to say, if x = a, y = ~ be a solution cf the 
equation 

Nx2 + k2 =y2, 
then .'< = a/k, y = ~/k is a solution of the equaticn 

Nx2 + I =- y2. 

This rule has been restated in a different way thus: 

1 SiSe, xiv. 33. 
2 "Ihanantyari1 bhavanabhistalhegata}:t"-BB;, p. 34. 
q NBi, r, R. 78. Compare also SiT Vi, xiii. 2 J 7. 
'Smith, Hit/ory, II, p. 453. 5 BrSpSi, xviii. 65. 
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"If the interpolator is that divided by a square 
then the roots will be those multiplied by its square
root,"1 

That IS, suppose the Square-nature to be 

Nx2 ± p2d = y2, 

so that its interpolator p2d is exactly divisible by the 
square p2, Then, putting therein II = x/P, v =)'/p, 
we derive the equation 

Nu2 ± d = v2, 

whose interpolator is equal to that of the original 
Square-nature divided by p2, It is clear that the roots 
of the original equation are p times those of the derived 
equation. 

Bhaskara II writes: 
"If the interpolator (of a Square-nature) divided 

by the square of an optional number be the interpolator 
(of another Square-nature), t hen the two roots (of the 
former) divided by _ that optional number will be the 
roots (of the other). Or, if the interpolator be multi
plied, the roots should be multiplied."2 

The same rule has been stated in slightly different 
words by Nariya.r:ta3 and Kamalakara,4 Jiianaraja simply 
observes: 

"If the interpolator (of a Square-nature) be divided 
by the square of an optional number then its roots \\'ill 
be divided by that optional number." 

Thus we have, in general, if .'\' = a, y = B be ; 
solution of the equation 

Nx2 ± k =)'2, 

1 BrSpSi, xviii. 70 • 2 BBi, p. H. 
S NBi, I, R. 76-76~. , SiTVi, xiii. 2 I ~. 



15 2 ALGEBRA 

x = a/ltl, y -= ~/m is a solution of the equation 
Nx2 ± k/m2 = y2; 

and x = na, y = nf3 is a solution of the equation 
Nx2 ± n2k = y2, 

where m, n are arbitrary rational numbers. 
By this Lemma, the solutions of the Square-natures 

(i) 6x2 + 12 = y2, 
(ii) 6x2 + 75 = y2, 

and (iii) 6x2 + 300 = y2, 
can be derived, as shown by Bhaskara II, l from 
those of 

6x2 + 3 =)'2, 

~ince 12 = 2 2.3, 75 = 52.3, and 300 = 102.3. How to 
Golve this latter equation will be indicated later on. 

Rational Solution. In order to obtain a first 
$olution of Nx2 + 1 = y2, the Hindul::> generally suggest 
the following tentative method: Take an arbitrary 
small rational number a, such that its square multiplied 
by the gUt/aka N and increased or diminished by a 
suitably chosen rational number k will be an exact 
'jquare. In other words, we shall have to obtain 
empirically a relation of the form 

Na2 ± k = ~2, 

where a, k, ~ are rational numbers. This relation will 
be hereafter referred to as the Auxiliary Eqlitltion. Then 
by Brahmagupta's Corollary, we get from it the relation 

N(2a~)2 + k 2 = (~2 + Na2)2, 

or ( 2a~)2 _(~2+Na2)2 
N k +1- ---k-- . 

1 B13i, p. 4 I. 
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Hence, one rational solution of the equation Nx2 + I 

= y2 is given by 

2a~ ~2 + Na2 

x=k"' y= k' (A) 

Sripati's Rational Solution. Sripati' (1039) has 
shown how a rational solution of the Square-nature 
can be obtained more easily and directly without the' 
intervention of an auxiliary equation. He says: 

"Unity is the lesser root. Its square multiplied by 
the prakrti is increased or decreased by the prakrti 
combined with an (optional) number whose square-root 
will be the greater root. From them will' be obtained 
two roots by the Principle of Composition."1 

If m2 be a rational number optionally chosen, we 
have the identity 

N.12 + (m2 - N) = m2, 

or N.12 - (N - m2) = m2. 

Then, applying Brahmagupta's Corollary to either, we 
get 

N(2m)2 + (m2 ,_ N)2 = (m2 + N)2; 

( 2nJ)2 (m2 + N)2 
N !ll'/. _ N + 1 = m2 ,_ N . 

Hence 2m m2+ N 
x = m2 ,..., N' y = m2 ,_ N' (B) 

. 
where m is any rational number, is a solution of the 
equation 

Nx2 + I =y2. 

The above solution reappears in the works of later 
Hindu algebraists. Bhaskara II says: 

1 SiSe, xiv. 33. 
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"Or divide twice an optional number by the differ
ence between the square of that optional number and the 
prakrti. This (quotient) will be the lesser root (of a 
Square-nature) when unity is the additive. From that 
(follows) the greater roOt."l 
Naraya1).a states: 

"Twice an optional number divided by the difference 
between the square of that optional number and the 
gutlaka will be the lesser toot. From that with the 
additive unity determine the greater root."2 

Similar statements are found also in the works of 
Jfianaraja and Kamalikara.3 

If III be an optional number, it is stated that mZ ~ N 

is a lesser root of Nx2 + I = y2. Then, substituting 
that value of x in the equation, we get 

(
2m )2 

.12 
= N tJl"4,_, N + I, 

=(!J12 + N)2. 
m'" - N 

Hence the greater root is 

m2 +N 
y= m2 -- N' 

The same solution will be obtained by assuming 
y=mx~ I. 

Kr~1).a points out that it can also be found thus: 
4N ",2 = (m2 + N)2 - <",2 ,...., N)2, identically. 

4Nm2 + (m2 -- N)2 = {m2 + N)2, 

1 BBi, p. 34. 2 NBi, I, R. 77£' 
3 SiTVi, xiii. 216. 
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or 

His remark that this method does not require the help 
of the Principle of Composition shows that Bhaskara 1I 
and others obtained the solution in the way indicated 
by Sripati. 

The above rational solution of the Square-nature has 
been hitherto attributed by modern historians of mathe
matics to Bhaskara II. But it is now found to be due 
to an anterior writer, Sripati (1039). It was redis
covered in Europe by Brouncker (1657). 

Illustrative Examples. In illustration of the fore
going fllies we give the following examples with their 
solutions from Bhaskara II. 

Examples. "Tell me, 0 mathematician, what is that 
square which multiplied by 8 becomes, together with 
unity, a square; and what square multiplied by 1 I and 
increased' by unity, becomes a square."l 

That is to say, we have to solve 
(I) 8x2+ 1 =y2, 

(2) IIx2 + 1 =y2. 

Solutions. "In the second example assume ~ as the 
lesser root. Multiplying its square by th~ prakrti, namely 
II, subtracting 2 and then extracting the square-root, 
we get the greater root as ,. Hence the st-atement for 
composition is2 

m=11 1=1 g=3 I=-Z 

1 = 1 1= - 2 

1 BBi, p. ; 5. 
2 The abbreviations are: m = multiplier, I = lesser root, 

g = greater root and; = interpolator. In the original they are 
respectively pra, ka, jye, and k,c, the initial syllables of the cor
responding Sanskrit terms. 
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Proceeding as before we obtain the roots for the 
additive 4: 1=6, g = 2.0, (for) i = 4. Then by the 
rule, 'If the interpolator (of a Square-nature) divided by 
the square of an optional number etc.,'l are found the 
roots for the additive unity: / = 3, g = 10 (for) i = 1. 
Whence by the Principle of Composition of Equals, we 
get the lesser and greater roots: 1= 60, g = 199 (for) 
i = 1. In this wayan infinite number of roots can be 
deduced. 

"Or, assuming I for the lesser root, we get for the 
additive 5: 1= 1, g = 4, (for) i = 5. Whence by the 
Principle of Composition of Equals, the roots are I = 8, 
g = 27, (for) i = 25. Then by the rule, 'If the inter
polator (of a Square-nature) divided by the square 
of an optional number etc.,' taking 5 as the optional 
number, we get the roots for the additive unity: 
! = 8/5, g = 27/5, (for) i = 1. The statement of these 
for composition with the previous roots is .. 

III = II 1= 8/5 g'_ 2.7/5 I = I 

1=.; g = 10 i = I 

B'y the Principle of Composition the roots are obtained 
as: /=161/5, .g=534/5 (for)i=1. 

"Or composing according to the rule, 'The differ
ence of the two cross-products is a lesser root etc.,' we 
get the roots: 1= 1/5, g = 6/5 (for) i = 1. And 
so on in many ways. 

"The two roots for the additive unity will now be 
found in a different way by the rule, 'Or divide twice 
an optional number by the difference between the square 
of that optional number and the prakrti etc.' Here, in 
the first example, assume the optional number to be 3. 
Its square is 9; multiplier is 8; their difference is I; 

1 Vide mpra, p. 15 I. 
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dividing by this twice the optional number, namely 6, 
we get the lesser root for the additive unity as 6. 
Whence, proceeding as before, the greater root comes 
out as 17. 

"In the same way, in the second example also, as
suming the optional number to be 3, the lesser and 
greater roots are found to be (3, 10). 

"Thus, by virtue of (the infinite variety of) the 
optional values as well as of (the infinitely repeated 
application of) the Principle of Additive and Subtractive 
Compositions, an infinite number of roots (may be 
found)."l 

Solution in Positive Integers. As has been stated 
before, the aim of the Hindus was to obtain solutions 
of the Square-nature in positive integers; so its first 
solution must be integral. But neither the tentative 
method of Brahmagupta nor that of Sripati is of 
much help in this direction, for they do not abpayj 
yield the desired result. These authors, however, dis
covered that if the interpolator of the auxiliary equation 
in the tentative method be ± I, ± 2. or ± 4, an integral 
solution of the equation Nx2 + 1 = y2 can always be 
found. Thus Sripati (1039) expressly observes, "If I, 

2. or 4 be the additive or subtractive (of the auxiliary 
equation) the lesser and greater roots will be integral 
(abhinna).2 

(i) If k = ± I; then the auxiliary equation will be3 

Na. 2 ± I = ~2, 

t The original is, "EvamiHavasat samasantarabhbanabhyam 
ca padanamanantyarp." (BBi, p. ;6). 

2 "Dvyelclmbudhik~epavisodhanabhyatp 
. _ Syatamabhinne laghuvrddhamule:'-SiSe, xiv. 32. 

The Sanskrit word abhinna literally means "non-fractional" 
3 The special treatment of the equation Nx! - 1 = y2 is given 

later on. 
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where a, ~ are integers. Then by Brahmagupta's Corol
lary, we get 

x = 2£1~, Y = ~2 + N £12 

as the required first solution in positive integers of the 
equation Nx2 + I =y2. . 

(ii) Let k = ± 2; then the auxiliary equation is 
N£12 ± 2 = ~2. 

By Brahmagupta's Corollary, we have 
N( 2£1~)2 + 4 = (~2 + N (1

2)2, 

or N(£113)2 + I =(~2 + N(1
2)2. 

2 

Hence the required first solution is 
x = £113, Y = H(32 + N( 2). 

Since Na2 . ~2 =f 2, 

we have -~(132 + N(12) = ~2 =f 1 = a whole number. 
(iii) Now suppose k = + 4; so that 

Na2+ 4 = {.32. 

\v'ith ap auxiliary equation like this the ,first integral 
solution of the equation Nx2 + I = y2 is 

if a is even; or 

if ~ is odd. 

x = ·~a~, 

y = !(~2 _ 2); 

x = ~a(~2 - 1), 
Y =\~~(~~ - 3); 

Thus Brahmagupta says: 
"In the case of 4 as additive the square of the second 

root diminished by 3, then halved and multiplied· by 
the second root will be the (required) second root; 
The square of the second root diminished by unity arid 
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then divided bY,2 and multiplied by the first root will 
be the (required) first root (for the additiyc unity)."l 

The rationale of this solution is as follows: 
Since Na2 + 4 = [12, (I) 

we have N( ~ / + 1 = ( J_ ) 2, (2) 
Z. 2 

Then, by Brahmagupta?s Corollary, wc get 
A 2 A2 2 2 

N(~) + I =(_1' +N~). 
244 

Substituting the value of N in the right-hand 
pression from (I), we have 

side ex-

N ( ~ ) 2 + 1 = (B2 - 2) 2. 
2 2 

Composing (2) and (3), 

N { : ( fJ2 _ I) } 2 + I = { ~ ( p2 _ 3) } 2. 

Hence 
and 
are solutions of 

Nx2 + I =y2. 

(3) 

If B be even, the first values of (x, _y) are integral. 
If B be odd, the second values are integral. 

(iv) Finally, suppose k = - 4 ; the auxiliary equa
tion is 

Na2 - 4 = ~2. 

Then the required first solution in positive integers of 
Nx2 + I =y2is 

x = -~aI3(B2 + 3)(P2 + I), 
_y = ((32 + 2){i(B2 + 3)(132 + I) - I}. 

1 BrSpSi, xviii. 67. 
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Brahmagupta says: 
"In the case of 4 as subtractive, the square of the 

second is increased by three and by unity; half the 
product of these sums and that as diminished by unity 
(are obtained). The latter multiplied by the first sum 
less unity is the (required) second root; the former 
multiplied by the product of the (old) roots will be 
the first root corresponding .to the (new) second root."1 

The rationale of this solution is as follows: 
Na2 - 4 = ~2. (1) 

N( : ) 2 _ I = ( ! )2. 

Hence by Brahrnagupta's Corollary, we get 

N(~)2+ I =(_r_+N~)2 
2 4 4 

={!(~2 + Z)}2. (2) 
Again, applying the Corollary, we have 

N{~a~(~2 + 2)}2 + 1 = {!(~4 + 4~2 + Z)}2. (;) 
Now, by the Lemma, we obtain from (2.) and (3) 

I Nga~({32 + 3)({32 + I)}2 + 1 
= [(~2+ 2)B(~2 + 3)(B2 + I) - I} ]2, 

Hence x = ia{3(~2 + 3)({32 + I), 
Y = «(32 + 2) {!({32 + ;)«(32 + 1) - I}, 

is a solution of Nx2 + 1 = y2. 

It can be proved easily that these values of x, y 
are integral. For, if {3 is even, {32 + 2. is also even. 
Therefore, the above values of x, yare integral. If on 
the contrary {3 is odd, {32 is" also odd; then {32 + I and 
{32 + 3 are even. Hence in this case also the above 
values are integral. 

1 BrSpSi, xviii. 68. 
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Putting p = a~, q = ~2 + 2 we can write the 
above solution in the form 

x = ~p(q2 - I), 

Y = ~q(q2 - 3~, 

in which it was found by Euler. 

17. CYCLIC METHOD 

Cyclic Method. It has been just shown that 
the most fundamental step in Brahmagupta's method 
for the general solution in positive integers of the 
equation 

where N is a non-square integer, is to form an auxiliary 
equation of the kind 

Na2 + k = b2
, 

where a, b are positive integers and k = ± I, ± 2 or 
± 4. For, from that auxiliary equation, by the Principle 
of Composition, applied repeatedly whenever necessary, 
one can derive, as sho,wn above, one positive integral 
solution of the original Square-nature. And thence, 
again by means of the same principle, an infinite number 
of other solutions in integers can be obtained. How to 
form an auxiliary equation of this type was a problem 
which could not be solved completely and satisfactorily 
by Brahmagupta. In fact, he could not do it otherwise 
than by trial. But Bhaskara II succeeded in evolving a 
very simple and elegant method by means of which 
one cap derive an auxiliary equation havil!g the required 
interpolator ± I, ± 2 or ± 4, simultaneously with its 
t\VO integral roots, from another auxiliary equation 
empirically formed with any simple integral value of the 
interpolator, positive <?r negative. This method is called 

11 
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by the technic;al name Cakravala or the "Cyclic Method.:'1 
The purpose of the Cyclic Method has been defined 

by Bhaskara II thus: "By this method, there will 
appear two integral roots corresponding to an equation 
with ± I, ± 2 or ±.4 as interpolator."2 

Bhaskara's Lemma. The Cyclic Method of Bhas
kara II is based upon the following Lemma: 

If Na 2 + k = b2
, 

where a, b, k are integers, k being positive or negative, 
then 

N(a!JJ + b)2 + /))2 - N = (b"J + Na)2 
kkk' , 

where 11J is an arbitrary whole number. 
The rationale of this Lemma is simple: \'(je have 

Na'!. + k = b2, 

and N.I2 -+ (1112 - N) = Ill'!., identically. 
The,n by Brahmagupta's Lemma, we get 

N(o!ll + b)2 + k(m'!. - .N) = (bllJ + NO)2. 

N(c//I/ + b)'!. JI/2 - N = (bl/J + Na)'!. 
k + k k' 

Bhaskara~s Rule. Bhaskara II (1150) says: 
"Considering the lesser -root, greater root and inter

polator ,(of a Sq4arc:-n::l.ture) as the dividend, addend 
and divisor (respectiyely of a pulveriser), the (indeter
~inate) multiplier of it should be so taken as will make 
the residue of the prtlRrti d,iminished by the square of 
that multiplier or rhe latter minus the prakrti (as the case 

1 The Sanskrit word Cakrani/a means "circle," especially 
"horizon." The method is so called, observes Survadasa, because 
it proceeds as in a circle, the saqJe set of operations being applied 
again and again in a continuous round. 

2 BBi, p. 38. 
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may be) the least. That residue divided by the (original) 
interpolator is the interpolator (of a new Square
nature).; it should be reversed in sign in case of sub
traction from the prakrti. rhe quotient corresponding 
to that value of the multiplier is the (new) lesser root; 
thence the greater root. The same process should be 
followed repeatedly putting aside (each time) the previous 
roots and the interpolator. This process is called 
Cakravdfa (or the 'Cyclic Method').l By this method, 
there will appear two integral roots corresponding to 
an equation with ± I, ± 2. or ± 4 as interpolator. In 
order to derive integral roots corresponding to an 
equation with the additive unity from those of the 
equation with the interpolator ± 2. or ± 4 the Principle: 
of Composition (should be applied)."2 

Suppose we have an equation of the form 

Na2 + k = b2, (I) 
where a, b, k are simple integers, relatively prime, k 
being positive or negative. Then by Bhaskara's Lemma 

N(am: b)2 + m2 
~ N =( b'111 Na/, (2) 

where m is an arbitrary integral number. In the above 
rule, m has been styled the indeterminate multiplier. 
Now, by means of the pulveriser, its value is determined 
so that 

am: b is a whole number. 

1 The original text is cakratJolamidam jagl/b. The commentator 
Kr~t:la explains, "acary:1 etadgat:Iitam calu:avalamiti jaguD" or "The 
learned professors call this method of calculation the Cakravala." 
So Bhaskara II appears to have taken the Cyclic Method from 
earlier writers. But it is not found in any work anterior to 
him so far known. 

2 BBi, pp. 36ff. 
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Again, of the various such values, Bha.skara II chooses 
that one which will make 1m2 _ N/ as small as possible. 
Let that value of JJJ be n. Now let 

an + b 
a1 = k 

V _ bn + Na 
} _ k ' 

n2 _ N 
kl = k . 

The numbers (/1' VI' k} are all integral. The equation 
(2) then becomes 

Na1
2 + k} = b}2. (3) 

Proceeding exactly in the same way, we can obtain 
from (3) a new equation of the same kind, 

Na2
2 + k2 = b2

2
, 

where again (12' b2, k2 are whole numbers. By 
repeating the process, we shall ultimately arrive at an 
equation, states Bhaskara II, in which the interpolator k 
will reach the value .± I, ±. 2 or ± 4, and in which (a, b) 
will be integers. 

Nadiya~a's Rule. The above rule of Bhaskara II 
has been reproduced by Nariyal)a (1350). He writes: 

":i\faking the lesser root, greater root and inter
polator (of a Square-nature) the dividend, addend and 
divisor (respectively of a pulveri~er), the (indeterminate) 
multiplier of it should be determined in the way des
cribed before. The prakrti being subtracted from the 
square of that or the square of the multiplier being 
subtracted from the prakJ'ti, the remainder divided by the 
(original) interpolator is the interpolator (of a new 
Square-nature); and it will be reversed in sign in case 
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of subtraction of the square' of the multiplier. The 
quotient (corresponding to that value of the multiplier) 
is the lesser root (of the new Square-nature); and that 
multiplied by the multiplier and diminished by the 
product of the previous lesser root and (new) inter
polator will be its greater root. By doing so repeatedly 
will be obtained two integral roots corresponding to the 
interpolator ± I" ± 2 or ± 4. In order to derive 
integral roots for the additive unity from those answer
ing to the interpolator ± 2 or ± 4, the Principle of 
Composition (should be adopted)."l 

It will be noticed that Narayal)a does not expressly 
state that the value of the indeterminate multiplier m 
should be so chosen as will make 1m2 - Nileast. It is 
perhaps particularly noteworthy that he recognised the 
relation 

For 

/;1 = (/1" - kId. 

/; _ btl + Na 
1 - k ' 

__ "Calk - dl1) + Na 
k 

(
112 - N) 

= (/1" - k a, 

= (/111 - kIa, 

a111 - b1 t7 = . 
k:I 

Similarly, it will be found that 

.b _ bIn - Nal 
,- k 

I 

For bI " = aI ,,2 - klan, 

1 NBi, I, R. 79-82.. 
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= a1 (N +. kk1) - klan, 

= al N + k 1b, 

b _ bIn - Na1 
- k . 

1 

[ ... 
[ ... kkl = n2 - N] 

a1k = an + b] 

Illustrative Examples. In illustration of the 
Cyclic Method, Bhiskara II works out in detail the fol
lowing examples : 

"What is that number whose square multiplied by 
67 or 61 and then added by unity becomes capable of 
yielding a square-root? Tell me, 0 friend, if you have 
a thorough knowledge of the method of the Square-
nature."1 . 

That is to say, we are to solve 
(i) 67x2 + I =)'2, 

(ii) 6IX2 + 1 = y2. 

Leaving out the details of the operations in con
nection with the process of the pulveriser, Bhaskara's 
solutions are substantially as follows: 

(i) 67X2 + I = y2. 

We take the auxiliary equation 
67.12 - 3 = 82. 

Then, by the Lemma, 

67( I.m + ~) + 1JJ2 - 67 = (sm + 67· I )2. (1) 
-3 -3 -3 

By the method of the Ku!!aka the solution of 
m+8 _-'--_ = an integer, 
-3 

1 BBi, p. 38. 
It is remarkable that the equation 61X2 + 1 =.r was proposed 

by Fermat to Frenicle in a letter of February, 1651. Euler solved it 
in 1732. 
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is m =.- 31 + I. Putting 1 = _:.2., we get m = 7 
which makes 1m2 - 67 I leas~. On substituting this 
value, the equation (1) reduces to 

67 . ~ 2 + 6 = 4 1'2. 

Again, by the Lemma, we have 

67Cn ~ 41)2 + 112 ~ 67 = (4In ~ 67·5 )2. (2) 

11te solution of 

5 n ~ 41 = a whole number, 

is n = 6t + 5. I n2 - 67 I will be least for the value 
t = 0, that is, when n = 5. The equation (2) then 
becomes ' 

67. IJ2 - 7 = 902 , 

Now, we form 

67(11/> + 90 )2+p2- 67 ' (90P+ 67 .11)2. (3) 
-7 -7 -7 

The solution, of 

lIP + 90 = an integral.number, 
-7 

is p= - 7'+ 2. Taking t= - I, we have p = 9; 
and this value makes I p2 - 67 I least. Substituting that 
in (3) we get 

67.272 - .2. = 2212. 

By the Principle of Composition of 'Equals, w~ get 
from this cg uation 

67 (2.27.221)2 + 4 = (2212 + 67, 2i!')2, 

or 67(11934)2 +'4 = (97684)2. 

Dividing out by 4, we haye 
67 (5967)2 + I :0= (48842)1!. 
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Hence x = 5967, Y = 48842 is a solution of (i). 
(ii) 61X2 + 1 = y2. 

Here we start with the auxiliary equation 
61.12 + 3 = 82, 

By the Lemma, we have 

6I(m + 8)2 + m2 
- 61 = (sm + 61 )2, (1) 

3 3 3 
Now the solution of 

m+8 ' = an mteger, 
3 

is m = 3t + I, Putting t = 2, we get the value In = 7 
which makes 1'112 - 61 I least, On substituting this 
value in (I), it becomes 

61.5 2 - 4 = 392, 

Dividing out by 4, we get 
61(&)2 - I = (IJ,l)2. (2) 

By the Principle of Composition of Equals, we have 

6I(2.-£.\~-)2 + 1 = {C-l_)2 + 6ICi)2}2, 
or 6I(l~~)2 + 1 = CH:.!~.i!..)2, 

Combining (2) and (3), 
61(3805)2 - 1 = (29718)2. 

Composing this with itself, we get 

61(226153980)2 + 1 = (1766319049)2, 

(3) 

Hence x = 226153'980, Y = 1766319°49 is a solution 
of (ii). 

The following two examples have been cited by 
N A A j arayal).a : 

(iii) I03x2 + I =y2, 
(iv) 97x2 + 1 = y2. 
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Their solutions are given substantially as follows: 

For (iii) we have the auxiliary equation 
103.12 - 3 = 102. 

By the Lemma, we get 

103(/11 + iO)2 + 1112 - 103 = (1011/ + 10~ )2. 

-3 -3 -3 

The general solution of 

m+ 10 . 
--- = an Integer, 
-3 

is m = - 3t + 2. Putting t . - 3, we get m = I I. 

Then 
103.72 - 6 = 712. 

Ag ain, by the Lemma, 

( 
7 n + 7 I ) 2 + n2 

- 103 = (71 n + I 0 3 • 7 ) 2 
103 - 6 - 6 - 6 . 

The solution of 

7
11 + 71 = a whole number, 
-6 , 

is n = - 6t + I . Taking t = - I, we get 

103. 202 + 9 = 2°3~· 
Next, we ha ve 

I03(20P+ 203)2 +p2 _ 103 = (20 3P + 10 3 .20)2. 
9 9 , 9 

Now, 20P + 203 = an integral number 
9 

for p = 91 + 2. When t = ~, p = 1 I. On taking this 
value we find 
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Applying the Principle of Composition of Equals, 
we get 

or 
Hence 

103(2·47·477)2 + 4 = (4772 + 1°3.472)2, 
1°3(44838)2 + 4 = (455 056)2. 
103(22419)2 + I = (2.27528)2, 

which gives x = 2.2.419, Y = 227528 as a solution of (iii). 

For the solution of (iv) the auxiliary equation is 

97. 12 + 3 = 102. 
Therefore 

97(~ + 10)2 -I- 1J12 - 97 = COllI + 97)2. 
3 . 3 3 

The solution of 
m+ 10 . _:......__ = an Integer, 

3 
is m = 31 + 2. Taking I = 3, we have /II = II. Then 

97.72 + 8 = 69. 2 
Next, we have 

( 7n + 69 )2+ n2 
- 97 = (69n + 97.7)2 

97 8 8 8· 

The solution of 

is n = 8t + 5. 

\Vhence 

7n + 69 = an integer, 
8 

Taking t = I, that is, n =·13, we get 

97. 202 + 9 = 1972
• 

97( 20P + 191)2 + p2 
- 97 = ( 197P + 97.2°) 2. 

999 
The solution of 

20/J ; 197 a whole number, 
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is P = 9t + 5. Putting 1= 1, we get p = 14. With 
this value of p we have 

97.53 2 + II = 52.2.2• 
Whence 

( nq + 52 2 )2 + q2 - 97 = (522,q + 97.53 )2. 
97 II I I II 

The solution of 

53q + 52.2. = an integer, 
II 

is q = 1 II + 8. The appropriate value of q is given 
by t = o. So, taking q = 8, we have 

97. 862 - 3 = 8472. 
Next, we find 

97( 86r + 847) + r2 - 97 = (847r + 97. 86 )2. 
. -3 -3 -3 

The solution of 

86r + 847 = a whole number, 
-3 

is r = 3t + I. Putting t = - 3, we get r = 10. Tak
ing this value, we h we 

97.5692 - I = 56042. 
By the Principle of Composition of Equals, we find 

97(6377352)2 + I = (62809633)2. 
Hence x = 6377352, Y = 62809633 is a solution of (iv). 

Proofs. It has been stated by Bhaskara II that: 
(I) when al is an integer; kl and hI are each a 

whole number; 
(2) his Cyclic 1Iethod will in every case lead to 

the desired result. 
He has not adduced proofs. We presume that he 
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knew a proof at least of the first proposltlon. For 
he must have recognised the simple relation 

bl = aln - kia, 

which has been expressly stated by Naraya1).a (1350). 
This shows at once that bi will be a whole number, 
if kl is so. This is also evident from the equation, 
Na1

2 + ki = b1
2, itself. Hence, it now remains to prove 

that ki is an integral number. 
Eliminating b between 

and 

we have 

or 

Therefore 

an + b 
al = k ' 

b _ bn + Na 
1 -- k ' 

k (a1n - bI ) = a(n2 - N), 

k 
- (alII - h]) = 112 - N. 
a 

Since k and a have no common factor, a must 
divide alII - bI ; that is 

a 11- b 112- N . 
I I = = kl = an Integer. 

a k 
Hence hi also is a whole numbcr.~ 

1 Hankel's Proof: Hankel proves these two results thus :, 

Since a1k = an + band k = b2 - Na2 , 

we get al (b2 - Na2) = an + b, 
b -

or --(01 b - I) = (n + Naal ). 
a 

Since a, b have no common factor, a must divide alb - I; that is, 
a b - J • 

1 _ = an Integer. 
a 
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18. SOLUTION OF Nx2 ± (=yZ 

The general solution of the indeterminate quadratic 
equation 

Nx2 ± C=y2 

in positive integers was first given by Brahmagupta (628). 
He says: 

"From two roots (of a Square-nature) with any 
given addidve or- subtractive, by making (combination) 
with the roots for the additive unity, other first and 
second roots (of the equation having) the given additive 
or subtractive (can be found)."! 

Eliminating n between . 
al k = an + b, blk = bn + Na, 

we get alb - abl = 1. 

a b - 1 
Hence b1 = I = a whole number. 

a 

Now n2 _ N = (alk - b)2 - Na2 

. (12 

a1
2 k 2 - zbka1 + k 

= a2 

k(a1
2 k - 2.hflt + 1) 

= a2 • 

Therefore 
k . 

2"" (a1
2k - zba1 + I) is a whole number. 

a 

Since a, k have no common factor, it follows that 
a1

2k - zbal + 1 n2 - N . 
a2 = k = kl = an Integer. 

Also kl = "2 - N = a1
2k - zba1 + I • 

k a2 

flt2(b2 - N(2) - zha1 + I 

= a" 
= (alb a- 1)2 _ Nf1t.'. 

1 BrSpSi, xviii, 66. 
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Thus having known a single solution 1n positive 
integers of the equation Nx2 ± c = y2, says Brahma
gupta, an infinite number 0; other integral solutions 
can be obtained by making use of the integral solutions 
of Nx2 + I = y2. If (p, q) be a solution of the former 
equation found empirically and if (a, (3) be an integral 
solution of the la:tter then, by the Principle of Com
position, 

x = p~ ± qa, y = q~ ± Npa 

will be a solution of the former. Repeating the opera
tions we can easily deduce as many solutions as we like. 

This method reappears in later Hindu algebras. 
Bhaskani. II says: 

"In (a Square-nature) with the additive. or sub
tractive greater (than unity), one should find two roots 
by his own intelligence only; then by their composition 
with the roots obtained for the additive unity an infinite 
number of roots (will be found)."! 

Narayat_1a writes similarly: 

"When the additive or subtractive is greater than 
unity, two roots should be determined by one's own 
intelligence. Then, by combining them with the roots 
for the additi¥e unity, an infinite number of roots can be 
obtained. "2 

We take the following illustrative eX;lmples with 
solutions from Narayat_1a : 

Exall;ple. "Tell me that square which being multi
plied by 13 and then increased or diminished by 17 
or 8 becomes capable of yielding a square root."3 

1 BBi, p. 42. • II NBi, I, R. 86. 
3 NBi, I, Ex. 44. 
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That is, solve 
(1) 13X2 -+--- 17 = y2, 
(2) 13X2 ± P: = y2. 

Solution. "In the first example it is stated that the 
multiplier' = 13 and interpclator = 17. 

"Now the 'roots for, the interpolator 3 are (I, 4). 
And for the interpolator 51, the roots ~re (I, 8). For 
the composition of these with the previous roots (I, 4} 
the statem( '1t will be 

!n=13 1=1 

1= 1 

g=8 
g=4 

t= P 
t = 3 

So, by the Addition Lemma, we get the roots corres
ponding to the interpolator 153 as (n,45). The rule 
says, 'If the interpolator (of a Square-nature) be divided 
by the square of an optional number etc.' Now take 
the optional number to be 3, so that the interpolator 
may be reduced to 17. For 32 = 9 and 153/9 = 17· 
T'lerefore, dividing the roots just obtained by the 
optional number 3, we get the required roots (4, 15). 

"Applying the Subtraction ,Lemma and proceeding 
similarly we get the roots for the interpolator 17 as 
(4/3, 19/3). 

"In the second example the statement is : multiplier 
= 13, interpolator = - 17. Proceeding as before we 
get (by the Addition Lemma) the roots (147, 530); and 
(by the Subtraction Lemma), the roots (3, 10)."1 

Form Mn2x2 ± c = y2. Brahmagupta says: 

"If the multiplier is that diyided by a square, the 
first ro6t is that divided by its root."2 

1 Our !\[S. does not contain the solution of the equatiQns 
13 x2±8=y2. 

2 BrSpSi, xviii. 70. 
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That is to say, suppose the equation to be 

fv[,Px2 ± C =)'2, (1) 
so that the multiplier (i.e., coefficient of x 2) is divisible 
by n2. Putting nx = II, we get 

)\1112 ± c = y2. (2.) 
Then clead y the first root of (I) is equal to the first root 
of (2.) divided by n. The corresponding second root 
will be the same for both the equations. 

The same rule is taught by Bhaskara IF and 
Narayat:la. The latter says: 

"Divide the multiplier (of a Square-nature) by an 
arbitrary square number so that there is left no 
remainder. Take the quotient as the multiplier (of 
another Square-nature). The lesser root (of the reduced 
equation) div.ided by the square-root of the divisor will 
be the lesse.t root (of the original equation)."2 

Form a2x2 ± c = y2. For the solution of a. 
Square-nature of this particular form, Brahmagupta gives 
the following rule: 

"If the multiplier be a square, the interpolator 
divided by an optional number and then increased and 
decreased by it, is halved. The former (of these results) 
is the second root; and the other divided by the square-. 
root of the multiplier is the first root."3 

Thus, it is stated that 

x=_2_(±C_ flI ), 
2.a I1J 

y = ~ (± C + !ll ), 
IlJ 

1 BBi, p. 4Z. 2 NBi, I, R. 84. 
3 BrSpSi. xviii. 69' 



SOLUTION OF Nx2 ± c = y2 177 

where m is an arbitrary number, is a solution of the 
equation 

a2x 2 ± c = y2. 

The same solution has been given by Bhaskara II 
and Narayal).a.1 Bhaskara's rule runs as follows: 

"The interpolator divided by an optional number is 
set down at two places; the quotient is diminished (at 
o~e place) and increased (at the other) by that optional 
number and then halved. The former i~ again divided 
by the square-root of the multiplier. (The quotients) 
are respectively the lesser and greater roots."2 

The rationale of the above solution has been given 
by the commentators Suryadasa and Kf~l).a substantially 
as follows: . 

± C =y2_ a2x2 

= (y- dX)(Y+ ax). 
Assume y - ax = m, m being an arbitrary rational 
number. Then 

y+ ax= ±c.' 
m 

Whence by the rule of con~urrence, we get 

X= 2._(±C -m) 
2.a m ' 

y= i(=;/+m). 
Form c - Nx2 = y2. Though the equation of 

the form c - Nx2 =y2 has not been considered by any 
!-lindu algebraist as deserving of special treatment, 
it occurs incidentally in examples. For instance, 
Bhaskara II has proposed the following problem: 

1 NBiJ I J R. 85. 

12. 

a BBi, p. 42. 
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"What is :that square which being multiplied by - S 
becomes, together with 21, a square? Tell me, if you 
know, the method (of solving the Square-nature) when 
the multiplier .is negative."1 

Thus it is required to solve 
- 5X'1. + 21 =y'1.. (1) 

Narayal.la has a similar example, ViZ., '1. 

- I IX'1. + 60 =y2. (.2.) 
Two obvious solutions of (1) are (1, 4) and (~, 1). 

Composing them with the roots of 
- 5X2 + 1 = y2, 

says Bhiskara II, an infinite number of roots of (1) 
can be derived. 

Form Nx2 - k 2 = y2. Bh:1skara II observes: 

"When unity is the subtractive the solution of the 
problem is impossible unless the multiplier is the sum 
of two squares."3 

Niraya1).a writes: 
"In the case of unity as the subtractive, the multi

plier must be the sum of two squares. Otherwise,. 
the solution is impossible."4 

Thus it has been said that a rational solution of 
Nx2 - I =y'1., 

and consequently of 
Nx2 _ k2 =y2 

is not possible unless N is the sum of two squares. 

1 BBi, p. 43. 2 NBi, I. Ex. 43. 
II "Rupa~uddhau' khiloddi~taril vargayogo gul).o na cet"-BBi, 

p·4°' 
& NBi, I, R. 85. 
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For, if x = p/q, y = r/s be a possible solution of 
the equation, we have 

N(P/q)2 - k2 = (r/s)2, 

or N = (qr/ps)2 + (qk/p)2. 
Bhaskara II then goes on : 

"In case (the solqtion is) not impossible when unity 
is the subtractive, divide unity by the roots of the two 
squares and set down (the quotients) at two places. 
They are two lesser roots. Then find the correspond
ing greater roots at the two places. Or, when unity is 
the subtractive, the roots should be found as before." 

Thus, according to Bhaskara II, two rational solu
tions of 

Nx2 - I =y2, 

where N = 1lJ2 + n2, will be 

X= ;,} 

n ' 
Y=-

III 

I } 

x=-

y~; . 
So two rational solutions of 

will be 
... (!lI2 + n2) x 2 _ k 2 = y2, 

k } 
X=-

III 
kn ) 

y= m 

X= ! } 
knt . 

y=-
n 

The following illustrative example of Bhaskara 
IP is also reproduced by NarayaQa :2 

13 x2 - I =),2. 

1 BBi, p. 41 • 2 NBi, I, Ex. 38. 
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The former solves it substantially in the following 
ways: 

(I) Since 13 = 2.2 + 32 two rational solutions are 
(1/2., 3/2) and (1/3, 2/,). 

(2) An obvious solution of 

13x2- 4 =y2 

is x = I, Y = 3. Then dividing out by 4, as shown 
before, we get a solution of the equation 13x2 - I = y2 
as (1/2, 3/2). 

(3) Again, since an obvious solution of 

13X2- 9 =y2 

is x = I,y-= 2., we get, on dividing out by 9, a solution 
of our equation as (1/3, 2./3). 

(4) From these fractional roots, we may derive 
integral roots by the Cyclic Method. Since 

13(!)2 - I = C!)2, 

we have, by Bhaskara's Lemma, m being an indeterminate 
multiplier, 

13(111/2._+//2.)2 + m~-/3 = (3m~2._+1 13/2/, 

or 13(111+ 3)2 + m2- 13 =(3m+ 13)2. 
-2. -1 -2. 

The suitable value of m which will make (111+3)/2. an 
integer and 1,»2 - 131 minimum is 3. So that we have 

13.3 2 + 4 = 112. 

From this again we get the relation 

13 en-+-~ / + n2 
- 13 = (lIn -+- 1). 3 ) 2. 

4 4 4 
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\ 

The appropriate value of the indeterminate multiplier in 
this case is n = 3. Substituting this value, we have 

, 

13.5 2 - 1 =182• 

Hence an integral solution of our equation I 3X2 - I = y2 
is (5, 18). 

"In all cases like this an infinite number of roots 
can be derived by composition with the roots for the 
additive unity."! 

Naraya1).a states the m"ethods (2) and (3) only. 

19. GENERAL INDETERMINATE EQUATIONS OF THE 
SECOND DEGREE: SINGLE EQUATIONS 

The earliest mehtion of the solution of the general 
indeterminate equation of the second degree is found 
in the Bijagattita of Bhaskara II (1150). But there are 
good grounds to believe that he was not its first dis
coverer, for he is found to have taken from certain 
ancient authors a few illustrative examples the solutions 
of which presuppose a knowledge of the solution of such 
equations.2 Neither those illustrations nor a treatment 
of equations of those types occurs in the algebra of 
Brahmagupta or in any other extant work anterior to 
Bhaskara II. 

Bhaskara II distinguishes two kinds "of indeterminate 
equations: Sakrt samikara!la (Single Equations) and 
Asakrt samikara{1a (Multiple Equations).3 

Solution. For the solution of the general indeter
minate equation of the second degree, Bhaskara I.I 
(I I 50) lays down the following rule: 

l·"Iha sarvatra padanam nlpak$epapadabhyam bhavanaya'
nantyatp"-BBi, p. 41. 

2 Vide infra, pp. 267f. 3 BBi, pp. 106, IIO. • 
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"When the square, etc., of the unknown are present 
(in an equation), after the equi-dearance has been made, 
(find) the square-root of one side by the method des
cribed before for it, and the root of the other side by 
the method of the Square-nature. Then (apply) the 
method of (simple) equations to these roots. If (the 
other side) does not become a case for the Square-nature, 
then, putting it equal to the square of another unknown, 
the other side and so the value of the other (i.e., the new) 
unknown should be obtained in the same way as in the 
Square-nature; and similarly the value of the first un
known. The intelligent should devise various artifices 
so that it may become a matter [or (the application of) 
the Square-nature."! 

He has further elucidated the rule thus: 

"When, after the clearance of the two sides has been 
made, there remain the square, etc.,. of the unknown, 
then, by multiplying the two sides with a suitable number 
and by the help of other necessary operations as des
cribed before, the square-root of one side should be 
extracted. If there be present on the other side the 
square of the unknown with an absolute term, then the 
two roots of that side should be found by the method 
of the Square-nature. There the number associated with 
the square of the unknown is the prakrti ('multiplier'), 
and the absolute number is to be considered as the 
interpolator. \X7hat is obtained as the lesser root in this 
way will be the -value of t he unknown associated with the 
multipJier (prakrti); the greater root is (again) the root 
of that square (formed on the first side). Hence making 
an equation of this with the square-toot of the first 
side, the value of the unknown on the first side should 
be determined. 

'1 BBi, p. 99. 
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"But if there be pre~ent on the second side the 
square of the unknown together with (the first power 
of) the unknown, or only the (simple) unknown with 
or without an absolute number, then it is not a case for 
the Square-nature. How then is the root to be found 
in that case? So it has b~en said: 'If (the other side) 
does not become a case for the Square-nature etc.' 
Then, putting it equal to the square of another unknown, 
the square-root of one si?e should be found in the way 
indicated before, and the two roots of the other side 
should then be determined by the method of the Square
nature. There again the lesser root is the value of the 
unknown associated with the prakrti and the greater root 
is equal to the square-root of that side of the equation. 
Forming proper equations with the roots, the values 
of the unknowns should be determined. 

"If, however, even after the second side has been 
so treated, it does not turn out to be a case for the 
Square-nature, then the intelligent (mathematicians) 
should devise by their own sagacity all such artifices 
as will make it a case for the method of the Square
nature and then determine the values of the un
knowns."! 

Having thus indicated in a general way the broad 
outlines of his metiJOd for the solution- of the 
general indeter~inate equation of the second degree, 
Bhaskara II discusses the different types of equations 
severally, explaining the rules in every case in greater 
detail with the help of illustrative examples. 

(i) Solution ofax2 + bx + c = y2 

For the general solution of the quadratic indeter
minate equation 

(I) 

1 BBi, p. 100. 
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Bhaskara II gives the following particular rule: 
"On taking the square-root of one side, if there be 

on the second side only the square of the unknown 
together with an absolute number, in such cases, the 
greater and lesser roots should be determined by the 
method of the Square-nature. Of these two, the greater 
root is to be put equal to the square-root of the first 
side mentioned before, and thence the value of the 
first unknown should be determined. The lesser will 
be the value of the unknown associated with the prakrti. 
In this way, the method of the Square-nature should be 
applied to this case by the intelligent."l 

As an illustration of this rule BM.skara II works out 
in detail the following example: 

"What number being doubled and added to six 
times its square, becomes capable of yielding a square
root? a ye algebraist, tell it quickly."2 

Solution. "Here let the number be x. Doubled 
and together with six times its square, it becomes 
6x2 + 2X. This is a square. On forming an equation 
'111th the square of y, the statement is 

6X2 + 2.X + oy2 = OX2 + ox + y2. 

On _making equi-clearance in this the two sides are 
6x2 + 2X and y 2. 

"Then multiplying these two sides by 6 and 
superadding I, the root of the first side, as described 
before, is 6x + 1. 

"Now on the second side of the equation remains 
0'2 + I. By the method of the Square-nature, its roots 
are: the lesser 2 and the greater 5, or the lesser 20 and 
the greater 49. Equating the greater root with the 
square-root of the first side, viZ" 6x + I, the value of 

1 BBi, pp. 100-1. 2 BBi, p. lor. 
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x is found to be 2/3 or 8. The lesser root, 2 or 20, 
is the value of y, the unknown associated with the 
prakrfi. In this way, by virtue of (the multiplicity of) 
the lesser and greater roots, many solutions can be 
obtained."l 

In other words the method described above is this: 
Completing the square on the left-hand side of the 

equation ax2 + bx + c = y2, we have 

(ax + _~b)2 = qy2 + -Hb2 - 4£lc). 

Putting Z = ax + ib, k = i(b2 - 4£lc), we get 

try2 + k = Z2. (I. I) 

If y = I, Z = m be found empirically to be a solution of 
this equation, another solution of it will be 

y = /q ± mp, 

Z = mq ± alp, 
where ap2 + 1 = q2. Hence a solution of (I) is 

b 1 
X = - 2a + a (mq ± alp), 

y=/q±mp. 
Now suppose x = r, when Z = m; that is, let 

nl = ar.+ b/2. Substituting in the above expressions, 
we get the required solution of (I) as 

x = _I (bq- b) + qr ± lp,} 
2a 

y = Iq ± (apr + ~bp); 
where ap2 + 1 = q2 and ar2 + br + C = /2. 

Thus having known one solution ofax2 + bx + c 
= y2, an infinite number of other solutions can be 

1 BBi, p. 101. 
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easily obtained by the method of Bhaskara II. The 
method is, indeed, a very simple and elegant one. It 
has been adopted by later Hindu algebraists. As the 
relevant portion of the algebra' of Nariyat;la (1350) 
is now lost, we cannot reproduce his description of the 
method. Ji'iananlja (1503) says: 

"(Find) the square-root of the first side according to . 
the method described before and, by the method of the 
Square-nature, the roots of the other side, where the 
coefficient of the square of the unknown is considered 
to be the prakrti and the interpolator is an absolute 
term. Then the greater root will be equal . to the 
previous square-root and the other (i.e., the lesser root) 
to the unknown associated with the prakrti." 

The above solution (1.2), but with the upper sign 
only, was rediscovered in 1733 by Eluer.! His method 
is indirect and cumbrous. Lagrange's (1767) method 
begins in the same way as that of Bha.skara II. by 
completing the square on the left-hand side of the 
equation.2 

(ii) Soilltion oj ax2 + bx + c = a'y2 +b'y + c' 
Bha.skara II has treated the more general type of 

- quadratic indeterminate equations: 
ax2 + bx + c = ay2 + by + c'. (2) 

His rule in this connection runs as follows: 
"If there be the square of the unknown together 

with the (simple) unknown and an absolute number, put
ting it equal to the square of anolher unknown its root 
(should be investigated). Then on the other side (find) 

1 Leonard Euler, Opera MathematicQ, vol. II, 1915, pp. 6-17; 
Compare also pp. 576-61I. 

~ Additions to ElementJ' oj Algebra ry Leonard E/JI~r, translated 
into English by ] ohn HewJett, j th edition, London, 1840, pp. 
S ;7ff. 
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the roots by the method of the Square-nature, as has 
been stated before. Put the lesser root l equal to the 
root of the first side and the greater root equal to that 
of the second."2 

He further elucidates the rule thus: 

"In this case, on taking the square-root of the first 
side, there remain on the other side the square of the 
unknown and the (simple) unknown with or without 
an absolute number. In that case forming an equation 
of the second side with the square of another unknown, 
the roots (should be found). Of these (roots just 
determined), making the lesser equal to the root of the 
first side (of the given equation) and the greater to 
the root of the second side, the values of the unknowns 
should be determined." . 

Example. "Say what is the number of terms of a 
series (in A. P.) whose first term is 3, the common differ
ence is 2. ; but whose sum multiplied by 3 is equal to the 
sum of a different numbet of terms."3 

S olulion. "Here the statements of the series· are: 
first term = 3, common difference = 2., number of 

- terms = x ; first term = 3, common difference = 2., 

number of terms = y. The two sums are (respectively) 
x 2 + 2X, y2 + 2y. Making three times the first equal 
to the second, the statement for clearance is 

3X2 + 6x = y2 + ~. 
After the clearance, multiplying the two sides (of the 
equation) by 3 and superadding 9, the square-root 
of the first side is 3x + 3. On the second' side of the 

1 The meaning <;>f the terms 'lesser root', 'greater root', etc., 
as used here, will be clear from the illustration and the general 
solution given below. 

2 BBi, p. 104. .3 BBi, p. 104. 
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equation stands 3y2 + 0' + 9. Forming an equation of 
this with Z2, and similarly multiplying the sides by 3 
and superadding - 18, the root of it is 3Y + 3. Then 

. the roots of the other side, 3Z2 - 18, by the method of 
the Square-nature are the lesser = 9 and greater = I h 
or the lesser = 13 and greater = 57. Equating the lesser 
root with the square-root of the first side, namely, 
3X + 3, and the greater root with the square-root of 
the second side, namely, 3y + 3, the values of x, 'yare 
found to be (2, 4) or (10, 18). So in every case." 

In general, on completing the square on the left
hand side, equation (z) becomes 

(ax + ib)2 = aa'y2 + ab'y + ae' + (t b2- ac). 

Put ax + ~b = Z, (2.1) 

and then complete ·the square on the right-hand side. 
Thus the given equation is finally reduced to 

where 

and 

aa'z2 - ~ = w2, 

2]) = aay' + lab' 1! ,. 

~ = a2a'e' + (ib2 - ac) aa' - (~ab')2. 

Now, if Z = I, W = III be a solution of the equation 
(2. z), another solution will be 

Z = lq± mp, 
w = mq ± aa' Ip ; 

where a'ap2 + I = q2. Substituting in (2. I) and (2..3), 
we get 

x = - _!!_ + !.....(Iq ± mp), } 
2a a ~.~ 

Y = _ b', + ~ (mq ± aa'lp). 
2a aa 

Now, let 1 = ar + ~'b and m = aa's + !l1b'. Substi
tuting in the above expressions, we get the required 
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solution of (2) in the form: 

X = -(qb ±pab' - b) + qr ±pa's, 
1 } 

y ~ ":, (qb' ± pa:b - b') + qs ± par; 
2a 

where aa'p2 + i = q2, 

and ar2 + br + c = a's2 + b' s + c'. 

The form (2.5) shows that having found empirically 
one solution ofax2 + bx + c = ay2 + by + c' Bhaskara 
could find an infinite number of other solutions of it. 

Jnanaraja (1503) say's: 

"If on the other side be present the square as well 
as the linear power of the unknown together with an 
absolute term, put it equal to the square of another 
unknown and then determine the lesser and greater 
roots. The lesser root will be equal to the first square
root and the greater to the second square-root." 

He gives with solution the following illustrative 
example: 

3(X2 + 4X) = y2 + 4Y, 
or (3X +-6)2 = 3y2 + 1~ + 36: 

Putting 3X + 6 __:._ Z, where Z is the "first square
reot" of Jiianariija, we get 

Z2 = 3y2 + 1~2 + 36, 

or 3Z2 = (3Y + 6)2 + 72. 

Now put 3Y + 6 = 11', where. W IS the "second 
square-root." Then 

3Z2 
- 72 = w2

• 

Therefore, by the method of the Square-nature, 
Z = 18, W = 30. \'V'hence x =- 4, Y = 8, is a solution. 
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(iii) Soitltion oj ax2 + by2 + C = Z2 

Bhaskara II followed several devices for the solution 
of the equation 

ax2 + lo'2 + C = Z2. (3) 
In every case his object was to transform the equation 
into the form of the Square-nature. He says : 

"In such cases, where squares of two unknowns 
with (or without) an absolute number are present, 
supposing either of them optionally as the prakrti, 
the rest (of the terms) should be considered as 
the interpolator. Then the roots shouW be investi-· 
gated in the way described b~fore. If there be more 
equations than one (the process will be especially help
ful)."! 

. He then explains further: 
"Where on finding the square root of the first side, 

there remain on the other side squares of two unknowns 
with or without an absolute number, there consider the 
square of one of the unknowns as the prakJ"ti; the 
remainder will then be the interpolator. Then by the 
rule: 'An optionally chosen number is taken as the 
lesser root, etc.,'2 the unknown in the interpolator 
multiplied by one, etc., and added with one, etc., 
or not, according to one's own sagacity, should be 
assumed for the lesser root; then determine the greater 
root."3 

There are thus indicated two artifices for solving 
the equation (3). They are: 

(i) Set x = my; so that equation (3) transforms into 

1 BBi, pp. Io~f. 
2 The reference is to the rule for solving the Square-nature 

("ide Jupra p. 144) (BBi, p. 33). 
3 BBi, p. 106. 
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Z2 = (a1tJ2 + b)y2 + c 

= ay2+ c, 

where a = am2 + b. Hence the required so~ution of 
ax2 + by2 + c = Z2 is 

x = my = m(rq ±is), 
y = rq ±ps, 
Z = sq ± apr; 

where S2 = ar2 + c and q2 = ap2 + I. 

(ii) Set x = my ± n; then the equation reduces to 
Z2.= ay2 ± 2am,!) + Y 

where a = am2 + band y = an2 + c. 

Completing the square on the right-hand side of 
this, we get 

az2 - ~ = 1V2, 

where 1V = ~y ± amn and ~ = ya - a2m'!.n2 = a(bn2 

+ Cl1l2) + bc. 
If Z = s, w = r be a solution of this equation. 

another solution will be 

Z = sq ± rp. 
w = rq ± u.sp; 

where q2 = ap2 + I. Hence the solution ofax2 + by2 
+ c = Z2 is 

m 
x = -(rq ± asp =F amn) ± n, 

a 

1 
Y = - (rq ± asp =F amn), 

a 

z = sq ± rp; 
where q2 .- ap2 + l, r2 = as2 - 13. a = am2 + band 
~ = a(bn2 + cm2) ,+ bc. 
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In working certain problems, Bhaskara II is found 
to have occasionally followed other artifices also for 
.the solution of the equation (3). For instance: 
(iii)l Set tp2 = f?y2 + c. Then equation (3) becomes 

Z2 - w2 = ax2• 

Whence Z = i(; +m )x, 

and IP= t(~-m)x; 
m 

where m is an arbitrary number. Therefore 
2mw 

x=---a - !O;!. , 

Z = (a + !1/2)W. 
a - 1112 

Now, if y = I, w = r be a solution of 
w2 = by2 + c, 

another solution of it will be 
y = Iq±pr, 
w = rq ± blp; 

where ap2 + I = q2. Therefore, the solution of (3) 
will be 

2m 
x = 2 (rq ± blp), a-m 

Y= Iq±pr, 
a+ m2 

Z = a _ m2 (rq ± blp); 

where ap2 + I = q2 and bl2 + c = r2. 
(iv) 2 Suppose c = 0; then the equation to be solved 
will be 

1 See BBi, p. 108. 2 BBi, p. lOG. 
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ax2 + by2 = Z2. 

In this case set x = ttY, Z = 1:; ; SO that 11, v will be 
given by 

dll2 + b. v2, 

which can be solved by the method of the Square
nature. Some of these devices were followed also by 
later Hindu algebraists, for instance, Jfianadja (1503) 
and Kamahikara (1658).1 

Example from Kamalakara: 2 

7X2 + !b'2 = Z2. 

This is one of a double equation by Bhaskara II.3 

To solve (1X
2 + l!f + c = Z2, Kamalakat;a observes: 

"In this case, suppose the coefficient of the square 
of the first unknown as the prakrti and the coefficient 
of the square. of the other unknown together with the 
absolute number as the interpolator to that. The two 
roots can thus be determined in several ways."4 
And again: 

"(Suppose) the coefficient of the square of one of 
the unknowns as the prakrti and the rest comprising two 
terms, the square of an unknown and an absolute. 
number, as the interpolator. Then assume the value 
of the lesser root to be equal to the other unknown 
tbgether with an absolute term."5 

He seems to have indicated also a slightly different 
method: 

"Or assume the value of the lesser root to be equal 
to another unknown plus qr minus an absolute number 

1 SiTVi. xiii. 2.60-1. 

:I BBi, p. 106. 
5 SiTVi. xiii. 1.67 f. 

13 

2 SiTVi, xiii. 1. 5 8. 
, SiTVi, xiii. 1.64. 
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and similarly also the value of the greater root. The 
remaining operations should be performed by the intel
ligent in the way described by Bha.skara in his algebra."l 

That is to say, assume 

x = mw ± a, z = 11W ± ~. 
Substituting in the equation ax2 + i?Y'I. + c = Z2~ 

we get 
(am2 - n2)w2 ± 2W (ama =F n~) + by2 

+ (c + aa2 - ~2) = o. 

Putting A = am2 - n2, 1..1: = ama =t= nfl, v = c + aa2 - fl2, 
this equation can be reduced to 

- Aby2 + (~2_ vA) = u2, 

where 11 = AW ± 1-'. 

Kamalakara gi v~s also some other methods which 
are applicable only in particular cases. 

Case i. Suppose that b and c are of different 
signs.2 Two sub-cases arise: 

(1) Form ax2 + by2 - C = Z2. 
First find II, 11, says Kamalakara, such that 

au2 - C = v2• 

Assuming x=" / b 11"+11 \J ac J , 

we have 

2 b b \jab ax + ry2 - C = - 11:;'2 + 2 _ /IVy + by2 
c c 

+ (a1l2 - c) 

= !!__(au2 - c)y2+ 2"'\. jab IIVy+ by2+ va 
c \j c 

1 SiTVi, xiii. z6~. 
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Hence Vab 
Z = cl!Y+ v. 

The following illustrative example and its solution 
are given :1 

Its solution is 
< x = lry + u, 

z = zuy + V; 
where 5U2 - 20 = v2• An obvious solution of this 
equation is given by u = 3, V = 5. Hence, "\ve get a 
solution of the given equation as 

x =.y + 3, 

Z = 0' + 5· . 
Therefore (x,y) = (s, I), (7, 2), (9, 3), ...... . 

Cz) Form ax2 - by2 + c = Z2. 
In this case first solve 

au'2 + c = V'2. 
Then the required solution is 

V b , + ' x = - vy u, 
ac 

< vab, , 
Z= c uy + v . 

Example from Kamalakara :2 

5x2 - 20)/2 + 16 = Z2. 

1 SiTVi, xiii. 279. 2 SiTVi, xiii. 279. 
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x = ~vy + Il, 
Z = ~uy + v'; 

where 5,,'2 + 16 = V'2. One solution of this equation 
'is II' = 2, V' = 6. The corresponding solution of the 
given equation .is 

x = 3Y + 2, 

Z = 5Y + 6. 
Therefore (x,y) = (5, 1), (8,2), (II, 3), etc. 

Case ii. Let the two terms of the interpolator be of 
the same sign and positive. 

Example from Kamal:1kara:1 

5x2 + ~y2 + 2} = Z2. 
Assume arbitrarily a value of x ory and then find the 
other by the method of the Square-nature.2 

(iv) Solution oj a2x 2 + by2 + C = Z2 

Let the coefficient of x 2 (ory2) be a square number. 
The equation is of the form 

a2x 2 + by2 + C = Z2. 

For this case Bhaskara II observes: 
"If the prakrti is a square, then obtain the roots by 

the rule: 'The interpolator divided by an optional 
numb~r is set down at two places, etc.' "3 

Thus, according to Bh:1skara II, the solution of the 
above equation is 

x = 2_ (~y2 + C) _ III 
2.a Ir' ) 

1 SiTVi, xiii. 2~. 
3 BBi, p. 106. 

2 SiTVi, xiii. 298• 
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b1J" + c 
Z = ~( J~m + m ); 

where m is an arbitrary number. 

Kamalakara divides eq~ations of this form into two 
classes according as c is or is not a square. l 

(I) Let c be a square (= d2, say). That is to say, we 
have to solve 

a2x2 + ljY2 + d2 = Z2. 
The solution of this particular case, says Kama

lakara, is given by 
_ b 2 

X--dY· 2a 

For, with this value, we have 
b"'·r4 

Z2 = 4d'l. + by2 + d2 

= ~'I. (by2 -+ u/2)2. 

Hence 
by2 

Z = ~d + d. 

(2) When c is not a square, K2.malakara first finds a, ~ 
such that 

a 2 + c = ~2. 

He next obtains n such that the value of 

aBn - b/2 
a~. a/a 

is also n ; and then says that 
a 

X= n1J2 + _. 
:/ a~ 

1 Vide his gloss on SiTVi, ~iii. 2.7~. 
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whence will follow the value of Z. 

. Since a~n - bl2 = n 
an ' 

we get 
b n- . 

- 2a({3 - a)' 

so that X= ~y2 +~ 
2.a({3 - a) a . 

Therefore Z2 = a2x 2 + 0 2 + C 

b2_y4 a~)'2 
4((~ - a)2 + a2 + (~ _ a) + f?y2 + C 

__ b?y4 Blry2 2 

- 4(1:> - a? + ({3 - a) + ~ 

= {2(j3/;y2 a) + ~} 2. 

Hence 
by2 

Z = 2.(1:1-- a) + {3. 

Exallple from Kamalakara : 

4-"-,2 + 4~2 + 2.0 = Z2. 
Since 42 + 20 = 62, and the solution of 

I2n - 24 ---::---'- = n 
8. 

is 11 = 6, we get the required solution of the given 
equation as 

x = ~y2 + 2, 

Z = 12)'2 + 6. 

It may be noted that the solution stated by Kamala
kara follows easily from that of Bhaskara JI, on putting 
therein /1/:..=I1--u, where (t2 +c=fl2. . 
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In particular, if we put c = 0 and a, = I, Bh:1ska,ra's 
solution reduces to ' 

x = -~ ( ! y2 - m ), 

- b 
Z = !(_y2 +m); m 

where m is arbitrary. 

If b = a~, taking m = 2~p2, we easily arrive at 
x = aq2 _ ~p2, 

Y = ~pq, 
Z = aq2+ ~p2, 

where p, q are arbitrary integers, as the solution in posi
tive integers of Z2 = x 2 + by2. 'This solution was 
given by A. Desboves (1879).1 

Taking m = 2.V2, we can derive Matsunago's 
(c. 1735) solution of Z2 = x 2 + by2, viZ" 

x = b!-12 - y2, 

Y = 2!-1Y, 

Z = b!-1 2 + y2; 

where ~, yare arbitrary integers. 

(v) Solution ofax2 + bxy + 9'2 = Z2 

For the solution of the equation 
_ -ax2+ bxy + 0'2 = Z2 

Bhaskara II lays down the following rule: 
"When there are squares of two unknowns together 

with their product, -having extracted the square-root 
of one part, it should be put equal to half the difference 
of the remaining _part divided by an optional number 
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and the optional number."! 
It has been again elucidated thus: 
"\Vhere there exists also the product of the un

knowns (in addition to their squares), by the rule, 'when 
there are squares etc.,' the square-root of as much 
portion of it as affords a root, should be extracted. The 
remaining portion, divided by an optional number and 
then diminished by that optional number and halved, 
should be put equal to that square-root."2 

The above rule, in f~ct, contemplates a particular 
case of equation (5) in which a or c is a square number. 
(i) Suppose a = p2. The equation to be solved is then 

p2X2 + bxy + ry2 = Z2. (5. I) 

Therefore (px + ~) 2 + y2( C - ~:) = Z2. 

Putting px + by = W, we get 
2jJ 

b2 
) Z2- w2 =y2 (c- -2 . 

4P 
Whence z - W = A, 

y2 b2 
• Z + W = T( C - 4p2)' 

where l is an arbitrary rational number. So 

W = ! {oJ,,2 ( C - :;2) - A }. 

, as stated in the rule. Therefore, 

x = _1_ foy2 ( C _ ~) _ I. } _ by 
2P A. 4P2 2p2 ' 

1 Y. MikamiJ The Develop,,,ent of Mathematics in China afld 
Japan, Leipzig, 1913, p. z31. 

a BBi, p. 106. 
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and Z = i { .Y1.2 (c - ~) + I. }. 

Now, if we suppose y = mfn, where m, n are 
arbitrary integers, we get the solution of (5 . I) as 

r 
x = Sl.p'.!.n"l. {m2 (4cp2 - b2) - 4";..2p2/12 - 4Abmn }, 

m 
'Y=n' 

. ·1 
Z = 81.p2n2 {in2 (4Cp2 - b2) + 4A2p2n2}. 

Since the given equation is homogeneous, any multiple 
of these values of x,.y, Z will also be its solution. There
fore, multiplying by 8'Ap2n2, we get the following 
solution of the equation p2X2 + bxy + 0'2 = Z2 in in
tegers: 

x = m2 (4Cp2 - b2)'- 4'A2p2n2 _ 4Abmn, } 
y = 8'Amnp2, (5 .2) 
Z = m2 (4CP2 - b2) + 4A2p2n2, 

.where m, n, are arbitrary integers. 

In particular, putting a = b = C = I, and A = P 
= 1 in (5 .2), we get 

x = ;m2 - 4n (n + m), 
y = 8mn, 
Z = ;m2 + 4n2, 

as the solution of the equation 
x 2 + xy + y2 = Z2. 

Dividing out by 8n, the above solution can be put into 
the form 
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y=m, 
I 

Z = 8n (3 m2 + 4112) ; 

as has been stated by Nariyat:la : 

"An arbitrary number is the first. Its square less 
by its (square's) one-fourth, is divided by an optional 
number and then diminished by the latter and also by the 
first. Half the remainder is the second number. The 
sum of their squares together with their product is a 
square."! 

It is noteworthy that in practice Nariyat:la approves 
of only integral solutions of his equation. For instance, 
he says: 

" 'Any arbitrary number.is'the first.' Suppose it to 
be 12. Then with the optional ·number unity, are 
obtained the numbers (12., 95/1.). For integral val lies, 
they are doubled (24, 95). With the optional number 
2., are obtained (12., 2.0). It being possible, these are 
reduced by the common factor 4 to (3, 5). In this way, 
owing to the varieties of the optional number, an infi
nite number of solutions can be obtained."2 

(ii) If neither a nor e be a square, the solution can 
be obtained thus: 

Multiplying both sides of the equation (5) by a and 
then completing a square on the left-hand side, the 
equation transforms into 

Putting. 

we get 

(ax + !fry)2 + (ae - Ib2)y2 = az2• 

ax + !/ry = w and ~ = {-(b2 - ¥e), 

IGK,i.~~. 
2 See the example in illustration of the same. 

(5·3) 
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The method of the solution of an equation of this form, 
according to Bhaskara II, has been described before. 

Assume W = l!)l, Z = 19'; so that the values of u, V 

will be given by 

v2 = au2 + ~. (5 .4) 

If u = m, V • n be a solution of (5.4), another 
solution will be 

11= mq ±pn, 
V = nq±amp; 

where ap2 + I = q2. Therefore, a solution of (5) is 

x = L{2(nq ± amp) - b}, 
2a 

Z = y(mq ±pn); 
where ap2 + I = q2 and am2 + ~ = n2• 

s 
Put n = ar + ~b and y =, ; then we have 

x = :at {q(U1' + b) ± ump - b}, 

s 
y=" 

s 
Z = 2t {2.mq ±P (2.ar + b)}. 

Multiplying by 2at, we get the following solution 
ofax2 + bxy + ry2 = Z2 in integers: . 

x = s{ q (2ar + b) ± 2amp - b}, 

y = 2as, 

Z = as {21l1q ±p(wr + b)}; 

\vhere ap2 + I = q2 and 1/12 = ar2 + br + c. 
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.zo. RATIONAL TRIANGLES 

Rational Right Triangles: Early Solutions. The 

earliest Hindu solutions of the equation 
x 2 + y2 = Z2 (I) 

are found in the SlIlva. Baudhayana (c. 800 B.C.), 
Apastamba and Katyayana (c. 500 B.C.)1 give a method 
for the transformation of a rectangle into a square, 
which is the equivalent of the algebraical identity 

( "l - n) 2 ('ll - n) 2 mn = III - -
2 . 2 ' 

where Ill, n are any two arbitrary numbers. Thus we get 

- ("l - n)2 ("1 + n)2 (ymn)2 + = . 
2 2 

Substituting p2, q2 for /11, 11 respect:vely, in order to 
eliminate the irrational quantities, we get 

p2q2 + ( p2 -: q2 / = ( p2 ~ q2 ) 2, 

which gives a rational solution of (I). 
for finding a: square equal to the sum of a number 

of other squares of the same size, Katyayana gives a 
very elegant and simple method which furnishes us with 
another solution of the rational right triangle. Katya
yana says: 

"As many squares (of equal size) as you wish to 
combine into one, the transverse line will be (equal to) 
one less than that; twice a side will be (equal to) one 
more than that; (thus) form (an isosceles) triangle. Its 
arrow (i.e., altitude) will do that."2 

1 BSI, i. 58; ApSI, ii. 7; K5/, iii. z. For details of the cons
truction see Datta, Sulba, pp. 83f, 178f. 

2 KSI, vi. 5 ; Compare also its Pariii!!a, verses 40-1. 
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Th~s for combining n squares of sides a each, we form the 
isosceles triangle ABC, such that AB=AC=(n+l)a/2, 

A 

~ 
B C 

Fig. 2. 

and BC = (n- 1 )a. Then AD2 = no2• This gives the 
f('rmula 

a2(yn?+a2(n 2 1)2 =a2(n~ 1)2. 

Putting !J12 for 11 in order to make the sides of the right
angled triangle free from the radical, we' have 

2 _ I 2 , .. 2 + 
m2a2 + (m 2 ) a2 = ('" 2 I )a2, 

which gives a rational solution of (1). 

Tacit assumption of the following further general
isation is met with in certain constructions described by 
Apastamba :1 

If the sides of a rational right triangle be increased 
by any rational multiple of them, the resulting figure will 
be a right triangle. 

In particular, he notes 

32 + 42 = 52" 
(3 + 3·3)2+ (4+ 4.3)2=(5 + 5·3)2, 
(3 + 3·4)2 + (4 + 4·4)2 = (5 + 5·4)2; 

1 ApS/, v. 3,4. Also compare Datta, 'sit/bo, pp. 6~{ 
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52 + U 2 = 13 2, 

(5 + 5· Z)2+ (IZ+ lZ.Z)2=(13 + 13.2)2. 

Apastamba also derives from a known right-angled 
triangle several others by changing the unit of measure 
of its sides and vice versa. l In other words, he recognised 
the principle that if (a, ~, y) be a rational solution of 
x 2 + y2 = Z2, then other rational solutions of it will be 
given by (la, l~, Iv), where I is any rational number. 
This is dearly in eviden'ce in the formula of Katyayana in 
which a is any quantity. It is now known that all rational 
solutions of x 2 + y2 = Z2 can be obtained without 
duplication in this way. 

Later Rational Solutions. Brahmagupta (628) says: 

"The square of the optional (ifla) side is divided 
and then diminished by an optional number; half the 
result is the upright, and that increased by the optional 
number gives the hypotenuse of a rectangle."2 

In other words, if m, n be any two rational numbers, 
then the sides of a right triangle will be 

m2 ' m2 

m, i( n - n), ~(n + n). 

The Sanskrit word i.fta can be interpreted as imply
ing "given" as well as "optional". With the former 
meaning the rule will state how to find rational right 
triangles having a given leg. Such is, in fact, the inter
pretation which has been given to a similar rule of 
Bhaskara II. 3 

1 Datta, Sldoa, p. 179. 2 BrSpSi, xii. 35. 
3 Vide infra p. 211 ; H. T. Colebrooke, Algtbra with Arith

metic and Mensllration from the Sanscrit of Brahmfgupta and Bhascara, 
London, 1817, (referred to hereafter as, Colebrooke, Hindu 
Algebra), p. 61 footnote. 
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A similar rule is given by Sdpati (1039): 
"Any optional number is the side; the square of 

that divided and then diminished by an optional 
number and halved is the upright; that added with the 
previous divisor is the hypotenuse of a right-angled 
triangle. For, so it has been explained by the learned in 
the matter of the rules of geometry."l . 

Karavindasv.ami a commentator of the Apastamba 
Sulba, finds the solution 

( 
n2 + 2n) (n2 + 2n + 2) 

m, + fJI, + m, 2.n 2. 2.n 2. 

by generalising a rule of the SIIIba. 2 

Integral Solutions. Brahmagupta was the first to 
give, a solution of the equation x 2 + y2 = Z2 in integers. 
It is 

m2 - n2, 2mn, m2 + n2, 

m, n being any two unequal integers.s 

Mahavira (850) says: 
"The difference of the squares (of two elements) 

is the upright, twice their product is the base and the 
sum of their squares is the diagonal of a generated 
rectangle. "4 

He has fe-stated it thus: 
_ "The prod\lct of the sum and difference of the 

elements is the upright. The satikramaIJafi of their 
squares gives the base and the diagonal. In the opera
tion of generating (geometrical figures), this is the 
process."6 

1 SiSe. xiii. 41. 
a ApS'. x. 2 (Com.); also see Datta, Sulba, pp. 14-16. 
a BrSpSi. xii. H ; vide infra, p. 222. ' GSS. vii. 90~' 
& For the definition of this term see pp. 4~f. 
8 GSS, vii. 93i. 
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Bhjskara II (I I 50) writes: 
- "Twice the product of two optional numbers is 

the upright; the difference of their squares is the side; 
and the sum of their squares is the hypotenuse. (Each 
of these quantities is) rational (and integral)."! 

It has been stated before that the early Hindus 
recognised that fresh rational right triangles can be 
derived from a known one by multiplying or dividing its 
sides by any rational number. The same principle has 
been used by Mahivira and Bhaskara 11 in their treat
ment of the solution of rational triangles and quadri
laterals. Ga1).eSa (1545) expressly states: 

"If the upright, base and hypotenuse of a rational 
right-angled triangle be multiplied by any arbitrary 
rational number, there will be produced another right
angled triangle with rational sides." 

Hence the most general solution of x 2 + y2 = Z2 
in integers is . 

(m2 - /12)/, z!lln/, (m2 + n2)1 
where flJ, n, ! are integral numbers. 

Mahavira's Definitions. A triangle or a quadri
lateral whose sides, altitudes and other dimensions can 
be expressed in terms of rational numbers is called 
jOf!Ja (meaning generated, formed or that which is 
generated or 'formed) by .l\fahavira.2 Numbers which 

i L, p. 36. 
2 GSS, introductory line to vii. 90~' The section of Maha.vira's 

work devoted to the treatment of rational triangles and quadri
laterals bears the sub-title jotrya-1!Javahdra (/all)'a operation) and it 
begins as "Hereafter we shall give out the jO'!J'a operations in cal
culations relating to measurement of areas." :i\fahavira's treatment 
of the subject has been explained fully by Bibhutibhusan Datta in a 
paper entitled: "On Mahavira's solution of rational triangles and 
rmaorilaterals," BeAlS, xx, 1928-9, pp. 267-294. 
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are employed in forming a particular figure are called its 
bija-samkhya (element-numbers) or simply bija (element 
or seed). For instance, Mahavira has said: "Forming 
o friend! the generated figure from the bija 2, ;,"1 
"forming another from half the base of the figure 
(rectangle) from the bija 2, 3,"2 etc. Thus, according 
to Mahavira, "forming a rectangle from the bfja Ill, 11" 

means taking a rectangle with the upright, base and 
diagonal as m2 - n2, zmn, m2 + n2 respectively. It is 
noteworthy that Mahavlra's mode of expression in this 
respect very closely resembles that of Diophantus who 
also says, "Forming now a right-angled triangle from 
7, 4," meaning "taking a right-angled triangle with 
sides 72 - 42, 2.7.4, 72 + 42 or 33, 56, 65."3 It should 
also be noted that l\hhavira never speaks of "right
angled triangle." What Diophantus called "forming a 
right-angled triangle from m, n," Mahavlra calls "form
ing a longish quadrilateral or rectangle from Ill, 11." 

Right Triangles having a Given Side. In the 
S,,/ba we find an attempt to find rational right triangles 
having a given side, that is, rational solutions of 

x 2 + a2 = Z2. 

In particular, we find mention of two such right 
triangles having a common side (1, viZ" (a, 3a/4, 5a/4) 
and (a, 5a/1z, 13a/12.).4 The principle underlying 

/these solutions will be easily detected to be that of 
the reduction of the sides of any rational right 
triangle in the ratio of the given side to its corresponding 

1 «Bije dve tri1)i sakhe k~etre janye tu samstoopya"-GSS, vii. 
92~. 

2 "He dvitribijakasya k~etrabhujardhena ca.nyamutthapya"
GSS, vii. III~. 

3 Arithmetka, Book III, 19 ; T. L. Heath, Diophantlls of Alexan
dria, p. 167 .• 

, Datta, Slliba, p. 180. 

14 
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side. This principle of finding rational right triangles 
having a given side has been followed explicitly by 
Mahavira (850).1 

It has been stated before that one rule of Brahma
gupta2 can be interpreted as giving rational solutions of 
x 2 + a2 = Z2 as 

a
2 

) ( a
2 

) a, !( n - n , ~ n + n , 

where n is any rational number. In fact, he has used this 
solution in finding rational isosceles triangles having a 
given altitude.3 This solution has been expressly stated 
by Mahavlra (850). He says: 

"The sankramatza between any optional divisor of 
the square of the given upright or the base and the 
(respective) quotient gives the diagonal and the base 
(or upright).'" 

He has restated the solution thus: 

"The sankramatza between any (rational) divisor 
of the upright and the quotient gives the elements; 
or any (rational) divisor of half the side and the quotient 
are the elements."5 

The right triangles formed according to the first naIf 
of this rule are :6 

1 Vide infra, p. Z 13 
3 Vide infra, p. Z% 3 
5 GSS, vii. 95g. 

2 Vide lupra, p. z06. 
• GSS, vii. 972' 

B The "elements" here are Halp + p), Halp - p), 
an optional number. 

where pis 
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and those according to the second half are ;1 

a2 _+2 
2 q . 

4q 

2. II 

Bhaskara II gives two solutions one of which is 
the same as that of Brahmagupta. He says: 

"The side is given: from that multiplied by twice 
an optional number and divided by the square of that 
optional number minus unity, is obtained the upright; 
this again multiplied by the optional number and 
diminished by the given side becomes the hypotenuse. 
This triangle is a right-angled triangle. 

"Or the side is given: its square divided by an 
optional number is put down at two places; the optional 
number is subtracted (at one place) and added (at 
another) and then halved; these results are the upright 
and the hypotenuse. Similarly fro'm the given upright 
can be obtained the side and the hypotenuse."2 

That is to say, the two solutions are 

2na (2.na) a, 2 ,11 2 - a, n - I n - I 

and a, ~(:1
2 

- 11), i( :2 + 11 ). 

Bhaskara II illustrates this by finding four rig-ht 
triangles having a side equal to 12., viZ., (.12,35,37), (12, 
16, 2.0), (12., 9, IS) and (12, 5, 13).3 , 

_ The rationale of the first solution has been given by 
Sfiryadasa (1538) thus: Starting with the tational righ't 
triangle 112 - I, 2.n, 112 + I, he observes that if x, y, Z 

1 The "elements" here are q, a/zq, where q is an optional 
number. 

2 L, p. 34. 3 L, PP' 34f. 
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be the corresponding sides of another right triangle, 
then 

x = _2_ = Z = k (say) 
n2 - 1 2.n n2 + 1 • . 

Hence x = k(n2 - I), Y = 2.nk, Z = k(n2 + r). 
Therefore x + Z = 2kn2 = ny. 

If now we have x = a, -then 
a 

k=-2~
n - I 

Hence 
2.na 

y = n2 - r' 

and ( 
2.na ) Z = try - a = n 2 - a. n - r 

The second rule has been demonstrated by Surya
dasa, Ga.t).esa and Ranganatha thus: 

Since X2 + a2 = Z2, 

we have a2 = Z2 - x 2 = (z - x) (Z + x). 

Assume Z - x = n, where n is any rational num
ber; then 

a2 

Z+x=-. n 

Z = ~( : + n), x = ~ ( :2 - n ). 

Generalising the method of the Apastalnba Sulba 
the commentators obtained the solutionl 

t1 (1n2 + 2JlI)t1 (~Jl2 + 21n + 2 )a. 
, 2111 + 2' 2111 + 1. 

1 Datta, Slflba, p. I G. 
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Right Triangles having a Given Hypotenuse. 
For finding all rational right triangles having a given 
hypotenuse (c), that is, for rational solutions of 

x 2 + y2 = c2, 

Mahavira gives three rules. The first rule is : 

"The square-root of half the sum and difference of 
the diagonal and the square of an optional number are 
they (the elements)."l 

In other words, the required solution will be obtain
ed from the "elements" V(c + p2)/2. and V(c - p2)/2., 
where p is any rational number. Hence the solution is 

p2, Vc'.!. - p4, c. 

The second rule is : 
"Or the square-root of the difference of the squares 

of the diagonal and of an optional number, and that 
optional number are the upright and the base."2 

That is, the solution is 
.----=--__,,--p, V c2 - p2, c. 

These solutions are defective in the sense that 
V c2 - p4 or V c2 - p2 might not be rational unless 
p is suitably chosen. Mahavira's third rule is of greater 
importance. He says: 

"Each of the various figures (rectangles) that can 
be formed from the elements are put down; by its 
diagonal is diyided the given diagonal. The perpendi
cular, base and the diagonal (of this figure) multiplied 
by this quotient (give rise to the corresponding sides 
of the figure having the given hypotenuse)."3 

1 GSS, vii. 95 g. 
3 GSS, vii. I22g. 

2 GSS, vii. 97g. 
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Thus having obtained the general solution of the 
rational right triangle, viZ" HJ2 - n2, ZHJn, m:2 + n2, 

Mahavlra reduces it in the ratio c/(m2 +'n2), SO that 
all rational right triangles having a given hypotenuse 
c will be given by 

m2 - n2 2.mn 
(m2 + n2 )c, (P/2 + n2 )c., c. 

By way of illustration Mahavlra finds four rec
tangles (39, 52), (25, 60), (33, 56) and (16, 63) having 
the same diagonal 65.1 

This method was later on rediscovered in Europe 
by Leonardo Fibonacci of Pisa (12.02) and Vieta. It has 
been pointed out before that the origin of the method 
can be traced to the Sulba. 

Bhaskara II (I I 50) says : 
"From the given hypotenuse multiplied by an 

optional number and d<?ubled and then divided by the 
square of the optional number added to unity, is obtained 
the upright; this is again multiplied by the optional 
number; the difference between that (product) and the 
given hypotenuse is the side. 

"Or divide twice the hypotenuse by the square of 
an optional number added to unity. The hypotenuse 
minus the quotient is the upright and the quotient 
multiplied by the optional number is the side."2 

Thus, according to the above, the sides of a right
angled triangle whose hypotenuse is care: 

zmc (2.mc) , 
HJ2 + I' m m2 + 1 - c, c; 

2C 
or c - HJ2 + I' C. 

2 L, pp. 35, 36. 
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By way of illustration Bhaskara II finds two 
right triangles (51, 68) and (40, 75) having the same 
hypotenuse 85.1 

Suryadasa demonstrates the above substantially 
thus: 

If (x, y, z) be the 'sides of the right triangle, we 
have 

x = L = Z = k (say) 
m2 - I • 2m' m2 + I ' 

whet:e m is any rational integer. Then 
x = k(m2 - I), Y = zmk, Z = k(1l;2 + I). 

Therefore x + Z = zkm2 = my. 
Since Z is given to be equal to C, we have 

: 

k= 
C 

m2 + I 

Hence zmc 
y== 

m2 + I' 
and ( zmc ) x = 11111 - Z = m - c 

"'./ !JJ2 + 1 . 

Problems Involving Areas and Sides. Mahavira 
proposes to find rational rectangles (or squares) in which 
the area will be nUlllcrica!fy (satJikl!}qyd) equal to any 
multiple or submultiple of a side, diagonal or perimeter, 
or of any linear combination of two or more of them. 
Expressed symbolically, the problem i~ to solve 

x 2 + y2 = Z2, } 
mx + ny + PZ = rxy; 

(I) 

m, n, p, r being any rational numbers (r :f:. 0). For the 
solution of this problem he gives the following rule: 

1 L, pp. u f. 
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"Divide the sides (or their sum) of any generated 
square or other figure as multiplied by their respective 
given multiples by the area of that figure taken into its 
given multiple. The sides of that figure multiplied by 
this quotient will be the sides of the (required) square 
or other figure."l 

That is to say, starting with any rational solution of 
x'2 + y'2 = z'2, (2) 

we shall have to calculate the value of 
tnX' + ny' + PZ' = Q, say. (3) 

Then the required solution of (I) will be obtained by 
reducing the values of x',y', Z' in the ratio of Q/rx'y'. 
Thus 

x = x'Qjrx'y' = Q/ry', } 
y = y' Qjrx'y' = Qjrx', 
Z = Z' Qjrx'y'. 

(4) 

Mahavira gives sev.eral illustrative examples some 
of which are very interesting: 

"In a rectaf:1gle the area is (numerically) equal to the 
perimeter; in another rectangle the area is (numerically) 
equal to the diagonal. What are the sides (in each 
of these cases) ?"2 

Algebraically, we shall have to solve 

x 2 + y2 = Z2, } (x. I) 
2(X+ y) = xy, 

and 
.,.,.2 + y2 = Z2, } (x. z) 

xy=Z· 
Starting with the solution S2 - t 2, zst, S2 + t 2 of (2.) 

and putting III = n = .2., P = 0, r = I in (4), we get 

1 GSS, vii. llZ~. 2 GSS, vii. I15~. 
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the solution of (1. 1) as 
2(S2 - t 2) + 4st 2(S2 - t 2) + 4st 

2St ' s2 - t 2 

{ 2(S2 - t
2

) +,4St }(S2 + t 2). 
2St (S2 - t'l.) 

And putting In = n = 0, p = r = I, in (4), we have 
the solution of (1. 2) as 

S2 + t2 S2 + t 2 (S2 + t 2)2 
2St ' sl! - t',(.' 2st(S2 - t'.t} 

Bhaskara II solves a problem similar to the second 
one above: 

Find a right triangle whose area equals the hypote
nuse. I 

He starts with the rational right triangle (3x, 4x, 
5 x); then by the condition, area = hypotenuse, finds 
the value x = 5/6. So that a right triangle of the 
required type is (5/2, 10/3, 25/6) .. He then observes: 
"In like manner, by virtue of various assumptions, 
other right triangles can also be found."2 The general 
solution in this case is 

.r2 + t2 2(s2 + t2) (s2 + 12)2 
st sl! - t 2 ' st(sl! - t"lo)' 

Another example of Mahavira runs as follows: 
"(Find) a rectangle of which twice the diagonal, 

thrice the ·base, four times the upright. and twice the 
perimeter "are together equal to the area (numerically)."3 

Problems Involving Sides but not Areas. Maha-
vira alsb obtain.ed right triangles whose sides multiplied 

1 BBi, p. 56. 
2 "Evamhi~avasadanye'pi"-BBi, p. 56. 
3 GSS, vii. I 17~' 
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by arbitrary rational numbers have a given sum. 
Algebraically, the problems require the solution of 

x 2 + y2 = Z2, .} 
rx + ry + tz = A ; 

where r, s, t, A are known rational numbers. His 
method of solution is the same as that described above. 
Starting with the general solution of 

X'2 + y'2 = Z'2 
we are asked to calculate the value 

rx' + ry' + tz~ = P, say. 
Then, says Mahavira, the required solution is 

x = x/AlP, y =y'AjP, Z = Z'Aj!? 
One illustrative problem given by Maha.vira is: 
"The perimeter of a rectangle is unity. Tell me 

quickly, after calculating, what are its base and up.right."l 
Starting with the rectangle m2 - n2, 2.mn, m2 + n;, 

we have in this case P = 2(m2 - n2 + 2.mn). Hence 
all rectangles having the same perimeter unity will be 
given by 

1112 - n2 fJl11 

2(m2 - n2 + 217m)' m2 - n2 + 2mn' 
Ill, tJ being any rational numbers. 

The isoperimetric right triangles will be given by 

( m - t1) np {m2 + 112 } 
2fJJ p, m + n' 21JJ(m + n) P; 

where p is the given perimeter. 
Another example is : 
"(Find) a rectangle in which twice the diagonal, 

thrice the base, [qur times the upright and the perimeter 
together equal unity."2 

1 GSS, vii. I18~.· 2 GSS, vii. I19~. 
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Pairs of Rectangles. Mahavira found "pairs of 
rectan gles such that 

(i) their perimeters are equal but the area of one 
is double that of the other, or 

(ii) their areas are equal but the perimeter of one 
is double that of the other, or 

(iii) the perimeter of one is double that of the 
. other and the area of the latter is double 
that of the former." 

These are particular cases of the following general 
problem contemplated in his rule: 

To find (x, .y) and (u, v) representing the base 
and upright respectively of two rectangles which are 
related, such that 

2JlJ(X + y) = zn(u + V),} (A) 
. p::.:y = quv; 

where In, n, p, q are known integers. 
His rule for the solution of this general problem is : 

"Diyide the greater multiples of the are~ and the 
perimeter by the (respective) smaller ones. The square 
of the product of these ratios mu~tiplied by an optional 
number is the upright of one rectangle. That diminished 
by unity will be its base, when the areas are equal. Other
wise, multiply the bigger ratio of the areas by that 
optional number and subtract unity; three times the 
upright diminished by this (difference) will be the base. 
The upright and base of the other rectangle should be 
obtained from its area and perimeter (thus determ~ed) 
with the help of the rule, 'From the square of half the 
perimeter, etc.,' described before."l 

1 GSS, vii. 1312-133. The reference in the concluding line is 
to rule vii. 1292. 
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In other words, to solve (A), assume 
Y = s{ (ratio of perimeters)(ratio of areas) }2, (1) 

and x = y - 1, if P = q, (z) 
or x = 3[Y - {s (ratio of areas) - I}], if P -:P q, (2') 
where s is an arbitrary number, and the ratios are to be 
so presented as always to remain greater than or equal 
to unity. 

Let m ~ n, q ~ p. . Then we shall have to 
assume 

_ m
2q

2 } Y - s n"t.p2' 

x = 3 (s m
2q

2 - s!!._ I I)' 
nt.p2 p T 

(3) 

Substituting these values in {A), we get 
m m2q2 q ) 

11 + v = -( 4S ~ _ )S- + 3 , n no:.p p (4) 

m2q m2q2 q ) 
1IV = 3S--(s-- - s- + I . n""p n"i!.p"" p 

Then 
2 m2{ m2q2 9sq )2 3SQ sq } (11- v) =~ (4S-. _- + 3 + -(- _ 4) . 

n2 n2p'l. 2.p 4P P 
Now, if the arbitrary multiplier s be chosen such that 

we have 

1 = 4, (5) 

m m2Q2 9sq 
11 - V = -(4S~ _ - + 3). (6) 

n n'P 2P 
Frorp (4) and (6) we get 

m tJI2q2 15sq } 
/I = n(4S n2p'l. - 4P + 3), 

V = Fmq. 
4nP 

(7) 
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Substituting the value of s from (5) in (3) and (7) 
we have finally the solution of (A), when m ~ n, 

q ~ p, as m2q m} 
Y - 4 n;:.p' V = 511, 

m2q m m2q (I) 
x= 3(4-- 3) U=4-(4--3)· 

n~' n n~ 
Mahavira has observed that' "when the areas are 

equal" we are to assume! 
m2 

Y= s n2 ' 

m2 
x = S-2- - I. 

n 

1 Bibhutibhusan Datta has shown that this restriction is 
not necersory. In fact, starting with the assumption 

m2q2 } y=s~, fl'P 
m2 2 m ~ n, q ~ p, 

x=s-q_-I· 
n2p2 ' 

and proceeding in the same way as above, he has obtained another 
solution of (A) in the form 

m
2

q m } y = 2 n2p' t' = n' 
x = 2 m;q - I, II = !!!__ ( 4 m2q - 1). 

np q nZ; 
Datta finds two general solutions of (A), viZ. 

rm2q2 
y = n2p2 + t, 
x = rm2q2( rm2q2 _ .!!L t ), 

tn2p2 n2p2 p + 
v- rmq 

- np' 

_ m (rm2q2 ) (rm2q2 _ rq ). u-- --+t -- --+/, 
fil n2p2' n2p2 p 

(II) 

(III) 
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Isosceles Triangles with Integral sides. Brahma
gupta says: 

"The sum of the squares of two unequal numbers is 
the side; their product multiplied by two is the altitude, 
and twice the difference of the squares of those two un
equal numbers is the base of an isosceles triangle."l 

Maha.vira gives the following rule for obtaining 
an isosceles triangle from a single generated rectangle: 

"In the isosceles triangle (required), the two dia
gonals (of a generated rectangle2) are the two sides, twice 
its side _ is the base, the upright is the altitude, and the 
area (of the generated rectangle) is the area."3 

Thus if IN, n be two integers such that m =1= n~ the 
sides of all rational isosceles triangles with integral sides 
are: 

(i) m2 + n2~ m2 + n2, z(m2 _ 112) ; 

or (ii) m2 + 112, m2 + n2, 4mn. 

and 
rm2q2 

V= m(rq -t) 

} 
y = n2p'A - t, n p • 

(IV) 
x = rm2q2 ( rq _ 1 ) U = rmq(rm2q2 _ I) 

n2p2 tp , np tn2p2 

where Ill;;;::: 11, q;;;::: p and r. t are any two integers. 

See Datta, "On Mahavlra's solution of rational triangles and 
quadrilaterals," BCMS. XX, 192,8-9, pp. 2.67-2.94; particularly 
P· 28 5· . 

1 BrSpSi, xii. H. 
2A rectangle generated from the numbers m and n has its 

sides equal to m 2 - n2 and 2mn and its diagonal equal to m'!. + n2. 
ej. pp. 208-9. 

3 GSS, vii. 108~. 
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The altitude of the former is zmn and of the latter 
m2 - n2 and the area in either case is the same, that 
is, zmn(m2 - n2). 

Juxtaposition of Right Triangles. It will be 
noticed that the device employed by Brahmagupta and 
Mahavira to find the above solutions is to juxtapose 
two rational right triangles-equal in this case-so as 
tQ have a common leg. It is indeed a very powerful 
device. For, every rational triangle or quadrilateral may 
be formed by the juxtaposition of two or [our rational 

·right triangles. So, in order to construct such rational 
figures, it suffices to know only the complete solution 
of.,,<2 + y2 = Z2 in integers. The beginning of this 
principle is found as early as the Baudhiiyana Sulba1 (800 
B.C.) wherein is described the formation of a kind of 
brick, called ubhcryi (born of two), by the juxtaposition 
of the eighths of two suitable rectangular bricks of the 
same breadth (and thickness) but of different lengths. 

I 

Isosceles Triangles with a Given. Altitude. 
Brahmagupta gives a rule to find all rational isosceles 
triangles having the same altitude. He says: 

"The (given) altitude is the producer (kara(1i). Its 
square divided by an optional number is increased and 
diminished by that optional number. . The smaller is 
the base and half the greater is the side."2 

That is to say, the sides and bases of rational isosceles 
triangles having the same altitude a are respectively, 

!(~+ m), ~(a2 + m) and (a
2 - m), 

m m m 

where m is any rational number. 

1 M/, iii. 12.2.; Compare Datta, Sidbu, p. 4h where necessary 
figures are given. . 

! BT-SpS;, xviii. H. 
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In particular, let the given altitude be 8. Then 
taking m = 4 P+thudakasvami (860) obtains the rational 
isosceles triangle (10, 10, 12). 

Pairs of Rational Isosceles Triangles. Mahavlra 
gives the following rule for finding two isosceles tri
angles whose perimeters, as also their areas, are related 
in given proportions: 

"Multiply the square of the ratio-numbers of the 
perimeters by the ratio-numbers of the areas mutually 
and then divide the larger product by the smaller. 
Multiply the quotient by 6 and 2 (severally) and then 
diminish. the smaller by Wlity : again (find severally) the 
difference between the results, and twice the smaller 
one: these are the two sets of elements for the figures 
to be generated. From them the sides, etc., can be 
obtained in the way described before."1 

If (SI' S2) and (61, ~2) denote the perimeters and 
areas of two rational isosceles triangles, such that 

$1: S2 = m: n, 61: 62 = p: q, (1) 

where the ratio-numbers Itl, n, p, q are known integers, 
then the triangles will be obtained, says Mahavira, from 
the rectangles generated from 

fl2p n2p n2p n2p (6-l! ,2.-.-, - I) and (4-.. + 1,4-2 - 2), m q m~q mwq m q 

where n1.p > m1.q, when the dimensions of the first 
are multiplied by In and those of the second by n. 

The dimensions of the isosceles triangle formed 
from the first set of bija are: 

side. In { ( 6 n
2f ) 2 + (2. fl'{> _ I) 

2 
} , 

mq m q 

1 GSS, vii. 137. 
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n2p n2p 
base = 24111 1lI2q ( 2 mZ:q - I), 

altitude = m { ( 6 '!_~P _ ) 2 _ (2 -n2t _ I) 2} . 
!JI2q III-q , 

and from the second set 

side = 11 (4 -2 + I) + (4 2- - 2) , { 
112p 2 n2p 2} 
m q III q , 

base 112p ) (n2p ) - 11 - I 4--2 - 4 (4 m2q + m2q , 

{ 
n2p )2 n2p 2} 

altitude = 11 ( 4 -2- + I - (4 -2 - 2) . 
"' q III q . 

It can be easily verified that the perimeters and 
areas of the isosceles triangles thus obtained satisfy the 
conditions (I). 

In particular, putting !JJ = n = p = q = I; we have 
two isosceles triangles of sides, bases and altitudes (29, 
40,21) and (37, 2.4, 35) which have equal perimeters (98) 
and. equal areas (420). This particular case was treated 
by Frans van Schooten the Younger (1657), J. H. Rahh 
(1697) and others'! 

~ It is evident that multiplying the above values by 
Illlq'.!. we get pairs of isosceles triangles whose dimen
sions are integral. 

Rational Scalene Triangles. Brahmagupta says: 
"The square of an optional number is divided twice 

by two arbitrary numbers; the moieties of the sums of 
the quotients and (respective) optional numbers are the 
sides of a scalene triangle; the sum of the moieties of the 
differences is the base."2 

1 Dickson, Numbers, II, p. 2.01. 2 BrSpSi, xii. 34. 

I~ 
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That is to say, the sides of a rational scalene triangle 
are 

n;2 ) m2 ) (m2 ) ( m2 ) H p + P ,!( q + q , i P - p +! q - q 

where m, p, q are any rational numbers. The altitude 
(m), area and segments of the base of this .triangle are 
all rational. 

Mahavira gives the rule: 
"Half the base of a derived rectangle is divided by 

any optional number. With~this divisor and the quo
tient is obtained another rectangle. The sum of the 
uprights (of these two rectangles) will be the base of 
the scalene triangle, the two diagonals, its sides and the 
base (of either rectangle) its altitude."! 

If m, n be any two rational numbers, the rational 
rectangle (AB' BH) 

r------" , . 

H 

Fig. 3 

formed from them is 

. 
: " , 

c 

'A B' c' ------ .. -~ .. --- .. ----------; 
, , , 

Fig. 4 

fJJ2 - n2 , zmn, m2 + n2 • 

If p, q be any two rational factors of mn, that is, if 
1l1l1 = pq, the second rectangle (AC'CH) is 

p2 _ q2, zpq, p2+q2. 

1 GSS. vii. 1102' 



RATIONAL TRIANGLES 227 

Now, juxtaposing these two rectangles so that they do 
not overlap (Fig. 3), the sides of the rational scalene 
triangle are obtained as 

p2 + q2, ",2 + n2, {(p2 _ q2) + (",2 _ n2)}, 

where mn = pq. Evidently the two rectangles can be 
juxtaposed so as to overlap (Fig. 4). So the general 
solution will be \ 

p2 + q2, m2 + n2, {(p2 _ q2) ± (m2 _ n2)}. 
The altitude of the rational scalene triangle thus obtained 
is 2,mn or zpq, its area pq(p2 - q2) ± Illfi(m2 - n2) and 
the segments of the base are p2 - q2 and m2 - n2. 

In particular, putting m = 12., P = 6, q = 8 in 
Brahmagupta's general solution, Prthudakasvimi derives 
a scalene triangle of which the sides (13, 15), base (14), 
altitude (12.), area (84) and the segments of the base 
(5, 9) are al~ integral numbers. 

In order to get the above solutions of the rational 
scalene triangle the method employed was, it will be 
noticed, the juxtaposition of two rational right triangles 
so as to have a common leg. In Europe, it is found 
to have been employed first by Bachet (162.1). The 
credit for the discovery of this method of finding 
rational scalene triangles should rightly go to Brahma
gupta (62,8), but not to Bachet "as is supposed by 
Dickson.1 

Triangles having a Given Area. Mahivira 
proposes to find all triangles having the same given area 
A. His rules are: 

"Divide the square of four times the given area by 
three; The quotient is the square of the square of a 
side of the equilateral triangle."2 

1 Dickson, Numbers, II, p. 192. 

2 GSS, vii. I 54!}. 
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"Divide the given area by an optional num~er; 
the square-root of the sum .of the. squares of.the quot1e~t 
and the optional number IS a sIde of the Is~sc~les tri
angle formed. T"\vice the optional number IS ItS base 
and the area divided by the optional number is the 
altitude. "1 

"The cube of the square-root of the sum of eight 
times the given area and the square of an optional 
number is divided by the product of the optional number 
and that square-root; the quotient is diminished by half 
the optional number which i~ the base (of the required 
triangle). The sarikralJlatla between this remainder and 
the quotient of the square of the optional number 
divided by twice that square-root will give the two 
sides."2 

The last rule has been re-stated differently.3 

%1. RATIONAL QUADRILATERALS 

Rational Isosceles Trapeziums. Brahmagupta has 
shown how to obtain an isosceles trapezium whose sides, 
diagonals, altitude, segments and area are all rational 
numbers. He says: 

"The diagonals of the rectangle (generated) are the 
flank sides of an isosceles trapezium; the square of its 
side is diviqed by an optional number and then lessened 
by that optional number and divided by two; (the 
result) increased by the upright is the base and lessened 
by it is the face."4 

That is to say, ,we shall have (Fig. 5) 

(
41J12n2 ) 

CD =! P - p + (m2 - n2), 

1 GSS, vii. 156~. 
3 GSS, vii. 16o~-161f' 

2 GSS, vii. 15 82' 
, BrSpSi, xii. 36. 
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2 2 
AB = ~ (4!J1 n _ p ) _ (",2 _ n2), 

p 
AD = BC = m2 + n2 

; 

DH= m2 - n2, 

2 2 
HC = i(4"~ n _ p), 

2 2 
AC = B D = ! (4111 n + p ), 

P 
AH = 1.mn, 

oS 4I1J2112 ) ABCD= mn(p-p . 

By choosing the values of m, nand p suitably, the 
values of all the dimensions of the isosceles trapezium 
can be made integral. Thus, starting with the rectangle 
(5, 12, 13) and takingp = 6, Pfthudakasv:1mi finds, by 
way of illustration, the isosceles trapezium whose flank 
sides = 13, base = 14, and face = 4. Its altitude (n), 
segments of base (5, 9), diagonals (15) and area (108) 
are also integers. 

Mahavira writes: 
"For an isosceles trapezium the sum of the per

pendicular of the first generated rectangle and the 
perpendicular of the second rectangle which is generated 
ftom any (rational) divisor of half the base of the first 
and the quotient, will be the base; their difference will 
be the face; the smaller of the diagonals (of the generated 
rectangles) will be the flank side; the smaller perpendi
culat; will be the segment; the greater diagonal will be 
the diagonal (of the isosceles trapezium); the greater 
area will be the area and the base (of either rectangle) 
will be the altitude."l 

1 GSS. vii. 99~. 
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The first rectangle (AA'DH) generated from m, n is 
!Jl2 - n 2 , 211m, JJJ2 + ,P. 

If p, q be any two rational factors of balf the base of 
this rectangle, that is, if pq = 111ll, the second rectangle 
(AB'CH) from these factors will be. 

p2 _ q2, 2Pq, p2 + q2. 
By judiciously juxtaposing these two rectangles, we 
s1'a11 obtain an isosceles trapezium of the type required 
(A BCD) : 

Fjg. 5 

CD = (p2 _ q2) + (m2 _ n2), 
AB = (p2 _ q2) _ (m2 _ n2), 

AD = BC = !liZ + n2, if 1It2 + n2 <p2 + q2, 
DH = !Jl2 - n2, if ",2 _ 112 < p2 _ q2, 

AC = BD = p2 + q2, if p2 + q2 > 1Jl2 + 112, 

AH = 2.1I1n = 2.pq, 
area ABCD =. 2Pq (p2 _ q2), 

if 2pq (p2 - q2» 21Jln(n/~ - n2). 

The necessity of the conditIons 11;2 + ,p. < p2 + q2, 
Il;z - n 2 < p2 - q2, etc., will be at once realised from a 
glance at Figs. 5 and 6. The above specifications of the 
dimensions of a rational isosceles trapezium will give 
Fig. 5. But when the conditions arc reversed so that 
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rn2 + n? ::;> p? + q2, m? - n? > p2 _ q2, 2Pq (p? _ q2) 
< 2.mn(m2 - n2), th~ dimensions of the isosceles tra
pezium (Fig. 6) are: 

Fig. 6 

CD = (012 - n2) + (P2 - Ii), 
AB = (012 - n2) _ (P2 _ q2), 
AC = BD = p2 + q2, 
DH = 012 _ n2, 

AD = BC = 012 + n2, 
AH = 2.01n = 2.pq, 

area ABCD = 201n(012 - n2). 
Pairs of Isosceles Trapeziums. Mah:1vira gives 

the following rule for finding the face, base and equal 
sides of an iS9sce1es trapezium having an -area and altitude 
exactly equal to those of another isosceles trapezium 
whose dimensions are known: 

"On performing the vi,fama-satikramaIJa between the 
square of the perpendicular (of the known isosceles 
trapezium) and an optional number, the greater result 
will be the equal sides of the (required) isosceles tra
pezium; half the sum and difference of the smaller result 
and the moieties of the face and base (of the known 
figure) will be -the base and face (respectively of th: 
req_uired figure)."l 

1 GSS, yii. 173i. 
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Let a, b, c, h, denote respectively the face, base, 
equal sides and altitude of the known isosceles 
trapezium and let a', b', c', h', denote the corresponding 
quantities of the required isosceles trapezium. Then, 
since the two trapeziums are equal in area and altitude, 
we must have 

:lnd 

or 

whence 

and 

h'= h, 

b' + a' = b + a, (1) 

b' , 2 
C'2 _ ( -: a ) = h2, 

{c' + (b' - a') /2 }{ C' - (b' - a') /2} = h2, 

e' - (b' - a')/2 = r, 
e' + (b' - a'Y/2 = h2/r, 

r being any rational number. Then 

e' = !(b2 /r + r), (2) 
h' - a'l= (h2/r,- r). (3) 

From (1) and (2.), we get 

h' = (b + a)/2 + (h2/r - r)/2, (4) 

a' = (b + a)/2 - (h2/r - r)/2. (5) 

If a = 4, b = 14, e = 13, h = 12, taking r = 10, 

we shall havel a' = 34/5, h' = 56/5, e' = 61/5. 

It has been stated above that, if m, fl,P, q are rational 
:1Umbers such that m2 ± n2 < p2 ± q2, we must have 

a = (p2 _ q2) _ (m2 - n2), 
b = (P2 _ q2) + (m2 _ n2), 

e = m2 + n2, 

h = 2mn = 2.pq. 

1 G.H, vii. 17d. 
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Substituting these values in (2.), (4), (5) we get 
the dimensions of the equivalent isosceles trapezium as 

a' = (p2 - q2) - (4p2q2/r - r)/z, 
b' = (p2 - q2) + (4p2q2jr - r)/2., 
c' = (4p2q2/r + r)/z. 

If ",2 ± n2 > p2 ± q2, the sides of the pair of isos 
celes trapeziums, equal in area and altitude will be 

a = (",2 _ n2) _ (p2 _ q2), 
b = (",2 _ n2) + (P2 _ q2), 

C = p2 + q2; 
a' = (m2 - n2) - (4m2n2/r - r)/z, 
b' = (m2 - n2) + (4m2n2/r - r)/z, 
c' = (4m2n2/r + r)/z. 

These two isosceles trapeziums will also have equal 
diagonals. 

Rational Trapeziums with Three Equal Sides. 
This problem is nearly the same as that of the rational 
isosceles trapezium with this difference that in this 
case one of the parallel sides also is equal to the slant 
sides. Brahmagupta states the following solution of 
the pr~blem : 

"The square of the diagonal (of a generated rect
angle) gives three equal sides; the fourth (is obtained) 
by subtracting the square of the upright from thrice 
the square of the side (of that rectangle). If greater, 
it is the base; if less, it is the face."! 

The rectangle generated from m, n is given by 

1112 - n2, zmn, m2 + n2• 

1 BrSpSi, xii. 37~ 
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If ABeD be a rational trapezium who~~e sides AB:. BC, 
AD are equal, the~ 

AB = BC = AD = (m2 + n2)2, 

CD = 3(2.l1In)2 - (m2 - n2)2 = 14m2n2 - m4 - n4, 

or CD = 3(1112 - n2)2 - (2mn)2 = 3m' + ;n4 - IOmZn2, 

In particular, putting m = 2, n = 1, Prthudaka
svami deduces two rational trapeziums with three c~qual 
sides, viZ., (25, 25, 25, 39) and (25, 25, 25, II). 

The first solution is also given by Mahavira who 
indicates the method for obtaining it. He says: 

"For a trapezium with three equal sides (proceed) 
as in the case of the isosceles trapezium with (the rect
angle formed from) the quotient of the area of a genera
ted rectangle divided by the square-root of its side 
multiplied by the difference of its elements and divisor; 
and that (formed) from the side and upright."! 

That is to say, from any rectangle (m2 - n2, zmn, 
mZ + nZ), calculate 

z.mn(m2 - n2) --
==-:---<-- = V 2.flJn (111 + n). 

V z.mn(m - n) 

Then from V lmn(m - n), V l.mn(m + n) form the 
rectangle 

8m2n2,4'J1n(m2-n'l:), 4'J1n(m2+n2). (1) 

Again from 2mn, m2 - n2 form another rectangle 

6m2n2 - 11/4 - ttl, 4"Jn (m2 - n2), (m2 + n2)2 (2) 

By the juxtaposition of the rectangles (I) and (2) 
we get Brahmagupta's rational trapezium with three 

1 GSS, vii. IOI~. 
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equal side~. : 0 

CD = 3m ;/2 + (6!J12n2 - m4 - ttl) = 14!J12n2 _1JJ4 - 11\ 

AB = 81Jl21J2 ;-- (61l12n2 --- m4 - n4) = (m2 + 112)2 = A f) 
= BC, if 1112 + 112 < 411111. 

The segment (CH), altitude CAH), diagonals (AC, 
BD) and area of this trapezium are also rational, for 

CH = 6m2n2 - nt1- n4, 
AH = 4IJJJi(in2 - n2), 

A C = ED = 4ltmCm2 + 112), 

area. ABCD = 32m3tfl(m2 - n2). 

Rational Inscribed Quadrilaterals. Brabmagupta 
formulated a remarkable proposition: To find all 
quadrilaterals wl1ich will be inscribable within circles 
and whose sides, diagonals, perpendiculars, segments 
(of sides and diagonals by perpendiculars from vertices 
as also of diagonals by their intersection), areas, and 
also the diameters of the circumscribed circles will be 
expressible in integers. Such quadrilaterals are called 
Brahmagupta quadrilaterals. 

The solution given by Brahmagupta is as follows: 

"The uprigbts and bases of two right-angled tri
angles being reciprocally multiplied by the diagonals 
of the other will give the sides of a quadrilateral of 
uncq'ul sides: (of tbese) the greatest is the base, the least 
is the iace, and the other two sides are the two flanks."] 

Taking Brahmagupta's integral solution, the sides 
of the -t'>vo right triangles of reference arc given by 

lJ1~ - J/2, 211111, Jll2 -t- JJ2 ; 

p2 __ q2, 2.pq, p2 + q2 ; 

1 Br>pSi, XlI. ~R. 
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where IJJ, n, p, q are integers. Therf the sides of a 
Brahmagupta quadrilateral are 

(n;2 - n2)(p2 + q2), (p2 - q2)(m2 + n2),} (A) 
2.mn(p2 + q2), z.pq(m2 + n2). 

Mahayira says: 

"The base and the perpendicular (of the smaller 
and the larger derived rectangles of reference) multi
plied reciprocally by the longer and the shorter diagonals 
and (each again) by the shorter diagonal will be the 
sides, the face and the base (of the required quadrilateral). 
The uprights and bases are reciprocally multiplied and 
then added together; again the product of the uprights 
is added to the product of the bases; these two sums 
multiplied by the shorter diagonal will be the diagonals. 
(These sums) when multiplied respectively by the base 
and perpendicular of the smaller figure of reference will 
be the altitudes; and they when multiplied respectively 
by the perpendicular and the base will be the segments 
of the base, Other seg~ents will be the difference of 
these and the base. Half the product of the diagonals 
(of the required figure) will be the area."1 

If the rectangle generated from m, n be smaller than 
that from p, q, then, according to Maha.vira, we obtain 
the rational inscribed quadrilateral of which the sides 
are 

(m2 _ nZ)(P2 + q2)(m2 + n2), (p2 _ q2)(m2 + n2)2, 

'-nm(p2 + q2)(m2 + n2), Z.pq(fl,2 + n2)2 ; 

. whose diagonals are 

{2.pq(J/12 ~ n2) + z.mn(p2 _ q2) }(m2 + n2), 

{(m2 _ n2)(p2 _ q2) + 4fHnpq}(m2 + n2) ; 

J GSS, vii. J03k. 
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whose altitudes are 

{zpq(m2 - r.2) + 2.mn(p2 - q2)} 2.nJn, 

{(m2 _ n2)(p2 _ q2) + 4nmpq}(m2 - n2) ; 

whose segments are 

{2.pq(m2 - n2) + 2.mn(p2 - q2)}(m~ - 112), 
{(m2 - n2)(p2 - q2) + 4'lIflPq} 2.mn ; 

and whose area is 

2.37 

~{2.pq(m2 - n2) + 2mn(p2 _ q2)} {(m2 _ n2)(p2 _ q2) 

+ 4!lInpq} (m2 + !l2?. 

Sdpati writes: 

"Of the two right triangles the sides and uprights 
are reciprocally multiplied by the hypotenuses; of the 
products the greatest is the base, the smallest is the face 
and the rest are the two flank sides of a quadrilateral 
with unequal sides."l 

Bhaskara II gives the rule: 

"The sides and uprights of two optional right 
triangles being multiplied by their reciprocal hypote
nuses become the sides: in this way has been derived a 
quadrilateral of unequal sides. There the two diagonals 
can be obtained from those two triangles. The produdt 
of the uprights, added with the product of the sides, 
gives one diagonal; the sum of the reciprocal products of 
the uprights and sides is the other."2 

Bha.skara 113 illustrates by taking the right triangles 
(3, 4, 5) and (5, 12, 13) so that the resulting cyclic 
quadrilateral is (25, 39, 60, 52). The same example was 

1 SiSe, xiii. 4 2 • 

a L, p. 52. 
2 L, p. 51. 
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given before by Mahavira1 and Prthudakasv:imi.2 This 
cyclic quadrilateral also appears in the Triiatikd of 
Sridhara3 and in the commentary of the Aryabha/{ya 
by Bhiskara I (522). The diagonals of this, quad
rilateral are, states Bhaskara II, 56 (= 3.12 + 4.5) 
and 63 (= 4.12 + 3.5) (Fig. 7). He then observes: 

"If the figure be formed by changing the arrange
ment of the face and flank then the second diagonal will 
be equal to the product of the hypotenuses of the two 
right triangles (of reference), i,e., 65." (Fig. 8) . 

• I 

" " ,. ... 
If:,' ... ... ,6" 

, , 
,. ,/:: 

H 

Fig. 7 Fig. g 

By taking the right triangles (3, 4, 5) and (15, 8, 17) 
Bhaskara II gets another cyclic quadrilateral (68, 5 I, 40, 
75), whose diagonals are (77, 85), altitude is 308 /5, 
segments arc 144/5 and 231/5, and area is 32 34.4 (Fig. 9). 
\\'ith the sequence oC the sides (68, 40, 5 I, 75) the 

1 GSS, vii. 104~. 
3 Trii, Ex. 80. 

2 BrSpSi, xii. 38 (Com.). 
4 L, pr. 46ff. 
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diagonals are (77, 84) (Fig. 10), and with (68, 40, 75, 5 I) 
they are (84, 85). (Fig. I I). 

, .' 
'<, 

" ,"0 " 1 '. 

f. 

Fig. 9 

Fig. II 

.' 

,,_/ , "'"il. 

15 

Fig. 10 

The deep sjgnificance of Brahmagupta's results 
has been demonstrated by Chasles1 and Kummer.2 

1 M. Chasles, Aperfll bistoriqlle stir Forigine et det'e/opJJlCnt des 
methodes en geomitrie, Pari~, 1875, pp. 436ff. 

2 E. E. KumJIler, "Uber die Vierecke, deren Seiten und Dio
gonalen rational sind," JOUrlI. fii'r Math., XXXVII, 1848, pp. 1-20. 
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In fact, according to the sequence in which the 
quantitj,es (A) are taken, there will be two varieties of 
Brahmagupta quadrilaterals having th.em as their sides =. 
(1) one in which the two diagonals intersect at right 
angles and (2) the other in which the diagonals 
intersect obliquely. The arrangement (A) gives a 
quadrilateral of the first variety. For the oblique variety, 
the sides ate in the following order: 

(p2 _ q2)(tn2 + n2), (m'l, - n2)(p2 + q2),} B 
zmn(p2 + q2), zpq(In2 + n2) ; ( ) 

or (P2 - q2)(m2 + n2), ztlm(p2 + q2), J C 
(m? - n2)(p2 + q2), 2pq(n;2 + n2). ( ) 

Bhaskara II points out that the diagonals (Jf the 
Brahmagupta quadrilateral are in the (A) variety, 
zpq(m2- fJ2) + 21nf1(p2- q2), 4///npq+ (P2_ q2)(1/;2_ !l~); 
in (B), 

2.pq(nI2 - fl2) + zmn(p2 _ q2), (P2 + q2)(m2 + n2); 

and in (C), , 
4mnpq + (P2 - q2)(m2 _ n2), (P2 + q2)(m2 + n2). 

The diarneter of the circumscribed circle in every case 
is (P2 + q2)(m2 + 112). 

Ga1)eSa (1545) shows that the quadrilateral is formed 
by the juxtaposition of four right triangles obtained 
by multiplying the sides of each of two rational right 
triangles by the upright and base of the other. He 
writes: 

"A quadrilateral is divided into four triangles 
by its intersecting diagonals. So by the juxtaposition of 
four triangles a quadrilateral will be formed: For that 
purpose the fOUI triangles are assumed in this manner: 
Take two right triangles formed in the way indicated 

Compare also L. B. Dickson. "Rational Triangles and Quadril
aterals," Amy. Ala/h., Mon., XXVIII. I 92 I. pp. 2.44-25 o. 
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before. If the upright, base and hypotenuse of a 
rational right triangle be multiplied by any arbitrary 
·rational number, there will be produced another right 
triangle with rational sides. Hence on multiplying the 
sides of ~ach of the two right triangles by an optional 
number equal to the base of the other and again by an 
optional nnmbe.r equal to the upright of the other, four 
right triangles will be obtained by the judicious juxta
position of which the quadrilateral Will be formed." 
• He then shows with the help of specific examples 
(see Figs. 12., 13 & 14) that we can obtain in this way 

II II 

,~ -ts ~ 
" II I ~ 

Fig. 1% 

Fig .. 13 . Fig. 14 

16 
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from the same set of two rational right triangles two 
varieties of 'rational convex quadrilaterals ': One in 
which the diagonals intersect each other perpendicularly; 
and the other in which they do so obliquely. 

Inscribed Quadrilaterals having a Given Area. 
Mahavlra proposes' to find, all rational inscribed 
rectangles having the same given area CA, say). He says: 

"The square-root of the exact area is a side of the 
square. The quotient of the area by an optional number_ 
and that optional number will be the base and upright 
of the rectangle.'a 

For findingall inscribed rational isosceles trapeziums 
,having the same area A his rule is : 

"The given area multiplied by the square of an 
optional number is diminished by the area of a generated 
rectangle and then divided by the base of that rectangle; 
the quotient divided by the optional number is the face; 
the quotient added with twice the upright and divided by 
the optional number gives the base; the base (of the 
generated rectangle) divided by the optional number 
is the altitude; -ahd the diagonal divided by the optional 
number gives the two flank sides."2 

That is, to say, if m2 - n2, zmn, m2 + IJ2 be the 
upright, base and diagonal of a rectangle formed from 
m, n, the dimensions of the isosceles trapezium will be 

f 
s2A - 2mn(m2 - n2) ace = ____ __o_ __ ---<-

2.nms ' 

base = _1 {s2A - zmn(m2 - n2~ + z(m2 _ n2) l 
s zmn } 

2.mnS 

1 GSS. vii. 146. :I GSS. vii. 148. 
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1 · d 2.mn a Htu e = --, 
s 

side m 2 + n2
• 

-
S ' 

where s is an arbitrary rational number chosen such that 
S2 A > 21l1n( m 2_ n 2). 

For the construction of an inscribed trapezium of 
J three equal sides 1vfaba.vira gives the foll.owing rule: 

"The square of the given area is'divided by the 
cube of an optional number and then increased by that 
optional number; half the result gives the (equal) sides 
of a generated trapezium of three equal sides (having 
the given area) ; twice the optional number diminished 
by the side is the base; and the given area divided by 
the optional number is the altitude."! 

In other words, the dimensions of an inscribed trape
zium of three equal sides having a ?Jven area A will be 

side = ~ ( ~2 + s), 
s 

( 
A2 ) l f 

base = 2.S -} sa + S , 

altitude = A . 
J. 

To find inscribed quadrilaterals having a given area 
Mahavira gives the following rule: 

"Break up the square of the given area into any 
four arbitrary factors. Half the sum of these factors 
is diminished by them (severally). The remainders are. 
the sides of an (inscribed) quadrilateral with unequal 
sid'es."2 11 

1 GSS, vii. 150. 
2 GSS, vii. 152. This result follows from the fact that the 

area ofa cyclic quad.rilateral is V(s - a)(s - b)(s - c)(s - d). 
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Triangles and Quadrilaterals having a Given 
Circum-Diameter. Mahavira proposes to find all 
rational triangles and quadrilaterals inscribable in. a circle 
of given diameter. His solution is : 

"Divide the given diameter of the circle by the 
calculated diameter (of the circle circumscribing any 
generated figure of the required kind). The sides of 
that generated figure multiplied by the quotient will be 
the sides of the required figure."1 

In other words, we shall have to find first a rational 
triangle or cyclic quadrilateral; then calculate the dia
meter of its circum-circle and divide the given diameter 
by it. ,Dimensions of the optional figure multiplied by 
this quotient will give the dimensions of the required 
figure of the type. 

It has been found before (p. 2Z7) that the sides of a 
rational triangle are proportional to 

m2 + n2, p2 + q2, (p2 _ q2) ± (m2 _ n2) 
and its altitude is proportional to zllln (or zpq), m, n, p, q 
being any rational numbers- such that mn = pq. The 
diameter of the circle circumscribed about this triangle 
is proportional to 

(m2 + 112)(p2 + q2) 
2mn 

Then the sides of a rational triangle inscribed in a 
circle of diameter D will be 

zmnD 2111nD (p2 - q2) ± (m2 _ n2) 
1'1. + q2' m2 + n2' unnD (m2 + n2) (P2 + q2) ; 

and its altitude will be 
DC ZIJJIJ)2 

1 GSS, vii. %ZIg. 
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The dimensions of a rational inscribed quadrilateral, 
as stated by Mahivira, have been noted before (p. 236). 
The diameter of its circum-circle is 

(P2 + q2)(m2 + n2)'J... 

Then, according to Mahavira, the sides of a rational 
quadrilateral inscribed in a circle of diameter D, are 

( 2mn) (m2 - n2) (2pQ) ( p2 _ q2) 
D m2 + n2 , D m2 + n2 , D p2 + q2 , D p2 + q\ ; 

its diagonals are ! 

{2Pq (m2 - n2) + 2mn (p2 - q2)} (p2 + q~m2 + n2)' \ 

D 
{(m2 - n2)(p2 - q2) + 4flInpq} (p2 + q2)(m2 + n2i 

and its area is 
D2 

i(P2 + q2)(m'l. + n2) {2pq(m2 - n2) + 2mn(p2 - q2)} 

X {(m'l. - n2)(p2 - q2) + 4f/Inpq}; 
so that the sides, diagonals and area are all rational. 

zz. SINGLE INDETERMINATE EQUATIONS 
OF HIGHER DEGREES 

The Hindus do not seem to have paid much attention 
to the treatment of indeterminate equations of 'degrees 
higher than the second. Some interesting examples 
involving such equations are, however, found in the 
works of Mahivira (850), Bhiskara II (II 50) and 
Niriya1).a (1350) . 

. Mahavira's Rule. One problem of Mahivira is as 
follows: 

Given the sum (s) of a series in A.P., to find its 
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first term (a), common difference (b) and the number 
of terms en). 

In other words, it is required to solve in rational 
numbers the equation 

n-I 
{a + (-z-)b}n = s, 

containing three unknowns a, band n, and of the 
third degree. The following rule is given for its 
solution: 

"Here divide the sum by an optional factor of it ; 
that divisor is the number of terms. Subtract from the 
quotient another optional number; the subtrahend is 
the first term. The, remainder divided by the half of 
the number of terms as diminished by unity is the 
common difference."! 

Bhaskara's Method. Bba.skara II proposes the 
problems: 

"Tell those four numbers which are unequal but 
have a common denominator, whose sum or the sum of 
whose cubes is equal to the sum of their squares."2 

If x,y, Z' w be the numbers, then 
(1) X + y + Z + w = X2 + y2 + Z2 + w2, 

(.%) x 3 + y3 + Z3 + w3 = x 2'+ y2 + Z2 + w2• 

Let the numbers be x, 2.X, 3X, 4X, S2..ys Bhaskara II. 
That is, suppose y = 2X, Z = 3X, W = 4X in the above 

1 GSS, vii. 78. 
There are also other problems where instead of s, the given 

Guantity is s + a, s + b, s + n or s + a + b + n. (GSS, ii. 83 ; if. 
also vi. 80). For such problems also the method Qf solution, is the 
same as before, i.II., to assume suitable arbitrary val1,les for two 
of the unknowns so that the indeterminate cubic equation.is there
by reduced to a determinate linear equation in one unknpwn. 
(GSS, ii. 82; vi. 317)' 

2 BBi, p. S 5. 
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equations. Then by (1) we get 
lOX = 30X2. 

x=!. 
Hence x,y, Z' 11l = 'k, i, -~, t, . \ 

is a solution of (I). 
Again, with the same assumption, the equation 

(2) reduces to 
IOOX3 = 30X2. 

x=fo· 
Hence x,y, Z, W = fIT, r%-, -10, H, 

is a solution of (2). 
The following problem has been quoted by Bhas

kara II from an ancient author: 
"The square of the sum of two numbers added with 

the cube of their sum is equal to twice the spm of tQ_eir 
cubes. TeJl, 0 mathematician, (what are those two 
numbers)."! . . 

If x,y be the numbers, then by the statement of the 
question 

(X + y)2 + (x + y)3 = z(x3 + y). , 
"Here, so that the operations may not become lengthy", 
says Bba.skara II, "assume the two numbers to be u + v 
and tl - v." So on putting 

x = u + v, y = u - v, 

the equation reduces to 

4U3 + 4U2 = 12.IIV
2

, 

or 4U2 + 4U = 12.V2, 

or (zu + 1)2 = IZV2 + 1. 

1 BBi, p. lor. 
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Solving this equation by the 'method of the Square
nature we get values of II, v. Whence the values of 
(x,y) are found to be (5, I), (76, 2.0), etc. 

Naraya:Q.a's Rule. NarayaQ.a gives the rule: 
"Divide the sum of the squares, the square of the 

sum and the product of any two optional numbers by 
the sum of their cubes and the cube of their sum, and 
then multiply by the two numbers (severally). (The 
results) will be the two numbers, the sum of whose 
cubes and the cube of whose sum will be equal to the 
sum of their squares, the square of the sum and the 
product of them."! 

That is to say, the solution of the equations 
(I) x3 + y3 = x 2 +y2, (4) (x + y)3 = x 2 + y2, 
(2) X''l + y3 = (x + y)2, (5) (x + y)3 = (x +y)2, 
(3) x3 + y3 = xy, (6) (x + y)3 = xy, 
are respectively 

r - (m2 + n2)m 
x~ 3+ 3 ' 

(I. I) ~ m n 

l - (m2 + n2)n . 
y - m3 + 1)3 ' 

r x = (m + n)2m, 
I m3 +n3 

~ 

l = (111 + n)2n . 
y In3+n3 ' 

(2. I) 

(3. I) 

1 GK, i. 58. 

(6. I) 
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where 111, n are rational numbers. 
It will be noticed that the equation (2) can be 

reduced, by dividing out by x + y, to 
x 2 - xy + y2 = X + Y ; 

and similarly (5) can be reduced to 
x+y=1. 

With 111 = I, n = 2 Nar:iya1.1a gIves the following 
sets of particular values: 

(1.2) x,_y = ~, 1-/ (4.2) x,_Y = .,;,,-, l~ 

(2.2) X,_y = 1,2 (5. 2 ) X,_Y =1 i-, 
(3. 2 ) x,Y =~, 1 (6.2) x,y = -.J-r, ';'1' 

He then observes: "In this way one can find by his 
own intelligence two numbers for the case of difference, 
etc." 

Form ax2n +2 + bx2n = y2. For the solution of an 
equation of the form 

ax2n+2 + bx2n = y2, 
where 11 is an integer, Bhaskara II gives the following 
rule: 

"Removing a square factor from the second side, 
if possible, the two roots should be investigated in this 
case. Then multiply the greater root by the lesser. 
Or, if a biquadratic factor has been removed, the greater 
root should be multiplied by the square of the lesser root. 
The rest of the operations will then be as before."l 

Suppose ax2 + b = Z2; then the equation becomes 
]2 = X2nZ2. 

_y = xnZ· 
The method of solving ax2 + b = Z2 in positive integers 
has been described before. 

1 BBi, p. 102. 



ALGEBRA 

Two examples of equations of this form occur in 
the B{jaga{1ita of Bhaskara II :1 

(I) 5.0 - IOO~ = y2, 
(2) 8.01 + 49.0 = y2. 

It may be noted that the second equation appears in 
·the course of solving another problem. 

Equation ax4 -I- bx2 + c = u3• One very special 
case of this form arises in the course of solving another 
problem. It is2 

(a + x 2)2 + a2 = u3, 

or x4 + 2ax2 + 2a2 = u 3• 

Let 11 = X2, supposes Bhaskara II, so that we get 

x 6 - X4 = za2 + zax2, 

or .0 (2X2 - 1)'= (za + X2)2, 

which can be solved by the method indicated before. 
Another equation is3 

5.0 = w. 
In cases like this "the assumption should be always such," 
remarks Bha.skara II, "as will make it possible to remove 
(the cube of) the unknown." So assume 11 = mx; 
then 

23. LINEAR FUNCTIONS MADE SQUARES OR CUBES 

Square-pulveriser. The indeterminate equation of 
the type 

bx+ C=y2 

1 BBi, pp. 1°3, 107. 2 BBi, p. 103 ; also vide infra, p. 280. 

3 BBi, p. 50; also vide infra, p. 278. 
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is called varga-ktt!!dka or the "Square-pulveriser,"l inas
much as, when expressed in the form 

y2_ c 
,-b- =x, 

the problem reduces to fi.t:tding a square (varga) which 
being diminished by c will be exactly divisible by b, 
which closely resembles the problem solved by the 
method of the pulveriser (kII!!aka). 

For the solution in integers of an equation of this 
type, the method of the earlier writers,appears to have 
been to assume suitable arbitrary values for y and then 
to solve the equation for x. Brahmagupta gives the 
following problems: 

"The residue of the sun on Thursday is lessened 
and then multiplied by 5, or by 10 Making this 
(result) an exact square, within a year, a person becomes 
a mathematician."2 

"The residue of any optional revolution lessened 
by 92 an,d then multiplied by 83 becomes together with 
unity a square. A person solving this within a year is 
a mathematician."3 

That is to say, we are to solve the equations : 
(I)' 5X - 25 = y2, 
(2) lOX - 100 = y2, 
(3)' 83 x - 7635 =_y2. 

Prthildakasvami solves them thus: 
(I. I) Supposey = 10; then X = 125. Or, puty = 5; 

then x = 10. 

(2. I) Supposey = 10; then X = 20. 

(3. I) Assume y = I ; then x = 92 • 

1 BBi, p. 12.2.. 

8.BrSpSi; xviii. i9~ 
2 BrSpSi, xviii 76. 
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He then rem1.rks that by virtue of the multiplicity 
of suppositions there will be an infinitude of solutions 
in every case. But no method has been given either by 
Btahmagupta or by his commentator Prthudakasvami 
to obtain the general solution. 

The above method is reproduced by Bhaskara 11.1 
He has also given the following rule: 

"If a simple unknown be multiplied by the number 
which is the divisor of a square, etc., (on the other side) 
then, in order that its value may in such cases be integral, 
the square, etc., of another unknown should be put 
equal to (the other side). The rest (of the operations) 
will be as described before."2 

,His gloss on this rule runs as follows: 

"In those cases, such as the Square-purveriser, etc., 
where on taking the toot of one side of the equation 
there remains on the other side a simple unknown 
multiplied by the number which was the divisor of the 
square, etc., the square, etc., of another unknown plus 
or minus; an absolute term should be assumed for (the 
value of this other side) in order that its value may 
be fntegral. The rest (of the operations) will be as 
taught before." 

Bhflskara has also quoted from an ancient author the 
foHowing rule: 

"(Find) a number whose square is exactly divisible 
by the divisor, as also its product by twice the square
root of the absolute term. An unknown multiplied by 
that number and superadded by the square-root of the 
absolute term should be assumed (for the unknown on 
the other side). If the absolute term does not yield a 
square-root, then after dividing it by the divisor, the 

1 ViJeinjra, p. Z5jf. 2 RBi, p. 120. 
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lemainder should be increased by so many times the 
divisor as will make a square. If this is not possible, 
then the problem is not soluble."! 

Case i Let c be a square, equal to ~2, say. Then 
we have to ~olve 

bx+ ~2=y2. 

The rule says, find p such that 
p2 = bq, ipf} = br. 

Then assume y = pu + ~ ; 
whence we get x = qu2 + ru. 

Bhiskara II prefers the assumption 

Y= bv+~, 
so that we have x = bv2 + 2.~v. 

Case ii. If c is not a square, suppose c = bm + n. 
Then find s such that 

n + sb = r2. 
Now assume y = bu ± r. 

Substituting this value in the equation bx + c = y2, 
we get 

bx + c = (bu ± r)2 

= b2u2 ± 2,bru + r2, 
or bx + c - r2 = b2u2 ± 2,bru, 

or bx + b(m - s) = b2u2 ± 2,bru. 

x = bu2 ± 2,TU - (m - s). 
Example from Bhaskara II :2 

7x+ 30 =y2. 
On dividing 30 by 7 the .remainder is found to be 

2,; we also know that 2, + 7.2. = 42• Therefore, we 

1 BBi, p. 121. 2 BBi, pp. 120,121. 
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assume in accordance wid, the above rule 

y = 711 ± 4; 
whence we get x = 7U2 ± 8u - 2, 

which is the general solution. 

Cube-pulVeriser. The indeterminate' equation of 
the type 

bx+ C=y3 
is called the ghana-ku//aka or the "Cube-pulveriser."l 
For its solution in integers Bhaskara II says: 

"A method similar to the above may be applied 
also in the case of a cube thus: (find) a number whose 
cube is exactly divisible by the divisor, as also its product 
by thrice'the cube-root of the absolute term. An un
known multiplied by that number and superadded by 
the cube-root of the absolute term should be assumed. 
If there be no cube-root of the absolute term, then after 
dividing it by the divisor, so many times the divisor 
should be added to the remainder as will make a cube. 
The cube-root of that will be the root of the absolute 
number. If there cannot be found a cube, even by so 
doing, that problem will be insoluble."2 

Case i. Let c = ~3. Then we shall have to find p 
such that 

p3 = hq, 3P~ = hr. 
Now assume y = pv + ~. 
Substituting in the equation bx + ~3 = .y3 we get 

bx + ~3 = (pv + ~)3 

or 
. . . 

1 BBi, p. 12.2.. 

= p3V3 + 3PV~(PV + ~) + 133, 
bx = bqv3 + brv(pv + 13). 
x = qv3 + rv(pv + ~) . 

2 BBi, p. 12.1. 
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Or, if we assume y = bv + ~, we shall have 

x = b2v3 + 3~v(bv + ~). 
Case ii. c =1= a cube. Suppose c = bm + n; then 

find s such that 
n + sb =,-3. 

Now assume y = bv + r, whence we get 

x = b2v3 + 3rv(bv + r) - (In - s), 
as the general sclution. 

ExaoJPle from Bhaskara II :1 

5X + 6 =y3. 

Since 6 = 5. I + I and' I + 43.5 = 63, 

we assume y = 5v + 6. 

Therefore x = 2.5V3 + 18v(5V + 6) + 42, 
is the general solution. 

Equation bx ± c = ay2. To solve an equation 
of the type 

try2 = bx ± c, 
B:haskara II says: 

"Where the first side of the equation yields a root 
01~ being multiplied or divided2 (by ,a number), there also 
the divisor will be as stated in the problem but the abso
lute term will be as modified by the operations."3 

1 BBi, p. 122. 

2 The printed text has hitva kfiptd (subtracting or adding). 
Mter collating with several copies Colebrooke accepted the reading 
hawa kfipta (multiplying or adding). But we think that the correct 
reading should be bawa hrtva (multiplying or dividing) For in his 
~loss Bhaskara. II has employed the terms gU!1itQ vibhakto va 
(multiplied or divided). Our emendation is furth~r supported by 
the rationale of the rule. 

a BBi, p. 12. I. 
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\VIlat is implied is this: Multiplying both sided of 
the given equation by a, we get 

a~2 = abx ± ac, 
Put tl = ay, v = ax. "Then the equation reduces' to 

tl2 = bv ± ac, 
which can be solved in the way described before. 

We take the following illustrative example with its 
solution from Bhaskara II :1 

U 2 + 3 = I6x. 
:Multiplying by h and putting U= 5Y, v= 5X, we get 

u2 = I6v - 15. 
The solution of this is 

u = 2w ± I, 

V= 4W2 ± w+ I. 

Therefore, we ha ve 
(I) 5Y = 8w + I, 

or (2) 5Y = 8w - I. 

Now, solving by the method of the pulveriser, we get 
the solution of (I) as 

y = 8/+ 5, 

w = Sl + 3 ; 
and that of (2) as 

y = 81 + 3, 
w = 51+ z; 

where 1 is any rational number. 

Equation bx ± c = ayn After describing the 
above methods Bhaskara II observes, ityagrc'piyqjyamiti 
lC.fa/J or "the same method can be applied further on 

I1JBi, p. 121. 
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(i.e., to the cases of higher powers) "I Again at the end 
of the lsection he has added evam buddbimadbbiranyadapi 

),atbdsambbavam yojyal!1, ie, "similar devices should be 
applied by the intelligent to further cases as far as 
pract1cable."2 What is implied is as follows: 

xn ± C 
(1) To solve b = y. 

Put x = mz ± k. Then 

xn ± C 1 { II(n - 1) 
-b-~ = b m"Zn ± nmn-1Zn-1k + 2 mn-2Zn-2k2± 

... + nmz (± k),,-l + (± k)" ± c} 
= ~ {mnz,. ± nmn-1Zn-1k + '" + mnz (± k)n-l} 

+ (±)n (kn t c) 

Now, if 
kn± c 

b = a whole number, 

xn±c 
b will be an integral number when (I) m = b or 

(z) b is a factor of m'a, nmn- 1 k, etc. Or, in other words, 
knowing one jntegral solution of (I) an infinite number 
of others can be derived. . 

(2) To solve 
ax'll. ± c 

b =y. 

:Multiplying by an-I, we get 

a"xn ± can- 1 
_ ___;~ __ = yan - 1 . 

1 BEi, p. I2I. 

17 

b 

2 DEi, p. 122. 
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Putting u = ax, V = yan-I, we have 

un ± can - l 

b = V, 

which is similar to case (I). 

Z4. DOUBLE EQUATIONS OF THE FIRST DEGREE 

The earliest instance of the solution of the simulta
neous indeterminate quadra'tic equation of the type 

x±a=u2
,} 

x ± b = v2, 

is found in the Bakhshali treatise. The portion of the 
manuscript containing the rule is mutilated. The 
example given in illustration can, however, be restored 
as follows: 

"A certain number being aaded by five {becomes 
capable of yielding a square-root}; the same number 
{being diminished by} seven becomes capable of 
yielding a square-root. What is that number is the 
question."l 

That is to say, we have to solve 

.Vx+ 5 =u, VX-7=V. 

The solution given is as follows: 

"The sum of the additive and subtractive is I 121 ; 
its half I 6 I ; minus two 14 I ; its half is 12. I ; squarcci14I. 
'Shouldbe increased by the subtractive'; {the subtrac
tive is} 171; adding this we get I II I. This is the 
number (required)." --

From this it is clear that the author gives the 

1 EMs, Folio 59, recto. 
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solution of the equations 

x + a = 112, X - b = V2 ; 

as 

where m is any integer.l 

Brahmagupta (628) gives the solution of the general 
case. He says: 

"The difference of the two numbers by the addition 
or subtraction of which another number becomes a 
square, is divided by an optional number and then 
increased or decreased by it. The square of half the 
result diminished or increased by the greater or smaller 
(of the given numbers) is the number (required)."2 

i.e., x= {!Ca 
III b±JlI)}2:fa, 

, b ) 2 • 

or x= {!(a m =Fill); =Fb, 

where 111 is an arbitrary integer. 
The rationale is very simple. Since 

we have 
Therefore 

,,2 = X ± a, v2 = x ± b, 
,,2 - v2 = ± a =f b.' 
/1- V = 111, 

/I + V = ± a + b" 
111 ' 

and 

where 111 is arbitrary. Hence 

II = k( ± ~/I+ b + Ill) = ± ~- (a 111 b ± 1JI). 

1 In the above solution 1JJ is taken to be 2. 

2 BrSpSi, xviii, 74. 
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Since it is obviously immaterial whether U is 
taken as positive or negative, we have 

a-b u= ~(-m±m). 

Similarly (
a- b ) 

v = ~ -----", =F m . 

Therefore x = { ~ (a m b ± ~) r =F a, 

or x = {~(a m b =F m) r =F b, 

where m is an arbitrary number. 
Brahmagupta gives another rule for the particular 

case: 
x + a = u2, 

x- b= v2• 

"The sum of the two numbers the addition and 
subtraction of which make another number (severally) 
a square, is divided by an optional number and then 
diminished by that optional number. The square of 
half the remainder increased by the subtractive number 
is the number (required)."l . 

i.e., x = {~(a! b - m) r + b. 

NarayaI).a (1357) says: 
"The sum of the two numbers by which another 

number is (severally) increased and decreased so as to 
make it a square is divided by an optional number and 
then diminished by it and halved; the square of the 
result added with the subtrahend is the other number."2 
He further states: 

1 BrSpSi, xviii. 73. 2 GK, i. ~1. 
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"The difference of the two numbers by which 
another number is incteased twice so as to make it 
a square (every time), is increased by unity and then 
halved. The square of the result diminished by the 
greater number is the other number."l 

J.e., x == (a - b + 1/_ a 
2. 

is a solution of 
x + a = 1/

2, X + b = v2, a > b. 
"The' difference of the two numbers by which 

another number is diminished twice so as to make it a 
square (every time), is decreased by unity and then 
halved. The result multiplied by itself and added with 
the greater number gives the other."2 

I.e., 

is a solution of 

(
a- b- 1)2 

X= -,---- +a 
2. 

x - a = 112, X - b = v2, a > b. 
The general case 

ax + c = 1/
2
,} 

bx + d = v2, ' (I) 

has been treated by Bhaskara II. He first lays down the 
rule: 

"In those cases where remains the (simple) unknown 
with an absolute number, there find it~ value by forming 
an equ:;t.tion with the square, etc., of another unknown 
plus an absolute number. Then proceed to the solution 
of the next equation comprising the simple unknown 
with an absolute number by substituting in it the root 
obtained before."3 

1 GK, i. 53. 2 GK, i. 54. 
3 BBi, pp. I 17-8. 



2.62 ALGEBRA 

He then proceeds to explain it further: 

"In those cases where on taking the square-root of 
the first side, there remains on the other side the (simple) 
unknown with ot without an absolute number, find there 
the value of that unknown by forming an equation with 
the square of another unknown plus an absolute number. 
Having obtained the value of the unknown in this way 
and substituting that value (in the next equation) further 
operations should be proceeded with. If, however, on 
equating the root of the first with another ~nknown 
plus an absolute number, no further operations remain 
to be done, then the equation has to be made with the 
square, etc., of a known number." 

(i) Set u = IJJW + a; then substituting in the first 
equation, we get 

1 
x = - (1l12w2 + 2lJ,wa + a 2 - c). 

a 
Substituting this value of x in the next equation, we have 

b 
-i{1JJ2W2 + 21lJwa + a 2 - c) + d = 1)2, (1.1) 

which can be solved by thl,; method of the Square-nature. 

(ii) In the course of working out an examplel 

Bhaskara II is found to have followed also a different 
.procedure, which was subsequently adopted by Lag
range.2 

Eliminate x between the two equations. Then 

bu2 + (ad - be) = av2, 

or abu2 + k = w2, (1.2.) 

where W = av, k = a2d - abc. 

1 Vide infra, p. 265. 
a Addition to Euler's Algebra, p. j47. 



DOUBLE EQUATIONS OF FIRST DEGREE z63 

If Ii = 1', W = s be a solution of this transformed 
equation, another solution of it will be 

u = rq ±ps, 
w = qs ± abrp; 

where abp2 + I = q2. Therefore, the general solution 
of (1) is 

x = ~ (rq ± pS)2 - :' 

u = rq ±ps, 
I 

v = -(qs ± abrp) ; 
a 

where 'abp2 + I = q2 and abr2 + a2d - abc = S2. 
Now, a rational solution of the equation 

abp2 + 1 = q2 is 
zt t 2 + ab 

p = t 2 - ab' q = t'" - ab' 

where t is any rational number. Therefore, the above 
general solution becomes 

x = aCt:!. ~ ab)2{ r(/2 + ab) ± 2.st } 2...:... ~, 

II = (t:!. ~ ab) { '.(/2 + ab) ± ut }, (1.3) 

v = a(t'" ~ ab) {' s(t2 + ab) ±,2abrt } > 

where abr2 + a2d - abc = S2. 

(iii) Suppose c and d to be squares, so that c = a2, 

d = ~2. Then we shall have to solve 

ax+ a 2 = u2, 

bx+ ~2 ='V2. 
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The auxiliary equation abr2 + a2d - abc = S2 in this 
case becomes 

abr2 + (a2~2 - aba2) = S2. 

The same equation is obtained by proceeding as in 
case (i) with the assumption v = I?Y + 13. 

An obvious solution of it is r = a, S = atJ. Hence 
in this case the general solution (1.3) becomes 

x = a(t~ ~ ab)2{ a(t2 + ab) ± zatJt } 2 _ :2, 
11== (t~ ~ ab) {a(t2 + ab) ± 2.I1j3t}, 

v = (t2 ~ ab) {~(t2 + ab) ± 2.bat}, 

where t is any rational number. 
Putting a = ~ = I, t = a, and taking the positIve 

sign only, we get a particular solution of the equations 

ax + I = 1I2} 
bx + I = v2 

as 

x= S(a + b) 3a + b 
(a - b)2' II = a - b' 

a+ 3b 
V= . 

a-b 

This solution has been stated by Brahmagupta (628): 

"The sum of the multipliers multiplied by 8 and 
divided by the square of the difference of the multipliers 
is the (unknown) number. Thrice the two multipliers 
increased by the alternate multiplier and divided by 
their difference will be the two roots."! 

It has been described partly by Naraya1).a (1357) 
thus: 

1 BrSpSi, xviii. 71 , 
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"The two numbers by which another number is 
multiplied at two places so as to make it (at every place), 
together with unity, a square, their sum multiplied 
by 8 and divided by the square of their difference is 

\. the other number."1 
We take an illustrative example with its solution 

from Bhaskara II : 
"If thou be expert in the method of the elimination 

of the middle term, tell the number which being severally 
ml.lltiplied by 3 and 5, and then added with unity, be
comes a square."2 

That is to say, we have to solve 
• 

3X + 1 = U2
,} 

5"" + I = v2
• 

Bhaskara II solves these equations substantially as 
follows: ' 

(1) Set II = 3Y + I ; then from the first equation, 
x = 3y2 + zy. 

~ubstituting this value in the other equation, we get 

lU2 + I~ + I = v2
, 

or (I5Y + 5)2 = 15V2 + 1'0. 

By the method of the Square-nature we have the solu
tions of this equation as 

V= 9 } 
I5Y + 5 = 35 ' 

v = 71 } 
I5Y + 5 = 2.75 . '" 

Therefore y = 2., 18, 
f{ence x = 16, 1008, ... 

(2) Or assume the unknown number to be 
x = :l(u2 - I), 

IGK,i. ~I. 2 BBi, p. 118. 
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so that the first condition of the problem (i.e., the first 
equation) is identically statisfied. Then by the second 
condition 

%(u2 - I) + I = v2, 

or (5U)2 = I 5v2 + 10. 

Now, by the method of the Square-nature, we get the 
values of (II, v) as (7,9), (55, 71), etc. Therefore, the 
values of x are, as before, 16, 1008, etc. 

The following example is by Naraya1.la : 

"0 expert in the art of the Square-nature, tell me 
the number which being severally multiplied by 4 and 7 
and decreased by 3, becomes capable of yielding a square
root."l 

That is, solve: 
AX - 3 = U

2
,} 

7X - 3 = v2• 

Naraya1.la says: "By the method indicated before the 
number is I, 2.1, or 1057." 

25. DOUBLE EQUATIONS OF THE SECOND DEGREE 

First Type. The double equations of the second 
degree considered by the Hindus are of two general 
types. The first of them is 

ax2 + lry2 + c = U
2
,} 

a'x2 + b'y2 + c' = v2. 
Of these the more thoroughly treated particular cases 
are as follows: 

{
X2 +y2 + I = u2, 

Case i. x 2 _ y2 + I = v2 ; 

1 GK, p. 40 • 
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.. {X2 + )'2 - I = u2) Case It. 2 - 2 2 
x-y-I=V. 

It should be noted that though the earliest treat
ment of these equations is now found in the algebra of 
Bhaskara II (1150), they have been admitted by him 
as ,being due to previous authors (dtiyoddharapaf!l). 

For the solution of (i) Bhaskara II assumesl 

x 2 = 5Z2 
- I, y2 = 4z2, 

so that both the equations ate satisfied. Now, by the 
method of the Square-nature, the solutions of the equa
tion 5Z2 

- 1 = x 2 are (1, 2), (17, 38), ... Therefore, the 
solutions of (i) are 

X=2! X=3 8}, ... 
y = 2. r' y = 34 

Similarly, for the solution of (ii), he assumes 

x 2 = 5 Z2 + I, y2 = 4Z2, 

which satisfy the equations. By the method of the 
~quate-nature the values of (Z, x) in the equation 
5Z2 + I = x 2 are (4, 9), (72., 161), etc. Hence ,the 
solutions of (ii) are 

X=9J 
y = 8 ' 

. 
x = 16I}, ... 
Y= 144 

Bhaskara II further says that for the solution of 
equations of the forms (i) and (ii) a more general as
sumption will be 

x 2 = PZ2 =F I, Y 2 = m2z2 ; 

wbere p, m are such that 

p ± 1JJ2 = a square, 

1 BB;, p. r08. 
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the upper sign being taken for Case i and the lower sign 
for Case ii. Both the equations are then identically 
satisfied. Suppose 

p + m2 = S2, 

P _ m2 = f2. 

\Vhence 
2m2 

S=!(n + n), 

(
2m2 ) 

t= k n - n , 

where n is any rational number. Therefore 
4 . 

p= i(~ + n2). 
n 

Here he observes that m2 should be so chosen that p 
will be an integer. 

Hence x 2 = t( ~4 + n2 )Z2 -t- I, } (I) 

y2 = m2z2; 
the upper sign being taken for Case i and the lower sign 
for Case ii. 

II: 

Whence u = ! (2m2 + n ) Z, 
n 

(
21n2 

v= ~ - - I1)Z. 
n . 

Or, we may proceed in a different way, says Bhaskara 

Since 
(P2 + q2) ± 2.pq 

is always a square, we may assume 
x 2 = (P2 + q2)11.J2 =f I, 
y2 = 2PqW2. 
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For a rational value of y, 2.pq must be a square. So 
we take 

p = 2m2, q= n2. 

Hence we have the assumption 

x 2 = (41114 + n4)w2 =t= I, } 
y2 = 4m2n2w2; • (z) 

the upper sign being taken for Case i and the lower 
sign for Case ii. 

Whence 
JI = (2m2 + n2)w, 
V = (2m2 - n2)w. 

It will be noticed that the equations (I) follow from 
(2) on putting w = ·zf 2n. So we shall take the latter as 
our fundamental assumption for the solution of the 
equations (i) and (ii). Then, from the solutions of the 
subsidiary equations "" 

(4m4 + n4)W2 =t= I = X2, 
by the method of the Square-nature, observes Bhaskara 
II, an infinite number of integral solutions of the 
original equations can be derived.1 

is 

Now, one rational solution of 
(4Jn4 + n4)W2 + I = x 2 

2r 
w=-;------:-:---

(4"1'1 + n'1) - r:f.' 

x = (4m4 + n4) + r2 
(4"1'i --t- n·') - r"l.· 

Therefore, we have the general solution of 

x 2 + y2 - I = V2} 
x 2 - y2 _ I = 112 

1 Ct. BBi,_p. I 10. . 
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as 

where m, n, r are rational numbers. 

For r = sit, we get Genocchi's solution.! 

In particular, put m = 21, n = I, r = 8/2 - I In 

(A). Then, we get the solution 

( 
S/2 - I) 2 64t4 - I 

X = ~ 2.1 + I, 11 = 8/2 

8t2 - I 
Y=---2t 

v . ~i ( 8t2 
- I) 2 

- 2t 

Putting m = t, n = I, r = 2/2 + 2/ + I in (A), we 
have2 

I 
x=l+ -, 

2.1 

y = I, 

11=1+_1, } 2.t 

I 
V = /- --. 

2.t 

(b) 

Again, if we put nJ = t, 11 = I, r = 2/2 in (A), 
we get 

x = 8/4 + I, 

Y = 8t3, 

1I=4t2(2t2+ I),} 
1) = 4t2(2/2 - I). (c) 

These three solutions have been stated by Bhaskara 
II in his treatise on arithmetic. He says, 

1 Nouv. Ann. Math., X, 1851, pp. 80-85; also Dickson, 
Nllmberf) II, pp. 479. For a summary of important Hindu results 
in algebra see the article of A. N. Singh in the Archeon, I936. 

2 Here, and also in (c), we have overlooked the negative sign 
of x,y, II and v. 
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"The square of an optional number is multiplied 
by 8, decreased by unity, halved and then divided by that 
optional number. The quotient is one number. Half 
its square plus unity is the other number. Again, unity 
divided by twice an optional number added with that 
optional number is the first number and unity is the 
second number. The sum and" difference of the squares 
of these two numbers minus unity will be (severally) 
squares."! • 

"The biquadrate and the cube of an optional number 
is multiplied by 8, and the former product is again in
creased by unity. The results will be the two numbers 
(required)."2 

Narayat).a writes: 

"The cube of any optional number is the first 
number; half the square of its square plus unity is the 
second. The sum and difference of the squares of these 
two numbers minus unity become squares."3 

That is, if m be an optional numbc;r, one solution 
of (ii), according to Naraya1,la, is 

m4 
X=-- + I, 

.2. 

m2 
II = (m2 + 2)-, 

2 

m2 
v= (m 2 - 2)-. 

2 

It will be noticed that this solution follows easily 
from the solution (c) of Bhaskara II, on putting t = 111/2. 
This special solution was found later on by E. Clere 
( 18 50).4 

1 L, p. 13. 2L, p. 14. 
3 GK, i. 46. 
'Nollv. Ann. Math., IX, 1850, pp. II6-8; also Dickson, 

Nllmbers, II, p. 479; Singh, 1. c. 
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Now, let us take into consideration the equation 
(4m4 + ttI)W2 - I = x 2. 

Its solutions are known to be 

w=~ } w=~} n 2m ' 

x = 2":,2' X = n
2

2 , n 2m 

From these, by the Principle of Composition, we 
get respectively two other solutions 

J21 = 16m
4 + ttl . } w = m4 + ttl .} 
n6 2m6 

x = 32/n6 +, 6m2n4' x = n6 + 3n~m4 
n6 21n6 

Therefore, the general solutions of 

are 

x 2 + y2 + I = 11
2

, } 

X - y2 + I = v2 ; 

2m2 
x=~, n 

2m 
y=1i' 

2m2 - n 2 
V=--n'it. 

I 
X = Izti(3 zm6 + 6m2n4), 

zm 
Y = -5 (I6m4 + n4), 

c n 
I 

11 = If>(I6m4 + n4)(zm2 + n2), 

} (a') 

(a") 
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n2 2m2 + n2 

} 
x-- U= - 2m2' 2m2 

, 

n 2m2 - n2 
(b') 

Y= Iii' V= 
2m'" 

, 

and 

(b") 

Putting n = I in (a') and (a"), we have the in
tegral solutions 

and 

and 

x = 2m2, 

Y= 2m, 
\ /I = 2m2 + I, } 

t' = 2m2 - 1 ; 

x = 2m4(r6m2 + 3), ) 
.J = 2.m(16m4 + I), 
U = (r6m4 + 1)(2.11/2 + I), 
V = (16m4 + 1)(2.7n2 - I). 

(a". I) 

Similarly, if we put m = I in (b') and (b"), we get 

x = _~n2, u =! (n2 + 2),} (li. r) 
Y = 11, V = ~ (n2 - 2); 

x = ~1J2(n4 + 3), U = ~(n4 + I) (n2 + 2),} (b" ) 
y=n(n4+ I), v=-Hn4+ 1)(n2 - 2). .1 

1 This solution was given by Drummond (A mer. Math. 
Mon., IX, 1902., p. 2.32)' 

18 



274 ALGEBRA 

The solution (b'. I) is stated by Naraya1).a thus: 

"Any optional number is the first and half its square 
is the second. The sum and difference of the squares 
of these two numbers with unity become capable of 
yielding a square-root."l 

Case iii. "Form 
ax2 + 0'2 = U

2
,} 

a'x2 + b'..>2 + c' = v2• 

For the solution of double equations of this form 
Bhaskara II adopts the following method: 

The solution of the first equation is x = "D', 
U = '!Y; where 

a!1I2 + b = n 2, 

Substituting in the second equation, we get 

(a'1JI2 + b')y2 + c' = v2, 

which can be solved by the method of the Square
nature. 

Example from Bhaskara II :2 

7x2 + ~2 = tl2} 
7X2 - 8y 2 + I = v2 • 

He solves it substantially as follows: 
In the first equation suppose x = zy; then 11 = 0'. 

Putting x = 2)', the second equation becomes 
20'2 + I = v2

• 

By the method of the Square-nature the values of y 
satisfying this equation are 2., 36, etc. , Hence the solu
tions of the given double equation are 

1 GX, i. 45. 

x = 4,.72, ... 
Y = 2, 36, ... 

2 BBi, p. 119, 
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Case iv. Form 

a(x2 ±y2) + c = 112,} 
a'(x2 ±y2) + c' = v2. 

Putting x 2 ±y2 = Z Bhaskara II reduces the above 
equations to 

az+c =1I
2
,} 

a'z + c' = V.2; 
the method for the 
before. 

solution of which has been given 

Example with solution from Bhaskara II :1 

Set 

2(x2 - y2) + 3 = 112} 
3(x2 - y2) + 3 = v2 • 

x 2 - y2 = Z ; then 

2Z + 3 = 112, 
3Z + 3 = v2

• 

Eliminating Z we get 

or 
Whence 

Therefore 
Hence 

3112 = 2V2 + 3, 

(311)2 = 6v2 + 9. 
v = 6, 60, ... 

311 = 15, 147, ... 

II = 5, 49, ... 
x 2 - y2 = Z = II, II99, ... 

Therefore, the required solutions are 

x = ~( ;,; + "I) }, 
I ( 11 ) Y="2" OJ -"I 

x = ! ( 1 :';9 + OJ) } 
" , 

y = ! ( 1::9 _ m) . 

where OJ is an arbitrary rational number. 

1 BBi, p. 119. 
I 
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For m = I, the values of (x,y) will be (6, 5), 
(600, 599), ... 

For m = II, we get the solution (60,49), ... 
Case v. For the solution of the double equation of 

the general form 
ax2 + by2 + c = U

2
} 

a'x2 + b'y2 + c' = v2 

Bhaskara II's hint1 is: Find the values of x, U in the 
first equation in terms ofy, and then substitute that value 
of x in the second equation so that it will be reduced to 
a Square-nature. He has, however, not given any 
illustrative example of this kind. , 

Second Type. Another type of double equation 
of the second degree which has been treated is 

a2x 2 + bxy + 0'2 = 1I
2
,} 

a'x2 + h'."".) + cy2 + d' = v2. 
The solution of the first equation has been given 

before to be 

x '2 {J:(c- !!._) - A } - '?y, 
za A ¥2 za2 

11 = :! {-i2 

( C - :2) + I. }, 

where J. is an arbitrary rational number. Putting}.. =y, 
we have 

y ( /;2 ) by 
x = ~a c- 4a2 - I - za2 = uy, 

, y /;2 
11 = ~ ( c - 4a2 -:- I ); 

where 
I /;2 b 

u= za(C- 4(/2- 1)- 2(12' 

1 Vide supra, pp. 190£ .. 
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Substituting in the second equation, we get 

(a'a2 + b'«r+ C)_T + d' = 1)2, 

which can be solved by the methocLof the Square-nature. 
This method is equally applicable if the unknown part in 
the second equation is of a different kind but still of 
the second degree. 

Bhaskara II gives the following illustrative example 
together with its solution :1 . 

x 2+xy+y2' U2}. 
(x + y)u + I = v2 

Multiplying the first equation by 36, we get 

(6x + 3y)2 + 27y2 = 36u2. 

Whence 6x + 3Y = ~(2.7{2 - A), 
2 

6u = ! ( 2. 7-;: + A), 

where}.. is an arbitrary rational number. Taking A = Y, 
~h~ ~ 

6X+3Y=I3Y, 

or x = iY, 
and U= -lye 

Substituting in the second equation, we get 

56y 2 + 9 = 9V2 • 

By the method of the Square-nature the values of y 
are 6, 180, ... 

Hence the required values of (x,y) are (10, 6), 
(300, 180), ... 

1 BBi, pp. I07f. 
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26. DOUBLE EQUATIONS OF HIGHER DEGREES 

There are a few problems which involve double 
equations of degr~es higher than the second. The 
following examples are taken from Bhaskara II : 

Example I. "The sum of the cubes (of two 
numbers) is a square and the sum of their squares is a 
cube. If you know them, then I shall admit that you 
are a great algebraist."l 

We have to solve the equations 

x 2 + y2 = U3,} 
)1,..3 + r = v2• 

The solution of this problem by Bhaskara II is as 
follows: 

"Here suppose the two numbers to be Z2,2Z2• 

The sum of their cubes is 9Z6• This is by itself a square 
and its square-root is 3Z3• 

"Now the sum of the squares of those two numbers 
is 5Z4• This must be a cube. Assuming it to be equal 
tef the cube of an optional multiple of 5Z and removing 
the factor Z3 from both sides (we get Z = 2.5P3, where 
p is an optional number); so, as stated before, the 
numbers are (putting p = I) 625, 1250. The assump
tion should be always such as ,,,ill make it possible to 
remove (the cube of) the unknown."2 

In general, assume x = !lIZ2, Y = l1Z2 ; substituting 
in the second equation, we have 

x 3 + y3 = (1113 + n3)z6 = v2. 

If . 1J13 + 123 = a square = p2, say, 

then v = PZ3. 

1 BB;, p. 56. 2 BBi, pp. 56f. 
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Now, from the Erst equation, we have 

(m2 + n2
)z4 = u3• 

Assume u = rz ; then 

Hence we get 
mr6 tJr6 

x = (m2 + n2)2' .J = (m2 + n2)2; 

where r is any integer and m, n are such that' 

m3 + n3 = a square. 

One obvious solution! of this equation is m = I, n = 2., 

Hence we get the solution 
r6 2.r6 

x="25' Y=25' 
This particular solution has been given by NiiriyaJ,la, 

who says: ". 
"The square of the cube of an optional number is 

the one and twice it is the 'other. These divided by 2. 5 
will be the two numbers, the sum of whose squares will 

1 Now m3 + 113 can be made a square by putting 
m = (ps + q'3)P, n = (pS + tf)q, 

so that m3 + n3 = (p3 + q3)4. 
Hence the solution of our equation will be 

pr6 
x = (p2 + q2)2 (p8 + qB)3' 

_ qr6 
Y - (p2 + q2)2(p8 + qB)3' 

Putting r = (p2 + q2)(p3 + tf)s, we have the solution in 
positive integers as 

x 1.. p(p2 + q2)4(pS + t/)3 S6, 
Y = q(p2 + q2)4(P3 + qB)8 s6; 

where p, q, s are any integral numbers. 
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be a cube and the sum ?f whose cubes will be a square."! 
He then ad~s by way of illustration: 

"With the optional number I, we get the tW0 
numbers (1/25, 2/25); with 2, (64/25, 128/25); with 5, 
(625, 1250); with 1/2, (1/1600, 1/800); with 1/3, 
(1/18225,2/18225). Thus by virtue of (the multiplicity 
of) the optional number many solutions can be found." 

Example 2. "0 most learned algebraist, tell me 
those various pairs of whole numbers whose difference 
is a square and the sum of whose squares is a cube."2 

That is to say, solve in positive integers 

y - x = ,,2 } 

y2 + x 2 = 1)~. 
Bha.skara II's process of solving this problem is as 

follows: 
"Let the two numbers be x, y. Putting their differ

ence, y - x, equal to u2, we get the value of x as 
y --,-- u2• Having thus found the value of x, the two 
llurnbers _ become .J - u2, y. 

"The sum of their squares = 2y2 - ~U2 + 114. This 
is a cube. Making it equal to u6 and transposing \ve get 

ut!, - u4 = .y2 - 2Y1I2• 

Multiplying both sides by 2 and superadding 114, we get 
the square-root of the second side = 2)' - 112, and the 
first side = 2.U6 - u4• Dividing out by 114 (and putting 
w for 2)' /u2- I), we get 

2.U2 - 1= w2• 

By the method of the Square-nature the roots of this 
equation are 

1 GK, i. SO. 

II = 5, 2.9" I ••• 

l1J = 7, 41, 

2 BBi, p. 103. 
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"Then by the rule, 'Or, if a biquadratic factor has 
been removed, the greater root should be multiplied by 
the square of the lesser root,'l we get 

~- 25 = 175, 

or 2y - 841 = 34481. 

Therefore y = 100, I 766 ~, .,. 

"Finding the respective values of the numbers, they 
are (75, 100), (r6820, 1766r), etc." 

Exalllple ,. "Bring out quickly those two numbers 
of Wllich the sum of the cube (of one) and the square 
(of the other) becomes a square and whose sum also is a 
square."2 

That is to say, solve 

{

:\--3 + y2 = 112, (r) 
x + y = v2• (2) 

This pro blem has been solved by Bhaskara II in 
two ways, which are substantially as follows: 

First 11Iethod. From (I) we get 

x 3 x 3 

U = !( T + A), Y = i( T - ]. ), 

where A is an ~rbitrary n~mber. Putting A = x, we get 

u = }(x2 + x), y = !(~"_.2 - x). 

Substituting this value of y in (2), we get 

x 2 + X = 2V2, 

or (2X + 1)2 = 8v2 + 1. 

1 The reference is to the rule on p. 249. 
2 BBi, p. 107. 
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By the method of the Square-nature we have 

v=6} V=35} 
2.X + I = 17' 2X + I = 99 , ... 

Whence the values of (x,y) are (8, 28), (49, 1176), ... 

Second Method. Assume x = 2W2, Y = 7W2. Then 

x + y = 9W2 = (3W)2. 

SO the equation (2) is satisfied. Now, substituting 
those values in (I) we get 

8w6 + 49w4 = 11
2

, 

or ?J14(8.w2 + 49) = /J
2• 

If 8w2 + 49 = Z2, 

then 1J = zw2• 

Now the values of w making 8w2 + 49 a square 
are 2, 3, 7... Hence the required numbers (x,]) are 
(8, 28), (18, 63), (9 8, 343), ... 

Example 4. "What is that number which multiplied 
by threx and added with unity becomes a cube; the 
cube-root squared and multiplied by three becomes, 
together with unity, a square."! 

That is to say, solve 

{
3X + I = W, 
3112 + I = v2• 

It has been solved by Bhaskara II thus : 

(I) 
(2) 

From (2), by the method of the Square-nature, we 
get the values of (If, v) as (I, 2), (4, 7), (15, 26), ... 
Whence the values of x are 21, 3374/3, ... 

1 BBi, p. 119. This problem is admittedly taken by Bhaskara 
II from an earlier writer. 
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Alternatively! we assume 11 = 3Y + 1; then from 
the equation (1) we get 

x = 3Y(3Y2 + 3Y + I). 
Also from (2) we have 

27y2 + I ~ + 4 = V
2 

= (my - 2.)2, say. 

Hence y = I~J'+ 4171. 
• 1/Iw - 2.7 

Therefore, the required value of x is 

x = ( I ~ + 4171) 3 + ( I 8 + 41/l) 2 +- ( 1 ~ + 41"), 
9 ?lJ2 - 27 9 1Jj2 _ 27 3 Jlj2 - 27 

where III is a rational number greater than 5. 
The first of the previous solutions is given by 'II = 9. 
Double Equations in Several Unknowns. To 

solve a double equation involving several unknowns, 
Bhaskara II gives the following hints: 

"When there are square and other powers of three 
or more unknowns, leaving out any two unknowns at 
pleasure, the values of others should be arbitrarily as
sumed and the roots investigated."2 

For the case of a single equation, he says: 
"But when there is only one equation, the roots 

should be determined as before after assuming optional 
values for all the unknowns except one." 

27. MULTIPLE EQUATIONS 

There are some very elegant problems in which 
three or more functions, linear or quadratic, of the un
knowns have to be made squares or cubes. The 

1 See BBi, p. 121. 2 BBi, p. 106. 
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following example occurs in the Lagbu-Bbaskartya of 
Bhaskara 11 (5.2..2.) : 

Example I. To find two numbers x andy such that 
the expressions x + y, x - y, xy + I are each a perfect 
square. 

Brahmagupta gives the following solution: 

"A square is increased and diminished by another. 
The sum of the results is divided, by the square of half 
their difference. Those results multiplied (severally) 
by this quotient give the numbers whose sum and 
difference are squares as also their product together 
with unity."2 . 

Thus the solution is : 

x = P(m2 + n2), 
y = P(m2 _ n2), 

(m2 + n2) + (m2 - n2) where P = m, n being 
[!{(m2 + n2) _ (m2 _ n2)}]2' 

any rational numbers. 

Naraya.ga (1357) says: 

"The square of the square of an optional number js 
set down a t two places. It is decreased by the square 
(at one place!) and increased (at another), and then 
'doubled. The sum and difference of the results are 
squares and so also their product together with unity."3 

That is, x = .2.(P4 +- p2), 

Y = .2.(p4 _ p2), 

where p is any rational number. 

1 LBb, viii. 17. 
a GK. i. 47. 

2 BrSpSi, xviii. 72 • 
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The rationale of this solution is as follows: 
Suppose 

x = .2z2(m2 + n2), y = 2z2(m2 - n2), 
so that x ±y are a.lready squares. We have, therefore, 
only to make 

. .:ry + I = 4Z4(m2 + n2)(m2 - n2) + I = ~ square. 
Now 

4z4(m4 - n4) + I = (2Z2J1J2 - 1)2 + 4z2(m2 - Z2n4). 
Hence, in order that xy + I may be a square, one 
sufficient condition is 

m2 = Z2n4. 

Therefore 2. 2 = 2m2 = (1112 + n2
) + (m2 - n2

) 

Z n4 [H(m2 + n2) - (m'" - n2)}]2' 

Again x = 2z2(m2 + n2) = 2(z4n4 + Z2n2), 

or x = 2.(p4 + p2), if P = zn. 
Therefore y = :i.(P4 _ p2). 

Example 2. "If thou be expert in mathematics, 
tell me quickly those two numbers whose sum and 
difference are squares and whose product is a cube."l 

That is, solve 
x ±y = squares,} 

xy = a cube. 
Bhaskara II says: 
"Here let the two numbers be 5Z2, 4Z2• They are 

asstlmed sllch as lvillllJake their SII1l1 and diJJerence both sqllares. 
Their product is 20z4. This must be a cube. Putting 
it equal to the cube of an optional multiple2 of IOZ and 
removing the common factor Z3 from the sides as before, 
(we shall ultimately find) the numbers to be 10000, 

12 500." 

1 BBi, p. 56. 2 G.K, i. 49. 



.z86 ALGEBRA 

In general, let us assume, as directed by Bhaskara II, 

x = (m2 + n2)z2, y = 2.mnz2, 

which will make x ±y squares. We have, therefore, 
only to make 

Let 

Then 

Therefore 

2.mn(m2 + n2)z4 = a cube. 
2.mn(m2 + n2)z4 = p3Z3. 

p3 
z = 2.mn(m2 + n2)· 

(m2 + n2)p6 
x= ~~~--~~ 

{2mn(m2 + n2)} 2' 
_ 2.mnp6 

y - {2mn(m2 + n2)}2' 

where m, n,p are arbitrary. 
This general solution has been explicitly stated by 

Nadyar;ta thus : 
,"The square of the cube of an optional number is 

divided by the square of the product of the two numbers 
stated above and then .severally multiplied by those 
numbers. (Thus will be obtained) two numbers whose 
sum and difference are squares and whose product is a 
cube."l 

The two numbers stated above2 are m2 + n2 and 
2.mn whose sum and difference are squares. 

In particular, putting m = 1, n = 2., P = 10, Nara~ 
yar;ta finds x = 12.500, Y = 10000. With other values 
of m,' n, p he obtains the values (3165/16, 625/4), 
(62.5 00 / 117, 25 0000/507), (15 62. 5/1872., 15 62 5/2.02.8).; 
and observes: "thus by virtue of (the multiplicity of) 
the optional numbers many values can be found." 

1 GK, i. 49. 2 The reference is to rule i. lJ8. 
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Example 3. To find numbers such that each of 
them severally added to a given number becomes a 
square; and so also the product of every contiguous 
pair increased by another given number. 

For instance, let it be required to find jotfr numbers 
such that 

x+ a =p2, 
y + a = q2, 
Z + a = r2, 
lV + a = J2, 

xy + 13 = ~2, 

J'Z + 13 = 11 2
, 

zw + 13 = ~2. 

The method for the solution of a problem of this 
kind is indicated in the following rule quoted by Bhaskara 
II (11)0) frolp. an earlier writer, whose name is nOt 
known: 

<CAs many multiple (gtltJa) as the product-interpolator 
(vadha-k...fepa) is of the number-interpolator (rafi-k!epa), 
with the square-root of that as the common difference 
are assumed certain numbers; these squared and dimi
nished by the number-interpolator (severally) will be 
the unknowns."l 

I In applying this method to solve a particular 
problem, to be stated presently, Bhaskara II observes by 
way of explanation: 

"In these cases, that which being added to an 
(unknown) number makes it a square is designated as 
the number-interpolator. The numlier-interpolator 
multiplied by the square of the difference of the square
roots pertaining to the numbers, is equal to the product
interpolator. For the product of those two numbers 
added with the latter certainly becomes a square. The 
products of two and two contiguous of the square
roots pertaining. to the numbers diminished by the 

1 BBi, p. 68. 
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number-interpolator are the square-roots corresponding 
to the products of the numbers. "1 

Since x = p2 - a, y = q2 - a, we get 

xy + ~ = (P2 - a)(q2 - a) + 13 

= (pq_ - a)2 + {13 - a(q - p)2}. 

In order that xy + 13 may be a square, a sufficient 
condition is 

a(q - p)2 = (3, 

or q= p ± VI3/a = p ± y, wbere.y = V(3/a. 
Then xy + (3 = (pq - a)2. 

Hence 1; = pq - a. 

Similarly r = q ± Y, s = r ± y. 

Thus, it is found that the square-roots p, q, r, S 

form an A.P. whose common difference is y (= Yf3/a). 
Further, we have 

x = p2 - a, 

y = (p ± y)2 - a, 

Z = (p ± 2y)2 - a, 

1)/ = (P ± 3 y)2 - a, 

as stated in the rule. 

These values of the unknowns, it will be easily 
found, satisfy all the conditions about their products. 
For 

xy + f3 = {p(p ± y) - a} 2, 

YZ + f3 = {(p ± y)(P ± 2Y) - a}2, 

'ZJV + f3 = {(p + 2Y)(P ± 3Y) - a}2. 

1 BBi, p. 67. 
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; = PCP ± y) - a, 

II = (p ± Y)(P ± 2Y) - a, 

t = (p ± 2 Y) (p ± 3 Y) - a; 
as stated by Bhaskara II. 

It has been observed by him that the above principle 
is weJI known in mathematics. But we do not find it 
in the works anterior to him, which are available to us. 

It is n.oteworthy that<he above principle will hold 
even when all the Ws are not equal. Fo!, suppose 
that in the above instance the second set of conditions 
is replaced by the following: 

xy+ ~l = ~2, 

YZ + ~2 = 112, 

zw+ ~3 = ~2. 

Then, proceeding in the same way, we find that 

q = p ± V~l/a, r = q ± V~2/a, s = r ± Yf3a/a, 
and s = pq - fl., "1 = qr - n, t = rs - a. 

It should also be noted that in order that xy + f3 
or p2q2 - a(p2 + q2) + 0.2 + ~ may be a square, there 
may -be other values of q besides the one specified 
above, namely q = p ± YMa.. We may, indeed, regard 

p2q2 _ a(p2 + q~ + 0.2 + 13 = ~ 2 

as an indeterminate equation in q. Since we know one 
solution of ii, namely q = p ± y, ; = PCP ± y) - a, 
we can find an infinite number of other solutions by the 
method of the Square-nature. 

Now, suppose that anot:qer condition is imposed on 
the numbers, viZ., 

wx + {3' = 1-'-2. 
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On substituting the values of x and w this condition 
transforms into 
p4 ± 6yp3'+ (9y2 + 2a)p2 ± 6a:vp + a2 - 9P + (3' = ~l2, 
an indetermitiate equation of the fourth degree in). 

In the following example and its solution from 
Bhaskara II we find the application of the above 
principle: 

Exaf(1ple. "What are those four numbers which 
together with 2 become capable of yielding square
roots ; also the products of two and two contiguous of 
which added by 18 yield square-roots; and which are 
such that the square-root of the sum of all the roots 
added by II becomes 13. Tell them to me, 0 algebraist 
friend."! \ 

SO/lItiOI1. "In this example, the product-interpolator 
is 9 times the number-interpolator. The square-root of 
9 is 3. He?ce the square-roots torr~sponding to the 
numbers wIll have the common difference;. Let 
them be 

'x, x+ 3, x+ 6, x+ 9. 

"Now the products of two and two contiguous of 
these minus the number-interpolator are the square
roots pertaining to the products of the numbers as 
increased by 18. So these square-roots are 

x 2 + 3X- 2, 

x 2 + 9x+ 16, 
X2+ qx+ p., 

"The sum of ,these and the previous square-roots 
all together is 3X2 + 3 IX + 84. This added with I I 

1 BBi, p. 67. 
It 'will be noticed that by virtue of the last condition the 

problem becomes, io a way, determinate: 
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becomes equal to -169' Hence 

;X2 + 3 IX + 95 = OX2 + ox + 169. 

"Multiplying both sides by 12, superadding 961, 
and then extracting square-roots, we get 

6x + 3 I = ox + 43. 

x= 2. 

"With the value thus obtained, we get the values of 
the square "roots pertaining to the numbers to be 2, 

~, 8, II. Subtracting the number-interpolator from the 
squares of these, we have the (required) numbers as 2, 

.13, 62., 119." " 

Example 4. To find two numbers such that 

x -y -+ k = u2, 

x-+ y + k = v2
, 

x 2 - ]2 + k' = S2, 

x 2 + y2 + kIf = t 2• 

Bhaskara II says : 

"Assume first the value of the square-root perrain
ing to the difference (of the numbers wanted) to be any 
unknown with or without an absolute number. The
root corresponding to the sum will be equal to the 
root pertaining to the difference together with the 
square-root of the quotient of the interpolator of the 
difference of the squares divided by the interpolator for 
the sum or difference of the numbers. The squares of 
these two less their interpolator are the sum and differ
ence of the numbers. From them the two numbers can 
be found by the rule" of concurrence."1 

1 BBi, pp. I I Iff. 
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That IS to say, if '))/ is any rational number, we. 
assume 

11= W ± a, 

where a is an absolute number which may be o. Then 

v = (w ~ a) + V Ie' lie: 
Now x 2 - y2 + k' = (x - y)(x + y) + k' 

= (112 - k)(v2 - k) + k' 
= 112V2 - ~(1I2 + v2) + k 2 + k', 

One sufficient condition that the right-hand side may be 
a square IS 

k(v - 11)2 = k', 
or V = II + V k'lle, 

which is stated in the rule. Therefore, 
x - y = (w ± a)2 - k, 

Hence 

x + y = (w ± a + V Ie' jle)2 - k. 

x = !{(w ± a)2 + (w ± a + V k'/k)2 - zk}, 
y = !{(w ± a + vie'!~)2 - (w + a)2}. 

Now, if y denotes V Ie' Ik, we get 
x 2 + y2 = tt4 + 2.YU3 + (3 y2 - 2.k)u2 

+ 2.y(y2 - k)u + -&k2 + ~(y2 - k)2. 
So it now remains to solve 

,,4 + 2Yll3 + (3-y2 - zk)tt2 + zy(y2 - k)u 
+ ~k2 + ~(y2 - k)2 + kif = t2, 

which is an indeterminate equation in u. 
Applications. \~Ye take an illustrative example with 

its solution from Bhaskara II. 

"0 thou of fine intelligence, state a pair of 
numbers, other than 7 and 6, whose sum and difference 
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(severally) added with 3 are squares; the sum of their 
squares decreased by 4 and the difference of the squares 
increased by I2. are also squares; half their product 
together with the smaller one is a cube; again the sum 
of all the roots plus 2 is a square."! 

That IS to say, if x > y, we have to solve 
x - y + 3 = u2, 

. x+ y + 3 = v2, 

x 2 - y2 + I Z = S2, 

x 2 + y2 - 4 = /2, 

!~':Y + y = p3, 
U + v + s + t + p + 2. = q2. 

This problem has been solved in two ways: 
First Method. As directed in the above rule, 

assume 
u=w- I. 

Then x - y = (w - 1)2 - 3 = w2 - 2W - 2, 

X + y = (12' - I + 2.)2 - 3 = w2 + 2.1V - 2.. 

Therefore x = 1V2 - 2, Y = 2.W. 

Now, we·find that 
x 2 - y2 + 12. = (w2 _ 4)2, 

x 2 + y2 - 4 = 1V4, 

!xy + y = 1V3• 

SO all the equations except the last one are already 
satisfied. This remaining equation now reduces to 

2.W2 + 3W - 2. = q2. 
Completing the square' on the left-hand side Of this 
equation, we get 

(4)>' + 3)2 = 8q2 + 25· 

1 BBi, p. 115. 
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By the method of the Square-nature its solutions are' 

q=5} q=175} 
4W + 3 = 15' 4W + 3 = 495 ' ... 

Therefore w = 3, 123, ... 
Hence the values of (x,y) are (7, 6), (15127, 246), ... 

Second Method. Or assumel 

x - y + 3 = w2, 

then x + y + 3 = w2 + 4W + 4 = (w + 2.)2. 

Whence x = w2 + 2.W - I, Y = 2.W + 2. 

Now, we find that 
x 2 - y2 + 12. = (W2 + 2.W - 3)2, 
x 2 + y2 - 4 = (W2 + 2.W + 1)2, 

~~+ Y = (w+ 1)3. 
Then the remaining condition reduces to 

2W2 + 7W + 3 = q2. 

Completing the square on the left-hand side, we get 
(4W + 7)2 = 8q2 + 25. 

Whence by the method of the Square-nature, we get 

q = 5 } q = 175} 
4W + 7 = i 5' 4W + 7 = 495 ' ... 

Therefore 11/ =.2., 12.2., ••• 

Hence (x,y) = (7, 6), (15 1.2.7, 2.46), ... 
Another very interesting example which has been 

borrowed by Bhiskara II from an earlier writer is the 
following: 2 

1 This is clearly equivalent to the supposition, II = w, 
fI=W+Z. 

2 The text is ka~apylldaharalJ4fJ1 ("the example of some one"). 
This observation appear$ to indicate that this particular example -
was borrowed by Bhlskara II from a secondary source; its primary 
source was not known to him. 
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"Tell me quickly, 0 sound algebraist, two numbers, 
excepting 6 and 8, which are such that the cube-root of 
half the sum of their product and the smaller one, the 
square-root of the sum of their squares, the square-roots 
of the sum and difference of them (each) increased by 2, 

and of the difference of their squares plus 8, ,all being 
added together, will be capable of yielding a square
root."l 

That is ,to say, if x> y, we have to solve 

V'!(~ +y) + \lx2 + y2 + \lx2 _y2 + 8 

+ vi x + y.+ 2 + V X - .'! + 2. = q2. 
In every instance of ' this kind, remarks Bhaskara II, 

"the values of the two unknown numbers should be 
so assumed in terms of another unknown that all the 
stipulated conditions will be satisfied." In other words, 
the equation will have to be resolved into a number of 
,other equations all of which have to be satisfied simul-
taneously. Thus we shall have to solve ' 

x - y + 2. = 112, , 

x+ y+.2. = v2, 

x 2 - y2 + 8 = s2, 
x2 + y2 = /2, 

!(xy + y) = p3, 
II + V + s + t + p = q2. 

The last equation, represents the original one. 
There· have been indicated several methods of solv

ing these equations. 
(i) Set' x = w2 - 1, Y = 2.W ; then we find that 

x - y + 2. = (w - 1)2, 
X + y + 2. = (w + 1)2, 

'1.8,n: 
IW., p. JJO. 
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x 2 - y2 + 8 = (1112 - 3)2, 
X2 + y2 = (1312 + 1)2, 

!(xy + y) = Dfo. 
So all the equations except the last one are identically 
sa6sfied. This last equation now becomes 

2W2 + 3w - 2 = q2. 

Completing the square on the left-hand side, we get 
(4W + 3)2 = 8q2 + 2.5. 

Solutions of this are 

as 

q= 5 } q= 30 t q= 175} 
412'+3=15' 4W +3=85" 4131+3=495 , ..• 

Therefore, we have the solutions of out problem 

(x,y) = (8, 6), (1677/4, 41), (IS12.8, 2'46), ... 
Or set 

(ii) f x = 131
2 + 2.W, 

iy = 2.W + z; 

(iii) {X = 131
2 

- 2.W, 
Y = 2.W - 2; 

or (iv) {X = w
2 + 4fl' + 3, 

Y = 2.111 + 4. 
In conclusion BM.skara II remarks: "Thus there 

may be a thousandfold artifices; since they are hidden 
to the dull, a few of them have been indicated here out 
of compassion for them."! 

It will be noticed that in devising the various arti
fices noted above for the solution of the problem, 
BM.skara II has been in each case guided by the result 
that if u = w ± a, then, v = 111 ± a + V k'/k. He has 
simply taken different values of a in the different cases. 

1 BBi, p. II o. 
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28. SOLUTION OFaxy = bx + cy + d 

BakhshiU Treatise. The earliest instance of a 
quadratic ihdeterminate equation of the type axy = bx 
+ €I' + d, in Hindu mathematics occurs in the 
Bakhshall Treatise (c. 200).1 The text is very mutilated. 
But the example that is preserved is 

xy = 3x + 4Y =r= I, 

of which the solution~ preserved are 

3 4- I 
X =' + 4 = 15, 

and 

I 

Y=I+3=4; 

x = 1+ 4 = 5, 

. ;.4+1 6 
y= I +3=1. 

Hence, in general, the solutions of the equation 

xY= bx+ 91+ d, 

which appear to have been given are: 

X - m e, or _ be + d b' 
_ be + d +} x = m + t'" } 

Y = m + b; Y - m +, 
where m is an arbitrary number. 

An Unknown Author's Rule. Brahmagupta (628) 
has described the following method taken from an 
author who is not known now.2 

1 BMs, Folio 27, recto; compare also Kaye's Introduction §8z. 
2 PrthUdakasvami (860) says that the method is due to a 

wiiter other than Brahmagupta. This is further corroborated by 
Brahmagupta's strictures on it (vide infra, p. 299). 
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~'The product of the coefficient of the factum and the 
absolute number together with the product of the coeffi
cients of the unknowns is divided by an optional number. 
Of the optional number and the quotient obtained, 'the 
greater is added to the lesser (of the coefficients of the 
unknowns) and the lesser to the greater (of the coeffi
cients), and (the sums) are divided by the coefficient of 
the factum. (The results will be values of the unknowns) 
in the reverse order."1 

As has been observed by 'P.rthudakasvaml, this rule 
is to be applied to an equation containing the factum 
after it has been prepared by transposing the factum term 
to one side and the absolute term together with the 
simple unknown terms to the other. Then the solutions 
will be, In being an arbitrary rational m~mber, 

I 
x = -(111 + e), 

a 

= !_(ad+ be + b) 
Yam ' 

if b > c and IN> ad + be. If these conditions be re-
, In 

versed then x andy will have their values interchanged. 
The rationalf of the above solutions can be easily 

shown to be as follows: 

or 

or 

Suppose 

then 

axy = bx + cy + d, 
a2xy - abx - acy = ad, 

(ax - c)(try - b) = ad + be. 
ax - c = In, a rational number; 

ay_ b= ad+ be. 
m 

1 DrSpSi, xviii, 60. 
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Therefore 

Or, we may put 

then we shall have 

I 
x= -(m + e), 

a 

y = _!__ ( ad -+ be + b ). 
a m 

q_y-b=m; 
ad+ be 

ax - c = ; 
In 

whence x = ; C~~! Iff + c ). 

I 
y=-(m+ b). 

a 

It will thus be found that the restrictive condition of 
adding the greater and lesser of the numbers m and 
(ad + be)jm to the lesser and greater of the· numbers 
band e respectively as adumbrated in the above rule is 
quite unnecessary. 

Brahmagupta's Rule. Brahmagupta gives the 
following rule for the solution of a quadratic indeter
minate"equation involving a factum: 

"With the exception of an optional unknown, 
assume arbitrary values for the rest of the unknowns, 
the product of which forms the factum. The sum 
of the products of these (assumed values) and 
the (respective) coefficients of the unknowns will be 
absolute quantities. The continued products of the 
assumed values and of the coefficient of the factum will 
be the coefficient of the optionally (left out) unknown. 
Thus the solution is effected without forming an equation 
of the factum. Why then was it done SO?"1 

The reference in the latter portion of this' rule is 
to the method of the unknown writer. The principle 

1 BrSpSi, xviii. 61-3, "ide supra, p. 29']. 
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underlying Brahmagupta's method is to reduce, like the 
Greek Diophantus (c. 275),1 the given indeterminate 
equation to a simple determinate one by assuming 
arbitrary values for all the unknowns except one. So 
it is undoubtedly inferior to the earlier method. 
Brahmagupta gives the following illustrative example: 

"On subtracting from the product of signs and 
degrees of the. sun, three and four times (respectively) 
those quantities, ninety is obtained. Determining the 
sun. within a year (one c~ pass as a proficient) mathe
matlcian."2 

If x denotes the signs and y the degrees of the sun:> 
then the ,equation is 

xy- 3x - 4Y= 90. 
Thus this problem, as that of Bhaskara II (infra), appears 
to have some relation with that of the BakhsM.1i work. 
Pfthudakasvami solves it in two ways. FirstlY, he as
sumes the arbitrary number to be 17, then 

_ I (90' I + 3.4 + )_ x - - 4 - 10, 
1 17 
I 

Y = -(17 + 3) = 20. 
1 

SecondlY, he assumes arbitrarily y = 20. On substituting 
this value in the above equation, it reduces to 

zox - 3X = 170 ; 
whence x = 10. 

Mahavira's Rule. Mahavira (850) has not treated 
equations of this type. There are, however, two pro
blems in his GatJita-sara-samgraha which involve similar 
'equations. One of them is to find the increase or 

1 Heath, Diaphantus, pp. 192.-4, 2.62.. 
Z BrSpSi, xviii. 61. 
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~ecrease ,of two numbers (a, b) so that the product of 
the resulting numbers will be equal to another optionally 
given number (d). Thus we are to solve 

(a ± x)(b ±y) = d, 

or xy ± (bx+ ay) = d- abo 

The rule given for solving this is : 

"The difference between the product of the given 
numbers and the optional number is put down at two 
places. It is divided (at one place) by one of the given 
numbers increased by unity and (at the other) by the 
optional number increased by the other given number. 
These will give in the reverse otder the values of the 
quantities to be added or subtracted."! 

That is to say, 

x= ~.~a:} 
d'""'"' ab ' y=-
a+l 

or 
x = -:--:-d -- ab 1 
Y= ::-:b t 
. d+ a ) 

Thus the solutions given by l.fiha.vira are much 
cramped. The other problem considered by him is to 
separate the capitai, interest and time when their sum is 
given: If x be the capital invested andy the period of 
time in months, then the interest will be mxy, when: m 
is the rate of intere.st per month. Then the problem 
is to solve 

IllXy + X + y = p. 
Maba:dra solves this equation by assuming arbitrary 
values fory.2 

1. GSS, vi. :d14. 2 GSS, vi. 3~. 
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Sripati's Rule. Sripati (I039) gives the following 
, rule: 

"Remove the factums from one side, the (simple) 
unknowns and the absolute numbers from the other. 
The product of the coefficients of the unknowns being 
added to the product of the absolute quantity and the 
coefficient of the factum, (the sum) is divided by an 
optional number. The quotient and the divisor should 
be added arbitrarily to the greater or smaller of the 
coefficients of the unknowns. These divided by the 
coefficient of the factum will be the v31ues of the un
knowns in the reverse order."l 

. I ( .) 1 I (ad + be + )} ·t.e., x = - m T e x = - e a a, m. 

y = !_ (ad + be + b ) J' y = .!_ (m + b) ~ 
a m a 

where m is arbitrary. 

Bhaskara II's Rule. BM.skara II (II 50) has given 
two rules for the solution of a quadratic indeterminate 
equation containing the product of the unknowns. His 
first method is the same as that of Brahmagupta:· 

"Leaving one unknown quantity optionally chosen, 
the values of the other should be assumed arbitrarily' 
according to convenience. The factum will thus be 
reduced a...'1.d the required solution can then be obtained 
by the first method of analysis:"2 

Bhaskara's aim was to obtain intf:gra~ solutions. The 
above method is, however, not convenient fat the 
.purpose. He observes: 

"On assuming in this wayan arbitrary known 
value for one of the unknowns, the integral values of the 

1 SiSe~ xiv . .10-1. 2BBi,p. 123· 
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two ,unknowns can be obtained with m~ch difficulty."l 
So he describes a second method "by which they can 
be obtained with little difficulty." 

"Transposing the factum from one side chosen at 
pleasure, and the (simple) unknowns and the absolute 
number from the other side (of the equation), and then 
dividing both the sides by the coefficient of the factum, 
the product of the coefficients of the unknowns together 
with the absolute number is divided by an optional 
number. The optional number and that quotient should 
be increased or diminished by the co~fficients of the 
unknowns at pleasure. They (results thus obtained) 
should be known as the values of the two unknowns 
reciprocally."2 -

This rule has been elucidated by the author thus: 

"From one of the ·two equal sides the factum be-' 
jng removed, and from .the other the unknowns 
and the absolute number; then dividing the two 
sides by the coefficients of the factum, the product 
of the coefficients of the unknowns on the other side 
added to the absolute number, is divided by an 
optional number. The optional number and the quo
tiet:lt being arbitrarily added to the coefficients of the 
·unknowns, should be known as the values of the un
knowns in the reciprocal order. That is, the one to 
which the coefficient of the hi/aka (the second unknown) 
is added, will be the value of the yavat-tdpat (the first 
unknown) and the one to which the coefficient of the 
ydvat-tdvat is added, will be the value of the kc1/aka. 
But if, after that has been done, owing to the magnitude, 
the statements (of the problem) are not fulfilled, then 

1 "Evamekasmin vyakte rasau kalpit,= sati bahunayasenabhinnau 
rasi jnayete" -BBi, p. 1 Z4. 

2 BBi, RP. 12-4f. 
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from the optional number and the quotient, the coeffi
cients of the unknowns should be subtracted, and (the 
remainders) wlll be the values of the unknowns in the 
reciprocal order." 

Thus Bhiskara's solutions are 

x ~ ~ ± III } x ~ ~ ± II' } ~ 
Y = - + n' y =. - ± fIJ' a - a 

where fIJ' is any arbitrary number and n' = ..; (b~ +.!.....). fIJ a a 
The rationale of these solutions is as follows: 

axy = bx + €)I + d, 
bed 

or xy -- -;;x- '-;;y= a' 

or ( X - !__) ( Y - !!_) = !!_ + be = 111' n' say a a a a2 ,. 

Then, either 

x-; =±fIJ'} 
or 

b , Y-(i=±n 

c , } x--=±n a -

b ' 
y- -= ±m' 

a 
whence the solutions. 

Bhaskara's Proofs. The same rationale of the 
above soluti(:)ns has been given also by Bhiskara II with 
the help of the following illustrative example. He 
observes that the proof "is twofold in every case: one 
geometrical (k,ctragata), the other algebraic (raijgata)."l 

Example. "The.sum of two numbers multiplied 
by four and three, added by two is equal to the product 

IBBi,p. 125· 



SOLUTION oFaxy = bx + cy + d 305 

of those numbers. "Tell me, if thou knowest, those 
two numbers."l 

Solution. "Having performed the operations as 
stated, the sides are 

~y = 4X + 3.Y + 2. 

The product of the coefficients of the unknowns plus 
the absolute term is 14. Dividing this by an optional 
number (say) unity, the optional number and the quotient 
are I, 14. To these being arbitrarily added 4, 3, the 
coefficients of the unknowns, the values of (x,y) are 
(4, 18) or (17, 5). (Dividing) by (the optional number) 2, 

(other values will be) (5, I I) or (10, 6.)"2 
Geometrical Proof. "The second side of the equation 

is equal to the factum. But the factum is the area of an 
oblong quadrilateral of which the base and upright are 
the unknown quantities. Within this figure (Fig. 15) 
exist four x's, three y's and the absolute number 2. 

From this figure on taking off four x's and.'Y minus four 
multiplied by its own coefficient, (i.e., 3), it becomes 
this (Fig. 16). 

~ _____ . x • ____ .. 

..... ...---------, 
I 

y 
I , , 
I , 
I 
I ... '-----_ ..... 

f----- X .----~ -

TI======~ 

y 

, , , 
I 

, ~ L...L..L...I... ___ ----l 

Fig. 15 Fig. 16 

The other side of the equatioQ being so treated there' . . 
1 BBi, pp. 123, 12 5: 

2.0 

2 BBi, p. 12.5. 
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results 14. This must be the area of the figure remaining 
at the corner (see Fig. 16) within the rectangle represent
ing the factum, and is the product of its base and upright. 
But these are (still) to be known here. Therefore, assum
ing an optional number for the base, the upright will be 
obtained on dividing the area 14 by it. One of these, 
base and upright, being increased by 4, the coefficient 
of x will be the upright of the figure representing the 
factum, because when four x's were separated from the 
factum-figure, its upright was lessened by 4. Similarly 
the other being increased by 3, the coefficient of y, will 
be the base They are precisely" the values of x and y."l 

Algebraic Proof "This is also geometrical in 
origin. In this the values of the base and upright of 
the smaller rectangle within the rectangle whose base 
and upright are x and y respectively, are assumed to be 
two other unknowns 11 and v.2 One of them being 
in<;reased by the coefficient of x will be the value of 
the upright of the outer figure and the other being 
increased by the coefficient of y will be taken to be the 
value of the base of the outer figure. Thus y = 11 + 4, 
x = v + 3. Substituting these values of the unknowns 
x, y, on both sides of the equation, the upper side will 
be 311 + 4V + 26 and the factum side will be uv + 311 

+ 4V +' 12. On making perfect clearance b.etween 
these sides, the lower side becomes IIV and the upper 
side 14. This is the area of that inner rectangle and it is 
equal to the product of the coefficients of the unknowns 
plus the absolute number. How the values of the 
unknowns are to be thence deduced, has been already 
explained. "3 

1 DBi, p" 12.6. 
2 In the original text they are respectively ni (fDr nilaka) and pI 

(for pi/aka). 
aBBi, p .. U7. 
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Bhaskara II further observes: 
"Thus the proof of the solution of the factum has 

been shown to be of two kinds. What has been said 
before-the- product of the coefficients of the unknowns 
together with the absolute number is equal to the area 
of another rectangle inside the rectangle representing 

,the factum and lying at a corner-is sometimes other-
wise. For, when the coefficients of the unknowns are 
negative, the factum-rectangle will be inside the 
other rectangle at one corner; and when the coefficients 
of the unknowns are greater than the base and upright 
of the factum-rectangle, and are positive, the other 
will be outside the factum rectangle and at a corner, as 
(Figs. 17: 18). 
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When it is so, the coefficients of the unknowns lessened 
by the optional number and the quotient, will be the 
values of x andy."l 
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